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Abstract

We study in this paper the consequences of using the Mean Absolute Percentage
Error (MAPE) as a measure of quality for regression models. We prove the
existence of an optimal MAPE model and we show the universal consistency of
Empirical Risk Minimization based on the MAPE. We also show that finding
the best model under the MAPE is equivalent to doing weighted Mean Absolute
Error (MAE) regression, and we apply this weighting strategy to kernel regression.
The behavior of the MAPE kernel regression is illustrated on simulated data.
Keywords: Mean Absolute Percentage Error; Empirical Risk Minimization;

Consistency; Optimization; Kernel Regression.

1. Introduction

Classical regression models are obtained by choosing a model that minimizes
an empirical estimation of the Mean Square Error (MSE). Other quality measures
are used, in general for robustness reasons. This is the case of the Huber loss
1] and of the Mean Absolute Error (MAE, also know as median regression),
for instance. Another example of regression quality measure is given by the

Mean Absolute Percentage Error (MAPE). If « denotes the vector of explanatory
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variables (the input to the regression model), y denotes the target variable and g
is a regression model, the MAPE of g is obtained by averaging the ratio %
over the data.

The MAPE is often used in practice because of its very intuitive interpretation
in terms of relative error. The use of the MAPE is relevant in finance, for instance,
as gains and losses are often measured in relative values. It is also useful to
calibrate prices of products, since customers are sometimes more sensitive to
relative variations than to absolute variations.

In real world applications, the MAPE is frequently used when the quantity
to predict is known to remain way above zero. It was used for instance as the
quality measure in a electricity consumption forecasting contest organized by
GdF ecometering on datascience.neﬂ More generally, it has been argued that
the MAPE is very adapted for forecasting applications, especially in situations
where enough data are available, see e.g. [2].

We study in this paper the consequences of using the MAPE as the quality
measure for regression models. Section [2]introduces our notations and the general
context. It recalls the definition of the MAPE. Section [3] is dedicated to a first
important question raised by the use of the MAPE: it is well known that the
optimal regression model with respect to the MSE is given by the regression
function (i.e., the conditional expectation of the target variable knowing the
explanatory variables). Section [3|shows that an optimal model can also be defined
for the MAPE. Section [4|studies the consequences of replacing MSE/MAE by the
MAPE on capacity measures such as covering numbers and Vapnik-Chervonenkis
dimension. We show in particular that MAE based measures can be used to
upper bound MAPE ones. Section [5| proves a universal consistency result for
Empirical Risk Minimization applied to the MAPE, using results from Section [
Finally, Section [f] shows how to perform MAPE regression in practice. It adapts

quantile kernel regression to the MAPE case and studies the behavior of the

Thttp//www.datascience.net, see https://www.datascience.net/fr/challenge/16/

details| for details on this contest.
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obtained model on simulated data.

2. General setting and notations

We use in this paper a standard regression setting in which the data are
fully described by a random pair Z = (X,Y) with values in R? x R. We are
interested in finding a good model for the pair, that is a (measurable) function g
from R? to R such that g(X) is “close to” Y. In the classical regression setting,
the closeness of g(X) to Y is measured via the Lo risk, also called the mean

squared error (MSE), defined by
La(g9) = Limse(9) = E(g(X) - V)% (1)

In this definition, the expectation is computed by respect to the random pair
(X,Y) and might be denoted Ex y(g(X) — Y)? to make this point explicit.
To maintain readability, this explicit notation will be used only in ambiguous
settings.
Let m denote the regression function of the problem, that is the function
from R¢ to R given by
m(z) = E(Y|X = z). (2)

It is well known (see e.g. [3]) that the regression function is the best model in
the case of the mean squared error in the sense that Lo(m) minimizes Ly(g) over
the set of all measurable functions from R< to R.

