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Abstract

The stochastic block model (SBM) is a flexible probabilistic tool that can be

used to model interactions between clusters of nodes in a network. However,

it does not account for interactions of time varying intensity between clusters.

The extension of the SBM developed in this paper addresses this shortcoming

through a temporal partition: assuming interactions between nodes are recorded

on fixed-length time intervals, the inference procedure associated with the model

we propose allows to cluster simultaneously the nodes of the network and the

time intervals. The number of clusters of nodes and of time intervals, as well as

the memberships to clusters, are obtained by maximizing an exact integrated

complete-data likelihood, relying on a greedy search approach. Experiments

on simulated and real data are carried out in order to assess the proposed

methodology.

Keywords: Dynamic networks, stochastic block models, Exact ICL.

1. Introduction

Network analysis has been applied since the 30s to many scientific fields.

Indeed graph based modelling has been used in social sciences since the pioneer

work of Jacob Moreno [1]. Nowadays, network analyses are used for instance in

physics [2], economics [3], biology [4, 5] and history [6], among other fields.

One of the main tools of network analysis is clustering which aims at detect-

ing clusters of nodes sharing similar connectivity patterns. Most of the cluster-
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ing techniques look for communities, a pattern in which nodes of a given cluster

are more likely to connect to members of the same cluster than to members of

other clusters (see [7] for a survey). Those methods usually rely on the maxi-

mization of the modularity, a quality measure proposed by Girvan and Newman

[8]. However, maximizing the modularity has been shown to be asymptotically

biased [9].

In a probabilistic perspective, the stochastic block model (SBM) [10] assumes

that nodes of a graph belong to hidden clusters and probabilities of interactions

between nodes depend only on these clusters. The SBM can characterize the

presence of communities but also more complicated patterns [11]. Many infer-

ence procedures have been derived for the SBM such as variational expectation

maximization (VEM) [12], variational Bayes EM (VBEM) [13], Gibbs sampling

[14], allocation sampler [15], greedy search [16] and non parametric schemes [17].

A detailed survey on the statistical and probabilistic take on network analysis

can be found in [18].

While the original SBM was developed for static networks, extensions have

been proposed recently to deal with dynamic graphs. In this context, both

nodes memberships to a cluster and interactions between nodes can be seen

as stochastic processes. For instance, in the model of Yang et al. [19], the

connectivity pattern between clusters is fixed through time and a hidden Markov

model is used to describe cluster evolution: the cluster of a node at time t+ 1 is

obtained from its cluster at time t via a Markov chain. Conversely, Xu et al. [20]

as well as Xing et al. [21] used a state space model to describe temporal changes

at the level of the connectivity pattern. In the latter, the authors developed a

method to retrieve overlapping clusters through time.

Other temporal variations of the SBM have been proposed. They generally

share with the ones described above a major assumption: the data set consists

in a sequence of graphs. This is by far the most common setting for dynamic

networks. Some papers remove those assumptions by considering continuous

time models in which edges occur at specific instants (for instance when someone

sends an email). This is the case of e.g. [22] and of [23, 24]. The model developed
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in the present paper introduces a sequence of graphs as an explicit aggregated

view of a continuous time model.

More precisely, our model, that we call the temporal SBM (TSBM), assumes

that nodes belong to clusters that do not change over time but that interaction

patterns between those clusters have a time varying structure. The time interval

over which interactions are studied is first segmented into sub-intervals of fixed

identical duration. The model assumes that those sub-intervals can be clustered

into classes of homogeneous interaction patterns: the distribution of the number

of interactions that take place between nodes of two given clusters during a

sub-interval depends only on the clusters of the nodes and on the cluster of the

sub-interval. This provides a non stationary extension of the SBM, which is

based on the simultaneous modelling of clusters of nodes and of sub-intervals of

the time horizon. Notice that a related approach is adopted in [25], but with a

substantial difference: they consider time intervals whose membership is known

and hence exogenous, whereas in this paper the membership of each interval is

hidden and therefore inferred from the data.

The greedy search strategy proposed for the (original) stationary SBM was

compared with other SBM inference tools in many scenarios using both simu-

lated and real data in [16]. Experimental results emerged illustrating the capac-

ity of the method to retrieve relevant clusters. Note that the same framework

was considered for the (related) latent block model [26], in the context of bi-

clustering, and similar conclusions were drawn. Indeed, contrary to most other

techniques, this approach relies on an exact likelihood criterion, so called inte-

grated complete-data likelihood (ICL), for optimization. In particular, it does

not involve any variational approximations. Moreover, it allows the clustering of

the nodes and the estimation of the number of clusters to be performed simulta-

neously. Alternative strategies usually do first the clustering for various number

of clusters, by maximizing a given criterion, typically a lower bound. Then, they

rely on a model selection criterion to estimate the number of clusters (see [12]

for instance). Some sampling strategies also allow the simultaneous estimation

[17, 15]. However, the corresponding Markov chains tend to exhibit poor mix-
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ing properties, i.e. low acceptance rates, for large networks. Finally, the greedy

search incurs [16] a smaller computational cost than existing techniques. There-

fore, we follow the greedy search approach and derive an inference algorithm,

for the new model we propose, which estimates the number of clusters, for both

nodes and time intervals, as well as memberships to clusters.

