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Abstract

We study in this paper the consequences of using the Mean Absolute Percentage

Error (MAPE) as a measure of quality for regression models. We prove the

existence of an optimal MAPE model and we show the universal consistency of

Empirical Risk Minimization based on the MAPE. We also show that finding

the best model under the MAPE is equivalent to doing weighted Mean Absolute

Error (MAE) regression, and we apply this weighting strategy to kernel regression.

The behavior of the MAPE kernel regression is illustrated on simulated data.

Keywords: Mean Absolute Percentage Error; Empirical Risk Minimization;

Consistency; Optimization; Kernel Regression.

1. Introduction

Classical regression models are obtained by choosing a model that minimizes

an empirical estimation of the Mean Square Error (MSE). Other quality measures

are used, in general for robustness reasons. This is the case of the Huber loss

[1] and of the Mean Absolute Error (MAE, also know as median regression),5

for instance. Another example of regression quality measure is given by the

Mean Absolute Percentage Error (MAPE). If x denotes the vector of explanatory
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variables (the input to the regression model), y denotes the target variable and g

is a regression model, the MAPE of g is obtained by averaging the ratio |g(x)−y|
|y|

over the data.10

The MAPE is often used in practice because of its very intuitive interpretation

in terms of relative error. The use of the MAPE is relevant in finance, for instance,

as gains and losses are often measured in relative values. It is also useful to

calibrate prices of products, since customers are sometimes more sensitive to

relative variations than to absolute variations.15

In real world applications, the MAPE is frequently used when the quantity

to predict is known to remain way above zero. It was used for instance as the

quality measure in a electricity consumption forecasting contest organized by

GdF ecometering on datascience.net1. More generally, it has been argued that

the MAPE is very adapted for forecasting applications, especially in situations20

where enough data are available, see e.g. [2].

We study in this paper the consequences of using the MAPE as the quality

measure for regression models. Section 2 introduces our notations and the general

context. It recalls the definition of the MAPE. Section 3 is dedicated to a first

important question raised by the use of the MAPE: it is well known that the25

optimal regression model with respect to the MSE is given by the regression

function (i.e., the conditional expectation of the target variable knowing the

explanatory variables). Section 3 shows that an optimal model can also be defined

for the MAPE. Section 4 studies the consequences of replacing MSE/MAE by the

MAPE on capacity measures such as covering numbers and Vapnik-Chervonenkis30

dimension. We show in particular that MAE based measures can be used to

upper bound MAPE ones. Section 5 proves a universal consistency result for

Empirical Risk Minimization applied to the MAPE, using results from Section 4.

Finally, Section 6 shows how to perform MAPE regression in practice. It adapts

quantile kernel regression to the MAPE case and studies the behavior of the35

1http//www.datascience.net, see https://www.datascience.net/fr/challenge/16/

details for details on this contest.
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obtained model on simulated data.

2. General setting and notations

We use in this paper a standard regression setting in which the data are

fully described by a random pair Z = (X,Y ) with values in Rd × R. We are

interested in finding a good model for the pair, that is a (measurable) function g

from Rd to R such that g(X) is “close to” Y . In the classical regression setting,

the closeness of g(X) to Y is measured via the L2 risk, also called the mean

squared error (MSE), defined by

L2(g) = LMSE(g) = E(g(X)− Y )2. (1)

In this definition, the expectation is computed by respect to the random pair

(X,Y ) and might be denoted EX,Y (g(X) − Y )2 to make this point explicit.

To maintain readability, this explicit notation will be used only in ambiguous40

settings.

Let m denote the regression function of the problem, that is the function

from Rd to R given by

m(x) = E(Y |X = x). (2)

It is well known (see e.g. [3]) that the regression function is the best model in

the case of the mean squared error in the sense that L2(m) minimizes L2(g) over

the set of all measurable functions from Rd to R.

More generally, the quality of a model is measured via a loss function, l,

from R2 to R+. The point-wise loss of the model g is l(g(X), Y ) and the risk of

the model is

Ll(g) = E(l(g(X), Y )). (3)

For example, the squared loss, l2 = lMSE is defined as l2(p, y) = (p − y)2. It45

leads to the LMSE risk defined above as Ll2(g) = LMSE(g).

The optimal risk is the infimum of Ll over measurable functions, that is

L∗l = inf
g∈M(Rd,R)

Ll(g), (4)
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where M(Rd,R) denotes the set of measurable functions from Rd to R. As

recalled above we have

L∗MSE = L∗2 = L∗l2 = EX,Y (m(X)− Y )2 = EX,Y {(E(Y |X)− Y )
2}

As explained in the introduction, there are practical situations in which the

L2 risk is not a good way of measuring the closeness of g(X) to Y . We focus

in this paper on the case of the mean absolute percentage error (MAPE) as an

alternative to the MSE. Let us recall that the loss function associated to the

MAPE is given by

lMAPE(p, y) =
|p− y|
|y|

, (5)

with the conventions that for all a 6= 0, a
0 = ∞ and that 0

0 = 1. Then the

MAPE-risk of model g is

LMAPE(g) = LlMAPE (g) = E
(
|g(X)− Y |
|Y |

)
. (6)

Notice that according to Fubini’s theorem, LMAPE(g) <∞ implies in particular

that E(|g(X)|) <∞ and thus that interesting models belong to L1(PX), where

PX is the probability measure on Rd induced by X.

We will also use in this paper the mean absolute error (MAE). It is based

on the absolute error loss, lMAE = l1 defined by lMAE(p, y) = |p− y|. As other

risks, the MAE-risk is given by

LMAE(g) = LlMAE (g) = E(|g(X)− Y |). (7)

3. Existence of the MAPE-regression function50

A natural theoretical question associated to the MAPE is whether an optimal

model exists. More precisely, is there a function mMAPE such that for all models

g, LMAPE(g) ≥ LMAPE(mMAPE)?

Obviously, we have

LMAPE(g) = EX,Y

{
E

(
|g(X)− Y |
|Y |

∣∣∣∣∣X
)}

.
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A natural strategy to study the existence of mMAPE is therefore to consider a

point-wise approximation, i.e. to minimize the conditional expectation introduced

above for each value of x. In other words, we want to solve, if possible, the

optimization problem

mMAPE(x) = arg min
m∈R

E

(
|m− Y |
|Y |

∣∣∣∣∣X = x

)
, (8)

for all values of x.

We show in the rest of this Section that this problem can be solved. We first55

introduce necessary and sufficient conditions for the problem to involve finite

values, then we show that under those conditions, it has at least one global

solution for each x and finally we introduce a simple rule to select one of the

solutions.

3.1. Finite values for the point-wise problem60

To simplify the analysis, let us introduce a real valued random variable T

and study the optimization problem

min
m∈R

E
(
|m− T |
|T |

)
. (9)

Depending on the distribution of T and of the value of m, J(m) = E
(
|m−T |
|T |

)
is

not always a finite value, excepted for m = 0. In this latter case, for any random

variable T , J(0) = 1 using the above convention.

Let us consider an example demonstrating problems that might arise for

m 6= 0. Let T be distributed according to the uniform distribution on [−1, 1].

Then

J(m) =
1

2

∫ 1

−1

|m− t|
|t|

dt.

