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In this paper we consider a singular elliptic equation involving the GJMS (Graham-Jenne-Mason-Sparling) operator of order k on n-dimensional compact Riemannian manifold with 2k < n. Mutiplicity and nonexistence results are established.

Let (M, g) be an n-dimensional Riemannian manifold. The k-th GJMS operator (Graham-Jenne-Mason-Sparling, see ( [START_REF] Graham | Conformally invariant powers of the Laplacien. I.Existence[END_REF]) P g is a differential operator defined for any integer k if the dimension n is odd, and 2k ≤ n otherwise. In the following, we will consider the case 2k ≤ n. P g is of the form

P g = ∆ k + lot
where ∆ = -div g (∇) is the Laplacian-Beltrami operator and lot denotes the lower terms. One of the fundamental property of P g is its behavior with respect to conformal change of metrics: for ϕ ∈ C ∞ (M ) , ϕ > 0 and g = ϕ 4 n-2k g a conformal metric to g, ϕ n+2k n-2k P g u = P g (ϕu) . P g is self-adjoint with respect to the L 2 -scalar product. To P g is associated a conformal invariant scalar function denoted Q g and is called the Q-curvature. For k = 1, the GJMS operator is ( up to a constant ) the conformal Laplacian and the corresponding Q-curvature function is simply the scalar curvature. For k = 2, the GJMS operator is the Paneitz operator introduced in ( [START_REF] Paneitz | A quartic conformally differential operator for arbitrary pseu-Riemannian manifolds[END_REF]). For 2k < n, the Q-curvature is Q g = 2 n-2k P g [START_REF] Benalili | On the singular $Q$-curvature type equation[END_REF]. Many works was devoted the Q-curvature equation in the last two decades (see [START_REF] Benalili | On the singular $Q$-curvature type equation[END_REF], [START_REF] Djadli | Existence of conformal metrics with constant $Q$-curvature[END_REF], [START_REF] Hebey | Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients[END_REF], [START_REF] Robert | Admissible Q-curvatures under isometries for the conformal GJMS operators[END_REF]). Many authors investigated the interactions of conformal methods with mathematical physic which led them to study the Einstein-scalar fields Lichnerowiz equations (see [START_REF] Hebey | A variational Analysis of Einstein-scalar Field Lichnerowicz Equations on compact Riemannian Manifolds[END_REF], [START_REF] Hebey | The Lichnerowicz equation in the closed case of the Einstein-Maxwell theory[END_REF], [START_REF] Ngô | Existence results for the Einstein-scalar field Lichnerowicz equation on compact Riemannian manifolds[END_REF], [START_REF] Premoselli | Effective multiplicity for the Einstein-scalar field Lichnerowicz equation[END_REF], [START_REF] Premoselli | The Einstein-scalar field equation constraint in the positive case[END_REF],). These methods have been extended to scalar fields Einstein-Licherowicz type equation involving the Paneitz operator, (see [START_REF] Maalaoui | On a fourth order Lichnerowicz type equation involving the Paneitz-Branson operator[END_REF]). In this work we analyze an Einstein-Lichnerowicz scalar field equation containing the k-th order GJMS operator on a Riemannian n-dimensional manifold with 2k < n. Our work is organized as follows: in a first step we show the existence of a solution to equation (1.1) obtained by means of the mountain-pass theorem. In the second step we prove, by the Ekeland lemma, the existence of a second solution to equation (1.1). In the last section we give a result of nonexistence of solution.

1. Existence of a first solution Let (M, g) be an n-dimensional compact Riemannian manifold and k ∈ N * , with 2k < n. Consider the following equation (1.1)

P g (u) = B (x) u 2 -1 + A(x) u 2 +1 + C(x) u p u > 0
where 2 = 2n n-2k , P g is the k-th GJMS operator and p > 1. In all the sequel of this paper we assume that the operator P g is coercive which allows us ( see Proposition 2, [START_REF] Djadli | Existence of conformal metrics with constant $Q$-curvature[END_REF]) to endow H 2 k (M ) with the following appropriated equivalent norm u = M u.P g (u)dv g . So we deduce from the coercivity of P g and the continuity of the inclusion

H 2 k (M ) ⊂ L 2 (M ), the existence of a constant S > 0 such that (1.2) u 2 ≤ S u
where 2 = 2n n-2k . We assume also that the GJMS operator has a positive Green function.

Proposition 1. Suppose that the metric g is Einstein with positive scalar curvature of dimension n > 2k, then the GJMS P g admits a Green positive function.