More generally, the quality of a model is measured via a loss function, [,
from R? to R*. The point-wise loss of the model g is I(g(X),Y) and the risk of

the model is
Li(g) = E(I(9(X),Y)). (3)
For example, the squared loss, lo = Iyrsg is defined as lo(p,y) = (p — y)?. It
leads to the Lyssp risk defined above as Lj,(9) = Layrse(9)-
The optimal risk is the infimum of L; over measurable functions, that is

Li= inf Li(g), 4
N L 1(9) (4)
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where M (R4, R) denotes the set of measurable functions from R? to R. As

recalled above we have
wse =Ly =L, =Exy(m(X) - Y)? =Exy {(E(Y|X) - Y)*}

As explained in the introduction, there are practical situations in which the
L risk is not a good way of measuring the closeness of g(X) to Y. We focus
in this paper on the case of the mean absolute percentage error (MAPE) as an
alternative to the MSE. Let us recall that the loss function associated to the

MAPE is given by

P~y
with the conventions that for all a # 0, § = oo and that % = 1. Then the

MAPE-risk of model g is

Inapre(p,y) =

(6)

La1ape(9) = Liyaps (9) = E (lg(X)Yl> |

Y|
Notice that according to Fubini’s theorem, Ly apgr(g) < oo implies in particular
that E(|g(X)|) < oo and thus that interesting models belong to L' (Px), where
Px is the probability measure on R? induced by X.

We will also use in this paper the mean absolute error (MAE). It is based
on the absolute error loss, Iy ag = 11 defined by Iy ap(p,y) = [p — y|. As other
risks, the MAE-risk is given by

Lyap(9) = Liyar(9) = E(lg(X) = Y). (7)

3. Existence of the MAPE-regression function

A natural theoretical question associated to the MAPE is whether an optimal

model exists. More precisely, is there a function m ;4 pg such that for all models

X>}

9, Laape(9) > Lyvare(muapre)?

Obviously, we have

l9(X) = Y|

Lyapre(g) =Exy (E
Y]
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A natural strategy to study the existence of my; 4pg is therefore to consider a
point-wise approximation, i.e. to minimize the conditional expectation introduced

above for each value of x. In other words, we want to solve, if possible, the

X::E)7 (8)

We show in the rest of this Section that this problem can be solved. We first

optimization problem

: Im — Y|
= E
marapp(x) = arg min ( V]

for all values of z.

introduce necessary and suflicient conditions for the problem to involve finite
values, then we show that under those conditions, it has at least one global
solution for each x and finally we introduce a simple rule to select one of the

solutions.

3.1. Finite values for the point-wise problem
To simplify the analysis, let us introduce a real valued random variable T'

and study the optimization problem

e (M) 0

Depending on the distribution of T and of the value of m, J(m) =E (Im_Tl) is

IT]

not always a finite value, excepted for m = 0. In this latter case, for any random
variable T', J(0) = 1 using the above convention.

Let us consider an example demonstrating problems that might arise for
m # 0. Let T be distributed according to the uniform distribution on [—1,1].
Then

If m €]0, 1], we have

J<m>:;/_°1(1_T)dt+;/o’”(7_1)dt+; (1-2)a,

1 m 0
1 1 1
=1-m-2 Sdt+2 / fdt—/ —dt |,
2 ).t T2\, t Lt

finite part +o0
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This example shows that when T is likely to take values close to 0, then J(m) = oo
whenever m # 0. Intuitively, the only situation that leads to finite values is
when ﬁ as a finite expectation, that is when the probability that |T’| is smaller
than e decreases sufficiently quickly when € goes to zero.

More formally, we have the following proposition.

Proposition 1. J(m) < oo for all m if and only if

1. P(T =0) =0,
2. and
> 1 1 > 1 1
kP (Te|—) = kP (Te|-—= ——r .
Sop (1] ) <o S (re [ ]) <

If any of those conditions is not fulfilled, then J(m) = oo for all m # 0.

Proof. We have

B |m — T |m — T |m — T
J(m) =E (]IT_O |T‘ + E ]IT>0 ‘T| + E ]IT<0 |T‘ .

If P(T' = 0) > 0 then for all m # 0, J(m) = co. Let us therefore consider the

case P(T'=0) = 0. We assume m > 0, the case m < 0 is completely identical.

We have

m-—"T m—T
J(m)=E<HT>o| T |)+E<HT<0| 7] |>7

I m -1 -1 m
—IP(T<O)+]P’(T>m)—]I"(Te]O,m])+mIE<TE]O’ | T<0 7> >

T

A simple upper bounding gives

and symmetrically

This shows that J(m) is the sum of finite terms and of mE (W)
Because of the symmetry of the problem, we can focus on E (HTG%’"]) It is also

obvious that E (HT%]) is finite if and only if E (@) is finite.



75 As pointed out above, this shows that, when P(T = 0) = 0, J(m) is finite
if and only if both E (HTG [t ) and E (M) are finite. We obtain slightly
more operational conditions in the rest of the proof.

