
HAL Id: hal-01312536
https://hal.science/hal-01312536v1

Submitted on 9 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance assessment of industrial control system
during pre-sales uncertain context using automatic

Colored Petri Nets model generation
Moulaye Aa Ndiaye, Jean-François Pétin, Jacques Camerini, Jean-Philippe

Georges

To cite this version:
Moulaye Aa Ndiaye, Jean-François Pétin, Jacques Camerini, Jean-Philippe Georges. Performance
assessment of industrial control system during pre-sales uncertain context using automatic Colored
Petri Nets model generation. 3rd IEEE International Conference on Control, Decision and Information
Technologies, CoDIT 2016, Apr 2016, Saint Julian, Malta. �hal-01312536�

https://hal.science/hal-01312536v1
https://hal.archives-ouvertes.fr

Performance assessment of industrial control system
during pre-sales uncertain context using automatic

Colored Petri Nets model generation.
Moulaye A.A. NDIAYE1,2,3, Jean-François PETIN2,3 Jacques CAMERINI1 and Jean Philippe GEORGES2,3

1 Schneider Electric - Process automation
06510, Carros, France

moulaye.ndiaye@schnedier-electric.com
jacques.camerini@schnedier-electric.com

2Université de Lorraine, CRAN, UMR 7039, Campus
sciences, BP 70239, Vandoeuvre-lès-Nancy, 54506, France

3CNRS, CRAN, UMR 7039, France
moulaye-abdoul-aziz.ndiaye@univ-lorraine.fr

jean-philippe.georges@univ-lorraine.fr
jean-francois.petin@univ-lorraine.fr

Abstract—Industrial control systems (ICS) are defined with
hardware and software components dedicated to control and
monitoring tasks for factory process. Proper functioning of ICS
architectures is mainly linked to the performance they offer.
System integrators (SI) must know performance of the
architecture they propose to the customers by assessing them.
Many methodologies have already proven their capabilities to
assess ICS architecture performance. One of them is colored
Petri Nets (CPN). To assess the performance of ICS architecture
using CPN involve defining manually the model. Pre-sales
uncertain context involves problematic making this manual
model definition challenging.

This paper introduces a concept allowing automatic CPN
model generation by instantiation and parameterization.
However before introducing the concept, the paper shows the
problematic involved by the pre-sales context. Then shows why
CPN methodology is a relevant solution for assessing the
performance of ICS in this context.

Keywords—Colored Petri Nets, Industrial control system;

performance assessment; automatic model generation; pre-sales

I. 	Introduction		
Performance of ICS architectures are defined through 3

mains criteria. The first criterion is temporal performance
gathering all the response time of an architecture and are
defined by the time from the occurrence of an input to a
response of an output. The second criterion is the
programmable logic controller (PLC) scan time representing
the amount of time PLC takes to perform its entire automation
task based on the process and external inputs [1]. Finally the
last criterion is the performance related to critical components
load. During pre-sales phase, system integrators (SI) propose
and evaluate several ICS architectures that fulfill the customer
requirements. However, pre-sales context is characterized by
low information about the project, short time range to submit
an offer, and limited financial resources and manpower. To
assess performance, SI are using currently 3 solutions. The
first one consists in designing the architecture on the basis of

manufacturers’ reference architectures that provide some
guarantee about their theoretical behavior and performances.
The main advantage of this solution is reducing time and
resources for submitting a commercial offer. However when
the architecture is deployed, some gaps are noticed between
expected and implemented performance that lead to
architecture modifications, cost and penalties for the SI. The
second solution is to oversize architecture critical components
which can lead to performance bottlenecks. Even if the
performances will be guaranteed, this solution represents a
real commercial risk due to the high cost of the architecture.
The third solution is to test the future architecture or its main
parts in a laboratory. This solution has double guarantees on
its performance and on the technical pertinence of the
commercial offer. The main disadvantage of this solution is
the investment in term of financial and manpower without any
warranty on winning the project.

