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ORBITAL STABILITY VIA THE ENERGY-MOMENTUM

METHOD: THE CASE OF HIGHER DIMENSIONAL SYMMETRY

GROUPS

STEPHAN DE BIÈVRE1,2 AND SIMONA ROTA NODARI3

Abstract. We consider the orbital stability of the relative equilibria of Hamil-
tonian dynamical systems on Banach spaces, in the presence of a multi-dimen-
sional invariance group for the dynamics. We present a generalization of the
Vakhitov-Kolokolov slope condition to this higher dimensional setting, and
show how it allows to prove the local coercivity of the Lyapunov function, which
in turn implies orbital stability. The method is applied to study the orbital
stability of the plane waves of a system of two coupled nonlinear Schrödinger
equations. We provide a comparison of our approach to the one by Grillakis-
Shatah-Strauss.

1. Introduction

The Vakhitov-Kolokolov slope condition [12, 26, 28] is an often used ingredient in
the proof of orbital stability of relative equilibria via the energy-momentum method
for Hamiltonian systems with a one-dimensional symmetry group. For example, it
has been applied in the proofs of stability of stationary or traveling waves of a variety
of nonlinear partial differential equations ([4, 5, 9, 10, 11, 14, 26, 29] and references
therein). It is our goal in this paper to present a natural generalization of this
condition to the case where the Hamiltonian system admits a higher dimensional
invariance group and to show how to obtain orbital stability from it.

The overall strategy underlying the energy-momentum method is well under-
stood. Simply stated, it is a generalization of the standard Lyapunov method for
proving the stability of fixed points to Hamiltonian systems having a Lie symmetry
group G . Indeed, relative equilibria can be seen as fixed points “modulo sym-
metry”: they are fixed points of the dynamics induced on the space obtained by
quotienting the phase space by the action of an appropriate subgroup of the invari-
ance group. For finite dimensional systems, the theory goes back to the nineteenth
century. It is concisely explained in [3, 16], in the modern language of Hamiltonian
systems with symmetry, through the use of the properties of the momentum map,
notably. This theory first of all gives a simple geometric characterization of all
relative equilibria. It also naturally provides a candidate Lyapunov function as well
as subgroup of G with respect to which the relative equilibria can be hoped to be
relatively stable. More recent developments in the finite dimensional setting can be
found in [18, 19, 21, 22, 25].

When the Hamiltonian system is infinite dimensional, such as is the case for
nonlinear Hamiltonian PDE’s, the general philosophy of the energy-momentum
method remains the same, but many technical complications arise, as expected.
In [12] and [26], the theory is worked out in a Hilbert space setting, and when the
symmetry group G is a one-dimensional Lie group. More recently, in [7], a version
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2 S. DE BIÈVRE AND S. ROTA NODARI

of the energy-momentum method has been presented for Hamiltonian dynamical
systems on a Banach space E having as invariance group a Lie group G of arbitrary
finite dimension. What is shown there is that the proof of orbital stability can be
reduced to a “local coercivity estimate” on an appropriately constructed Lyapunov
function L. It is shown in [7] that, in the above infinite dimensional setting, the
construction of the latter follows naturally from the Hamiltonian structure and basic
properties of the momentum map, in complete analogy with the finite dimensional
situation. In specific models, it then remains to show the appropriate coercivity
estimate on L.

When the invariance groupG of the system is one-dimensional, one way to obtain
such an estimate is via the aforementioned Vakhitov-Kolokolov slope condition. Our
main result here is a generalization of this condition to situations with a higher
dimensional invariance group G, and the proof that it implies the desired coercivity
of the Lyapunov function (Theorem 3.1 and Theorem 6.3). Using this property,
orbital stability can then be obtained using the techniques described in [7].

The energy-momentum method has previously been adapted to the case of higher
symmetry groups in [13], and a generalization of the Vakhitov-Kolokolov slope con-
dition was given there as well. A detailed analysis of the differences between our
work here and the approach of [13] will be given in Section 8.

The rest of this paper is organized as follows. The elements of [7] needed here
are summarized in Section 2. In Section 3, we state our main result (Theorem 3.1)
in the simplest setting, when the phase space of the system is a Hilbert space. Some
preliminary lemmas are proven in Section 4 and the proof of Theorem 3.1 is given
in Section 5. In Section 6, we generalize our result to the Banach space setting, see
Theorem 6.3. In Section 7, we use our approach to study the stability of the plane
waves of a class of coupled nonlinear Schrödinger equations on the circle used to
model Bose-Einstein condensate, birefringence in nonlinear optics, and freak ocean
waves. In Section 8, finally, we compare our method and results to those of [13].

Acknowledgments. This work was supported in part by the Labex CEMPI
(ANR-11-LABX-0007-01) and by FEDER (PIA-LABEX-CEMPI 42527). The au-
thors are grateful to M. Conforti, Prof. F. Genoud, Prof. S. Mehdi, Prof S. Trillo
and Prof. G. Tuynman for helpful discussions on the subject matter of this paper.