Let us therefore introduce the following functions:

f 1 if v ¢] L, L
fo() = 0 1m¢] il f,j'(x): 0 1gc¢]k+ =l
koif z€]s, 1), k+1 ifz €y, ¢
gn =Y Ix (@), gl =Y fi@)
k=1 k=1
9 =>_ 1 (@), gt => 71
k=1 k=1

We have obviously for all z €]0,1], g~ (z) < 1 < g™ (). In addition

E@mT»=§jw+1w(Te]kiljj),

k=1

iw( ¢l mri]) —raan -r(re] 2qa)).

According to the monotone convergence theorem,

3

E(g"(T)) = lim E(g, (T)).

n—r oo

The link between E(g,, (T)) and E(g;" (T")) shows that either both E(g™(T")) and
E(g—(T)) are finite, or both are infinite. In addition, we have

(o (1) < B (TS ) < Bg(r)

therefore E (%) is finite if and only if E(g~ (7)) is finite. So a sufficient and

necessary condition for E (HTE%) to be finite is

ZkP(Te]kil H)<oo.

k=1

A symmetric derivation shows that E (—HTE]%‘”) is finite if and only if

> kP <T € [—1,—1D < 0.
— k' k+1
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The conditions of Proposition [1| can be used to characterize whether P(T €
10, €]) decreases sufficiently quickly to ensure that J is not (almost) identically

equal to +oo. For instance, if P(T" €]0, ¢]) = ¢, then

11 1
P(Te|l )=
F ( E]k+1’kD kt1’

and the sum diverges, leading to J(m) = oo (for m # 0). On the contrary, if
P(T €]0,€]) = €2, then

1 1 2k +1
P(Te|— )=t
F ( E]kﬂ’kD k(k+1)2

and thus the sum converges, leading to J(m) < oo for all m (provided similar

conditions hold for the negative part of T).

8.2. Ezistence of a solution for the point-wise problem

If the conditions of Proposition 1| are not fulfilled, J(m) is infinite excepted in
m = 0 and therefore arg min,,cg J(m) = 0. When they are fulfilled, we have to
show that J(m) has at least one global minimum. This is done in the following

proposition.

Proposition 2. Under the conditions of Proposition[d], J is convex and has at

least one global minimum.

Proof. We first note that J is convex. Indeed for all t # 0, m — ‘T;lt‘ is
obviously convex. Then the linearity of the expectation allows to conclude
(provided J is finite everywhere as guaranteed by the hypotheses).

As P(T = 0) = 0, there is [a, b], a < b such that P(T € [a,b]) > 0 with either

a>0orb<0. Let us assume a > 0, the other case being symmetric. Then for

tela,b), + <1 <L Ifm>b, then for t € [a,b]

m_f_m_ymoy
|t] t ) '
Then
Ireias|m — T
J(m)zE(TG“T}T '),
m
> (2
7(6 1>P(Te[a7b]),
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and therefore lim,, o J(m) = +o0.
Similarly, if m < 0 < a, then for ¢ € [a, b]

m —t|

=1-
1|

m m
—>1-—,
t b

and then
Lm

Tm) > (15

)BT € [a,b),
and therefore lim,, , o, J(m) = +oo.

Therefore, J is a coercive function and has at least a local minimum, which

is global by convexity. O

3.8. Choosing the minimum

However, the minimum is not necessary unique, as J is not strictly convex.
In general, the set of global minima will be a bounded interval of R. In this case,
and by convention, we consider the mean value of the interval as the optimal
solution.

As an example of such behavior, we can consider the case where T is a
random variable on {1,2,3}, such that P(T"=1) = 0.3, P(T = 2) = 0.4 and
P(T = 3) = 0.3. Then the expected loss is

m— 2

J(m) =03 x|m—1|+0.4 x +0.3 x

m—3
3
and the figure [1] illustrates that there is an infinity of solutions. Indeed when

m € [1,2], J becomes

2 3
0.3 x 3m,

=(03-02-0.1) xm+ (—0.3+ 0.4+ 0.3),

J(m)=03x (m—1)+0.4 x

=0.4.

Here we define by convention arg min,, J(m) = 5.

More generally, for any random variable T'; we have defined a unique value m,
which is a global minimum of J(m) = E (|+% ). Moving back to our problem,
it ensures that the MAPE-regression function m ;4 pg introduced in [8]is well
defined and takes finite values on R%. As ma;app is point-wise optimal, it is

also globally optimal.
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2.0

15

J(m)
1.0
|

0.5

Figure 1: Counterexample with an infinite number of solutions.