Proof. On n-dimensional Einstein manifold, the GJMS operator of order k (see [START_REF] Graham | Conformally invariant powers of the Laplacien. I.Existence[END_REF]) is given by

P g = k l=1 (∆ -c l Sc) where c l = (n+2l-2)(n-2l) 4n(n-1)
, Sc is the scalar curvature. If the scalar curvature is positive it is well known that the operator ∆ -c l Sc has a positive Green function. Denote by L l = ∆ -c l Sc, l = 1, ..., k; by definition of the Green function of L l we know that for all u ∈ C ∞ (M ),

(L l u) (x) = M G l+1 ((x, y) (L l+1 L l u) (y)dv g (y) . So u(x) = M G l (x, z) (L l u) (z) dv g (z) + 1 V ol(M ) M u(x)dv g (x) = M M G l (x, z)G l+1 ((z, y)dv g (z) (L l+1 L l u) (y)dv g (y)+ 1 V ol(M ) M u(x)dv g (x)
and letting

G l,l+1 (x, y) = G l * G l+1 (x, y) = M G l (x, z)G l+1 ((z, y)dv g (z).
And by induction, we get

u(x) = M G 1 * ... * G k (x, y)P g (y)dv g (y)
.

Thus P g admits a positive Green function.

In this section we establish the following theorem.

Theorem 1. Let (M, g) be a compact Riemannian manifold with dimension n > 2k and A > 0, B > 0, C > 0 are smooth functions on M . Suppose moreover that the operator P g is coercive and have a positive Green function.

If there exists a constant C (n, p, k) > 0 depending only on n, p , k such that

(1.3) ϕ 2 2 M A(x) ϕ 2 dv g ≤ C (n, p, k) Smax x∈M B(x) 2+2 2-2
and

(1.4) ϕ p-1 p -1 M C(x) ϕ p-1 dv g ≤ C (n, p, k) Smax x∈M B(x) p+1 2-2
for some smooth function ϕ > 0, then equation (1.1) admits a smooth solution.

To prove the existence of solutions to (1.1), we consider the following -approximating equations (1.5)

P g (u) = B (x) (u) 2 -1 + A (x) u (ε + u 2 ) 2 +1 + C(x)u (ε + u 2 ) p+1 2
where 2 = 2 2 , p > 1.Which gives us a sequence (u ε ) ε of solutions to (1.5). The solution of equation (1.1) is then obtained as the limiting of (u ε ) ε . Following Hebey-Pacard-Pollak ( [START_REF] Hebey | A variational Analysis of Einstein-scalar Field Lichnerowicz Equations on compact Riemannian Manifolds[END_REF]), to get rid of negative exponents, we consider the energy functional associated to (1.5) defined by, for any ε > 0

I ε (u) = I 1 (u) + I (2)
ε (u) where I (1) : H 2 k (M ) → R is given by

I (1) (u) = 1 2 M uP g (u)dv g - 1 2 M B (x) u + 2 dv g and I (2) ε : H 2 k (M ) -→ R is I (2) ε (u) = 1 2 M A (x) ε + (u + ) 2 2 dv g + 1 p -1 M C(x) ε + (u + ) 2 p-1 2 dv g .
It is easy to check the following inequality

(1.6) Φ ( u ) ≤ I (1) (u) ≤ Ψ ( u ) with Φ (t) = 1 2 t 2 -S max M B(x) t 2 2
and

Ψ (t) = 1 2 t 2 + S max M B(x) t 2 2 .
The Φ (t) is increasing on [0, t 0 ] and decreasing on ]t 0 , +∞[, where

(1.7)

t 0 = Smax x∈M B(x) 2k-n 4k and (1.8) Φ (t 0 ) = 1 2 - 1 2 Smax x∈M B(x) 2k-n 2k = k n t 0 . Lemma 1. Let θ > 0 such that a 2 2 2 < θ 2 < 1 2 (n -k) = a 2 2
where

a = 1 (2 (n -k)) 2 2
and put

t 1 = θt 0 .
Then we have the following inequality

(1.9) Ψ (t 1 ) ≤ θ 2 2 + 2 2 -2 Φ (t 0 ) < 1 2k Φ (t 0 ) .
Proof. In fact

Ψ (t 1 ) = 1 2 t 2 1 + Smax x∈M B(x) t 2 1 2 = θ 2 1 2 t 2 0 + Smax x∈M B(x)θ 2 -2 t 2 0 2 . Since (1.10) t 2 0 Smax x∈M B(x) = t 2 we get Ψ (t 1 ) = θ 2 1 2 t 2 0 + θ 2 -2 2 t 2 0 = θ 2 t 2 0 1 2 + θ 2 -2 2 ≤ θ 2 t 2 0 1 2 + n -2k 2n ≤ θ 2 t 2 0 2n -2k 2n 
≤ (n -k) θ 2 t 2 0 n . And since 2 + 2 2 -2 = n -k k and Φ (t 0 ) = k t 2 0 n we infer that Ψ (t 1 ) ≤ θ 2 2 + 2 2 -2 Φ (t 0 ) < 1 2k Φ (t 0 ) .
Now we check the Mountain-Pass lemma conditions for the functional I ε .