The limits of theses solutions inspire Schneider Electric to
develop a new solution able to assess the performance of the
ICS architecture during pre-sales, in order to secure a
commercial offer. The objective is to provide a software tool,
which will be able to model, simulate and assess performances
of the several and various ICS architectures without engaging
huge time, human and financial resources.

This paper will firstly make a state of the art in section 2
about the pre-sales context and the problematic involve by this
context. In the section 3 a proposition is made in order to
assess the performance in this pre-sales context using CPN
model. In the section 4 an example of configuration is shown
in order to explain the proposition. Finally the section 6
concludes and gives direction for future works.

II. 	Requirements		
A. Engineering process requirements

To define an ICS architecture during pre-sales stage,
information known by the SI are the Input / Output (I/O) list,
the P&ID diagram, the cycle time of all periodic task and the

performance specifications. With these limited information,
prior choices must be done by the SI. These choices are made
based on his knowledge and experience in term of topology
and architecture components. At this stage, he does not have
an absolute certainty regarding the validity of these choices
compare to performance specified by the customers.

Fig. 1 ICS Architecture definition workflow

As shown on Fig. 1, the validation of the architecture
depends on output performance. If the assessed performances
correspond to performance required by the customers then the
architecture is considered as validate and the SI can submit a
build of material and an offer. If the performance does not
match with performance specifications, he will modify the
architecture and run other simulations repeatedly. So iteration
between the architecture design and the performance
assessment is done until the relevant architecture is found.
Thereby SI must test a wide range of architecture, check the
performance and modify it based on the output performance.
He has to work with trial and error methodology in order to
reduce this uncertainty [2] and find the relevant architecture
based on the required performance.

Main requirement about the engineering process can be
formulated as following. System integrators need a software
tool that is able to compute ISC architecture performance.
This tool will be based on a formal description of the
architecture behavior. However, the modeling activity has to
be as most, as possible, automatized to be compliant with the
available resources during the pre-sales stage. In other words,
the ICS model is expected to be automatically generated from
the informal description of the ICS architecture in terms of
topology and component performance. Objective is to avoid
manual definition of the ICS models, which is time
consuming.

B. Modeling requirements
Due to the variety of ICS network topologies and the

numbers of connected equipment, the formalism used for the
ICS modeling has to face the following requirements:

• The formalism has to support a hierarchical representation
of the ICS: high level model representing the ICS
topologies, definition of generic models for all ICS
components,

• The formalism has to support the modularity and reusability
of models,

• The formalism must support the characterization of timed
behavior,

• The formalism must enable the characterization of random
input parameters with probability laws. Indeed, some
parameters characterizing the automation process and the
component behavior [3] are completely random [4] when
they depend on user actions, components failures or
uncertainty about response time of the devices; moreover,
these parameters are often described with non exponential
distribution law (uniform distribution, Poisson or Weibull)

C. Scientific positioning
Performance assessments of ICS architecture have been

studied during these past years. Many methodologies have
been developed. This section presents a brief state of the art of
available method trough two main families: analytic
evaluation and simulation.

Analytical evaluation consists of using analytical models
to compute the delay introduced by ICS components. Analytic
approaches often provide the temporal performance in terms
of a maximal time delay between components. This is the case
of the network calculus which is a determinist theory of
queuing systems found on computer network [5] [6], the max
+ algebra [7] or even the model checking [8] which is based
on the formal verification of time communication between
components. Other approaches rely on probabilistic models,
such as the Markov Chain theory [9], which provide
analytically an estimation of the response time if the system
models are homogeneous to a Markov or Semi-Markov
processes (mainly when only using exponential distributions).
This limitation, with regard to the probabilistic features of the
ICS requirements, makes this method unsuited for this
context.

The second method is the simulation which consists of
model state space exploration. This method is done by
modeling the functional behavior of component and it is also
adapted to complex system where synchronous, asynchronous
and time delay notion are important.

Among many methodologies that have been studied,
Colored Petri Nets (CPN) has already proven its efficiency of
modeling and assessing performance of ICS. For instance [8]
[7] have developed a model of a distributed architecture using
CPN methodology. Specifics model have been designed for
devices like PLC, whereas network performances have been
retrieved from experimental benchmark studies. In [10], the
modeling is extended to specific network devices (Ethernet
switches) by using High level Petri Nets (HLPN) formalism.
Nevertheless in these approaches, CPN models have been
specifically defined manually for a given ICS architecture.