Finally, we cite the recent work of Matias et al. [27] who independently

developed a temporal stochastic block model, related to the one proposed in

this paper. Interactions in continuous time are counted by non homogeneous

Poisson processes whose intensity functions only depend on the nodes clusters.

A variational EM algorithm was derived to maximize an approximation of the

likelihood and non parametric estimates of the intensity functions are provided.

This paper is structured as follows: Section 2 presents the proposed tem-

poral extension of the SBM and derives the exact ICL for this model. Section

3 presents the greedy search algorithm used to maximize the ICL. Section 4

gathers experimental results on simulated data and on real world data.

2. A non stationary stochastic block model

We describe in this section the proposed extension of the stochastic block

model (SBM) to non stationary situations. First, we recall the standard model-

ing assumptions of the SBM, then introduce our temporal extension and finally

derive an exact integrated classification likelihood (ICL) for this extension.

2.1. Stochastic block model

We consider a set of N nodes A = {a1, . . . , aN} and the N × N adjacency

matrixX = {Xij}1≤i,j≤N such thatXij counts the number of direct interactions

from ai to aj over the time interval [0, T ]. Self loops are not considered here,

so the diagonal of X is made of zeros (∀i, Xii = 0). Nodes in A are assumed to

belong to K disjoint clusters

A = ∪k≤KAk, Al ∩Ag = ∅, ∀l 6= g.
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We introduce a hidden random vector c = {c1, . . . , cN}, labelling each node’s

membership ci

ci = k iff i ∈ Ak, ∀k ≤ K.

The (ci)1≤i≤N are assumed to be independent and identically distributed ran-

dom variables with a multinomial probability distribution depending on a com-

mon parameter ω

P{ci = k} = ωk with
∑
k≤K

ωk = 1.

Thus, node i belongs to cluster k with probability ωk. As a consequence, the

joint probability of vector c is

p(c|ω,K) =
∏
k≤K

ω
|Ak|
k , (1)

where |Ak| denotes the number of nodes in cluster k (we denote |U | the cardinal

of a set U).

The first assumption of the original (stationary) SBM is that interactions

between nodes are independent given the cluster membership vector c, that is

p(X|c) =
∏

1≤i,j≤N

p(Xij |c).

In addition, Xij is assumed to depend only on ci and cj . More precisely, let us

introduce a K ×K matrix of model parameters

Λ = {λkg}k≤K,g≤K .

Then, if c is such that ci = k and cj = g, we assume that Xij is such that

p(Xij |c,Λ,K) = p(Xij |λkg).

Combining the two assumptions, the probability of observing the adjacency

matrix X, conditionally to c, is given by

p(X|c,Λ,K) =
∏
k≤K

∏
g≤K

∏
i:ci=k

∏
j:cj=g

p(Xij |λkg).

When Xij characterizes interaction counts, a common choice for p(Xij |λkg) is

the Poisson distribution.
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2.2. A non stationary approach

In order to introduce a temporal structure, we modify the model described

in the previous section. The main idea is to allow interaction counts to follow

different regimes through time. The model assumes that interaction counts are

stationary at some minimal time resolution. This resolution is modeled via

a decomposition of the time interval [0, T ] in U sub-intervals Iu :=]tu−1, tu]

delimited by the following instants

0 = t0 < t1 < · · · < tU = T,

whose increments

tu − tu−1, u ∈ {1, . . . , U},

have all the same fixed value denoted ∆.

As for the nodes, a partition C1, . . . , CD is considered for the time sub-

intervals. Thus, each Iu is assumed to belong to one of D hidden clusters and

the random vector y = {yu}u≤U is such that

yu = d iff Iu ∈ Cd,∀d ≤ D.

A similar multinomial distribution as the one of c, is used to model y that is

p(y|β, D) =
∏
d≤D

β
|Cd|
d , (2)

where |Cd| is the cardinal of cluster Cd and P{yu = d} = βd.

We now define N Iu
ij as the number of observed interactions from i to j, in

the time interval Iu. With the notations above, we have

Xij =

U∑
u=1

N Iu
ij .

Following the SBM case, we assume conditional independence between all the

N Iu
ij given the two hidden vectors c and y. DenotingN∆ = (N Iu

ij )1≤i,j≤N,1≤u≤U ,

the three dimensional tensor of interaction counts, this translates into

p(N∆|c,y) =
∏

1≤i,j≤N,1≤u≤U

p(N Iu
ij |c,y).
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Given a three dimensionalK×K×D tensor of parameters Λ = {λkgd}k≤K,g≤K,d≤D,

we assume that when c is such that ci = k and cj = g, and y is such that yu = d,

then

p(N Iu
ij |ci = k, cj = g, yu = d) = p(N Iu

ij |λkgd).

In addition, N Iu
ij |λkgd is assumed to be a Poisson distributed random variable,

that is

p(N Iu
ij |λkgd) =

(λkgd)
NIu

ij

N Iu
ij !

e−λkgd . (3)

Remark 1. In the standard SBM, the adjacency matrix X is a classical N×N

matrix and the parameter matrix Λ is also a classical K × K matrix. In the

proposed extension, those matrices are replaced by three dimensional tensors,

N∆ with dimensions N ×N × U and Λ with dimensions K ×K ×D.

Remark 2. For i and j fixed and c known, the random variables (N Iu
ij )1≤u≤U

are independent but are not identically distributed. As u corresponds to time

this induces a non stationary structure as an extension of the traditional SBM.