Lemma 2. The functional I satisfies the following conditions i) There exit ρ > 0 and t 0 > 0 such that

I (u) ≥ ρ for every u ∈ H 2 k (M ) with u = t 0 ii)There exits is v ∈ H 2 k (M ) such that v = t 2 > t 0 and I (v) < 0.
Proof. Let ϕ ∈ C ∞ (M ), ϕ > 0 on M and without loss of generality we can assume ϕ = 1. Put

(1.11) C (n, p, k) = (2k -1) θ 2 +p 4n ≤ C 1 (n, k) = (2k -1) θ 2 4n .
The inequality (1.3) becomes

(1.12) 1 2 M A (x) (t 1 ϕ) 2 dv g ≤ 2k -1 4k Φ (t 0 ) .
Indeed, we have

(1.13) Φ(t o ) = k n t 2 o .
and by (1.11), we get

1 2 M A(x) (t 1 ϕ) 2 dv g ≤ C 1 (n, k) t 2 o θ 2 S. max M B (x) 2+2 2-2 = 2k -1 4k Φ(t o ).
Analogously and by putting

C 2 (n, p, k) = (2k -1) θ p-1 4n we obtain (1.14) 1 p -1 M C(x) (t 1 ϕ) p-1 dv g ≤ 2k -1 4k Φ(t o ).
Let us prove know (i ). By relations (1.6), (1.9), (1.12) and (1.14), we infer that

I (t 1 ϕ) ≤ Ψ ( t 1 ϕ )+ 1 2 M A (x) ε + (t 1 ϕ) 2 2 dv g + 1 p -1 M C(x) ε + (t 1 ϕ) 2 p-1 2 dv g (1.15) ≤ Ψ (t 1 )+ 1 2 M A (x) ε + (t 1 ϕ) 2 2 dv g + 1 p -1 M C(x) ε + (t 1 ϕ) 2 p-1 2 dv g ≤ Φ (t 0 ) .
Again from (1.6), we deduce that

I (t 0 ϕ) ≥ Φ (t 0 ) + 1 2 M A (x) ε + (t 0 ϕ) 2 2 dv g + 1 p -1 M C(x) ε + (t o ϕ) 2 p-1 2
dv g and since A and C are assumed with positive values, we obtain (1.16)

I (t 0 ϕ) ≥ Φ (t 0 ) .
Finally from (1.15) and (1.16), we get

I (t 1 ϕ) < Φ (t 0 ) ≤ I (t 0 ϕ) Now to have (i) just take u = t 0 ϕ and ρ = Φ (t 0 ) .
it remains to prove (ii); to do so we remark that lim t→+∞

I (tϕ) = lim t→+∞    1 2 tϕ 2 Pg - 1 2 M   B(x) (tϕ) 2 dv g - A(x) ε + (tϕ) 2 2    dv g    -lim t→+∞ 1 p -1 M C(x) ε + (tϕ) 2 p-1 2 dv g = lim t→+∞ t 2 1 2t 2 -2 - 1 2 M B (x) ϕ 2 dv (g) .
Since by assumption B > 0, we have

lim t→+∞ I (tϕ) = -∞
consequently there is t 2 such that t 2 > t 0 and I (t 2 ϕ) < 0 Hence, putting u 2 = t 2 ϕ, we get the assumption (ii) of Lemma 2.

Lemma 1 allows us to apply the Mountain-Pass Lemma to the functional

I . Let C = inf γ∈Γ max u∈γ I (u)
where Γ denotes the set of paths in H 2 k (M ) joining the functions

u 1 = t 1 ϕ and u 2 = t 2 ϕ. So C ε is a critical value of I ε and moreover C > Φ (t 0 )
and by putting γ (t) = tϕ, for t ∈ [t 1 , t 2 ], we see that C ε is uniformly when ε goes to 0, so we have

(1.17) 0 < Φ (t 0 ) < C ≤ C
for ε sufficiently small and C > 0 not depending on ε.

Consequently there exists a sequence (u m ) m of functions in 

H 2 k (M ) such that (1.18) I (u m ) →

Proof. By (1.18) we get for any

ϕ ∈ H 2 k (M ) DI (u m ) ϕ = o (1) i.e. for any ϕ ∈ H 2 k (M ) one has (1.19) M ϕP g u m dv g = M B (x) u + m 2 -1 ϕdv g + M A (x) u + m ϕ ε + u + m 2 2 +1 dv g + M C(x)u + m ϕ ε + u + m 2 p 2 +1 dv g + o (1)
in particular, for ϕ = u m we have

M u m P g u m dv g - M B(x) u + m 2 dv g = M A(x) (u + m ) 2 ε + u + m 2 2 +1 dv g + M C(x) (u + m ) 2 ε + (u m ) 2 p 2 +1 dv g + o (1) . or - 1 2 M u m P g u m dv g + 1 2 M B(x) u + m 2 dv g (1.20) + 1 2 M A(x) (u + m ) 2 ε + u + m 2 2 +1 dv g + M C(x) (u + m ) 2 ε + u + m 2 p 2 +1 dv g = o (1) .
On the other hand it comes from (1.18