The CPN and the embedded concepts of "color",
"hierarchy" and "time" are well suited to cope with those
requirements [11], [12]. Moreover, this formalism enables
stochastic timed transitions with enabled memory policy for
firing transitions. At last, using non exponential distributions
in the ICS model leads to promote the use of Monte-Carlo

simulation to assess the ICS temporal performance. For all
these reasons, CPN appears to be an efficient choice for the
pre-sales software tool to be developed. The work is supported
by CPN tool [12] for modeling, simulation and performance
assessment. Thereby functions described below use tool
formalism through the Standard ML programming language
[13].

III. Proposal		
This section consists of two sub sections and presents the

methodology to assess performance of ICS architecture during
pre-sales.

A. Generic ISC architecture modeling
The manual CPN model definition of ICS architecture is

complex and time consuming due to the variety of network
topologies and to the number of connected components on a
topology. However, despite network topologies variety and
process type, ICS architectures involve the same families of
components (SCADA, PLC, I/O devices, network, …) [14].
Starting from this statement, a generic modeling approach can
be proposed.

A generic hierarchical [12] CPN model representing
common topology structure of ICS architecture can be

defined. This generic CPN model is able to represent any type
of ICS topology. This hierarchical CPN model is the CPN
model holder during the automatic model generation and will
be called “CPN holder” (Fig. 2).

The CPN holder model is based on defining generic links
between several component families. A family gathers generic
components involved in ISC architecture (SCADA or PLC for
example). A family may embed several different components
through an instantiation process. At last, a family instantiates
some generic CPN models of elementary components.
Components having similar behavior and operating mode are
modeled using a unique CPN generic model. Those CPN
models are customizable by using a set of parameters defining
their specific features (for example, two PLC of the same
family may be able to process different amounts of requests
per scan). Each component is modeled with a generic interface
(Tx places for outgoing messages from the components and
Rx places for incoming messages) respectively connected to
an output buffer and an input buffer (Fig. 3). Also the specific
behavior of a component has to be represented inside the
substitution transition “Functional architecture component” in
the Fig. 3.

Fig. 2 CPN holder

Fig. 3 Mandatory component CPN structure

Fig. 4 Functional architecture component

Architecture

Family

Family

Family

Component

Component

Component

Component

Component

Txi
RXi

Transmission

Tx2
Rx2

Transmission

Init
Family

Init
component

i

Init
component

Network

Init
Component

j

Component
i_1

ComponentComponent

Component
i_2

ComponentComponent

Component
j_1

ComponentComponent

Component
j_2

componentcomponent

Networks

ReseauxReseaux

init_Archi()

init_Family()

init_Family()

init_Family()

init_Component ()

init_Component ()

init_Component ()

init_Parameters ()

init_Parameters ()

init_Parameters ()

init_Parameters ()

init_Parameters ()

In

Rx
OutOut

TX
InIn

send
Message

received
message

Output Buffer

OutputOutput

Input Buffer

IntputIntput

Functional architecture
Component

Component architectureComponent architecture

In

init_Parameters ()

receive
message

In

end message
processing

End
communication

component behavior

Component Behaviour

Assement transition

Send
message

Out

Component Behaviour

Init
Component

Packet generator

init_Parameters ()

Packet
Generator

packet@+DistributionLaw()

Packet

Out In

The Fig. 4 provides more details about component internal

behavior. One more time, the internal structure is generic: the
component dotted with a packet generator (that represent the
fact that any component can be the spontaneous emitting
source of a message) and with an observer transition
(“assessment transition”) holding all monitors [12] related to
performances of this component family. Note that the ML
function that is triggered when firing the “packet generator”
transition is specific for each component. Some components
are designed to periodically sent messages (supported by a
timed deterministic function associated to the output arc of
“packet generator” transition), while other ones may
randomly sent messages. For example SCADA sent messages
described by a Poisson law when it corresponds to a user
request and by a uniform distribution when it corresponds to a
refresh request. At last, the substitution transition “component
behavior” contains the specific internal behavior of each
component.