4. Effects of the MAPE on complexity control

One of the most standard learning strategy is the Empirical Risk Minimiza-
tion (ERM) principle. We assume given a training set D,, = (Z;)i<i<n =
(Xi,Yi)1<i<n which consists in n i.i.d. copies of the random pair Z = (X,Y).

We assume also given a class of models, G, which consists in measurable functions

from R? to R. Given a loss function [, we denote Li ¢ = infgec Li(9)-

The empirical estimate of L;(g) (called the empirical risk) is given by

n

> i(g(X3), Y5). (11)

=1

Zl(gan) =

S|

Then the ERM principle consists in choosing in the class G the model that

minimizes the empirical risk, that is
91,0, = argmin L;(g, D). (12)
geG

The main theoretical question associated to the ERM principle is how to control

Li(91,p, ) in such a way that it converges to L} 5. An extension of this question

10
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is whether Lj can be reached if G is allowed to depend on n: the ERM is said to
be universally strongly consistent if L;(g; p, g, ) converges to L almost surely
for any distribution of (X,Y) (see Section [5).

It is well known (see e.g. [3] chapter 9) that ERM consistency is related
to uniform laws of large numbers (ULLN). In particular, we need to control

quantities of the following form

P {sug EMAPE(gv D,) - LMAPE(Q)‘ > 6} . (13)
ge

This can be done via covering numbers or via the Vapnik-Chervonenkis dimension
(VC-dim) of certain classes of functions derived from G. One might think that
general results about arbitrary loss functions can be used to handle the case
of the MAPE. This is not the case as those results generally assume a uniform
Lipschitz property of [ (see Lemma 17.6 in [4], for instance) that is not fulfilled
by the MAPE.

The objective of this section is to analyze the effects over covering numbers
(Section and VC-dimension (Section of using the MAPE as the loss
function. It shows also what type of ULLN results can be obtained based on
those analyses (Section .

4.1. Classes of functions

Given a class of models, G, and a loss function [, we introduce derived classes,

H(G,I) given by
H(G, 1) ={h:RY*xR = R*, h(z,y)=1(g9(z),y) | g € G}, (14)
and HT(G,1) given by
HYG)={h:R*xRxR—R", h(z,y,t) = Ljyu)y | 9 € G} (15)
4.2. Covering numbers
4.2.1. Notations and definitions

Let F be a class of positive functions from an arbitrary set Z to R*. The

supremum norm on F' is given by

[flloo = sup [£(2)].
z€Z

11



130

135

140

We also define |||l = supscp || f|lo- We have obviously
VfEFVz€Z |f(2) < |IF]o-

Those definitions will also be used for classes of functions with values in R (not
only in R™), hence the absolute value.

Let k be a dissimilarity on F, that is a positive and symmetric function
from F? to RT that measures how two functions from F are dissimilar (in
particular x(f, f) = 0). Then & can be used to characterize the complexity of F'

by computing the x e-covering number of F'.

Definition 1. Let F be a class of positive functions from Z to Rt and s a
dissimilarity on F. For € > 0 and p a positive integer, a size p e-cover of F with
respect to k is a finite collection fi1,..., fp of elements of F' such that for all
fer

1211'1%; k(f, fi) <e.

Then the k e-covering number of F is defined as follow.
Definition 2. Let F be a class of positive functions from Z to RY, k be a
dissimilarity on F and € > 0. Then the k e-covering number of F, N (e, F\ k),

is the size of the smallest k e-cover of F. If such a cover does not exists, the

covering number is 00.

The behavior of N (e, F, k) with respect to € characterizes the complexity of
F as seen through . If the growth when ¢ — 0 is slow enough (for an adapted

choice of k), then some uniform law of large numbers applies (see Lemma [1)).

4.2.2. Supremum covering numbers

Supremum covering numbers are based on the supremum norm, that is

1f1 = falloo = sup | f1(2) = f2(2)].
z€EZ

For classical loss functions, the supremum norm is generally ill-defined on H(G, ).