Notation 1. To simplify the rest of the paper, let us denote∏
k,g,d

:=
∏
k≤K

∏
g≤K

∏
d≤D

and
∏
ci=k

:=
∏
i:ci=k

and similarly for
∏
cj=g and

∏
yu=d.

As in the case of the SBM, the distribution of N∆, conditional to c and y, can

be computed explicitly

p(N∆|Λ, c,y,K,D) =
∏
k,g,d

∏
ci=k

∏
cj=g

∏
yu=d

p(N Iu
ij |λkgd),

=
∏
k,g,d

(λkgd)
Skgd

Pkgd
e−λkgdRkgd , (4)
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where

Skgd :=
∑
ci=k

∑
cj=g

∑
yu=d

N Iu
ij ,

Pkgd :=
∏
ci=k

∏
cj=g

∏
yu=d

N Iu
ij !,

Rkgd :=

|Ak||Ag||Cd| if g 6= k,

|Ak|(|Ak| − 1)|Cd| if g = k.

The full generative model is obtained by adding an independence assump-

tions between c and y which gives to those vectors the following joint distribu-

tion (obtained using equations (1) and (2))

p(c,y|Φ,K,D) =

∏
k≤K

ω
|Ak|
k

∏
d≤D

β
|Cd|
d

 , (5)

where Φ = {ω,β}.

The identifiability of the proposed model could be assessed in future works,

being outside the scope of the present paper. For a detailed and more general

survey of the identifiability of the model parameters, in dynamic stochastic block

models, the reader is referred to [28].

2.3. Exact ICL for non stationary SBM

The assumptions we have made so far are conditional on the number of

clusters K and D being known, which is not the case in real applications. A

standard solution to estimate the labels c and y as well as the number of clusters

would consist in fixing the values of K and D at first and then in estimating

the labels through one of the methods mentioned in the introduction (e.g. vari-

ational EM). A model selection criterion could finally be used to choose the

values of K and D. Many model selection criteria exist, such as the Akaike In-

formation Criterion (AIC) [29], the Bayesian Information Criterion (BIC) [30]

and the integrated classification likelihood (ICL), introduced in the context of

Gaussian mixture models by Biernacki et al. [31]. Authors in [16] proposed

an alternative approach: they introduced an exact version of the ICL for the
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stochastic block model, based on a Bayesian approach and maximized it directly

with respect to the number of clusters and to cluster memberships. They ran

several experiments on simulated and real data showing that maximizing the

exact ICL through a greedy search algorithm provided more accurate estimates

than those obtained by variational inference or MCMC techniques. Similar re-

sults are provided in [26], in the context of the latent block model (LBM) for

bipartite graphs: the greedy ICL approach outperforms its competitors in both

computational terms and in the accuracy of the provided estimates. Therefore,

in this paper, we chose to extend the proposed greedy search algorithm to the

temporal model. More details are provided in Section 1.

In the following, the expressions “ICL” or “exact ICL” will be used inter-

changeably.

Following the Bayesian approach, we introduce a prior distribution over the

model parameters Φ and Λ, given the meta parameters K and D, denoted

p(Φ,Λ|K,D). Then the ICL is the complete data log-likelihood given by

ICL(c,y,K,D) = log p(N∆, c,y|K,D), (6)

where the model parameters Φ and Λ have been integrated out, that is

ICL(c,y,K,D) = log

(∫
p(N∆, c,y|Λ,Φ,K,D)p(Φ,Λ|K,D)dΛdΦ

)
. (7)

We emphasize that the marginalization over all model parameters naturally

induces a penalization on the number of clusters. For more details, we refer to

[31, 16]. The integral can be simplified by a natural independence assumption

on the prior distribution

p(Λ,ω,β|K,D) = p(Λ|K,D)p(ω|K)p(β|D),

which gives

ICL(c,y,K,D) = log

(∫
p(N∆|Λ, c,y,K,D)p(Λ|K,D)dΛ

)
+ log

(∫
p(c,y|Φ,K,D)p(Φ|K,D)dΦ

)
= log

(
p(N∆|c,y,K,D)

)
+ log (p(c,y|K,D)) . (8)
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Notice that we use in this derivation the implicit hypothesis from equation (5)

which says that (c,y) is independent from Λ (given Φ, K and D).

2.4. Conjugated a priori distributions

A sensible choice of prior distributions over the model parameters is a nec-

essary condition to have an explicit form of the ICL.

2.4.1. Gamma a priori

In order to integrate out Λ and obtain a closed formula for the first term on

the right hand side of (8), we impose a Gamma a priori distribution over Λ

p(λkgd|a, b) =
ba

Γ(a)
λa−1
kgd e

−bλkgd ,

leading to following joint density

p(Λ|K,D) =
∏
k,g,d

p(λkgd|a, b), (9)

where a, b > 0 and Γ(•) is the gamma function. By multiplying (4) and (9), the

joint density for the pair (N∆,Λ) follows

p(N∆,Λ|c,y,K,D) =
∏
k,g,d

[
ba

Γ(a)Pkgd
e−λkgd[Rkgd+b]λ

Skgd+a−1
kgd

]
.