If m ∈]0, 1], we have

J(m) =
1

2

∫ 0

−1

(
1− m

t

)
dt+

1

2

∫ m

0

(m
t
− 1
)
dt+

1

2

∫ 1

m

(
1− m

t

)
dt,

= 1−m− m

2

∫ 1

m

1

t
dt︸ ︷︷ ︸

finite part

+
m

2

(∫ m

0

1

t
dt−

∫ 0

−1

1

t
dt

)
︸ ︷︷ ︸

+∞

,

= +∞.
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This example shows that when T is likely to take values close to 0, then J(m) =∞

whenever m 6= 0. Intuitively, the only situation that leads to finite values is65

when 1
|T | as a finite expectation, that is when the probability that |T | is smaller

than ε decreases sufficiently quickly when ε goes to zero.

More formally, we have the following proposition.

Proposition 1. J(m) <∞ for all m if and only if

1. P(T = 0) = 0,70

2. and

∞∑
k=1

kP
(
T ∈

]
1

k + 1
,

1

k

])
<∞,

∞∑
k=1

kP
(
T ∈

[
−1

k
,− 1

k + 1

[)
<∞.

(10)

If any of those conditions is not fulfilled, then J(m) =∞ for all m 6= 0.

Proof. We have

J(m) = E
(
IT=0

|m− T |
|T |

)
+ E

(
IT>0

|m− T |
|T |

)
+ E

(
IT<0

|m− T |
|T |

)
.

If P(T = 0) > 0 then for all m 6= 0, J(m) = ∞. Let us therefore consider the

case P(T = 0) = 0. We assume m > 0, the case m < 0 is completely identical.

We have

J(m) = E
(
IT>0

|m− T |
|T |

)
+ E

(
IT<0

|m− T |
|T |

)
,

= P(T < 0) + P(T > m)− P(T ∈]0,m]) +mE
( IT∈]0,m] − IT<0 − IT>m

T

)
.

A simple upper bounding gives

0 ≤ mE
(
IT>m
T

)
≤ P(T > m),

and symmetrically

0 ≤ mE
(
− IT<−m

T

)
≤ P(T < −m).

This shows that J(m) is the sum of finite terms and of mE
(

IT∈]0,m]−IT∈[−m,0[
T

)
.

Because of the symmetry of the problem, we can focus on E
(

IT∈]0,m]

T

)
. It is also

obvious that E
(

IT∈]0,m]

T

)
is finite if and only if E

(
IT∈]0,1]
T

)
is finite.
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As pointed out above, this shows that, when P(T = 0) = 0, J(m) is finite75

if and only if both E
(

IT∈]0,1]
T

)
and E

(
IT∈[−1,0[

T

)
are finite. We obtain slightly

more operational conditions in the rest of the proof.

Let us therefore introduce the following functions:

f−k (x) =

0 if x 6∈] 1
k+1 ,

1
k ],

k if x ∈] 1
k+1 ,

1
k ],

f+
k (x) =

0 if x 6∈] 1
k+1 ,

1
k ],

k + 1 if x ∈] 1
k+1 ,

1
k ],

g−n =

n∑
k=1

f−k (x), g+
n =

n∑
k=1

f+
k (x),

g− =

∞∑
k=1

f−k (x), g+ =

∞∑
k=1

f+
k (x).

We have obviously for all x ∈]0, 1], g−(x) ≤ 1
x ≤ g

+(x). In addition

E(g+
n (T )) =

n∑
k=1

(k + 1)P
(
T ∈

]
1

k + 1
,

1

k

])
,

E(g−n (T )) =

n∑
k=1

kP
(
T ∈

]
1

k + 1
,

1

k

])
= E(g+

n (T ))− P
(
T ∈

]
1

k + 1
, 1

])
.

According to the monotone convergence theorem,

E(g+(T )) = lim
n→∞

E(g+
n (T )).

The link between E(g−n (T )) and E(g+
n (T )) shows that either both E(g+(T )) and

E(g−(T )) are finite, or both are infinite. In addition, we have

E(g−(T )) ≤ E
( IT∈]0,1]

T

)
≤ E(g+(T )),

therefore E
(

IT∈]0,1]
T

)
is finite if and only if E(g−(T )) is finite. So a sufficient and

necessary condition for E
(

IT∈]0,1]
T

)
to be finite is

∞∑
k=1

kP
(
T ∈

]
1

k + 1
,

1

k

])
<∞.

A symmetric derivation shows that E
(
− IT∈]−1,0]

T

)
is finite if and only if

∞∑
k=1

kP
(
T ∈

[
−1

k
,− 1

k + 1

[)
<∞.
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The conditions of Proposition 1 can be used to characterize whether P(T ∈

]0, ε]) decreases sufficiently quickly to ensure that J is not (almost) identically

equal to +∞. For instance, if P(T ∈]0, ε]) = ε, then

kP
(
T ∈

]
1

k + 1
,

1

k

])
=

1

k + 1
,

and the sum diverges, leading to J(m) = ∞ (for m 6= 0). On the contrary, if

P(T ∈]0, ε]) = ε2, then

kP
(
T ∈

]
1

k + 1
,

1

k

])
=

2k + 1

k(k + 1)2
,

and thus the sum converges, leading to J(m) <∞ for all m (provided similar

conditions hold for the negative part of T ).80

3.2. Existence of a solution for the point-wise problem

If the conditions of Proposition 1 are not fulfilled, J(m) is infinite excepted in

m = 0 and therefore arg minm∈R J(m) = 0. When they are fulfilled, we have to

show that J(m) has at least one global minimum. This is done in the following

proposition.85

Proposition 2. Under the conditions of Proposition 1, J is convex and has at

least one global minimum.

Proof. We first note that J is convex. Indeed for all t 6= 0, m 7→ |m−t|
|t| is

obviously convex. Then the linearity of the expectation allows to conclude

(provided J is finite everywhere as guaranteed by the hypotheses).90

As P(T = 0) = 0, there is [a, b], a < b such that P(T ∈ [a, b]) > 0 with either

a > 0 or b < 0. Let us assume a > 0, the other case being symmetric. Then for

t ∈ [a, b], 1
b ≤

1
t ≤

1
a . If m > b, then for t ∈ [a, b]

|m− t|
|t|

=
m

t
− 1 ≥ m

b
− 1.

Then

J(m) ≥ E
( IT∈[a,b]|m− T |

|T |

)
,

≥
(m
b
− 1
)
P(T ∈ [a, b]),
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and therefore limm→+∞ J(m) = +∞.

Similarly, if m < 0 < a, then for t ∈ [a, b]

|m− t|
|t|

= 1− m

t
≥ 1− m

b
,

and then

J(m) ≥
(

1− m

b

)
P(T ∈ [a, b]),

and therefore limm→−∞ J(m) = +∞.

Therefore, J is a coercive function and has at least a local minimum, which

is global by convexity.

3.3. Choosing the minimum95

However, the minimum is not necessary unique, as J is not strictly convex.

In general, the set of global minima will be a bounded interval of R. In this case,

and by convention, we consider the mean value of the interval as the optimal

solution.