2. The energy-momentum method

To make this paper self-contained and to fix our notation, we summarize in this
section the energy-momentum method as described in [7]. We refer there for more
details and for examples of the structures introduced here.

2.1. Hamiltonian systems with symmetry. Let E be a Banach space, D a
domain in E (i.e. a dense subset of E) and J a symplector, that is an injective
continuous linear map J : E → E∗ such that (J u)(v) = −(J v)(u). We will refer to
(E,D,J ) as a symplectic Banach triple. Next, let H : E → R be differentiable on
D ⊂ E. In other words, H is globally defined on E, and differentiable at each point
u ∈ D. We say that the function H has a J -compatible derivative if, for all u ∈ D,
DuH ∈ RJ , where RJ is the range of J . In that case we write H ∈ Dif(D,J ).

We define a Hamiltonian flow for H ∈ Dif(D,J ) as a separately continuous map
ΦH : R× E → E with the following properties:

(i) For all t, s ∈ R, ΦH
t+s = ΦH

t ◦ ΦH
s , ΦH

0 = Id;
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(ii) For all t ∈ R, ΦH
t (D) = D;

(iii) For all u ∈ D, the curve t ∈ R → u(t) := ΦH
t (u) ∈ D ⊂ E is differentiable

and is the unique solution of

J u̇(t) = Du(t)H, u(0) = u. (2.1)

We refer to (2.1) as the Hamiltonian differential equation associated to H and
to its solutions as Hamiltonian flow lines.

Next, let G be a Lie group, g the Lie algebra of G and Φ : (g, x) ∈ G × E →
Φg(x) ∈ E, an action of G on E. In what follows we will suppose all Lie groups are
connected. We will say Φ is a globally Hamiltonian action if the following conditions
are satisfied:

(i) For all g ∈ G, Φg ∈ C1(E,E) is symplectic.
(ii) For all g ∈ G, Φg(D) = D.
(iii) For all ξ ∈ g, there exists Fξ ∈ C1(E,R) ∩ Dif(D,J ) such that Φexp(tξ) =

Φ
Fξ

t , and the map ξ → Fξ is linear.

Here and in what follows, we say Ψ ∈ C0(E,E) ∩ C1(D, E) is a symplectic trans-
formation if

∀u ∈ D, ∀v, w ∈ E, (JDuΨ(v))(DuΨ(w)) = (J v)(w). (2.2)

Note that, in the above definition of globally Hamiltonian action, Ψ = Φg ∈
C1(E,E). For further reference, we introduce, for all u ∈ D and for all ξ ∈ g,

Xξ(u) =
d

dt
Φexp(ξt)(u)|t=0. (2.3)

It follows from the preceding definitions that

Xξ(u) = J −1DuFξ. (2.4)

We will always suppose G is a matrix group, in fact, a subgroup of GL(RN ). We
can then think of the Lie algebra g as a sub-algebra of M(N,R) and define the
adjoint action of G on g via

Adgξ = gξg−1,

where in the right hand side we have a product of matrices. We will write m =
dimg = dimg

∗, where g
∗ designates the vector space dual of the Lie algebra g. For

details, we refer to Appendix A.2 of [7]. Note that, for each u ∈ E fixed, one can
think of ξ ∈ g → Fξ(u) ∈ R as an element of g∗. Hence, if we identify (as we always
will) g and g

∗ with Rm and view F as a map F : E → Rm ≃ g
∗, we can write

Fξ = ξ · F,
where · refers to the canonical inner product on Rm. The map F is called the
momentum map of the symplectic group action and, in what follows, we will suppose
that F is Ad∗-equivariant which means that for all g ∈ G, for all ξ ∈ g

Fξ ◦ Φg = FAd
g−1 ξ,

or equivalently, F ◦ Φg = Ad∗
gF . Here Ad∗ is the co-adjoint action of G on g

∗.
Now, for all µ ∈ g

∗, we define the isotropy group or stabilizer of µ as

Gµ = {g ∈ G | Ad∗gµ = µ};
gµ is the Lie algebra of Gµ, and g

∗
µ its dual. Finally, for all µ ∈ g

∗ ≃ Rm, let

Σµ = {u ∈ E | F (u) = µ}.
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We will say µ is a regular value of F if Σµ 6= ø and if, for all u ∈ Σµ, DuF is
surjective (maximal rank). Then Σµ is a codimension m sub-manifold of E and the
tangent space to Σµ at u ∈ Σµ is given by

TuΣµ = KerDuF. (2.5)

Finally, since the momentum map is Ad∗-equivariant, it is easy to see Gµ = GΣµ
,

where GΣµ
is the subgroup of G leaving Σµ invariant.