The tokens that are involved in CPN holder, family and
components models represent a message, which is exchanged
across the network between some of those components. This
“communication token” must have at least two colors set
which are the source of the token and the destination of the
token. The value of source color set will be the ID of the
component generating the token. The values of the destination
will be the ID of the component receiving the token.

Parameterization of the model and instantiation of
components used in the families, as well as families used in
the ICS architecture, are done through the token and color set
declaration [12]. The basic idea is to define a generic and
hierarchic CPN structure using substitution transition, which is
customizable for a given ICS thanks to the initial marking.
Parameterization and instantiation process the following steps.

B. Parameterization and instantiation
Automatic CPN model generation is done through three

mains steps.
Component (for example Component i_1 in the Fig. 2)

may contain several devices of the same kind; the token within
the place “component” embeds the identification of devices
that are present in a given ICS architecture and their
parameters. If devices have different behaviors or different
operating modes, different CPN models are used for their
description (this is the case in Fig. for component i_1 and i_2).

Family is a generic class of components (SCADA, PLC,
I/O devices, Network); the token within the place “family” in
the Fig. 2 contains the instantiation parameters of the family.

The Global ICS architecture may (or not) involve the
whole identified families; the token within the place
“Architecture” contains information for instantiating these
families to give rise to the ICS architecture.

The definition of the token colors within these three
parameterization and instantiation places (component, family,
architecture) is based on the definition of ML function [13].

The initial marking within the place “start” must be
automatically with the XML description of the ICS
architecture. Based on this initial marking, ML functions
init_archi(), init_family() and init_component() successively
instantiate the family and components involved in the ICS
architecture. For example, a token will be generated to
instantiate a family model within a given ICS architecture only
if this family is involved in it. The same rationale is applied
for instantiating components that are used by a family
instance. Note that we assume that the network family will be
always instantiated. Once these instantiations have been
processed, the function the init_parameters() function
parameterizes instantiated components based on their
specifications (specific internal features such as periodic time
scan, parameters of the probability distribution, …).

C. Automatic generation of CPN model
Based on the rationales for modeling, instantiation and

parameterization that are presented in the two previous
sections, the algorithm of the Fig. 5 summarizes and schedules
the different automatized tasks that has to be performed for
transforming an informal description of the ICS architecture
into a CPN model as required for its performance assessment.

Fig. 5 Algorithms of automatic model generation

Thereby with these colored tokens, instantiation and
parameterization ML function, the CPN model of the
architecture is generated automatically without manually
defining the model. Only parameterization functions have to
be written regardless the architecture to define. Then by using

Modelling	of	component

modelling	of	a	
component	family

Component	operating	mode
different

Yes

integrate	Tx	and	Rx	Place

Modelling	of	the	network	
Family

Integrate	on	component	
model	I/O	buffer

Modelling	Petri	Net	
holder

Link	Tx	/	Rx	place	to	the	
network	interface	

Define	parameterization	
function

define	association	
function

define	association	
function

Modelling
Component	behavior

Definition	Packet	
generator	laws

Defintion	Assement	
Transition

No

monitors [12] on defined transition, performance can be
assessed.

IV. Application	
A. Case study

In this section a small architecture is used in order to
illustrate the automatic CPN model generation of ICS
architecture. The goal of this section is to show how easy the
automatic reconstitution is and may be time saving. Also how
the automatic reconstitution methodology provides a relevant
solution to our problematic defined in the section 1.

The Fig. 6 shows a simple architecture composed with 2
clients, 1 PLC, and 3 devices. The clients send periodically
requests to the PLC. The PLC will process the requests from
the client, scan the devices and retrieve information from them
and then update their memories during its cycle time.

Fig. 6. Simple architecture

B. Automatic generation of the CPN model
The “CPN holder” model of Schneider ICS architecture is
given in Fig. 7 taking into account that four families have been
defined for Schneider architecture: client (user interface or
SCADA), PLC, I/O devices and networks.