) that 1 2 M u m P g u m dv g - 1 2 M B(x) u + m 2 dv g (1.21) + 1 2 M A(x) (u + m ) 2 ε + u + m 2 2 +1 dv g + 1 p M M C(x) (u + m ) 2 ε + u + m 2 p 2 +1 dv g = C + o (1) .
So by adding (1.20) and (1.21) we get

(1.22) 2 n M B(x) u + m 2 dv g + 1 2 M A(x) (u + m ) 2 ε + u + m 2 2 +1 dv g + 1 2 M A(x) (u + m ) 2 ε + u + m 2 2 +1 dv g 1 2 M C(x) (u + m ) 2 ε + u + m 2 p 2 +1 dv g + 1 2 M C(x) (u + m ) 2 ε + u + m 2 p 2 +1 dv g = C + o (1) .
For sufficiently large m we deduce that

2 n M B(x) u + m 2 dv g ≤ 2C + o (1) or 1 2 M B(x) u + m 2 dv g dv (g) ≤ n 2 C + o (1)
and plugging this last inequality with in (1.21) we obtain

1 2 M u m P g u m dv (g) ≤ C + n 2 C + o (1) ≤ nC + n (n -4) 2n C + o (1) ≤ 2 (n -2) C + o (1) .
Hence for m large enough

M u m P g u m dv (g) ≤ 4nC + o (1) ≤ 4nC + 1 i.e. (1.23) u m 2 ≤ 4nC + 1
Thus we prove the sequence (u m ) m is bounded in H 2 k (M ) so we can extract a subsequence, still denoted (u m ) m which verifies:

1.

u m → u ε weakly in H 2 k (M ) . 2. u m → u ε strongly in L p (M ), ∀p < 2n n-2k 3. u m → u ε a.e. in M. 4. (u m ) 2 -1 → u 2 -1 ε weakly in L 2 2 -1 (M ). Furthermore, putting g (x) = 1
ε q , where ε > 0 and q > 0, we get by Lebesgue's dominated convergence theorem that ∀k ∈ N:

u + m 2 + ε -q < ε -q and ε -q ∈ L p (M ) ∀p ≥ 1 thus (u + m ) 2 + ε -q → u • 2 + ε -q
strongly in L p (M ) ∀p ≥ 1 and with (ii) we infer that

u + m (u + m) 2 +ε q → u + ε+(u + ε )
2 q strongly in L 2 (M ). So if we let m go to +∞ in (1.19) we obtain that u is a weak solution to the equation (1.24)

P g u ε = B (x) u + ε 2 -1 + A (x) u + ε ε + u + ε 2 2 +1 + C(x)u + ε ε + u + ε 2 p+1 2
where 2 b = 2 2 and p > 1. Our solution u is not identically zero; indeed by (1.21) we have

- 1 2 M B (x) u + m 2 dv (g) ≤ C ε + o (1) ≤ 2C ε + o (1) or - 2 n M B (x) u + m 2 dv (g) ≤ 4 n .2 C ε + o (1) .
In addition by (1.22), we get

1 2 M A (x) ε + (u • m ) 2 2 dv (g) ≤ C ε - 2 n M B (x) u + m 2 dv (g) ≤ C ε + 4 n 2 C ε + o (1) ≤ 2 -1 C ε + o (1) .
Letting k → +∞ and taking into account of (1.17) we infer that

(1.25) 1 2 M A (x) ε + u + ε 2 2 dv (g) ≤ 2 -1 C
where C is the upper bound of C ε . Now if for a sequence ε j → 0 j→+∞ ( with j > 0, ∀j ∈ N ); u ε j goes to 0, then it follows

(1.26) 1 2 (2 -1) ε 2 j M A (x) dv (g) ≤ C.
So if j → +∞, it leads to a contradiction since by assumption A > 0.

Finally, for ε sufficiently small, u ε is a solution not identically zero of the equation (1.5).

By writing the equation (1.24) in the form

∆ k g u + k-1 l=1 A l (x) ∇ l u, ∇ l u +     A 0 (x) - A (x) ε + u + 2 2 b +1 - C (x) ε + u + 2 p+1 2     u + ε = B u + ε 2 -1
where A l is a smooth tensor field of type T 0 2l and symmetric in the sense that A l (X, Y ) = A l (Y, X) for tensors X,Y of type T l 0 on M (see [START_REF] Robert | Admissible Q-curvatures under isometries for the conformal GJMS operators[END_REF]). Noticing that

A 0 (x) - A (x) ε + u + 2 2 b +1 - C (x) ε + u + 2 p+1 2 ∈ L ∞ (M )
we deduce by standard regularity theory that u ∈ C 2k (M ).

Now we are in position to prove Theorem 1.