As an example of such behavior, we can consider the case where T is a

random variable on {1, 2, 3}, such that P(T = 1) = 0.3, P(T = 2) = 0.4 and

P(T = 3) = 0.3. Then the expected loss is

J(m) = 0.3× |m− 1|+ 0.4×
∣∣∣∣m− 2

2

∣∣∣∣+ 0.3×
∣∣∣∣m− 3

3

∣∣∣∣
and the figure 1 illustrates that there is an infinity of solutions. Indeed when

m ∈ [1, 2], J becomes

J(m) = 0.3× (m− 1) + 0.4× 2−m
2

+ 0.3× 3−m
3

,

= (0.3− 0.2− 0.1)×m+ (−0.3 + 0.4 + 0.3),

= 0.4.

Here we define by convention arg minm J(m) = 3
2 .100

More generally, for any random variable T , we have defined a unique value m,

which is a global minimum of J(m) = E
(∣∣m−T

T

∣∣). Moving back to our problem,

it ensures that the MAPE-regression function mMAPE introduced in 8 is well

defined and takes finite values on Rd. As mMAPE is point-wise optimal, it is

also globally optimal.105
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Figure 1: Counterexample with an infinite number of solutions.

4. Effects of the MAPE on complexity control

One of the most standard learning strategy is the Empirical Risk Minimiza-

tion (ERM) principle. We assume given a training set Dn = (Zi)1≤i≤N =

(Xi, Yi)1≤i≤n which consists in n i.i.d. copies of the random pair Z = (X,Y ).

We assume also given a class of models, G, which consists in measurable functions110

from Rd to R. Given a loss function l, we denote L∗l,G = infg∈G Ll(g).

The empirical estimate of Ll(g) (called the empirical risk) is given by

L̂l(g,Dn) =
1

n

n∑
i=1

l(g(Xi), Yi). (11)

Then the ERM principle consists in choosing in the class G the model that

minimizes the empirical risk, that is

ĝl,Dn,G = arg min
g∈G

L̂l(g,Dn). (12)

The main theoretical question associated to the ERM principle is how to control

Ll(ĝl,Dn,G) in such a way that it converges to L∗l,G. An extension of this question

10



is whether L∗l can be reached if G is allowed to depend on n: the ERM is said to

be universally strongly consistent if Ll(ĝl,Dn,Gn) converges to L∗l almost surely115

for any distribution of (X,Y ) (see Section 5).

It is well known (see e.g. [3] chapter 9) that ERM consistency is related

to uniform laws of large numbers (ULLN). In particular, we need to control

quantities of the following form

P

{
sup
g∈G

∣∣∣L̂MAPE(g,Dn)− LMAPE(g)
∣∣∣ > ε

}
. (13)

This can be done via covering numbers or via the Vapnik-Chervonenkis dimension

(VC-dim) of certain classes of functions derived from G. One might think that

general results about arbitrary loss functions can be used to handle the case

of the MAPE. This is not the case as those results generally assume a uniform120

Lipschitz property of l (see Lemma 17.6 in [4], for instance) that is not fulfilled

by the MAPE.

The objective of this section is to analyze the effects over covering numbers

(Section 4.2) and VC-dimension (Section 4.3) of using the MAPE as the loss

function. It shows also what type of ULLN results can be obtained based on125

those analyses (Section 4.4).

4.1. Classes of functions

Given a class of models, G, and a loss function l, we introduce derived classes,

H(G, l) given by

H(G, l) = {h : Rd × R→ R+, h(x, y) = l(g(x), y) | g ∈ G}, (14)

and H+(G, l) given by

H+(G, l) = {h : Rd × R× R→ R+, h(x, y, t) = It≤l(g(x),y) | g ∈ G}. (15)

4.2. Covering numbers

4.2.1. Notations and definitions

Let F be a class of positive functions from an arbitrary set Z to R+. The

supremum norm on F is given by

‖f‖∞ = sup
z∈Z
|f(z)|.

11



We also define ‖F‖∞ = supf∈F ‖f‖∞. We have obviously

∀f ∈ F,∀z ∈ Z, |f(z)| ≤ ‖F‖∞.

Those definitions will also be used for classes of functions with values in R (not130

only in R+), hence the absolute value.

Let κ be a dissimilarity on F , that is a positive and symmetric function

from F 2 to R+ that measures how two functions from F are dissimilar (in

particular κ(f, f) = 0). Then κ can be used to characterize the complexity of F

by computing the κ ε-covering number of F .135

Definition 1. Let F be a class of positive functions from Z to R+ and κ a

dissimilarity on F . For ε > 0 and p a positive integer, a size p ε-cover of F with

respect to κ is a finite collection f1, . . . , fp of elements of F such that for all

f ∈ F

min
1≤i≤p

κ(f, fi) < ε.

Then the κ ε-covering number of F is defined as follow.

Definition 2. Let F be a class of positive functions from Z to R+, κ be a

dissimilarity on F and ε > 0. Then the κ ε-covering number of F , N (ε, F, κ),

is the size of the smallest κ ε-cover of F . If such a cover does not exists, the

covering number is ∞.140

The behavior of N (ε, F, κ) with respect to ε characterizes the complexity of

F as seen through κ. If the growth when ε→ 0 is slow enough (for an adapted

choice of κ), then some uniform law of large numbers applies (see Lemma 1).

4.2.2. Supremum covering numbers

Supremum covering numbers are based on the supremum norm, that is

‖f1 − f2‖∞ = sup
z∈Z
|f1(z)− f2(z)|.

For classical loss functions, the supremum norm is generally ill-defined on H(G, l).

For instance let h1 and h2 be two functions from H(G, l2), generated by g1 and

12



g2 (that is hi(x, y) = (gi(x)− y)2). Then

|h1(x, y)− h2(x, y)| = |(g1(x)− y)2 − (g2(x)− y)2|

= |g1(x)2 − g2(x)2 + 2y(g2(x)− g1(x))|.

If G is not reduced to a single function, then there are two functions g1 and g2145

and a value of x such that g1(x) 6= g2(x). Then supy |h1(x, y)− h2(x, y)| =∞.

A similar situation arises for the MAPE. Indeed, let h1 and h2 be two functions

from HMAPE , generated by g1 and g2 in G (that is hi(x, y) = |gi(x)−y|
|y| ). Then

‖h1 − h2‖∞ = sup
(x,y)∈Rd×R

||g1(x)− y| − |g2(x)− y||
|y|

.

Thus unless G is very restricted there is always x, g1 and g2 such that g1(x) 6= 0

and |g2(x)| 6= |g1(x)|. Then for y > 0, ||g1(x)− y| − |g2(x)− y|| has the general

form α+ βy with α > 0 and thus limy→0+
||g1(x)−y|−|g2(x)−y||

|y| = +∞.

A simple way to obtain finite values for the supremum norm is to restrict its150

definition to a subset of Z. This corresponds in practice to support assumptions

on the data (X,Y ). Hypotheses on G are also needed in general. In this latter

case, one generally assumes ‖G‖∞ <∞. In the former case, assumptions depends

on the nature of the loss function.

For instance in the case of the MSE, it is natural to assume that |Y | is upper

bounded by YU with probability one. If (x, y) ∈ Rd × [−YU , YU ] then

|h1(x, y)− h2(x, y)| ≤ 2‖G‖∞(‖G‖∞ + YU ),

and therefore the supremum norm is well defined on this subset.155

In the case of the MAPE, a natural hypothesis is that |Y | is lower bounded

by YL (almost surely). If (x, y) ∈ Rd × (]−∞,−YL] ∪ [YL,∞[), then

|h1(x, y)− h2(x, y)| ≤ 2 + 2
‖G‖∞
YL

,

and therefore the supremum norm is well defined.