Fig. 7. Automatic model definition of the simple architecture

To be able to generate the CPN model of the simple
architecture, color set must be declared in order to configure
the model. The first declarations are for creating Ids and also
the communication token.

 (*Declaration of component ID*)
Colset IDcomponent = INT
Var ID: IDcomponent;
(*Declaration of communication token*)
Colset Source = INT ;
Colset Destination = INT ;
Var src : Source ;
Var dst : Destination ;
Colset TokenCommunication = product Source *
Destination;

Once the colors set related to the model structure are done,

components must be configured based on their parameters and
associated with their families. The client has one parameter
which is the sending period. The PLC also has one parameter
which is the application cycle time. Finally devices have as
parameter the scanning rate. In addition to these parameters,
each component must have an IDcomponent color set included
in their configuration. These IDs allow identifying them.

(*Declaration of client *)
Colset RequestPeriod = INT;
Var period: RequestPeriod;
Colset Client = record ID:IDcomponent *
period:RequestPeriod;
(*Declaration of PLC *)
Colset PLCcycleTime = INT;
Var cycle: PLCcycleTime;
Colset PLC = record ID:IDcomponent *
cycle:PLCcycleTime;
(*Declaration of Devices *)
Colset ScanTime = INT;
Var scan: PLCcycleTime;
Colset Device = record ID:IDcomponent *
scan:ScanTime;
(*association of component to their families*)
Colset config_familly = union Client:InitClient +
PLC:InitPLC + Device:InitDevice

The definition of previous color set allows the generic
configuration of the model. Thereby regardless the
architecture defined these colors set will be used in order to
generate automatically the relevant CPN model of the
architecture. These colors set configuration and CPN model
definition are done once by the expert of CPN modeling.

Once the CPN model and color set declaration are done by
the CPN modeling expert, parameterization of the desired
architecture is achieved by simply define these ML functions.
The code below shows the parameterization of the simple
architecture in the Fig. 6.
 (* there are two clients in the architecture
sending request in a different period*)
Val client = ref [Client ({IDcomponent = 1, period =
50}); Client ({IDcomponent = 2, period = 100})]
Fun InitClient () = (!client)
(* there is one PLC in the architecture with a
cycle*)
Val PLC = ref [PLC ({IDcomponent =3,cycle = 70})
Fun InitPLC() =(!PLC)
(* there are three device in the architecture with a
different scan time*)
Val device = ref [Device ({IDcomponent =4, Scan =50}),
Device ({IDcomponent t =5, Scan = 100})}), Device
({IDcomponent t =6, Scan = 150})]
Fun InitDevice () = (!Device)

Once the CPN model is parameterized with the relevant
function, tokens corresponding to the components architecture

Device Family

TNODE

Client
Family

TNODE

PLC
Family

TNODE

Tx

TNODExMessage

Rx

TNODExMessage

Rx

TNODExMessage

Tx

TNODExMessage

Rx

TNODExMessage

Start

()

Tx

TNODExMessage

Network
Family

Network

Init
Architecture Network

NetworksNetworks

Client

ClientClient

PLC

PLCPLC

Device

DeviceDevice

InitClient ()

InitPLC ()

InitNetwork()

InitDevice ()

are created when the transition init architecture is bounded.
Created tokens will represent each component on the
architecture and will have as color set values declared on the
parameterization function. Thereby the model of the
architecture is generated and the simulation can be started.

C. Performance assessment
Main temporal performance to be assessed is the end-to-end

delay required for a message to go from a sender device to a
receiver device. This performance is monitored thanks to:
─ A time stamp that is assigned to the tokens leaving the

output buffer of a device; this requires the definition of an
additional color for performance purposes: product
Source*destination*timestamp).

─ A monitor [12] is triggered when the transitions
representing the reception interface of a component are
fired. This monitor will compute the difference time
between the current time of the simulation and the time
stamp of the emitted token. Each device has its own
monitors in the same transition before “input buffer” place.
The link between emitted tokens and received tokens is
made thanks to the IDs of the sender and receiver device
and identification of the message.