For instance let hy and hy be two functions from H(G,ls), generated by g1 and

12
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g2 (that is hi(z,y) = (9i(z) — y)?). Then

h1(2,y) — ha(z,9)| = [(91(2) — ¥)* — (g2(x) — )°|

= |g1(x)? = g2(2)* + 2y(g2(x) — g1 (2))]-

If G is not reduced to a single function, then there are two functions g; and g
and a value of = such that gi(z) # g2(z). Then sup, |h1(x,y) — ha(z,y)| = 0.
A similar situation arises for the MAPE. Indeed, let hy and hs be two functions

from Hpyapg, generated by g1 and go in G (that is h;(x,y) = %) Then

ththH _ sup Hgl(l')_y|_|92(x)_y||
(z,y) ERTXR ‘yl

Thus unless G is very restricted there is always =, g1 and go such that g1 (z) # 0
and |g2(x)| # |g1(x)|. Then for y > 0, ||g1(z) — y| — |g2(z) — y|| has the general

llgr (=) —yl—lg2 (=) —ull _
Tyl =+

form o + By with o > 0 and thus limy_,o4
A simple way to obtain finite values for the supremum norm is to restrict its
definition to a subset of Z. This corresponds in practice to support assumptions
on the data (X,Y). Hypotheses on G are also needed in general. In this latter
case, one generally assumes |G|l < 0o. In the former case, assumptions depends
on the nature of the loss function.
For instance in the case of the MSE, it is natural to assume that |Y| is upper

bounded by Yy with probability one. If (z,y) € R? x [~Yy;, Yy| then
hi(z,y) = ha(z,y)| < 2[|Glloo (|Glloe + Yu),

and therefore the supremum norm is well defined on this subset.
In the case of the MAPE, a natural hypothesis is that |Y| is lower bounded
by Y7, (almost surely). If (x,y) € R? x (] — 0o, —Y7] U [Y7, oc[), then

(2, y) = ho(2,y)] <2+ 2%7
YL

and therefore the supremum norm is well defined.
The case of the MAE is slightly different. Indeed when x is fixed, then for
sufficiently large positive values of y, ||g1(x) — y| — |g2(x) — y|| = |g1(z) — g2(2)|.

13
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Similarly, for sufficient large negative values of y, ||g1(x) — y| — |g2(z) — y|| =
|g1(x) — g2(z)|. Thus, the supremum norm is well defined on H(G, Iy ag) if e.g.

IGlloo < co. In addition, we have the following proposition.

Proposition 3. Let G be an arbitrary class of models with |G| < oo and let
Yy, > 0. Let ||.|X2 denote the supremum norm on H(G,lyapr) defined bgﬂ
IR = sup h(z,y).
z€ERY y€]—00,— YUY ,00[

Let € > 0, then
N(e, H(G, lnpapp), ||1X) S N(eYr, H(G, lyag), ||-llso)-

Proof. Let € > 0 and let Af,...,hj be a minimal €Y7, cover of H(G,InaE)
(thus & = N (YL, H(G,lprag), ||]loo))- Let g1,..., gk be the functions from G
associated to hi,...,h) and let hi,..., hy be the corresponding functions in
H(G,lpapg). Then hq, ... hg is a € cover of H(G,lyapE).

Indeed let h be an arbitrary element of H (G, Iy apg) associated g and let b’ be
the corresponding function in H(G, Iy ar). Then for a given 7, [’ —h [l < €YT.

We have then

) — — (x) —
|h— k|2 = sup lg(2) —yl —lg;(=) —yll
z€R4,y€]—o00,— YL |JU[YL ,00[ |y|

For all y €] — 0o, =Y ] U [Yy, 0], & < & and thus

|y\ L
h — by |2 < sup lg(2) — yl — lg; (=) —yll
z€R,y€]—o00,—YL]U[YL ,00] YL
Then
sup llg(z) —y| = lgj(z) —yl| < sup ||g(z) —y| —|g;(z) — ||
z€R,y€]—00,— Y JU[YL ,00[ 2R yeR
<R = ) lso,
S EYL.

2Notice that while we make explicit here the dependence of the supremum norm on the
support on which it is calculated, we will not do that in the rest of the paper to avoid cluttered

notations. This restriction will be clear from the context.

14
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and thus

Ih = hill 3% <e,
which allows to conclude. O
This Proposition shows that the covering numbers associated to a class of

functions G under the MAPE are related to the covering numbers of the same

class under the MAE, as long as Y stays away from too small values.