The case of the MAE is slightly different. Indeed when x is fixed, then for

sufficiently large positive values of y, ||g1(x)− y| − |g2(x)− y|| = |g1(x)− g2(x)|.
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Similarly, for sufficient large negative values of y, ||g1(x) − y| − |g2(x) − y|| =

|g1(x)− g2(x)|. Thus, the supremum norm is well defined on H(G, lMAE) if e.g.160

‖G‖∞ <∞. In addition, we have the following proposition.

Proposition 3. Let G be an arbitrary class of models with ‖G‖ < ∞ and let

YL > 0. Let ‖.‖YL∞ denote the supremum norm on H(G, lMAPE) defined by2

‖h‖YL∞ = sup
x∈Rd,y∈]−∞,−YL]∪[YL,∞[

h(x, y).

Let ε > 0, then

N (ε,H(G, lMAPE), ‖.‖YL∞ ) ≤ N (εYL, H(G, lMAE), ‖.‖∞).

Proof. Let ε > 0 and let h′1, . . . , h
′
k be a minimal εYL cover of H(G, lMAE)

(thus k = N (εYL, H(G, lMAE), ‖.‖∞)). Let g1, . . . , gk be the functions from G

associated to h′1, . . . , h
′
k and let h1, . . . , hk be the corresponding functions in

H(G, lMAPE). Then h1, . . . , hk is a ε cover of H(G, lMAPE).165

Indeed let h be an arbitrary element ofH(G, lMAPE) associated g and let h′ be

the corresponding function in H(G, lMAE). Then for a given j, ‖h′−h′j‖∞ ≤ εYL.

We have then

‖h− hj‖YL∞ = sup
x∈Rd,y∈]−∞,−YL]∪[YL,∞[

||g(x)− y| − |gj(x)− y||
|y|

.

For all y ∈]−∞,−YL] ∪ [YL,∞[, 1
|y| ≤

1
YL

and thus

‖h− hj‖YL∞ ≤ sup
x∈Rd,y∈]−∞,−YL]∪[YL,∞[

||g(x)− y| − |gj(x)− y||
YL

.

Then

sup
x∈Rd,y∈]−∞,−YL]∪[YL,∞[

||g(x)− y| − |gj(x)− y|| ≤ sup
x∈Rd,y∈R

||g(x)− y| − |gj(x)− y||

≤ ‖h′ − h′j‖∞,

≤ εYL.

2Notice that while we make explicit here the dependence of the supremum norm on the

support on which it is calculated, we will not do that in the rest of the paper to avoid cluttered

notations. This restriction will be clear from the context.
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and thus

‖h− hj‖YL∞ ≤ ε,

which allows to conclude.

This Proposition shows that the covering numbers associated to a class of

functions G under the MAPE are related to the covering numbers of the same

class under the MAE, as long as Y stays away from too small values.

4.2.3. Lp covering numbers170

Lp covering numbers are based on a data dependent norm. Based on the

training set Dn, we define for p ≥ 1 :

‖f1 − f2‖p,Dn =

(
1

n

n∑
i=1

|f1(Zi)− f2(Zi)|p
) 1
p

. (16)

We have a simple proposition:

Proposition 4. Let G be an arbitrary class of models and Dn a data set such

that ∀i, Yi 6= 0, then for all p ≥ 1,

N (ε,H(G, lMAPE), ‖.‖p,Dn) ≤ N (ε min
1≤i≤N

|Yi|, H(G, lMAE), ‖.‖p,Dn).

Proof. The proof is similar to the one of Proposition 3.

This Proposition is the adaptation of Proposition 3 to Lp covering numbers.

4.3. VC-dimension

A convenient way to bound covering numbers it to use the Vapnik-Chervonenkis175

dimension (VC dimension). We recall first the definition of the shattering coeffi-

cients of a function class.

Definition 3. Let F be a class of functions from Rd to {0, 1} and n be a positive

integer. Let {z1, . . . , zn} be a set of n points of Rd. Let

s(F, {z1, . . . , zn}) = |{θ ∈ {0, 1}n|∃f ∈ F, θ = (f(z1), . . . , f(zn))}|,
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that is the number of different binary vectors of size n that are generated by

functions of F when they are applied to {z1, . . . , zn}.

The set {z1, . . . , zn} is shattered by F if s(F, {z1, . . . , zn}) = 2n.180

The n-th shatter coefficient of F is

S(F, n) = max
{z1,...,zn}⊂Rd

s(F, {z1, . . . , zn}).

Then the VC-dimension is defined as follows.

Definition 4. Let F be a class of functions from Rd to {0, 1}. The VC-dimension

of F is defined by

V Cdim(F ) = sup{n ∈ N+ | S(F, n) = 2n}.

Interestingly, replacing the MAE by the MAPE does not increase the VC-dim

of the relevant class of functions.

Proposition 5. Let G be an arbitrary class of models. We have

V Cdim(H+(G, lMAPE)) ≤ V Cdim(H+(G, lMAE)).

Proof. Let us consider a set of k points shattered by H+(G, lMAPE), (v1, . . . , vk),

vj = (xj , yj , tj). By definition, for each binary vector θ ∈ {0, 1}k, there is a185

function hθ ∈ H(G, lMAPE) such that ∀j, It≤hθ(x,y)(xj , yj , tj) = θj . Each hθ

corresponds to a gθ ∈ G, with hθ(x, y) = |gθ(x)−y|
|y| .

We define a new set of k points, (w1, . . . , wk) as follows. If yj 6= 0, then

wj = (xj , yj , |yj |tj). For those points and for any g ∈ G,

I
tj≤

|g(xj)−yj |
|yj |

= I|yj |tj≤|g(xj)−yj |,

and thus It≤hθ(x,y)(xj , yj , tj) = It≤h′θ(x,y)(xj , yj , |yj |tj) where h′θ(x, y) = |gθ(x)−

y|.

Let us now consider the case of yj = 0. By definition hθ(xj , 0) = 1 when190

gθ(xj) = 0 and hθ(xj , 0) =∞ if gθ(xj) 6= 0. As the set of points is shattered tj >

1 (or hθ(xj , 0) < tj will never be possible). In addition when θj = 1 then gθ(xj) ≥

0 and when θj = 0 then gθ(xj) = 0. Then let wj = (xj , 0,minθ,θj=1 |gθ(xj)|).
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Notice that minθ,θj=1 |gθ(xj)| > 0 (as there is a finite number of binary vectors

of dimension k). For θ such that θj = 0, we have h′θ(xj , yj) = |gθ(xj)− yj | = 0195

and thus h′θ(xj , yj) < minθ,θj=1 |gθ(xj)|, that is It≤h′θ(x,y)(wj) = 0 = θj . For θ

such that θj = 1, h′θ(xj , yj) = |gθ(xj)| and thus h′θ(xj , yj) ≥ minθ,θj=1 |gθ(xj)|.

Then It≤h′θ(x,y)(wj) = 1 = θj .