The Table 1 shows the result of two simulations. It shows
the end-to-end delay for a message sent by a client (SCADA
for example) to different I/O devices (Device 1, 2 and 3) using
a PLC as intermediate station. The difference between the
obtained results is mainly justified by the difference scan time
of the three devices.

Table 1. Result of performance assessment small architecture (time in ms)

A similar approach can be applied to the different temporal
performances to be assessed for validating a given ICS
architecture.

V. Conclusion		
This paper has demonstrated firstly that CPN is a relevant

choice for modeling and assessing the performance of ICS
architecture. From the problematic imposed by the pre-sales
context, the paper shows the relevant solution of generate
automatically a CPN model. This automatic generation has 3
mains advantages; firstly the CPN model holder and the
configuration are done only once. Secondly a user without
experience on CPN modeling can easily with parameterization
generate CPN models. Finally this allows testing wide range
architecture without spending time on the modeling. Thereby
this automatic model generation is a huge step forward for
industrial companies to use CPN as model definition and
simulation. However the methodology is facing 3 mains
limitations which are:

- The size of the parameterization and instantiation token
which can be huge based on the complexity of the
architecture. This size increase the simulation time the
next work will focus on reducing this size of the token
by defining more efficient ML functions.

- The network family has been modeled at this stage of
the work as a random delay which is not the real
behavior. The next work will focus on modeling the
Ethernet and other fieldbuses behavior and network
components.

- The simulation provides performance as an average
value. However for some architecture the maximum
value is required. An investigation will be made for
combining the simulation approach with worst case
approaches.

References	
	

[1] J. Jasperneite and P. Neumann, “Performance evaluation of switched
Ethernet in real-time applications,” in 4th IFAC, 2001.

[2] R. Winkler, “Uncertainty in probabilistic risk assessment,” Reliability
Engineering & System Safety, vol. 54, pp. 127-132, 1996.

[3] L. Seno, S. Vitturi and C. Zunino, “Real Time Ethernet Networks
Evaluation Using Performance Indicators,” in Emerging Technologies &
Factory Automation, 2009.

[4] R. Zwick and T. Walisten, “Combining stochastic uncertainty and
linguistic inexactness: theory and experimental evaluation of four fuzzy
probability models,” International Journal of Man-Machine Studies, vol.
30, no. 1, pp. 69-111, 1989.

[5] J.-P. Georges, T. Divoux and E. Rondeau, "Network calculus:
application to switched real-time networking," in Proceedings of the 5th
International ICST Conference on Performance Evaluation
Methodologies and Tools, 2011.

[6] R. Cruz, “A Calculus for Network Delay, Part I: Network Elements in
Isolation.,” in IEEE Trans. Information Theory, 1991.

[7] A. Boussad, A. Saıd and J.-J. Lesage, “Genetic algorithms for delays
evaluation in networked automation systems,” Engineering Applications
of Artificial Intelligence, vol. 24, pp. 485-490, 2010.

[8] G. Marsal, “Performance analisys of industrial ethernet networks by
means Timed Model-Cheking,” in 12th IFAC Symposium on
Information Control Problems in Manufacturing, INCOM, Saint-Etienne
(France), 2006.

[9] S. Jackman, “Estimation and Inference via Bayesian Simulation: An
Introduction to Markov Chain Monte,” American Journal of Political
Science, pp. 375-404, 2000.

[10] B. Brahimi, E. Rondeau and C. Aubrun, “Integrated ap-proach based on
high level Petri Nets for evaluating Networked Control Systems,” 16th
Mediterranean Conference on Control and Automation MED'08, Jun
2008.

[11] K. Jensen, “An Introduction to the Theoretical Aspects of Coloured Petri
Nets,” Springer, Berlin Heidelberg, 1994.

[12] K. Jensen and L. Kristensen, Coloured Petri Nets modeling and
validation of concurrent Systems, Berlin Heidelberg: Springer, 2009.

[13] R. Milner, The definition of standard ML: revised., Cambridge, MA.:
MIT press., 1997.

[14] J. Jasperneite and P. Neumann, “Switched Ethernet for Factory
Communication,” Emerging Technologies and Factory Automation, pp.
205-212, 2001.