This quantity can now be easily integrated w.r.t. Λ to obtain

p(N∆|c,y,K,D) =
∏
k,g,d

Lkgd, (10)

with

Lkgd =
ba

Γ(a)Pkgd

Γ(Skgd + a)

[Rkgd + b]Skgd+a
. (11)

A non informative prior for the Poisson distribution corresponds to limiting

cases of the Gamma family, when b tends to zero. In all the experiments we

carried out, we set the parameters a and b to one, in order to have unitary mean

and variance for the Gamma distribution.
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2.4.2. Dirichlet a priori

We attach a factorizing Dirichlet a priori distribution to Φ, namely

p(Φ|K,D) =DirK(ω;α, . . . , α)×DirD(β; γ, . . . , γ),

where the parameters of each distribution have been set constant for simplicity.

It can be proved (Appendix A) that the joint integrated density for the pair

(c,y), reduces to

p(c,y|K,D) =
Γ(αK)

Γ(α)K

∏
k≤K Γ(|Ak|+ α)

Γ(N + αK)

Γ(γD)

Γ(γ)D

∏
d≤D Γ(|Cd|+ γ)

Γ(U + γD)
. (12)

A common choice consists in fixing these parameters to 1 to get a uniform

distribution, or to 1/2 to obtain a Jeffreys non informative prior.

3. ICL maximization

The integrated complete likelihood (ICL) in equation (8) has to be maxi-

mized with respect to the four unknowns c, y, K, and D which are discrete

variables. Obviously no closed formulas can be obtained and it would computa-

tionally prohibitive to test every combination of the four unknowns. Following

the approach described in [16], we rely on a greedy search strategy. The main

idea is to start with a fine clustering of the nodes and of the intervals (possi-

bly size one clusters) and then to alternate between an exchange phase where

nodes/intervals can move from one cluster to another and a merge phase where

clusters are merged. Exchange and merge operations are locally optimal and

are guaranteed to improve the ICL.

The algorithm is described in detail in the rest of the section. An analysis

of its computational complexity is provided in Appendix B.

Remark 3. The algorithm is guaranteed to increase the ICL at each step and

thus to converge to a local maximum. Randomization can be used to explore

several local maxima but the convergence to a global maximum is not guaran-

teed. Moreover, let us denote by ĉ, ŷ, K̂, D̂ the estimators of c, y, K and D,

respectively, obtained through the maximization of the function in equation (8).
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A formal proof of the consistency of these estimators is outside the scope of this

paper. More in general, the consistency of this kind of estimators, maximizing

the exact ICL, is still an open issue.

3.1. Initialization

Initial values are fixed for both K and D, say Kmax and Dmax. These

values may be fixed equal to N and U respectively and each node (interval)

would be alone in its own cluster (time cluster). Alternatively, simple clustering

algorithms (k-means, hierarchical clustering) may be used to reduce Kmax and

Dmax up to a certain threshold. This choice should be preferred to speed up

the greedy search.

3.2. Greedy - Exchange (GE)

A shuffled sequence of all the nodes (time intervals) in the graph is created.

One node (time interval) is chosen and is moved from its current (time) cluster

into the (time) cluster leading to the highest increase in the exact ICL, if any.

This is called a greedy exchange (GE). This routine is applied to every node

(time interval) in the shuffled sequence. This iterative procedure is repeated

until no further improvement in the exact ICL is possible. In case a node (time

interval) is alone inside its cluster, an exchange becomes a merge of two clusters

(see below).

The ICL does not have to be completely evaluated before and after each

swap: possible increases can be computed directly, reducing the computational

cost. Let us consider first the case of temporal intervals. Moving interval Iu

from the cluster Cd′ to cluster Cl induces a modification of the ICL given by

∆E,T
d′→l :=ICL(c,y∗,K,D)− ICL(c,y,K,D),

=

log (p(c,y∗|K,D)) +
∑
k,g,d

log(L∗kgd)


−

log (p(c,y|K,D)) +
∑
k,g,d

log(Lkgd)

 ,
12



where y∗ and L∗kgd refer to the new configuration where Iu ∈ Cl. It can easily

be shown that ∆d′→l reduces to

∆E,T
d′→l =

log

(
Γ(|Cd′ | − 1 + γ)Γ(|Cl|+ 1 + γ)

Γ(|Cd′ |+ γ)Γ(|Cl|+ γ)

)
+
∑
k,g

log

(
L∗kgd′L

∗
kgl

Lkgd′Lkgl

)
. (13)

The case of nodes is slightly more complex. When a node is moved from cluster

Ak′ to Al, with k′ 6= l, the change in the ICL is

∆E,V
k′→l := ICL(c∗,y,K,D)− ICL(c,y,K,D),

which simplifies into

∆E,V
k′→l = log

(
Γ(|Ak′ | − 1 + α)Γ(|Al|+ 1 + α)

Γ(|Ak′ |+ α)Γ(|Al|+ α)

)
+
∑
g≤K

∑
d≤D

log(L∗k′gd) +
∑
g≤K

∑
d≤D

log(L∗lgd)

+
∑
k≤K

∑
d≤D

log(L∗kk′d) +
∑
k≤K

∑
d≤D

log(L∗kld)

−
∑
d

(log(L∗k′k′d) + log(L∗k′ld) + log(L∗lk′d) + log(L∗lld))

−
∑
g≤K

∑
d≤D

log(Lk′gd)−
∑
g≤K

∑
d≤D

log(Llgd)

−
∑
k≤K

∑
d≤D

log(Lkk′d)−
∑
k≤K

∑
d≤D

log(Lkld)

+
∑
d

(log(Lk′k′d) + log(Lk′ld) + log(Llk′d) + log(Llld)),

where c∗ and L∗kgd refer to the new configuration.