4.2.8. Ly covering numbers
L, covering numbers are based on a data dependent norm. Based on the

training set D,,, we define for p > 1 :

Tl=

1 n
1f1 = fellp,0, = <n > 1A(Zi) - f2(Zi)|p> - (16)
i=1
We have a simple proposition:

Proposition 4. Let G be an arbitrary class of models and D,, a data set such

that ¥i, Y; # 0, then for all p > 1,

N(e, HG,lpare), ||

< in |Y;|, H(G,I . .
p.0,) SN(e min [Y;], H(G, lxap), ||-Ip.p.)
Proof. The proof is similar to the one of Proposition O
This Proposition is the adaptation of Proposition [3[to L, covering numbers.
4.8. VC-dimension

A convenient way to bound covering numbers it to use the Vapnik-Chervonenkis
dimension (VC dimension). We recall first the definition of the shattering coeffi-

cients of a function class.

Definition 3. Let I be a class of functions from R? to {0,1} and n be a positive

integer. Let {z1,...,2,} be a set of n points of R%. Let

s(Fo{z1,...,zn}) = {0 € {0,1}"3f € F, 0 = (f(21),.--, f(zn))},

15



that is the number of different binary vectors of size n that are generated by
functions of F when they are applied to {z1,...,zn}.
180 The set {z1,...,2n} is shattered by F if s(F,{z1,...,2,}) = 2™.
The n-th shatter coefficient of F is

S(F,n)=  max  s(F,{z1,...,%n})
Then the VC-dimension is defined as follows.

Definition 4. Let F' be a class of functions from R? to {0,1}. The VC-dimension
of I is defined by

VCaim(F) = sup{n € N* | S(F,n) = 2"}.

Interestingly, replacing the MAE by the MAPE does not increase the VC-dim

of the relevant class of functions.

Proposition 5. Let G be an arbitrary class of models. We have
VCaim(H (G, lprape)) < VCaim(HY (G, lvaE)).

Proof. Let us consider a set of k points shattered by HY (G, Iy apg), (v1,--.,vk),
ws v; = (x5,Y;,t;). By definition, for each binary vector 6 € {0,1}*, there is a

function hg € H(G,lpyape) such that Vj, ]Itghg(z,y)(mjayjatj) = 0;. Each hy

_ lgo(z)—yl
lyl -~

We define a new set of k points, (w1, ..., wy) as follows. If y; # 0, then

corresponds to a gy € G, with hg(x,y)

w; = (x},Yj, lyj|t;). For those points and for any g € G,

L toep—vil = Lyjt;<ig(as)—u,15
J= k71

and thus Li<p, (2.y) (T5, Yjs ) = Li<hs (20 (T4, Y5 ly;|t;) where hy(x,y) = |go(x) —
yl-

190 Let us now consider the case of y; = 0. By definition hg(z;,0) = 1 when
go(x;) = 0 and hg(z;,0) = oo if gg(z;) # 0. As the set of points is shattered t; >
1 (or hg(x;,0) < t; will never be possible). In addition when 6; = 1 then gg(x;) >

0 and when 6; = 0 then gg(x;) = 0. Then let w; = (x;,0,mingg,~1 [go(x;)]).

16
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Notice that mingg,—1 |ge(;)| > 0 (as there is a finite number of binary vectors
of dimension k). For 6 such that 8; = 0, we have hj(z;,y;) = |go(z;) —y;| =0
and thus hy(2;,y;) < mingg;=1(ge(z;)|, that is Ti<py (24 (w;) = 0 = 0;. For ¢
such that 0; = 1, hy(x;,y;) = |ge(x;)| and thus hj(z;,y;) > ming g, —1 |ge(z;)|.
Then Ti<p () (w;) =1=0;.

This shows that for each binary vector § € {0,1}*, there is a function
hy € H(G,lpag) such that Vj, Licpr () (wj) = 0;. And thus the w; are
shattered by HY (G, lpag)-

Therefore VCim(HT (G, lprag)) > k. It VCyim(HY (G, lpape)) < oo, then
we can take k = VCyi (H' (G, lprapr)) to get the conclusion.

If VCyim(HT(G,lprapr)) = oo then k can be chosen arbitrarily large and
therefore VCyim(HT (G, lprag)) = . O

Using theorem 9.4 from [3], we can bound the LP covering number with a
VC-dim based value. If VCyip(H(G,1)) > 2, p > 1, and 0 < e < 1ZG Dl
then

2e| H(G, D | 3ellH (G, D5 VCaim (H(G,1))
ep 0g €P .

N HGD. ) <3

(17)
Therefore, in practice, both the covering numbers and the VC-dimension of
MAPE based classes can be derived from the VC-dimension of MAE based

classes.

4.4. Examples of Uniform Laws of Large Numbers

We show in this section how to apply some of the results obtained above.