This shows that for each binary vector θ ∈ {0, 1}k, there is a function

h′θ ∈ H(G, lMAE) such that ∀j, It≤h′θ(x,y)(wj) = θj . And thus the wj are200

shattered by H+(G, lMAE).

Therefore V Cdim(H+(G, lMAE)) ≥ k. If V Cdim(H+(G, lMAPE)) <∞, then

we can take k = V Cdim(H+(G, lMAPE)) to get the conclusion.

If V Cdim(H+(G, lMAPE)) =∞ then k can be chosen arbitrarily large and

therefore V Cdim(H+(G, lMAE)) =∞.205

Using theorem 9.4 from [3], we can bound the Lp covering number with a

VC-dim based value. If V Cdim(H+(G, l)) ≥ 2, p ≥ 1, and 0 < ε < ‖H(G,l)‖∞
4 ,

then

N (ε,H(G, l), ‖.‖p,Dn) ≤ 3

(
2e‖H(G, l)‖p∞

εp
log

3e‖H(G, l)‖p∞
εp

)V Cdim(H+(G,l))

.

(17)

Therefore, in practice, both the covering numbers and the VC-dimension of

MAPE based classes can be derived from the VC-dimension of MAE based

classes.

4.4. Examples of Uniform Laws of Large Numbers

We show in this section how to apply some of the results obtained above.210

Rephrased with our notations, Lemme 9.1 from [3] is

Lemma 1 (Lemma 9.1 from [3]). For all n, let Fn be a class of functions from

Z to [0, B] and let ε > 0. Then

P

 sup
f∈Fn

∣∣∣∣∣∣ 1n
n∑
j=1

f(Zj)− E(f(Z))

∣∣∣∣∣∣ ≥ ε
 ≤ 2N

( ε
3
, Fn, ‖.‖∞

)
e−

2nε2

9B2 .
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If in addition
∞∑
n=1

N
( ε

3
, Fn, ‖.‖∞

)
<∞,

for all ε, then

sup
f∈Fn

∣∣∣∣∣∣ 1n
n∑
j=1

f(Zj)− E(f(Z))

∣∣∣∣∣∣→ 0 (n→∞) a.s. (18)

A direct application of Lemma 1 to H(G, l) gives

P
{

sup
g∈G

∣∣∣L̂l(g,Dn)− Ll(g)
∣∣∣ ≥ ε} ≤ 2N

( ε
3
, H(G, l), ‖.‖∞

)
e−

2nε2

9B2 ,

provided the support of the supremum norm coincides with the support of (X,Y )

and functions in H(G, l) are bounded.

In order to fulfill this latter condition, we have to resort on the same strategy

used to define in a proper way the supremum norm on H(G, l).215

As in Section 4.2.2 let ‖G‖∞ < ∞ and let YU < ∞ be such that |Y | ≤ YU

almost surely, then

∀g ∈ G, (g(X)− Y )2 ≤ ‖G‖2∞ + Y 2
U (a.s.),

and

∀g ∈ G, |g(X)− Y | ≤ ‖G‖∞ + YU (a.s.).

Then if B ≥ ‖G‖2∞+Y 2
U (resp. B ≥ ‖G‖∞+YU ), Lemma 1 applies to H(G, lMSE)

(resp. to H(G, lMAE)).

Similar results can be obtained for the MAPE. Indeed let us assume that

|Y | ≥ YL > 0 almost surely. Then if ‖G‖∞ is finite,

∀g ∈ G, |g(X)− Y |
|Y |

≤ 1 +
‖G‖∞
YL

(a.s.),

and therefore for B ≥ 1 + ‖G‖∞
YL

, Lemma 1 applies to H(G, lMAPE).

This discussion shows that YL, the lower bound on |Y |, plays a very similar

role for the MAPE as the role played by YU , the upper bound on |Y |, for the220

MAE and the MSE. A very similar analysis can be made when using the Lp

covering numbers, on the basis of Theorem 9.1 from [3]. It can also be combined
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with the results obtained on the VC-dimension. Rephrased with our notations,

Theorem 9.1 from [3] is

Theorem 1 (Theorem 9.1 from [3]). Let F be a class of functions from Z to

[0, B]. Then for ε > 0 and n > 0

P

sup
f∈F

∣∣∣∣∣∣ 1n
n∑
j=1

f(Zj)− E(f(Z))

∣∣∣∣∣∣ ≥ ε
 ≤ 8EDn

{
N
( ε

8
, F, ‖.‖p,Dn

)}
e−

nε2

128B2 .

The expectation of the covering number is taken over the data set Dn = (Zi)1≤i≤n.225

As for Lemma 1, we bound ‖H(G, l)‖∞ via assumptions on G and on Y . For

instance for the MAE, we have

P
{

sup
g∈G

∣∣∣L̂MAE(g,Dn)− LMAE(g)
∣∣∣ ≥ ε} ≤

8EDn
{
N
( ε

8
, H(G, lMAE), ‖.‖p,Dn

)}
e
− nε2

128(‖G‖∞+YU )2 , (19)

and for the MAPE

P
{

sup
g∈G

∣∣∣L̂MAPE(g,Dn)− LMAPE(g)
∣∣∣ ≥ ε} ≤

8EDn
{
N
( ε

8
, H(G, lMAPE), ‖.‖p,Dn

)}
e
− nε2Y 2

L
128(1+‖G‖∞)2 . (20)

Equation (20) can be combined with results from Propositions 4 or 5 to allow

a comparison between the MAE and the MAPE. For instance, using the VC-

dimension results, the right hand side of equation (19) is bounded above by

24

(
2e(‖G‖∞ + YU )p

εp
log

3e(‖G‖∞ + YU ))p

εp

)V Cdim(H+(G,lMAE))

e
− nε2

128(‖G‖∞+YU )2 ,

(21)

while the right hand side of equation (20) is bounded above by

24

(
2e(1 + ‖G‖∞)p

Y pL ε
p

log
3e(1 + ‖G‖∞))p

Y pL ε
p

)V Cdim(H+(G,lMAPE))

e
− nε2Y 2

L
128(1+‖G‖∞)2 .

(22)

In order to obtain almost sure uniform convergence of L̂l(g,Dn) to Ll(g) over G,

those right hand side quantities must be summable (this allows one to apply the
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Borel-Cantelli Lemma). For fixed values of the VC dimension, of ‖G‖∞, YL and

YU this is always the case. If those quantities are allowed to depend on n, then

it is obvious, as in the case of the supremum covering number, that YU and YL230

play symmetric roles for the MAE and the MAPE. Indeed for the MAE, a fast

growth of YU with n might prevent the bounds to be summable. For instance,

if YU grows faster than
√
n, then n

(‖G‖∞+YU )2 does not converges to zero and

the series is not summable. Similarly, if YL converges too quickly to zero, for

instance as 1√
n

, then
nY 2

L

(1+‖G‖∞)2 does not converge to zero and the series is not235

summable. The following Section goes into more details about those conditions

in the case of the MAPE.

5. Consistency and the MAPE

We show in this section that one can build on the ERM principle a strongly

consistent estimator of L∗MAPE with minimal hypothesis on (X,Y ) (and thus240

almost universal).

Theorem 2. Let Z = (X,Y ) be a random pair taking values in Rd × R such

that |Y | ≥ YL > 0 almost surely (YL is a fixed real number). Let (Zn)n≥1 =

(Xn, Yn)n≥1 be a series of independent copies of Z.