3.3. Greedy - Merge (GM)

Once the GE step is concluded, all possible merges of pairs of clusters (time

clusters) are tested and the best merge is finally retained. This is called a greedy

merge (GM).This procedure is repeated until no further improvement in the ICL

is possible.
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In this case too, the ICL does not need to be explicitly computed. Merging

in fact time clusters Cd′ and Cl into Cl leads to the following ICL modification

∆M,T
d′→l :=ICL(c,y∗,K,D − 1)− ICL(c,y,K,D)

= log

(
p(c,y∗|K,D − 1)

p(c,y|K,D)

)
+
∑
k,g

(
(log(L∗kgl)− log(Lkgd′Lkgl)

)
(14)

Notice that if d ≤ l, then l has to be replaced by l − 1 inside L∗kgl.

When merging clusters Ak′ and Al into the cluster Al, the change in the ICL

can be expressed as follows

∆M,V
k′→l :=ICL(c∗,y,K − 1, D)− ICL(c,y,K,D) =

= log

(
p(c∗,y|K − 1, D)

p(c,y|K,D)

)
+

+
∑
g≤K

∑
d≤D

(log(L∗lgd) + log(L∗kld))−
∑
d

log(L∗lld)

−
∑
g≤K

∑
d≤D

log(Lk′gd)−
∑
g≤K

∑
d≤D

log(Llgd)

−
∑
k≤K

∑
d≤D

log(Lkk′d)−
∑
k≤K

∑
d≤D

log(Lkld)

+
∑
d

(log(Lk′k′d) + log(Lk′ld) + log(Llk′d) + log(Llld)).

3.4. Optimization strategies

We have to deal with two different issues:

1. the optimization order of nodes and times: we could either run the greedy

algorithm for nodes and times separately or choose an hybrid strategy that

switches and merges nodes and time intervals alternatively, for instance;

2. whether to execute merge or switching movements at first.

The second topic has been largely discussed in the context of modularity maxi-

mization for community detection in static graphs. One of the most commonly

used algorithms is the so-called Louvain method [32] which proceeds in a rather

similar way as the one chosen here: switching nodes from clusters to clusters

and then merging clusters. This is also the strategy used in [16] for stationary
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SBM. Combined with a choice of sufficiently small values of Kmax and Dmax,

this approach gives very good results at a reasonable computational cost. It

should be noted that more complex approaches based on multilevel refinements

of a greedy merge procedure have been shown to give better results than the

Louvain method in the case of modularity maximization (see [33]). However, the

computation complexity of those approaches is acceptable only because of the

very specific nature of the modularity criterion and with the help of specialized

data structures. We cannot leverage such tools for ICL maximization.

The first issue is hard to manage since the shape of the function ICL(c,y,K,D)

is unknown. We developed three optimization strategies:

1. GE + GM for time intervals and then GE + GM for nodes (Strategy

A);

2. GE + GM for nodes and then GE + GM for times (Strategy B);

3. Mixed GE + mixed GM (Strategy C).

In the mixed GE a node is chosen in the shuffled sequence of nodes and moved

to the cluster leading to the highest increase in the ICL. Then a time interval

is chosen in the shuffled sequence of time intervals and placed in the best time

cluster and so on alternating between nodes and time intervals until no further

increase in the ICL is possible. The mixed GM works similarly. In all the

experiments, the three optimization strategies are tested and the one leading to

the highest ICL is retained.

4. Experiments

To assess the reliability of the proposed methodology some experiments on

synthetic and real data were conducted. All runtimes mentioned in the next

two sections are measured on a twelve cores Intel Xeon server with 92 GB of

main memory running a GNU Linux operating system. The greedy algorithm

described in Section 3 was implemented in C++. An euclidean hierarchical

clustering algorithm was used to initialize the labels and Kmax and Dmax have

been set equal to N/2 and U/2 respectively.
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4.1. Simulated Data

4.1.1. First Scenario

We simulated interactions between 50 nodes, belonging to three clusters

A1, A2, A3. Interactions take place over 50 times intervals of unitary length,

belonging to three time clusters (denoted C1, C2, C3). Clusters are assumed

to be balanced on average by fixing ω = β = ( 1
3 ,

1
3 ,

1
3 ). Notice that while

the clusters are balanced on average they can be relatively imbalanced in some

particular cases.

A community structure setting is chosen, corresponding to the following

diagonal form for the intensity matrix L

L =


ψ 2 2

2 ψ 2

2 2 ψ

 ,

where ψ is a free parameter in [2,+∞). A non stationary behaviour is obtained

by modifying the intensity matrix over time as follows

Λ(u) = L1C1
(u) +

√
γL1C2

(u) + γL1C3
(u), u ∈ {1, . . . , 50} (15)

where γ is a free parameter in [1,∞) and 1A denotes the indicator function over

a set A. In other words, Λ(u) is equal to L when u belongs to C1, to
√
γL

when u belongs to C2 and to γL when u belongs to C3. The overall community

pattern does not evolve through time but the average interaction intensity is

different in the three time clusters. Both the community structure and the non

stationary behaviour can be made more or less obvious based on the value of ψ

and γ.