Proof.

From what precedes u is a C 2k (M ) nontrivial solution to equation (1.5), moreover u is a weak limit of the sequence (u k ) k which allows us by the lower semicontinuity of the norm to write

u ≤ lim k→+∞ inf u k .
And by the inequalities (1.17), (1.23) we deduce that the sequence (u ε ) ε of the ε-approximating solutions is bounded in H 2 k (M ) for sufficiently small > 0 i.e.

(1.27)

u 2 ≤ 4nC + 1 thus we can extract a subsequence still labelled (u k ) k satisfying: i) u k -→ u weakly in H 2 k (M ) ii) u k -→ u strongly in L p (M ) for p < 2 iii) u k -→ u a.e. in M . vi) u 2 -1 k -→ u 2 -1 weakly in L 2 2 -1 .
Furthermore the sequence (u k ) k is bounded below: indeed as the functions u k are continuous, denote by x k their respective maximums on M and put x o = lim x k ( a subsequence of (x k ) k still labelled (x k ) k ). Since by assumption the operator P g admits a positive Green function, then we can write

u k (x k ) = M G (x k , y)     B (y) u + k (y) 2 -1 + A (y) u + k (y) ε + u + k (y) 2 2 +1 + C(y)u + k (y) ε + u + k (y) 2 p+1 2     dv g
and by the Fatou's lemma, we get

lim inf k u k (x k ) ≥ M lim inf k G (x k , y)     B (y) u + k (y) 2 -1 + A (y) u + k (y) ε + u + k (y) 2 2 +1 + C(y)u + k (y) ε + u + k (y) 2 p+1 2     dv g = M lim inf k G (x k , y)     B (y) u + (y) 2 -1 + A (y) u + (y) ε + (u + (y)) 2 2 +1 + C(y)u + (y) ε + (u + (y)) 2 p+1 2     dv g .
And since the functions A, B, C are positive, then lim inf k u k (x k ) = 0 implies that u + = 0. This contradicts relation (1.26). Thus, there exists δ > 0, such that u k ≥ δ. We can once again use Lebesgue's dominated convergence theorem to get 1

ε k + (u k ) 2 q → 1 (u) 2q strongly in L p (M ) , ∀p ≥ 1, ∀q ≥ 1. Since for k large enough u k > 0 there is ε > 0 such that 1 ε k + u 2 k q ≤ 1 εq with q > 0.
Thus by the Lebesgue's dominated convergence theorem, we infer that 1

ε k + (u k ) 2 q -→ 1 u 2q strongly in L p (M ) , ∀p ≥ 1, ∀q > 0.
Finally, with ii), it follows that

u k ε k + (u k ) 2 2 +1 -→ 1 u 2 +1 strongly in L 2 (M ) .
with u > 0. Letting ε k → 0 in (1.24) as k → +∞,we get that u is a weak solution of equation (1.1) and since the regularity of u is the one of the function γ(x) = |x| 4k n-2k and since u > 0, then u ∈ C ∞ (M ).

Existence of a second solution

According to the previous section our functional admits a local maximum C ε , this means the following inequalities

I ε (t 1 ϕ) < Φ(t 0 ) < I ε (t 0 ϕ) ≤ C ε
where t 0 , t 1 are real numbers satisfying 0 < t 1 < t 0 and ϕ ∈ C ∞ (M ) with ϕ > 0 and ϕ = 1.

On the other hand and as I ε (tϕ) tends to -∞ as t goes to +∞, there is t 2 >> t 0 such that I ε (t 2 ϕ) < 0. Now if we let t and ε tend both to 0 + , the functional la I ε tends to +∞. Indeed,

lim t→0 + lim ε→0 + I ε (t.ϕ) = lim t→0 + I (1) (t.ϕ) + I (2) 0 (t.ϕ) = lim t→0 + M (t.ϕ)P g (t.ϕ) - 2 2 B(x)(t.ϕ) 2 dv(g) + lim t→0 +   1 2 M A(x) (t.ϕ) 2 dv(g) + 1 p -1 M C(x) (t.ϕ) p-1 dv(g).   = +∞.
and it follows that for ε small enough, there is near 0 a real number 0 < t << t 1 such that I ε (t ϕ) > Φ(t 0 > I ε (t 1 ϕ). What let us see, from this effect, that our function has a local lower bound. We will give the necessary conditions for this lower bound to exist, then we show by Ekeland's lemma that this lower bound is reached.