Let (Gn)n≥1 be a series of classes of measurable functions from Rd to R,245

such that:

1. Gn ⊂ Gn+1;

2.
⋃
n≥1Gn is dense in the set of L1(µ) functions from Rd to R for any

probability measure µ;

3. for all n, Vn = V Cdim(H+(Gn, lMAPE)) <∞;250

4. for all n, ‖Gn‖∞ <∞.

If in addition

lim
n→∞

Vn‖Gn‖2∞ log ‖Gn‖∞
n

= 0,

and there is δ > 0 such that

lim
n→∞

n1−δ

‖Gn‖2∞
=∞,
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then LMAPE(ĝlMAPE ,Gn,Dn) converges almost surely to L∗MAPE.

Proof. We use the standard decomposition between estimation error and approx-

imation error. More precisely, for g ∈ G, a class of functions,

LMAPE(g)− L∗MAPE = LMAPE(g)− L∗MAPE,G︸ ︷︷ ︸
estimation error

+L∗MAPE,G − L∗MAPE︸ ︷︷ ︸
approximation error

.

We handle first the approximation error. As pointed out in Section 2, LMAPE(g) <

∞ implies that g ∈ L1(PX). Therefore we can assume there is a series (g∗k)k≥1

of functions from L1(PX) such that

LMAPE(g∗k) ≤ L∗MAPE +
1

k
,

by definition of L∗MAPE as an infimum.

Let us consider two models g1 and g2. For arbitrary x and y, we have

|g1(x)− y| ≤ |g1(x)− g2(x)|+ |g2(x)− y|,

|g2(x)− y| ≤ |g2(x)− g1(x)|+ |g1(x)− y|,

and thus

|g1(x)− y| − |g2(x)− y| ≤ |g1(x)− g2(x)|,

|g2(x)− y| − |g1(x)− y| ≤ |g2(x)− g1(x)|,

and therefore

||g1(x)− y| − |g2(x)− y|| ≤ |g1(x)− g2(x)|.

Then∣∣∣∣EX,Y { |g1(X)− Y |
|Y |

}
− EX,Y

{
|g2(X)− Y |
|Y |

}∣∣∣∣ ≤ EX,Y
{
|g1(X)− g2(X)|

|Y |

}
.

As |Y | ≥ YL almost surely,∣∣∣∣EX,Y { |g1(X)− Y |
|Y |

}
− EX,Y

{
|g2(X)− Y |
|Y |

}∣∣∣∣ ≤ 1

YL
EX {|g1(X)− g2(X)|} ,

and thus

|LMAPE(g1)− LMAPE(g2)| ≤ 1

YL
EX {|g1(X)− g2(X)|} .
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As
⋃
n≥1Gn is dense in L1(PX) there is a series (h∗k)k≥1 of functions of

⋃
n≥1Gn

such that EX {|h∗k(X)− g∗k(X)|} ≤ YL
k . Then |LMAPE(h∗k) − LMAPE(g∗k)| ≤255

1
YL

YL
k and thus LMAPE(h∗k) ≤ LMAPE(g∗k)+ 1

k ≤ L
∗
MAPE+ 2

k . Let nk = min{n |

h∗k ∈ Gn}. By definition, L∗MAPE,Gnk
≤ LMAPE(h∗k).

Let ε > 0. Let k be such that 2
k ≤ ε. Then LMAPE(g∗k) ≤ L∗MAPE + ε and

L∗MAPE,Gnk
≤ L∗MAPE + ε. Let n ≥ nk. As Gn is an increasing series of sets,

L∗MAPE,Gn
≤ L∗MAPE,Gnk

and thus for all n ≥ nk, L∗MAPE,Gn
≤ L∗MAPE + ε.260

This shows that limn→∞ L∗MAPE,Gn
= L∗MAPE .

The estimation error is handled via the complexity control techniques studied

in the previous Section. Indeed, according to Theorem 1, we have (for p = 1)

P
{

sup
g∈Gn

∣∣∣L̂MAPE(g,Dn)− LMAPE(g)
∣∣∣ ≥ ε} ≤ D(n, ε),

with

D(n, ε) = 8E
{
N
( ε

8
, H(Gn, lMAPE), ‖.‖1,Dn

)}
e
− nε2Y 2

L
128(1+‖Gn‖∞)2 .

Then using equation (22)

D(n, ε) ≤ 24

(
2e(1 + ‖Gn‖∞)p

εYL
log

3e(1 + ‖Gn‖∞))

εYL

)Vn
e
− nε2Y 2

L
128(1+‖Gn‖∞)2 .

Using the fact that log(x) ≤ x, we have

D(n, ε) ≤ 24

(
3e(1 + ‖Gn‖∞)

εYL

)2Vn

e
− nε2Y 2

L
128(1+‖Gn‖∞)2 ,

and

D(n, ε) ≤ 24 exp

(
− nε2Y 2

L

128(1 + ‖Gn‖∞)2
+ 2Vn log

3e(1 + ‖Gn‖∞)

εYL

)
,

≤ 24 exp

(
− n

(1 + ‖Gn‖∞)2

(
ε2Y 2

L

128
−

2Vn(1 + ‖Gn‖∞)2 log 3e(1+‖Gn‖∞)
εYL

n

))
.

As limn→∞
Vn‖Gn‖2∞ log ‖Gn‖∞

n = 0,

lim
n→∞

2Vn(1 + ‖Gn‖∞)2 log 3e(1+‖Gn‖∞)
εYL

n
= 0.

As limn→∞
n1−δ

‖Gn‖2∞
=∞,

lim
n→∞

n1−δ

(1 + ‖Gn‖∞)2
=∞.
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Therefore, for n sufficiently large, D(n, ε) is dominated by a term of the form

α exp(−βnδ),

with α > 0 and β > 0 (both depending on ε). This allows to conclude that∑
n≥1D(n, ε) <∞. Then the Borel-Cantelli theorem implies that

lim
n→∞

sup
g∈Gn

∣∣∣L̂MAPE(g,Dn)− LMAPE(g)
∣∣∣ = 0 (a.s.).

The final part of the estimation error is handled in a traditional way. Let ε > 0.

There is N such that n ≥ N implies

sup
g∈Gn

∣∣∣L̂MAPE(g,Dn)− LMAPE(g)
∣∣∣ ≤ ε.

Then L̂MAPE(g,Dn) ≤ LMAPE(g) + ε. By definition

L̂MAPE(ĝlMAPE ,Gn,Dn , Dn) ≤ L̂MAPE(g,Dn),

and thus for all g,

L̂MAPE(ĝlMAPE ,Gn,Dn , Dn) ≤ LMAPE(g) + ε.

By taking the infimum on Gn, we have therefore

L̂MAPE(ĝlMAPE ,Gn,Dn , Dn) ≤ L∗MAPE,Gn + ε.

Applying again the hypothesis,

L̂MAPE(ĝlMAPE ,Gn,Dn , Dn) ≥ LMAPE(ĝlMAPE ,Gn,Dn)− ε,

and therefore

LMAPE(ĝlMAPE ,Gn,Dn) ≤ L∗MAPE,Gn + 2ε.