For several values of the pair (ψ, γ), 50 dynamic graphs were sampled ac-

cording to the Poisson intensities in equation (15). Estimates of labels vectors

y and c are provided for each graph1. The greedy algorithm following the

optimization strategy A, led to the best results (see next paragraph for more

1The average runtime of our implementation on those artificial data is 0.96 second.
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details). In order to avoid convergence to local maxima, ten estimates of labels

are provided for each graph and the pair (ŷ, ĉ) leading to the highest ICL is

retained2.

Experiments show that for sufficiently large values of ψ and γ, the true

structure can always be recovered. We can see this in detail for two special

cases, as illustrated in Figure 1 .
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(a) Time clustering
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(b) Nodes clustering

Figure 1: Box plots of ARIs for both clusterings of nodes and time intervals. Both clusterings

reach the maximum effectiveness for higher values of contrast parameters.

In Figure 1a, we set ψ = 2, which means there is not any community struc-

ture and let γ varying in the range [1, 1.05, . . . , 1.4]. Adjusted Rand Indexes

(ARIs) [34] are used to assess the time clustering, varying between zero (null

clustering) and one (optimal clustering). When γ = 1 we are in a degener-

ate case and no time structure affects the interactions: not surprisingly the

algorithm assigns all the intervals to the same cluster (null ARI). The higher

the value of γ the more effective the clustering is up to a perfect recovery of

the planted structure (ARI of 1). In particular the true time structure is fully

recovered for all the fifty graphs when γ is higher than 1.3.

2Calculations are done in parallel as they are independent. The reported runtime is the

wall clock time.
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Similar results can be observed in Figure 1b about nodes clustering: by

setting γ = 1, we removed any time structure and a stationary community

structure is detected by the model. In this case it is interesting to make a

comparison with a traditional SBM, which is expected to give similar results to

those shown in Figure 1b. For a fixed value of ψ we simulated a dynamic graph,

corresponding to 50 adjacency matrices, one per time interval. Then a static

graph is obtained by summing up these adjacency matrices. The temporal SBM

(TSBM) we propose deals with the dynamic graph, whereas a SBM is used on

the static graph 3. The Gibbs sampling algorithm introduced in [35] was used

to recover the number of clusters and cluster memberships according to a SBM

(with Poisson distributed edge values). The experiment was repeated 50 times

for each value of ψ in the set {2.15, 2.35, 2.55}. In Figure 2 we compare the

ARIs of the two models for each value of ψ.

The greedy ICL TSBM (faster than the Gibbs sampling algorithm, who has

an average runtime of 15.15 seconds) recovers the true structure at levels of

contrast lower than those required by the Gibbs sampling algorithm (SBM).

This comparison aims at showing that, in a stationary framework, the TSBM

works at least as well as a standard SBM. The difference in terms of performance

of the two models in this context can certainly be explained by the greedy search

approach which is more effective than Gibbs sampling, as expected (see [16] and

section 1).

4.1.2. Optimization strategies

As mentioned in the previous section, in the present experiments, the opti-

mization strategy A is more efficient than the two other strategies outlined in

Section 3.4. We illustrate this superiority in the following test: the pair (γ, ψ)

is set to (1, 2.15) and 50 dynamic graphs are simulated according to the same

3This choice is the most natural one to compare the two models. Alternatively, the SBM

could be used on a single adjacency matrix among the fifty adjacency matrices provided, at

each iteration. In the experiments we carried out, we obtained similar results for the two

options.
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Figure 2: Comparison between the temporal SBM we propose and a classical SBM in a

stationary context (any time cluster).

settings discussed so far. Three different estimations are obtained, one for each

strategy, and ARIs for nodes labels are computed. Results in Figure (3) can be

compared with the mean value of the final ICL for each strategy:

mean ICL

strategy A −70845.64

strategy B −70894.67

strategy C −70885.22

4.1.3. Scalability

A full scalability analysis of the proposed algorithm is out of the scope of

this paper (see Appendix B), but we have performed a limited assessment in

this direction with a simple example.

A fixed γ = 1 is maintained and for several values of ψ and 50 dynamic

graphs with 100 nodes and 100 times intervals were sampled according to the

intensity in equation (15). The mean runtime for reading and providing labels

estimates for each dynamic graph is 13.16 seconds. As expected, the algorithm

needs a lower contrast to recover the true structure as the reader can observe
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by comparing Figure (4) with Figure (1b). This is a consequence of the increase

in the number of interactions (induced by the longer time frame).
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Figure 3: Box plots of 50 ARIs for clustering of nodes for each optimization strategy in the

first scenario with ψ = 2.15.

In terms of computational burden, each dynamic graph is handled in a aver-

age time of 13.16 seconds, that is less than 14 slower than in the case of a graph

with 50 nodes and 50 time intervals. As we use Kmax = N/2 and Dmax = U/2,

the worst case cost of one “iteration” of the algorithm is O((N + U)UN2) and

thus doubling both N and U should multiply the runtime by 16. On this limited

example, the growth is slightly less than expected.

4.1.4. Non community structure

We now consider a different scenario showing how the TSBM model can

perfectly recover a clustering structure in a situation where the SBM fails. We

considered two clusters of nodes A1 and A2 and two time clusters C1 and C2
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Figure 4: Box plots of 50 ARIs for clustering of nodes in the first scenario, with N = 100 and

U = 100.