Below, G will be an invariance group of H , in the sense that H ◦ Φg = H , for
all g ∈ G. This implies G is an invariance group for the dynamics generated by
H , meaning that for all g ∈ G, t ∈ R, Φg ◦ ΦH

t = ΦH
t ◦ Φg (See Theorem 2.1 (i)

below). Nöther’s Theorem then implies that the components Fi of the moment
map are constants of the motion (See Theorem 2.1 (ii)) and hence that, for any
µ ∈ Rm ≃ g

∗, the level set Σµ is invariant under the dynamics ΦH
t . We refer to

Sections 7 and 8.4 for examples; see also [7].

2.2. Relative equilibria and orbital stability. We now recall the definition of a
relative equilibrium. Let G be an invariance group for the dynamics ΦH

t , as above,

and let G̃ be a subgroup of G. Let u ∈ E and let OG̃
u = ΦG̃(u) be the G̃-orbit of u.

We say u is a relative G̃-equilibrium of the dynamics if, for all t ∈ R, ΦH
t (u) ∈ OG̃

u .

In other words, if the dynamical trajectory through u lies in the group orbit OG̃
u .

The goal is to investigate under which circumstances these relative equilibria are
orbitally stable. Recall that a relative G̃-equilibrium u ∈ E is orbitally stable if

∀ε > 0, ∃δ > 0, ∀v ∈ E,
(

d(v, u) ≤ δ ⇒ ∀t ∈ R, d(v(t),OG̃
u ) ≤ ε

)

,

with v(t) the solution of the Hamiltonian equation of motion with initial condition
v(0) = v. Note that the definitions of relative equilibrium and of orbital stability

are increasingly restrictive as the subgroup G̃ is taken smaller. Sharper statements
are therefore obtained by choosing smaller subgroups G̃.

It turns out that, if H is G invariant and the action of G is Ad∗-equivariant,
then u is a G-relative equilibrium if and only if u is a Gµ-relative equilibrium,
where µ = F (u) (See Theorem 7.1 in [7]). This observation, familiar from the finite
dimensional theory (See for instance [3, 16]), explains why it is natural to try to
prove Gµ-orbital stability. This is the approach we shall adopt here. It differs from
the one in [13], where orbital stability is studied with respect to an a priori different
subgroup, as we will explain in detail in Section 8. We will also show there that in
many situations of interest, the two subgroups actually coincide.

We will write

Ou = ΦGµ
(u), (2.6)

where µ = F (u). And

TuOu = {Xξ(u) | ξ ∈ gµ} ⊂ E. (2.7)

To understand what follows, it is helpful to keep in mind that in practice, the
action of the invariance group G is well known explicitly, and typically linear and
isometric. Whereas the dynamical flow ΦH

t is a complex object one tries to better
understand using the invariance properties of H .

We now collect some results from [7] which give a characterization of the relative
equilibria of Hamiltonian systems with symmetry and which also yield the candidate
Lyapunov function that can be used to study their stability.
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Theorem 2.1. Let (E,D,J ) be a symplectic Banach triple. Let H ∈ C1(E,R) ∩
Dif(D,J ) and suppose H has a Hamiltonian flow ΦH

t . Let furthermore G be a Lie
group, and Φ a globally Hamiltonian action on E with Ad∗-equivariant momentum
map F . Suppose that,

∀g ∈ G, H ◦ Φg = H. (2.8)

(i) Then G is an invariance group for ΦH
t .

(ii) For all t ∈ R, F ◦ ΦH
t = F .

(iii) u is a relative G-equilibrium if and only if u is a relative Gµ-equilibrium.
(iv) Let u ∈ D ⊂ E. If there exists ξ ∈ g so that

DuH − ξ ·DuF = 0, (2.9)

then u is a relative Gµ-equilibrium. Let µ = F (u) ∈ Rm ≃ g
∗; if µ is a

regular value of F , then u is a critical point of Hµ on Σµ, where Hµ = H|Σµ
.

We will refer to relative equilibria u for which DuF is of maximal rank, as regular
relative equilibria. This is the case when µ is a regular value of F . Equation (2.9)
is referred to as the stationary equation in the PDE literature. The theorem states
that its solutions determine relative G- and hence relative Gµ-equilibria.

We now turn to the stability analysis of those relative equilibria. Suppose we
are given ξ ∈ g and uξ, solution of (2.9). We first note that the fact that uξ is
a critical point of the restriction Hµξ

of the Hamiltonian H to Σµξ
(µξ = F (uξ))

is an immediate consequence of the observation that uξ is a critical point of the
Lagrange function

Lξ = H − ξ · F : E → R. (2.10)

The goal is now to prove that these relative equilibria are orbitally stable. As
pointed out in [7], the basic idea underlying the energy-momentum method is that,
modulo technical problems, a relative equilibrium is expected to be stable if it
is not only a critical point but actually a local minimum of Hµ. To establish
such a result, it is natural to use the second variation of the Lagrange multiplier
theory and to establish that the Hessian of Lξ is positive definite when restricted
to Tuξ

Σµξ
∩ Tuξ

O⊥
uξ
. The precise statement is given in Proposition 2.2 below.