We will need the following version of the Ekeland's lemma Lemma 3. Let V be a Banach space, J be a C 1 lower bounded function on a closed subset F of V and c = inf

F J. Let u ε ∈ F such that c ≤ J(u ε ) ≤ c+ε. Then there is u ε ∈ F such that    c ≤ J(u ε ) ≤ c + ε u ε -u ε V ≤ 2 √ ε ∀u ∈ F , u = u ε , J(u) -J(u ε ) + √ ε u -u ε V > 0.
If moreover, u ε is in the interior of F , then

DJ(u ε ) V ≤ √ ε.
We can consider the sequence ( u ε ) ε in the interior of F . Indeed if u ε is on the border of F then by the continuity of J there is u ε belonging to interior of

F such that |J(u ε ) -J(u ε )| < ε. Which gives, for ε sufficiently, c -ε < J(u ε ) < c + 2ε and J(u) -J(u ε ) + √ ε u -u ε V = J(u) -J(u ε ) + J(u ε ) -J(u ε ) + √ ε u -u ε + u ε -u ε V ≥ J(u) -J(u ε ) -ε + √ ε u -u ε V - √ ε u ε -u ε V > J(u) -J(u ε ) + √ ε u -u ε V -2ε > 0.
So we can speak about the differential DJ(u ε ). Before stating the main result of this section we will establish some preliminary lemmas.

Lemma 4. Let θ > 0 such that (2.1) a 2 2 2 < θ 2 < a 2 2
where a = 1

(2 (n -k))

2 and put

t 3 = a 2 1 2 t 0
then we have the following inequality

(2.2) Φ(t 3 ) > a 2 Φ(t 0 ).
Proof. Since (t 1 being defined as in Lemma 1),

(2.3)

t 3 = a 2 1 2 t 0 < θt 0 = t 1 . and (2.4) a 2 2 2 > a 2 .
by (1.7), we get

Φ(t 3 ) = 1 2 t 2 3 -S. max M B(x) t 2 3 2 = 1 2 a 2 1 2 .t 0 2 - 1 2 t 2 0 a 2 = 2n k 1 2 a 2 2 2 - a 2 n -2k 2n 
k 2n t 2 0 .
Knowing by (1.13) that

k 2n t 2 0 = 1 2 Φ(t 0 )
we deduce

Φ(t 3 ) = n k a 2 2 2 -n a 2k + a 1 2 Φ(t 0 ) = n k a 2 2 2 - a 2 + a 1 2 Φ(t 0 ) > a 2 Φ(t 0 ).
Where we used the inequality (2.4) in the last line.

Lemma 5. Given a Riemannian compact manifold (M, g ) of dimension n > 2k, k ∈ N and 3 < p < 2 + 1. So there is a constant λ * > 0 such that: ∀ε ∈ ]0, λ [ the following inequalities take place

(2.5) M A(x) (ε + (t 3 ϕ) 2 ) 2 2 dv g ≥ 2 a .   M A(x)dv g   2 1 t 0 a 1 2 and (2.6) M C(x) (ε + (t 3 ϕ) 2 ) p-1 2 dv g ≥ 2 a p-1 2   M C(x)dv g   2 1 t 0 a 2 p-1
where a 1 , a 2 are positive constants and t 3 , a are chosen as in Lemma 4.

Proof. Let ϕ ∈ C ∞ (M ), ϕ > 0 in M with ϕ = 1. Put (2.7) β 1 = a 2V (M ) 2 2 t 0 a 1 √ 2 2 and
(2.8)

β 2 = 1 V (M ) 2 p-1 a 2 2 2 t 0 a 2 √ 2 2
where V (M ) denotes the volume of M . Let

λ = min (β 1 , β 2 ) .
By Hölder's inequality, we get

  M A(x)dv g   2 =   M A(x) [ε + (t 3 ϕ) 2 ] 2 4 ε + (t 3 ϕ) 2 2 4 dv g   2 ≤   M A(x) (ε + (t 3 ϕ) 2 ) 2 2 dv g   .   M ε + (t 3 ϕ) 2 2 2 dv g   (2.9) ≤ I ε + (t 3 ϕ) 2 2 2 2 2 
where

I = M A(x) (ε + (t 3 ϕ) 2 ) 2 2 dv g .
Independently, the Minkowski's inequality can be written

ε + (t 3 ϕ) 2 2 2 ≤ ε 2 2 + t 2 3 ϕ 2 2 2 consequently (2.10) ε + (t 3 ϕ) 2 2 2 2 2 ≤ ε 2 2 + t 2 3 ϕ 2 2 2 2 2 . Notice that ε 2 2 = ε. [V g (M )] 2 2
and ϕ 2

2 2 = ϕ 2
By continuity of inclusion H 2 k (M ) ⊂ L 2 (M ), we deduce the existence of a positive constant S 1 such that

ϕ 2 ≤ S 1 ϕ H 2 k
and as the operator P g is coercive, the norms . H 2 k and . are equivalent (this results from Proposition2, reference [START_REF] Robert | Admissible Q-curvatures under isometries for the conformal GJMS operators[END_REF]) and the exists an another constant C > 0 such that

ϕ H 2 k ≤ C ϕ Pg ∀ϕ ∈ H 2 k (M ) and therefore (2.10) becomes ε + (t 3 ϕ) 2 2 2 2 2 ≤ ε (V (M )) 2 2 + t 2 3 (S 1 C) 2 2 2
where we have used the fact that ϕ Pg = 1. Taking account of

t 3 = a 2 1 2 t 0 and letting a 1 = √ 2S 1 C, (2.9) becomes  
 M A(x)dv g   2 ≤ I ε [V g (M )] 2 2 + a ε 2 2 2 t 2 0 a 1 √ 2 2 2 2 
.