Rephrased with our notations, Lemme 9.1 from [3] is

Lemma 1 (Lemma 9.1 from [3]). For all n, let F,, be a class of functions from

Z to [0, B] and let € > 0. Then

e

P sup | L5 (2) - B2 2 e p <o (5 Bl ) € B
7j=1

fer, |

17



If in addition
SN (5 Fus o) < o0,
n=1

for all €, then

sup %Zf(Zj)—E(f(Z)) 50 (no o) as. (18)

A direct application of Lemma [l{to H(G,1) gives

_ 2né?

P{sup Lu(g. D) = Li(o)| >e} <o (S H@), ) e ¥

geqG

provided the support of the supremum norm coincides with the support of (X,Y)
and functions in H(G,1) are bounded.
In order to fulfill this latter condition, we have to resort on the same strategy
25 used to define in a proper way the supremum norm on H(G,1).
As in Section [£.2.2)let ||G|| < 00 and let Yy < oo be such that |Y| < Yy

almost surely, then
Vge G, (g(X)-Y)? <G5 +YE  (as.),

and

Vg € G,lg(X) =Y < [IGlls +Yu  (as.).

Then if B > ||G||%,+Y7 (resp. B > ||G||oc+Yr), Lemmal[l]applies to H(G, lysE)
(resp. to H(G,lyaE))-

Similar results can be obtained for the MAPE. Indeed let us assume that
|Y| > Y, > 0 almost surely. Then if ||G||c is finite,

9(X) Y] _ ) Gl

Vg € G, a.s.),
g V] Y, (a.s.)

and therefore for B > 1 + %, Lemmaapplies to H(G,lypapE)-
This discussion shows that Y7, the lower bound on |Y|, plays a very similar
20 role for the MAPE as the role played by Yy, the upper bound on |Y|, for the
MAE and the MSE. A very similar analysis can be made when using the L,

covering numbers, on the basis of Theorem 9.1 from [3]. It can also be combined

18
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with the results obtained on the VC-dimension. Rephrased with our notations,

Theorem 9.1 from [3] is

Theorem 1 (Theorem 9.1 from [3]). Let F be a class of functions from Z to
[0,B]. Then fore>0 andn >0

Fq sup %Zf(zj)—E(f(Z)) >ep <8Ep, {N(ngJ\-IIp,Dn)}e‘%.

The expectation of the covering number is taken over the data set D,, = (Z;)1<i<n.-

As for Lemmal[I] we bound |[H (G, )|/« via assumptions on G and on Y. For

instance for the MAE, we have

P {SUP Larap(g, Do) — LMAE(Q)‘ > 6} <
geG
€2

|p,Dn> } 67128(IIG7HLTYU)27 (19)

SEp, {N (g H(G,lyrag), ||

and for the MAPE

P {Sug EMAPE(gaDn) - LMAPE(Q)‘ > 6} <
ge

2y2
ne’Yp

8Ep, {N (5. H(G.luarp), Iy, ) e 0507 (20)

Equation can be combined with results from Propositions [4] or |5 to allow
a comparison between the MAE and the MAPE. For instance, using the VC-
dimension results, the right hand side of equation is bounded above by

" (ze<||a||oz + Y0 |, BellGle + m))p)Vcd""‘H”G““E” R
€ € o)
while the right hand side of equation is bounded above by
" <26(1 Il ) , 3el1+ |Z|jc;||oo>>ﬁ)VC“”(H”G’ZM“PE” o
L€ L€ (22)

In order to obtain almost sure uniform convergence of El(g, D,,) to L;(g) over G,

those right hand side quantities must be summable (this allows one to apply the

19



230

235

240

245

250

Borel-Cantelli Lemma). For fixed values of the VC dimension, of |G|, Y7, and
Yy this is always the case. If those quantities are allowed to depend on n, then
it is obvious, as in the case of the supremum covering number, that Yy and Y,
play symmetric roles for the MAE and the MAPE. Indeed for the MAE, a fast
growth of Yy with n might prevent the bounds to be summable. For instance,
if Yy grows faster than /n, then m does not converges to zero and
the series is not summable. Similarly, if Y7 converges too quickly to zero, for
instance as ﬁ, then % does not converge to zero and the series is not

summable. The following Section goes into more details about those conditions

in the case of the MAPE.

5. Consistency and the MAPE

We show in this section that one can build on the ERM principle a strongly
consistent estimator of L%, 4 pp with minimal hypothesis on (X,Y") (and thus

almost universal).