Let 〈·, ·〉 be a scalar product on E, which is continuous in the sense that

∀v, w ∈ E, |〈v, w〉| ≤ ‖v‖E‖w‖E,
where ‖ · ‖E is our notation for the Banach norm on E. Note that E is not nec-
essarily a Hilbert space for this inner product, and even if E is in fact a Hilbert
space, the inner product 〈·, ·〉 is not necessarily the Hilbert space inner product.
As an example, if E = H1(Rd,C) and depending on the problem considered, one
may want to use either the L2 inner product or the H1 inner product. A similar
situation occurs for the system of coupled nonlinear Schrödinger equations treated
in Section 7. One then has:

Proposition 2.2. Let E be a Banach space and 〈·, ·〉 be a continuous scalar product
on E, D a domain in E and J a symplector. Let H ∈ C2(E,R)∩Dif(D,J ). Let G
be a Lie group, and Φ a globally Hamiltonian G-action on E with Ad∗-equivariant
momentum map F . Suppose that H ◦Φg = H for all g ∈ G and that

(i) Φg is linear and preserves both the structure 〈·, ·〉 and the norm ‖ · ‖E for
all g ∈ G.
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Let ξ ∈ g and suppose uξ ∈ D satisfies (2.9), i.e. Duξ
Lξ = 0, with Lξ = H − ξ · F .

Let µξ = F (uξ) ∈ Rm ≃ g
∗ and suppose µξ is a regular value of F . Suppose in

addition that

(ii) Ad∗
g ∈ O(m) for all g ∈ Gµξ

.
(iii) ∀j = 1, . . . ,m,

∃∇Fj(uξ) ∈ E such that Duξ
Fj(w) = 〈∇Fj(uξ), w〉 ∀w ∈ E; (2.11)

(iv) There exists C > 0 so that

∀w ∈ E, D2
uξ
Lξ(w,w) ≤ C‖w‖2E ;

(v) There exists c > 0 so that

∀w ∈ Tuξ
Σµξ

∩ (Tuξ
Ouµξ

)⊥, D2
uξ
Lξ(w,w) ≥ c‖w‖2E , (2.12)

where
(

Tuξ
Ouξ

)⊥
= {z ∈ E | 〈z, y〉 = 0, ∀y ∈ Tuξ

Ouξ
}. (2.13)

Then there exist ǫ > 0, c > 0 so that

∀u ∈ Ouξ
, ∀u′ ∈ Σµξ

, d(u, u′) ≤ ǫ ⇒ H(u′)−H(u) ≥ cd2(u′,Ouµξ
). (2.14)

This result constitutes a slight generalization of Proposition 5 in [7]. In fact, if
Gµ is commutative, the latter result applies immediately. We will give the proof
of Proposition 2.2 in the next subsection. The basic message of this result is the
following. If G is an invariance group for H that has a globally Hamiltonian action
on E and if uξ satisfies the stationary equation Duξ

Lξ = 0 for some ξ ∈ g, then,
modulo the technical conditions (i)-(iv), the coercive estimate (2.12) on the Hessian
of Lξ implies that the restriction of the Hamiltonian H to the constraint surface
Σµξ

attains a local minimum on the Gµξ
-orbit Ouξ

. As explained in Section 8
of [7], modulo some further technical conditions, (2.14) allows one to show that uξ

is Gµξ
-orbitally stable. (See in particular Theorem 10 and Theorem 11 in [7]).

The difficulty in proving (2.12) comes from the fact that, in general, the bilinear
symmetric form D2

uξ
Lξ is not positive on E, but has instead a non-trivial negative

cone

C− = {v ∈ E | D2
uξ
Lξ(v, v) < 0}.

The estimate (2.12) implies that Tuξ
Σµξ

does not intersect C−. To prove this, we

shall show that there exists a maximally negative subspace of E for D2
uξ
Lξ which

is D2
uξ
Lξ-orthogonal to Tuξ

Σµξ
.

The goal of this paper is to give a condition (see Theorem 3.1 (iv) and Theo-
rem 6.3 (iv)), which is a generalization to the Vakhitov-Kolokolov slope condition,
that implies the coercivity estimate (2.12). This condition is in general easier to
verify than the coercivity estimate itself and allows one to prove the orbital stability
of relative equilibria of general Hamiltonian system. As an example of this method
we study in Section 7 the stability of the plane waves of a system of two coupled
nonlinear Schrödinger equations.

2.3. Proof of Proposition 2.2. The general strategy of the proof is identical to
the one of Proposition 5 in [7]. First, we need some simple preliminary results.