(clusters are balanced in average as in the previous examples). We simulated

directed interactions between 50 nodes over 100 time intervals according to the

following intensity matrix

Λ(u) = L11C1
(u) + L21C2

(u), u ∈ {1, . . . , 100}, (16)

where

L1 =

2 1

1 2

 and L2 =

1 2

2 1

 .

In this scenario, a clustering structure is persistent over time, but the agents

behaviour changes abruptly depending on the time cluster the interactions are

taking place, moving from a community like pattern to a bipartite like one.

When aggregating observations, since the expected percentage of time intervals

belonging to cluster C1 is 50%, the two opposite effects compensate each other

(on average) and the SBM cannot detect any community structure. This can

be seen in Figure 5: we simulated 50 dynamic graphs according to the Poisson

intensities in equation (16) and estimates of c and K are provided for each

graph by both TSBM and SBM. The outliers ARIs in the right hand side figure

(7 over 50) correspond to sampled vectors y in which the proportion of time
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intervals belonging to cluster C1 is far from 1/2. No outlier is observed when the

experiment is performed with a fixed label vector y placing the same number of

time intervals in each cluster.
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Figure 5: Comparison between the temporal SBM and a SBM in the second scenario.

The optimization strategy A has been used to produce the results shown in

Figure 3. Very similar results can be obtained through optimization strategies

B and C: with these settings the greedy ICL algorithm can always estimate the

true vectors c and y.
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(a) Aggregated connections.
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Figure 6: Aggregated connections for each time interval (6a) and time clusters found

by our model (6b) are compared.
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4.2. Real Data

The data set we used was collected during the ACM Hypertext conference

held in Turin, June 29th - July 1st, 2009. It represents the dynamic network of

face-to-face proximity interactions of 113 conference attendees over about 2.5

days4

We focused on the first conference day, namely the twenty four hours going

from 8am of June 29th to 7.59am of June 30th. The day was partitioned in

small time intervals of 20 seconds in the original data frame and interactions

of face-to-face proximity (less than 1.5 meters) were monitored by electronic

badges that attendees volunteered to wear. Further details can be found in [36].

We considered 15 minutes time aggregations, thus leading to a partition of the

day made of 96 consecutive quarter-hours (U = 96 with previous notation). A

typical row of the aggregated data set looks like the following one:

ID1 ID2 Time Interval (15m) Number of interactions

52 26 5 16

It means that conference attendees 52 and 26, between 9am and 9.15am,

have spoken for 16× 20s ≈ 5m30s.

In Figure 6a, we computed the total number of interactions for each quarter

hour. The presence of a time pattern is clear: the volume of interactions, for

example, is much higher at 14pm than at 9am. The greedy ICL algorithm

found 20 clusters for nodes (people) and 4 time clusters. Figure 6b shows how

daily quarter-hours are assigned to each cluster: it can clearly be seen how time

intervals corresponding to the highest number of interactions have been placed

in cluster C4, those corresponding to an intermediate interaction intensity, in

C2 (yellow) and C3 (green). Cluster C1 (magenta) contains intervals marked

4More informations can be found at:

http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/.
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by a weaker intensity of interactions. It is interesting to note how the model

closely recovers times of social gathering5:

• 9.00-10.30 - set-up time for posters and demos.

• 13.00-15.00 - lunch break.

• 18.00-19.00 - wine and cheese reception.

Results in Figure 6 are obtained through the optimization strategy A. To

make a comparison with the other two optimization strategies, we run the algo-

rithm ten times for each strategy (A, B and C) and compare the final values of

the ICL. Labels c and y are randomly initialized before each run, according to

multinomial distributions (no hierarchical clustering was used) and Kmax and

Dmax are set equal to N/2 and U/2, respectively. The mean final values of the

ICL are reported in the following table:

mean ICL

Strategy A −32746.51

Strategy B −33072.99

Strategy C −32116.01

As it can be seen, the hybrid strategy C is the one leading to the highest

final ICL, on average. In Figure (7) we report the final value of the ICL for

each run (from 1 to 10) for each strategy. The optimization strategy C always

outperforms the remaining two patterns.

5. Conclusion

We proposed a non-stationary extension of the stochastic block model (SBM)

allowing us to simultaneously cluster nodes and infer the time structure of

a network. The approach we chose consists in partitioning the time interval

5A complete program of the day can be found at http://www.ht2009.org/program.php.
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Figure 7: Comparison between the final values of the ICL obtained through different optimiza-

tion strategies. On the horizontal axis we have the index of the experiment, on the vertical

axis the final value of the ICL for each strategy.

over which interactions are studied into sub-interval of fixed identical duration.

Those intervals provide aggregated interaction counts that are studied with a

SBM inspired model: nodes and time intervals are clustered in such a way that

aggregated interaction counts are homogeneous over clusters. We derived an

exact integrated classification likelihood (ICL) for such a model and proposed

to maximize it with a greedy search strategy. The experiments we run on ar-

tificial and real world networks highlight the capacity of the model to capture

non-stationary structures in dynamic graphs.

25



Appendix A. Joint integrated density for labels

Consider at first the vector c, whose joint probability function is given by

(1). We attach a Dirichlet a priori distribution to the K-vector ω

p(ω|α,K) =
Γ(αK)

Γ(α)K

K∏
k=1

ωα−1
k .

The joint probability density for the pair (c,ω) is obtained by multiplying (1)

by the prior density

p(c,ω|α,K) =
Γ(αK)

Γ(α)K

K∏
k=1

ω
|Ak|+α−1
k .