Theorem 2. Let Z = (X,Y) be a random pair taking values in R x R such
that |Y| > Y, > 0 almost surely (Yy, is a fized real number). Let (Zp)p>1 =
(Xn, Yn)n>1 be a series of independent copies of Z.

Let (Gy)n>1 be a series of classes of measurable functions from R? to R,

such that:
1. G, C Gpys
2. U1 Gn is dense in the set of L' (i) functions from R? to R for any
probability measure p;
3. for alln, Vi, = VCyim(H (Gp,lpape)) < 00;

4. for alln, ||Gplloee < 0.

If in addition

I VnHGanolog”Gn”oo
im

n— oo n

and there is § > 0 such that

207

1-96
lim ———— =00

nooe |Galld
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then Ly apg(Qiaaps.Gn.Dy) cONVErges almost surely to L, spp-

Proof. We use the standard decomposition between estimation error and approx-

imation error. More precisely, for g € G, a class of functions,

Lyapre(9) — Lytape = Lvare(9) — Lyyape.c + Liviare.c — Lirape -

estimation error approximation error
We handle first the approximation error. As pointed out in Section Lyapr(g) <
oo implies that g € L' (Px). Therefore we can assume there is a series (g})k>1

of functions from L!(Px) such that

1

Larape(gy) < Liiape + T

by definition of L}, 4 pp as an infimum.

Let us consider two models g; and go. For arbitrary x and y, we have

91(2) =yl <191 (x) = g2(2)| + [ga(x) =y,

lg2(%) — y| < [ga(z) — g1(x)] + [g1 () — yl,

and thus

l91(@) =yl — lg2(2) =yl < |g1(2) — g2(2)],

l92(2) = y| = lg1(2) — y| < lg2(x) — g1(2)],
and therefore

g1 (x) =yl = lg2(2) — yll < lg1(z) — g2(2)].

Then

o { e {2

As |Y] > Y, almost surely,

‘EX,Y {W} CExy {WQY'}‘ < - Ex {lon(X) — (O]}

and thus

|Laviare(g1) — Lvare(g2)] < YLEX {lg1(X) — g2(X)[}-
f3
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As,,»; Gy is dense in L' (Px) there is a series (h}),>1 of functions of |, <, Gn
such that Ex {|hj(X) — g5(X)|} < Y&, Then |Lyapre(h}) — Luars(gh)| <
Y%% and thus LMAPE(h;;) < LMAPE(g;:)‘{’% < L7\4APE+%- Let ng = Inin{n |
h; € G,}. By definition, L*MAPE’G% < Lyape(h}).

Let € > 0. Let k be such that £ <e. Then Layapp(g;) < Liapg + € and
Lyapec,, < Luape +e Letn > ng. As G, is an increasing series of sets,
Lyiarec, < LMAPE,GM and thus for all n > ng, Ly appq, < Lyjape +€
This shows that lim, oo Ly app.a, = Liare-

The estimation error is handled via the complexity control techniques studied
in the previous Section. Indeed, according to Theorem |1} we have (for p = 1)

]P’{ Su(? ‘EMAPE(gaDn) - LMAPE(Q)’ > 6} < D(n,e),
g€G

with

2y2
ne’Yp

D(n,¢) =8E {./\/ (g,H(Gn, Ivare), ||-||1,Dn> } e 12(+1Gnle)?

Then using equation
21t [Gul)? | 1+ ||Gn||oo>>)vn

D <24 T 128(1+1IGnlleo)? |
(ﬂ, 6) - ( EYL EYL ¢

Using the fact that log(z) < z, we have

2V, ne2y2
D(n €)<24 M 6_128(1+HGHLH00)2
’ B EYL ’
and
neY? 3e(1+ [ Gulloc)
D <24 - L 2V, log ———— 1nliee) )
(.9 = e’q’( IS+ [Gall)? T ey, )
3e(14]|Gn oo
oty [ (@Y 2Vall £ [G)? o M)
- (14 |Gnlleo)? \ 128 n

. VallGnll2, log |G nllso
As lim,, o l ,Hoonog\l l —0,

2 3e(1+]|Gnlloo)
. 2V (1 + [|Ghllc)* log ==— 512>

n—00 n

=0.

1-6
1 n
As lim,, oo o =
M lloco

lim TRTCEERY) = OQ.

n—oo (1 + [|Gplloo