Lemma 2.3. Suppose the hypotheses of Proposition 2.2 hold. Then ∀u ∈ Ouξ
, for

all g ∈ Gµξ
, we have
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(a) Φg(TuOuξ
) = TvOuξ

, Φg

(

(

TuOuξ

)⊥
)

=
(

TvOuξ

)⊥
,

(b) Φg(TuΣµξ
) = TvΣµξ

, Φg

(

(

TuΣµξ

)⊥
)

=
(

TvΣµξ

)⊥
,

where v = Φg(u). In addition, defining Wu = span{∇jF (u) | j = 1 . . .m}, we have

W⊥
u = TuΣµξ

and E = TuΣµξ
⊕Wu.

Proof. (a), respectively (b), follows from the observation that Φg(Ouξ
) = Ouξ

,
respectively Φg(Σµ) = Σµ, and the fact that Φg preserves the inner product 〈·, ·〉.
That W⊥

u = TuΣµ follows from the definitions and the second statement is easily
verified. �

Proof. (of Proposition 2.2) We start with some preliminaries. It follows from
Lemma 6 in [7] that there exists R > 0 so that, for all u′ ∈ E for which d(u′,Ouξ

) ≤
R, there exists v′ ∈ Ouξ

so that u′ − v′ ∈
(

Tv′Ouξ

)⊥
. Now, let g ∈ Gµ so that

Φg(v
′) = uξ and define u′′ = Φg(u

′). Then by the previous lemma, u′′ − uξ ∈
(

Tuξ
Ouξ

)⊥
. Hence we can write

u′′ − uξ = (u′′ − uξ)1 + (u′′ − uξ)2,

where (u′′ − uξ)1 ∈ Tuξ
Σµ ∩

(

Tuξ
Ouξ

)⊥
and (u′′ − uξ)2 ∈ Wuξ

. Since u′′, uξ ∈ Σµ,
one has

0 = F (u′′)− F (uξ) = Duξ
F ((u′′ − uξ)2) + O(‖u′′ − uξ‖2E).

As Duξ
F is of maximal rank, it has no kernel in Wuξ

, and we can conclude there
exists c0 so that

‖(u′′ − uξ)2‖E ≤ O(‖u′′ − uξ‖2E).
Hence, provided ‖u′′ − uξ‖ is small enough,

‖(u′′ − uξ)1‖E ≥ C‖u′′ − uξ‖E .
We can then conclude the proof as follows. Let ǫ > 0 be small enough so that the
previous inequalities hold. Then compute

Lξ(u
′)− Lξ(uξ) = Lξ(u

′′)− Lξ(uξ)

= Duξ
Lξ(u

′′ − uξ) +
1

2
D2

uξ
Lξ(u

′′ − uξ, u
′′ − uξ)

+o(‖u′′ − uξ‖2E)

=
1

2
D2

uξ
Lξ((u

′′ − uξ)1, (u
′ − uξ)1) + O(‖u′′ − uξ‖3E)

+o(‖u′′ − uξ‖2E)

=
1

2
D2

uξ
Lξ((u

′′ − uξ)1, (u
′′ − uξ)1) + o(‖u′′ − uξ‖2E)

≥ c

2
‖(u′′ − uξ)1‖2E + o(‖u′′ − uξ‖2E)

≥ c̃‖u′′ − uξ‖2E ≥ c̃d2(u′′,Ouξ
) = c̃d2(u′,Ouξ

).

Note that, in the first equality above, we used the observation that, for all g ∈ Gµξ
,

for all u′ ∈ Σµξ
, one has

Lξ(Φg(u
′)) = Lξ(u

′).

This follows from the G-invariance of H and from the fact that

ξ · F (Φg(u
′)) = ξ · µξ = ξ · F (u′)
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since both Φg(u
′) and u′ belong to Σµξ

. �

3. Main result: the Hilbert space setting

In this section, we state our main result in the setting where E is a Hilbert
space (Theorem 3.1). This makes for a simpler statement and proof than in the
more general Banach space setting (See Section 6), and allows one to understand
the philosophy of the result more easily. We point out that the result we obtain
in Theorem 3.1 is of interest also in finite dimensional problems (dimE < +∞).
Indeed, the usual orbital stability results in the literature on finite dimensional
Hamiltonian dynamical systems reduce the proof to the coercivity estimate (2.12),
which is generally not easy to check directly.

Let (E,D,J ) be a symplectic Banach triple and suppose moreover that (E, 〈·, ·〉)
is a Hilbert space. Here, we will use the norm associated to the scalar product
l · ‖ =

√

〈·, ·〉 as Banach norm and we drop the subscript E in the notation.
Let H ∈ C2(E,R)∩Dif(D,J ). Let G be a Lie group, and Φ a globally Hamilton-

ian action on E with Ad∗-equivariant momentum map F . Suppose that H◦Φg = H
for all g ∈ G.