As a consequence

lim
n→∞

|LMAPE(ĝlMAPE ,Gn,Dn)− L∗MAPE,Gn | = 0 (a.s.).

The combination of this result with the approximation result allows us to

conclude.
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Notice that several aspects of this proof are specific to the MAPE. This is the

case of the approximation part which has to take care of Y taking small values.265

This is also the case of the estimation part which uses results from Section 4

that are specific to the MAPE.

6. MAPE kernel regression

The previous Sections have been dedicated to the analysis of the theoretical

aspects of MAPE regression. In the present Section, we show how to implement270

MAPE regression and we compare it to MSE/MAE regression.

On a practical point of view, building a MAPE regression model consists in

minimizing the empirical estimate of the MAPE over a class of models Gn, that

is to solve

ĝlMAPE ,Gn,Dn = arg min
g∈Gn

1

n

n∑
i=1

|g(xi)− yi|
|yi|

,

where the (xi, yi)1≤i≤n are the realizations of the random variables (Xi, Yi)1≤i≤n.

Optimization wise, this is simply a particular case of median regression

(which is in turn a particular case of quantile regression). Indeed, the quotient

by 1
|yi| can be seen as a fixed weight and therefore, any quantile regression275

implementation that supports instance weights can be used to find the optimal

model. This is for example the case of quantreg R package [5], among others.

Notice that when Gn corresponds to linear models, the optimization problem is

a simple linear programming problem that can be solved by e.g. interior point

methods [6].280

For some complex models, instance weighting is not immediate. As an

example of MAPE-ing a classical model we show in this section how to turn

kernel quantile regression into kernel MAPE regression. Notice that kernel

regression introduces regularization and thus is not a direct form of ERM.

Extending our theoretical results to the kernel case remains an open question.285
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6.1. From quantile regression to MAPE regression

6.1.1. Quantile regression

Let us assume given a Reproducing Kernel Hilbert Space (RKHS), H, of

functions from Rd to R (notice that Rd could be replaced by an arbitrary space

X ). The associated kernel function is denoted k and the mapping between Rd290

and H, φ. As always, we have k(x, x′) = 〈φ(x), φ(x′)〉.

The standard way of building regression models based on a RKHS consists

in optimizing a regularized version of an empirical loss, i.e., in solving an

optimization problem of the form

min
f∈H,b∈R

n∑
i=1

l(f(xi) + b, yi)) +
λ

2
‖f‖2H. (23)

Notice that the reproducing property of H implies that there is w ∈ H such that

f(x) = 〈w, φ(x)〉.

In particular, quantile regression can be kernelized via an appropriate choice

for l. Indeed, let τ ∈ [0; 1] and let ρτ be the check-function, introduced in [7]:

ρτ (ξ) =

 τξ if ξ ≥ 0

(τ − 1)ξ otherwise

The check-function is also called the pinball loss. Then, the kernel quantile

optimization problem, treated in [8, 9], is defined by:

min
f∈H,b∈R

n∑
i=1

ρτ (yi − f(xi)− b) +
λ

2
‖f‖2H, (24)

where λ > 0 handles the trade-off between the data fitting term and the regular-

ization term. The value of τ gives the quantile that the model f is optimized295

for: for instance τ = 1
2 corresponds to the median.

6.2. MAPE primal problem

To consider the case of the MAPE, one can change the equation (24) to (25):

min
f∈H

n∑
i=1

ρτ (yi − f(xi)− b)
|yi|

+
λ

2
‖f‖2H. (25)
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Notice that for the sake of generality, we do not specify the value of τ in this

derivation: thus equation (25) can be seen as a form of “relative quantile”.

However, in the simulation study in Section 6.3, we limit ourselves to the300

standard MAPE, that is to τ = 1
2 . The practical relevance of the “relative

quantile” remains to be assessed.

Using the standard way of handling absolute values and using f(x) =

〈φ(x), w〉, we can rewrite the regularization problem (25) as a (primal) op-

timization problem:305

min
w,b,ξ,ξ?

C
∑n
i=1

τξi+(1−τ)ξ?i
|yi| + 1

2‖w‖
2, (26)

subject to yi − 〈φ(xi), w〉 − b ≤ |yi|ξi,∀i,

〈φ(xi), w〉+ b− yi ≤ |yi|ξ?i ,∀i,

ξi ≥ 0,∀i,

ξ?i ≥ 0,∀i,

where C = 1
nλ .

6.2.1. MAPE dual problem

Let us denote θ = (w, b, ξ, ξ?) the vector regrouping all the variables of the

primal problem. We denote in addition:

h(θ) = C

n∑
i=1

τξi + (1− τ)ξ?i
|yi|

+
1

2
‖w‖2,

∀i, gi,1(θ) = yi − 〈φ(xi), w〉 − b− |yi|ξi,

∀i, gi,2(θ) = 〈φ(xi), w〉+ b− yi − |yi|ξ?i ,

∀i, gi,3(θ) = −ξi,

∀i, gi,4(θ) = −ξ?i .
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Then the Wolfe Dual of problem (26) is given by:310

max
θ,u

h(θ) +
∑n
i=1 (ui,1gi,1(θ) + ui,2gi,2(θ) + ui,3gi,3(θ) + ui,4gi,4(θ)) , (27)

s. t. ∇h(θ) +
∑n
i=1 (ui,1∇gi,1(θ) + ui,2∇gi,2(θ) + ui,3∇gi,3(θ) + ui,4∇gi,4(θ)) = 0,

ui,1, ui,2, ui,3, ui,4 ≥ 0,∀i,

where the ui,k are the Lagrange multipliers. Some algebraic manipulations show

that problem (27) is equivalent to problem (28):

max
θ,u

h(θ) +
∑n
i=1 (ui,1gi,1(θ) + ui,2gi,2(θ) + ui,3gi,3(θ) + ui,4gi,4(θ)) , (28)

s. t. w +
∑n
i=1(ui,2 − ui,1)φ(xi) = 0, (29)∑n
i=1(ui,2 − ui,1) = 0, (30)

∀i, Cτ
|yi| − |yi|ui,1 − ui,3 = 0, (31)

∀i, C(1−τ)
|yi| − |yi|ui,2 − ui,4 = 0, (32)

∀i, ui,1, ui,2, ui,3, ui,4 ≥ 0. (33)

We can simplify the problem by introducing a new parametrisation via the

variables αi = ui,1 − ui,2. Then the value of w is obtained from constraint (29)

as w =
∑n
i=1 αiφ(xi). Constraints (30) can be rewritten into 1Tα = 0. Taking

those equations into account, the objective function becomes

h(θ) +

n∑
i=1

(ui,1gi,1(θ) + ui,2gi,2(θ) + ui,3gi,3(θ) + ui,4gi,4(θ))

= h(θ) +

n∑
i=1

αiyi − ‖w‖2 −
n∑
i=1

ξi(ui,1|yi|+ ui3)−
n∑
i=1

ξ∗i (ui,2|yi|+ ui4).