And since 0 < ε < λ ≤ β 1 , we get

  M A(x)dv g   2 ≤ I 2 a ε 2 2 2 t 0 α 1 √ 2 2 2 2
.

Finally we deduce

I ≥ 2 a ε   M A(x)dv g   2 1 t 0 .α 1 2 .
Let us now prove the second inequality; again with the Hölder's inequality, we have

  M C(x)dv g   2 =   M C(x) [ε + (t 3 ϕ) 2 ] p-1 4 . ε + (t 3 ϕ) 2 p-1 4 dv g   2 (2.11) ≤   M C(x) (ε + (t 3 ϕ) 2 ) p-1 2 dv g   .   M ε + (t 3 ϕ) 2 p-1 2 dv g   ≤ J. ε + (t 3 ϕ) 2 p-1 2 p-1 2 
(2.12)

where

J = M C(x) (ε + (t 3 ϕ) 2 ) p-1 2 dv g .
Again with Minkowski's inequality, we have

ε + (t 3 ϕ) 2 p-1 2 ≤ ε p-1 2 + t 2 3 ϕ 2 p-1 2 
(2.13)

≤ ε. [V g (M )] 2 p-1 + t 2 3 ϕ 2 p-1 (2.14)
and since the embedding

H 2 k (M ) ⊂ L p-1 (M ) is continuous, there is a posi- tive constant S 2 such that ϕ p-1 ≤ S 2 ϕ H 2 k . The norms . H 2 k , . being equivalent, there is a positive constant C 1 such that ϕ H 2 k ≤ C 1 ϕ , ∀ϕ ∈ H 2 k (M ). consequently (2.11) becomes   M C(x)dv g   2 ≤ J εV g (M ) 2 p-1 + t 2 3 S 2 2 C 2 p-1 2 .
Replacing t 3 by his expression and posing

a 2 = √ 2S 2 C 1 it comes that   M C(x)dv g   2 ≤ εJ.V (M ) 2 p-1 + a 2 2 2 t 0 a 2 √ 2 2 now since 0 < ε < λ where λ ≤ β 2 , then it follows that   M C(x)dv g   2 ≤ J 2 a 2 2 2 t 0 a 2 √ 2 2 p-1 2 
i.e.:

M C(x) (ε + (t 3 ϕ) 2 ) p-1 2 dv g ≥   M C(x)dv g   2 2 a p-1 2 1 t 0 a 2 p-1
. Now we are able to prove the existence of a second solution to equation (1.1) Theorem 3. Let (M, g) be a compact Riemannian manifold of dimension n > 2k, (k ∈ N ). Suppose the operator P g is coercive, has a Green positive function and there is a constant C (n, p, k) > 0 which depends only on n, p , k such that:

ϕ 2 2 M A(x) ϕ 2 dv g ≤ C (n, p, k) Smax x∈M B(x) 2+2 2-2 and ϕ p-1 p -1 M C(x) ϕ p-1 dv g ≤ C (n, p, k) Smax x∈M B(x) p+1 2-2
for some smooth function ϕ > 0 on M . If moreover for every ε ∈ ]0, λ [ , where λ is a positive constant, the following two conditions occur

(2.15) 2 a   M A(x)dv g   2 1 t 0 a 1 2 > 2 k t 2 0 4n (2 -a)
and

(2.16) 2 a p-1 2   M C(x)dv g   2 1 t 0 a 2 p-1 > (p -1)k t 2 0 4n (2 -a)
where a 1 , a 2 are positive constants, 2 = 2n n-2k , 3 < p < 2 + 1. Then the equation (1.1) admits a second smooth solution.

Proof. The proof will be done in three steps 1 th -step. The functional I ε has a local lower bound. This consists to find a strictly positive real number λ such ∀ε ∈ ]0, λ [ one has the following inequality

I ε (t 3 ϕ) > Φ(t 0 ) ∀ϕ ∈ C ∞ (M ), ϕ = 1, with t 3 < t 1 .
Indeed, according to Lemma (4) inequality (2.2), one has

I ε (t 3 ϕ) = I (1) (t 3 ϕ) + I (2) (t 3 ϕ) (2.17) > a 2 Φ(t 0 ) + 1 2 M A (x) (ε + (t 3 ϕ) 2 ) 2 b dv g + 1 p -1 M C (x) (ε + (t 3 ϕ) 2 ) p-1 dv g .
and as by assumption