Let Ω be an open set in g ≃ Rm and define the following objects

ũ : Ω ⊂ g → E

ξ 7→ uξ
(3.1)

and
F̂ : Ω ⊂ g → g

∗ ≃ Rm

ξ 7→ F (uξ)
(3.2)

with uξ a family of solutions to the stationary equation:

Duξ
H − ξ ·Duξ

F = 0. (3.3)

As recalled in section 2, if uξ is a solution to (3.3), then uξ is Gµ-relative equilibrium
with µ = µξ = F (uξ). Suppose that each µξ is a regular value of F and ũ ∈ C1(Ω ⊂
g, E).

So our starting point is equation (3.3), which in PDE applications is often an
elliptic partial differential equation and we suppose we have an m-parameter family
of solutions, indexed by ξ. One of the major difficulties to apply the theory is of
course to find such families of solutions.

Next, consider the Lyapunov function Lξ defined by (2.10) and remark that each
uξ solution to (3.3) is a critical point of Lξ. Moreover, define for all ξ ∈ Ω ⊂ g, the
map

W : Ω ⊂ g → R

ξ 7→ W (ξ) = Lξ(uξ).
(3.4)

Note that
W (ξ) = H(uξ)− ξ · F̂ (ξ).

For each ξ ∈ Ω, the Hessian D2
ξW of W is a bilinear form on Rm. Hence, we can

consider the following decomposition

Rm = W− ⊕W0 ⊕W+,

where W0 is the kernel of D2
ξW and where D2

ξW is positive (negative) definite

on W+ (W−). Let d0(D
2
ξW ), p(D2

ξW ), n(D2
ξW ) be the dimensions of these spaces.

Note that the decomposition is not unique, but the respective dimensions are. In
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other words, W± are maximal positive/negative definite spaces for W . Also, in
order not to burden the notation, we have not made the ξ-dependence of the spaces
W0,W± explicit. Recall that, given a symmetric bilinear form B on a Banach space
E, a subspace X of E is said to be a positive (negative) definite subspace for B
on E if B|X×X

is positive (negative) definite. A subspace is maximally positive
(negative) definite if it is positive (negative) definite and it is not contained in any
other positive (negative) definite subspace.

Similarly, the Hessian D2
uLξ of Lξ is a symmetric bilinear form on E. For each

uξ solution to (3.3), we define as usual the Morse index n(D2
uξ
Lξ) of uξ ∈ E for Lξ

as the dimension of a maximally negative definite subspace for D2
uξ
Lξ in E.

Finally, since E is a Hilbert space, we can define for each u ∈ E a bounded
self-adjoint operator ∇2Lξ(u) by

〈v,∇2Lξ(u)w〉 = D2
uLξ(v, w). (3.5)

As a consequence, we can consider the spectral decomposition of E for ∇2Lξ(uξ)

E = E− ⊕ E0 ⊕ E+ (3.6)

with E0 = Ker∇2Lξ(uξ) = KerD2
uξ
Lξ, and E± the positive and negative spectral

subspaces of ∇2Lξ(u). Clearly E± are maximally positive/negative subspaces for
∇2

uξ
Lξ so that n(D2

uξ
Lξ) = dim E−. We can now state our main result.

Theorem 3.1. Under the previous hypotheses, let ξ ∈ Ω and suppose

(i) D2
ξW is non-degenerate,

(ii) KerD2
uξ
Lξ = Tuξ

Ouξ
,

(iii) inf(σ(∇2Lξ(uξ)) ∩ (0,+∞)) > 0,
(iv) p(D2

ξW ) = n(D2
uξ
Lξ).

Then there exists δ > 0 such that

∀v ∈ Tuξ
Σµξ

∩
(

Tuξ
Ouξ

)⊥
, D2

uLξ(v, v) ≥ δ‖v‖2. (3.7)

Since (3.7) is the same as (2.12), it follows that uξ is orbitally stable. It is
the fourth condition of the above theorem that generalizes the Vakhitov-Kolokolov
slope condition, as we now explain. Suppose the group G is 1-dimensional, so that
m = 1. Then W is a scalar function of ξ ∈ R ≃ g. We will see below (See (4.12))
that

W ′′(ξ) = −F̂ ′(ξ).

Hence the proof of orbital stablity for uξ reduces to verifying that the spectral
conditions on ∇2

ξLξ are satisfied and notably that dimE− = 1, and that

F̂ ′(ξ) < 0. (3.8)

This is the Vakhitov-Kolokov slope condition. In applications to the Schrödinger
equation, where F (u) = 1

2‖u‖2, it says that the norm of uξ decreases as a function
of ξ. In the case m = 1, the above result is proven in [12] (Corollary 3.3.1) and
in [26] (Proposition 5.2).