This is still a Dirichlet probability density function of parameters (|A1|+α, . . . , |AK |+

α) and integration with respect to ω is straightforward

p(c|α,K) =
Γ(αK)

Γ(α)K

∫
ω

K∏
k=1

ω
|Ak|+α−1
k dω,

=
Γ(αK)

Γ(α)K

∏
k≤K Γ(|Ak|+ α)

Γ(
∑K
k=1(|Ak|+ α))

×
∫
ω

Dir(ω; |A1|+ α, . . . , |AK |+ α)dω,

=
Γ(αK)

Γ(α)K

∏
k≤K Γ(|Ak|+ α)

Γ(N + αK)
.

This integrated density corresponds to the first term on the right hand side of

(12). The second term is obtained similarly and the joint density p(c,y|K,D)

follows by independence.

Appendix B. Computational complexity

To evaluate the computational complexity of the proposed algorithm, we

assume that the gamma function can be computed in constant time (see [37]).

The core computation task consists in evaluating the change in ICL induced by

exchanges and merges. The main quantities involved in those computations are

the (Lkgd)1≤,k≤g,1≤d≤D. We first describe how to handle those quantities and

then analyze the cost of the exchange and merge operations.
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Appendix B.1. Data structures

The quantities (Lkgd)1≤,k≤g,1≤d≤D are stored in a three dimensional array

that is never resized (it occupies a O(K2
maxDmax) memory space) so that at

any time during the algorithm, accessing to a value or modifying it can be done

in constant time. The quantities needed to compute Lkgd, the Skgd, Pkgd and

Rkgd are handled in a similar way.

In addition, we maintain aggregated interaction counts for each time interval

and each node. More precisely, we have for instance for a time interval Iu

Skgu :=
∑
ci=k

∑
cj=g

N Iu
ij ,

and similar quantities such as Pkgu. For a node i, we have e.g.

Sigd :=
∑
cj=g

∑
yu=d

N Iu
ij ,

and other related quantities. The memory occupied by those structures is in

O(N2U). Cluster memberships and clusters sizes are also stored in arrays.

In order to evaluate the ICL change induced by an operation, we need to

compute its effect on Lkgd in order to obtain L∗kgd. This can be done in constant

time for one value. For instance moving time interval Iu from Cd′ to Cl implies

the following modifications:

• Skgd′ is reduced by Skgu while Skgl is increased by the same quantity;

• Pkgd′ is divided by Pkgu while Pkgl is multiplied by the same quantity;

• Rkgd′ is decreased by |Ak||Ag| (or |Ak|(|Ak| − 1)) while Rkgl is increased

by the same quantity.

When an exchange or a fusion is actually implemented, we update all the

data structures. The update cost is dominated by the other phases of the

algorithm. For instance when Iu is moved from d′ to l, we need to update:

• cluster memberships and cluster sizes, which is done in O(1);

• Lkgd′ and Lkgl for all k and g, which is done in O(K2);
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• aggregated counts and products, such as Sigd′ and Sigl, which is done in

O(NKD).

Considering that K ≤ N and D ≤ U , the total update cost is in O(NKD) for

time interval related operations and in O(UK2) for node related operations.

Appendix B.2. Exchanges

The calculation of ∆E,T
d′→l for a time interval cluster exchange from equation

(13) involves a sum with K2 terms. As explained above each term is obtained

in constant time, thus the total computation time is in O(K2). This has to be

evaluated for all time clusters and for all time interval, summing to a total cost

of O(UDK2).

Similarly, the calculation of ∆E,V
d′→l involves a fix number of sums with at most

KD terms in each sum. The total computation time is therefore in O(KD).

This had to be evaluated for each node and for all node clusters, summing to a

total cost of O(NK2D).

Notice that we have evaluated the total cost of one exchange round, i.e.,

in the case where all time intervals (or all nodes) are considered once. This

evaluation does not take into account the reduction in the number of clusters

generally induced by exchanges.

Appendix B.3. Merges

Merges are very similar to exchange in terms of computational complexity.

They involve comparable sums that can be computed efficiently using the data

structures described above. The computational cost for one time cluster merge

round is in O(D2K2) while it is in O(K3D) for node clusters.

Appendix B.4. Total cost

The worst case complexity of one full exchange phase (with each node and

each time interval considered once) is O((N + U)DmaxK
2
max). The worst case

complexity of one merge with mixed GM is O(DmaxK
2
max(Dmax+Kmax)) which
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is smaller than the previous one for N ≥ Kmax and U ≥ Dmax. Thus the worst

case complexity of one “iteration” of the algorithm is O((N + U)DmaxK
2
max).

Unfortunately, the actual complexity of the algorithm, while obviously re-

lated to this quantity, is difficult to evaluate for two reasons. Firstly, we have no

way to estimate the number of exchanges needed in the exchange phase (apart

from bounding them with the number of possible partitions). Secondly, we ob-

serve in practice that exchanges reduce the number of clusters, especially when

Dmax and Kmax are high (i.e. close to U and N , respectively). Thus the actual

cost of one individual exchange reduces very quickly during the first exchange

phase leading to a vast overestimation of its cost using the proposed bounds. As

a consequence, the merge phase is also quicker than evaluated by the bounds.

A practical evaluation of the behaviour of the algorithm, while outside the

scope of this paper, would be very interesting to assess its potential use on large

data sets.
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