Using constraints (31) and (32), the last two terms simplify as follows:

n∑
i=1

ξi(ui,1|yi|+ ui3) +

n∑
i=1

ξ∗i (ui,2|yi|+ ui4) = C

n∑
i=1

τξi + (1− τ)ξ?i
|yi|

,

and thus the objective function is given by

h(θ) +

n∑
i=1

(ui,1gi,1(θ) + ui,2gi,2(θ) + ui,3gi,3(θ) + ui,4gi,4(θ))

=

n∑
i=1

αiyi −
1

2
‖w‖2 = αT y − 1

2
αTKα,

27



where Kij = k(xi, xj) is the kernel matrix. This shows that the objective function

can be rewritten so as to depend only on the new variables αi. The last step of

the analysis consists in showing that a similar property holds for the constraints.315

The cases of constraints (29) and (30) have already been handled.

Notice that given an arbitrary αi, there is always ui,1 ≥ 0 and ui,2 ≥ 0 such

that αi = ui,1− ui,2. However, constraints (31) and (32) combined with ui,3 ≥ 0

and ui,4 ≥ 0 show that ui,1 and ui,2 (and thus αi) cannot be arbitrary, as we

need Cτ
|yi| − |yi|ui,1 ≥ 0 and C(1−τ)

|yi| − |yi|ui,2 ≥ 0. As ui,2 ≥ 0, αi ≤ ui,1 and thus320

αi ≤ Cτ
|yi|2 . As ui,1 ≥ 0, −αi ≤ ui,2 and thus αi ≥ C(1−τ)

|yi|2 . Conversely, it is easy

to see that if αi satisfies the constraints C(τ−1)
|yi|2 ≤ αi ≤ Cτ

|yi|2 , then there is ui,k

for k = 1, . . . , 4 such that αi = ui,1 − ui,2 and such that the constraints (31),

(32) and (33) are satisfied (take ui,1 = max(0, αi) and ui,2 = max(0,−αi)).

Then problem (28) is finally equivalent to325

max
α

αT y − 1
2α

TKα (34)

s.c. 1Tα = 0

∀i, C(τ−1)
|yi|2 ≤ αi ≤ Cτ

|yi|2 .

6.2.2. Comparaison to the quantile regression

In the case of quantile regression, [8] shows that the dual problem is equivalent

to

max
α

αT y − 1
2α

TKα

s.c. 1Tα = 0

∀i, C(τ − 1) ≤ αi ≤ Cτ.

In comparison to problem (34), one can remark that the modification of the

loss function (from the absolute error to the absolute percentage error) in the330

primal optimization problem is equivalent to changing the set of optimization in

the dual optimization problem. More precisely, it is equivalent to reducing (resp.

increasing) the “size” of the optimization set of αi if yi > 1 (resp. yi < 1).
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Thus, the smaller is yi, the larger is the optimization set of αi. This permits

to ensure a better fit on small values of yi (i.e. where the absolute percentage335

error is potentially bigger). Moreover, by choosing a very large value of C (or

C →∞), one can ensure the same optimal value of each αi in MAE and MAPE

dual problems. This surprising fact can be explained by noticing that a very

large value of C corresponds to a very small value of λ (or λ→ 0). When λ goes

to zero, the regularization in equations (24) and (25) vanishes, which leads to340

potential overfitting. When this overfitting appears, f(xi) ' yi regardless of the

loss function and thus the different loss functions are equivalent.

6.3. A simulation study

6.3.1. Generation of observations

In this section, we illustrate the efficiency of the kernel MAPE regression345

described in section 6.1 on simulated data, and we compare the results to the

ones obtained by kernel median regression. Experiments have been realized using

a Gaussian kernel.

As in [8], we have simulated data according to the sinus cardinal function,

defined by

sinc(x) =
sin(2πx)

2πx

However, to illustrate the variation of the prediction according the proximity to

zero, we add a parameter a and we define the translated sinus cardinal function

by:

sinc(x, a) = a+
sin(2πx)

2πx

For experiments, we have generated 1000 points to constitute a training set, and

1000 other points to constitute a test set. As in [8], the generation process is the

following:

Y = sinc(X, a) + ε(X)

with X ∼ U([−∞;∞]) and ε(X) ∼ N
(

0, (0.1 · exp(1−X))
2
)
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To compare the results between the median estimation and the MAPE350

estimation, we have computed f̂MAPE,a and f̂MAE,a for several values of a. The

value of the regularization parameter C is chosen via a 5-fold cross-validation.

6.3.2. Results

a MAPE(y, f̂MAE,a) MAPE(y, f̂MAPE,a) CMAE CMAPE

(in %) (in %)

0.00 128.62 94.09 0.01 0.10

0.10 187.78 100.10 0.05 0.01

0.50 72.27 57.47 5.00 10.00

1.00 51.39 39.53 10000.00 1.00

2.50 10.58 10.98 5.00 1.00

5.00 4.80 4.89 5.00 10.00

10.00 2.39 2.40 5.00 100.00

25.00 0.96 0.96 5.00 100000.00

50.00 0.48 0.48 5.00 1000.00

100.00 0.24 0.24 5.00 10000.00

Table 1: Summary of the experimental results: for each value of the translation parameter a,

the table gives the MAPE of f̂MAPE,a and f̂MAE,a estimated on the test set. The table also

reports the value of the regularization parameter C for both loss function.

Results of experiments are described in the table 1. As expected, in most

of the cases, the MAPE of f̂MAPE,a is lower than the one of f̂MAE,a. This is355

especially the case when values of y are close to zero.

6.3.3. Graphical illustration

Some graphical representations of f̂MAPE,a and f̂MAE,a are given on Figure 2.

This Figure illustrates several interesting points:

• When, for a given x, y may take both negative and positive values,360

f̂MAPE,a(x) (red curve) is very close or equal to 0 to ensure a 100%
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error whereas f̂MAE,a(x) (blue curve) is closer to the conditional median,

which leads to a strongly higher error (in MAPE terms).

• Up to translation, f̂MAE,a looks roughly the same for each a, whereas

the shape of f̂MAPE,a(x) is strongly modified with a. This is because the365

absolute error (optimization criteria for the blue curve) remains the same

if both the observed value Y and its predicted value are translated by the

same value, whereas the MAPE changes.

• Red curves are closer to 0 than blue curves. One can actually show that,

regarding to the MAPE, the optimal estimator (red) of a random variable370

Y is indeed below the median (blue).

• The red curve seems to converge toward the blue one for high values of a.

7. Conclusion

We have shown that learning under the Mean Absolute Percentage Error

is feasible both on a practical point of view and on a theoretical one. More375

particularly, we have shown the existence of an optimal model regarding to the

MAPE and the consistency of the Empirical Risk Minimization. Experimental

results on simulated data illustrate the efficiency of our approach to minimize the

MAPE through kernel regressions, what also ensures its efficiency in application

contexts where this error measure is adapted (in general when the target variable380

is positive by design and remains quite far away from zero, e.g. in price prediction

for expensive goods). Two open theoretical questions can be formulated from

this work. A first question is whether the lower bound hypothesis on |Y | can

be lifted: in the case of MSE based regression, the upper bound hypothesis on

|Y | is handled via some clipping strategy (see e.g. Theorem 10.3 in [3]). This385

cannot be adapted immediately to the MAPE because of the importance of the

lower bound on |Y | in the approximation part of Theorem 2. A second question

is whether the case of empirical regularized risk minimization can be shown to

be consistent in the case of the MAPE.
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Figure 2: Representation of estimation: f̂MAE,a in blue and f̂MAPE,a in red.
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