The setup of the Hamiltonian dynamics with higher dimensional symmetry on
a Hilbert space we used in this section is similar to the one proposed in [13] where
the decomposition (3.6) of the bounded self-adjoint operator ∇2

uξ
Lξ as well as

condition (iii) of Theorem 3.1 are also used to obtain a coercivity result of the
type (3.7). Nevertheless, in [13] a different constraint surface and orbit are used:
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for a complete comparison between Theorem 3.1 and the coercivity results of [13],
we refer to Section 8 below.

We finally note that, when E is infinite dimensional, and the equation under
study a PDE, the Banach space formulation of Section 6 is often more convenient
than the Hilbert space formulation proposed here. Indeed, the operator ∇2Lξ

introduced in Theorem 3.1 is not a partial differentiable operator (it is bounded)
making the analysis of its spectrum generally less convenient than for the operator
∇2Lξ in Theorem 6.4, which in applications is a self-adjoint partial differential
operator.

4. Useful lemmas

The following lemmas collect some basic properties of the objects introduced
above, that are essential in the further analysis of the Hessian of the Lyapunov
function. We define, for ξ ∈ Ω,

Uξ = {η · ∇ξuξ ∈ E | η ∈ Rm}, (4.1)

where we used the notation

η · ∇ξuξ := Dξũ(η). (4.2)

Lemma 4.1. Let E be a Banach space, Ω an open set in g. Let ũ ∈ C1(Ω ⊂ g, E).
Let ξ ∈ Ω and consider the following statements:

(1) F̂ is a local diffeomorphism;
(2) Dξũ is injective.
(3) Uξ ∩KerDuξ

F = {0}.
(4) There is a neighbourhood of uξ where the moment map F is regular ( i.e.

Duξ
F has maximal rank).

(5)
Uξ ⊕KerDuξ

F = E; (4.3)

Then (1) ⇔ ((2) and (3)) ⇔ ((4) and (5)).

Note that the lemma does not use the fact that the uξ are solutions to the
stationary equation: ũ takes values in E, without further condition. The lemma
therefore strings together some useful facts on compositions of maps.

It is easy to see that, whenever uξ is a solution to (3.3) for every ξ ∈ Ω, the map
ũ is injective provided the uξ are regular relative equilibria. Indeed, if uξ1 = uξ2

are both solutions of (3.3), then

(ξ1 − ξ2) ·Duξ1
F = 0.

Hence, if the uξ are regular relative equilibria, one has ξ1 = ξ2. It is natural in that
context to assume it is in fact an immersion, meaning that its derivative is injective,
as in condition (2) of Lemma 4.1. One can then think of ũ(Ω) as an m-parameter
surface in E.

Proof. First note that, for all η1, η2 ∈ g,

Dξ(η2 · F̂ )(η1) = Duξ
(η2 · F )(η1 · ∇ξuξ). (4.4)

(1) ⇒ ((2) and (3)) Let η1 ∈ g and suppose η1 · ∇ξuξ = 0. It follows from the

above that DξF̂ (η1) = 0. But since F̂ is a local diffeomorphism at ξ, this implies
η1 = 0. Hence Dξũ is injectif, which shows (2). To show (3), let η1 ∈ g and suppose
η1 ·∇ξuξ ∈ KerDuξ

F . Then, by definition, Duξ
(η2 ·F )(η1 ·∇ξuξ) = 0 for all η2 ∈ g.
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It follows from the previous equation that η1 ∈ KerDξF̂ so that, by (1), η1 = 0.
This proves (3).

((2) and (3)) ⇒ (1) Let η1 ∈ KerDξF̂ . Then according to the above equality,
η1 · ∇ξuξ ∈ KerDuξ

F . So, by (3), η1 · ∇ξuξ = 0 and by (2), η1 = 0. This proves

DξF̂ is injectif, hence surjectif, which proves (1).
((2) and (3)) ⇒ ((4) and (5)) According to (3), the map

Duξ
F : Uξ → g

∗ ≃ Rm

is injective. But since by (2), Dξũ is injectif, the dimension of Uξ is m. Hence
this map is a bijection. The rank of Duξ

F is therefore maximal. By continuity
of DuF in u, this remains true in a neigbhourhood of uξ, which proves (4). It
follows from (4) that locally, Σµξ

is a co-dimension m submanifold of E. Since, by
definition, Tuξ

Σµξ
= KerDuξ

F , we know from (3) that Uξ ∩ Tuξ
Σµξ

= {0}. Since,
by (2), the dimension of Uξ is m, (5) follows.
((4) and (5)) ⇒ ((2) and (3)). This is obvious and concludes the proof of the
lemma. �

We introduce

Gξ = {g ∈ G | Adgξ = ξ}, (4.5)

which is the subgroup of G for which ξ is a fixed point under the adjoint action.
We will write gξ for its Lie-algebra. We furthermore need

Zξ = {Xη(uξ) | η ∈ gξ} ⊂ E (4.6)

where Xη(uξ) is defined in (2.3).