2 a .   M A(x)dv g   2 1 t 0 a 1 2 > 2 k t 2 0 4n (2 -a) and λ = min (β 1 , β 2 )
where β 1 , β 2 are given by (2.7) and (2.8) and knowing that

Φ(t 0 ) = k n t 2 0 it follows by Lemma5 that, ∀ε ∈ ]0, λ [ (2.18) 1 2 M A(x) (ε + (t 3 ϕ) 2 ) 2 2 dv g > 1 2 - a 4 Φ(t 0 ).
Similarly, one has

2 a p-1 2   M C(x)dv g   2 1 t 0 .a 2 p-1 > (p -1)k t 2 0 4n (2 -a)
which implies with Lemma (5

) that ∀ε ∈ ]0, λ [ (2.19) 1 (p -1) M C(x) (ε + (t 3 ϕ) 2 ) p-1 2 dv g > 1 2 - a 4 .Φ(t 0 ).
Finally, by combination of (2.17), (2.18) and (2.19) we get

I ε (t 3 ϕ) > a 2 Φ(t 0 ) + 2 1 2 - a 4 Φ(t 0 ) (2.20) > Φ(t 0 ).
Hence our result.

2 th -step. The infimum of the functional I ε is reached. Denote by B(0, t 1 ) = u ∈ H 2 k (M ) : u ≤ t 1 the closed ball centred at the origin 0 of radius t 1 in H 2 k (M ). In this section we will show that c ε = inf B(0,t 1 ) I ε ( c ε < Φ(t 0 ) ) is reached. By Ekeland's Lemma, there exists a sequence (u m ) m∈N in B(0, t 1 ) such that I ε (u) → c ε = Inf B(0,t 1 ) I ε and DI ε (u m ) → 0 strongly in the dual space of H 2 k (M ). That is to say (u m ) is a Palais-Smale sequence, so by the same arguments as in Theorem2 and Theorem1, we get that equation (1.1) has a smooth solution v. Since the ε-approximating solutions are obtained as weak limit of sequences of functions from B(0, t 1 ), it follows by the weak lower semi-continuity of the norm that these ε-approximating solutions are in B(0, t 1 ). As in turn v is obtained as a limit of a sequence of ε-approximating solutions, v ∈ B(0, t 1 ).

3 th -step. The two solutions are distinct. Indeed, we have on the one other hand the energy of the solution v given by c = lim ε→0 + c ε ≤ Φ(t 0 ) and secondly the energy of the solution u obtained in the first section is C = lim ε→0 + C ε where C = inf Thus the Lebesgue's dominated theorem, we get

C = lim ε→0 + C ε ≥ Φ (t 0 ) + 1 2 M A (x) (t 0 ϕ) 2 dv g + 1 p -1 M C(x) (t 0 ϕ) p-1 dv g > Φ (t 0 ) .
So the solutions u and v are of different energies and therefore are distinct.

Nonexistence of solution

In this section we will be placed in a closed ball B(0, R) of H 2 k (M ) centered at the origin 0 and of radius R > 0, we prove that under some condition (inequality 3.1) that the equation (1.1) admits no solution. 

m→+∞C

  and DI (u k ) → m→+∞ 0 By Lemma 2 the sequence (u m ) m∈N of H 2 k (M ) is a Palais-Smale sequence (P-S) for the functional I . Theorem 2. The Palais-Smale sequence (u m ) m∈N is bounded in H 2 k (M ) and converges weakly to nontrivial smooth solution u ε of equation (1.5).

I

  (u) and Γ denotes the set of paths joining the functions u 1 = t 1 ϕ and u 2 = t 2 ϕ. Now since any path joining u 1 and u 2 intersects the sphere centred at the origin and of radius t 0 in H 2 k (M ) thenC = inf γ∈Γ max u∈γ I (u) ≥ (I ε (t 0 ϕ)) = I (1) (t 0 ϕ) + I (2) ε (t 0 ϕ) ≥ Φ (t 0 ) + I (2) ε (t 0 ϕ)

Theorem 4 .M 1 p -1 2 2 2 +p- 1 .

 4121 Given (M, g) a compact Riemannian manifold of dimension n > 2k, (k ∈ N ) and A, B, C are positive smooth functions on M and 2 < p < 2 + 1. Assume that Bdv g > (SR) 2 where S, R are positive constants and C(n, p, k) = 2 + p -1 p -Then the equation (1.1) has no smooth positive solution u with energy u H 2 k (M ) ≤ R. Proof. Suppose that there exists a smooth positive solution u ∈ H 2 k (M ) such that u H 2 k (M ) ≤ R. By multiplying both sides of equation (1.1) by u end integrating over M , we getM uP g (u)dv g = M B (x) u 2 + A (x) u 2 + C (x) u p-1 dv g .And since u pg = M uP g (u)dv g is a norm equivalent to u H 2 k (M ) , there exists a constant S > 0 such that u ≤ S u H 2 k (M ) .