Lemma 4.2. Let E be a Banach space, Ω an open set in g, and ũ defined by (3.1)
and satisfying (3.3). Suppose ũ ∈ C1(Ω ⊂ g, E). Let H ∈ C2(E,R). Let G be
a Lie group, and Φ a globally Hamiltonian G-action on E with Ad∗-equivariant
momentum map F . Suppose that H ◦ Φg = H for all g ∈ G. Let ξ ∈ Ω Then, one
has:

(1) For all η ∈ Rm,

η ∈ W0 = KerD2
ξW ⇔ η ∈ KerDξF̂ ⇔ η · ∇ξuξ ∈ KerDuξ

F. (4.7)

In particular, D2
ξW is non-degenerate if and only if F̂ is a local diffeomor-

phism at ξ .
(2) For all η1, η2 ∈ Rm,

D2
uξ
Lξ(η1 · ∇ξuξ, η2 · ∇ξuξ) = −D2

ξW (η1, η2). (4.8)

(3) For all v ∈ KerDuξ
F , for all η ∈ g,

D2
uξ
L(η · ∇ξuξ, v) = 0. (4.9)

(4) Tuξ
Ouξ

is a subspace of the kernel of (D2
uξ
Lξ | KerDuξ

F ), which is the

restriction of D2
uξ
Lξ to KerDuξ

F ×KerDuξ
F .

(5) Zξ ⊂ Ker(D2
uξ
Lξ) ⊂ Ker (Duξ

F ).

Note that, combining (4.7) with Lemma 4.1, we can conclude that the directions
η·∇ξuξ form a complementary subspace to KerDuξ

F whenD2
ξW is non-degenerate.

Hence, if in addition uξ is a regular relative equilibrium, the subspace Uξ is com-
plementary to the tangent space Tuξ

Σµξ
.
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Expression (4.8) is of interest since it identifies part of the Hessian of the Lya-
punov function Lξ in terms of the Hessian of the function W . More precisely,
it is useful to determine a subspace of negative directions of D2

uξ
Lξ. Indeed, if

n+ = p(D2
ξW ) and if {η1, ..., ηn+

} is a family of linearly independent elements

of Rm such that span {η1, ..., ηn+
} is a positive definite subspace for D2

ξW , then

span {η1 · ∇ξuξ, ..., ηn+
· ∇ξuξ} is a negative definite subspace for D2

uξ
Lξ. As a

consequence, the dimension of a maximally negative definite subspace for D2
uξ
Lξ in

E is at least p(D2
ξW ):

n(D2
uξ
Lξ) ≥ p(D2

ξW ).

Expression (4.9) turns out to be crucial in what follows: it expresses the fact
that Uξ = {η · ∇ξuξ | η ∈ Rm} is D2

uξ
Lξ-orthogonal to KerDuξ

F .

Proof. First of all, note that, since uξ′ is a solution to the stationary equation (3.3)
for all ξ′ ∈ Ω, for all η ∈ Rm

DξW (η) = −η · F (uξ). (4.10)

Then a straightforward calculation gives, for all η1, η2 ∈ Rm,

D2
ξW (η1, η2) = −Duξ

η1 · F (η2 · ∇ξuξ). (4.11)

In other words,

D2
ξW = −DξF̂ . (4.12)

Note that, as F̂ is a map from Rm ≃ g to Rm ≃ g
∗, DξF̂ is linear from Rm = g to

Rm = g
∗. It therefore naturally defines a bilinear map on Rm ≃ g. In our notation

here, we identify g with g
∗ using an Euclidean structure, but even without the

latter, the above is natural.
The first statement of (4.7) is now obvious and for the second, note that η·∇ξuξ ∈

KerDuξ
F if and only if, for all η′ ∈ Rm, Duξ

η′ · F (η · ∇ξuξ) = 0, which yields the
conclusion, thanks to (4.4) and (4.11).

To obtain (4.8), it is sufficient to take the derivative of the stationary equation
with respect to ξ ∈ g and to use (4.11). More precisely, by taking the derivative of
(3.3) with respect to ξ in the direction η, we obtain for all η ∈ g,

D2
uξ
Lξ(η · ∇ξuξ) = Duξ

η · F ∈ E∗. (4.13)

Hence, using (4.11),

D2
uξ
Lξ(η1 · ∇ξuξ, η2 · ∇ξuξ) = Duξ

η1 · F (η2 · ∇ξuξ) = −D2
ξW (η1, η2).

Next, (4.9) follows directly from (4.13). Indeed, for all v ∈ KerDuξ
F and for all

η ∈ g, D2
uξ
Lξ(η · ∇ξuξ, v) = Duξ

η · F (v) = 0.

From F = (F ◦ Φg−1) ◦ Φg and H = H ◦ Φg one finds, for all u ∈ E, g ∈ G,

DuF =
(

DΦg(u)(F ◦ Φg−1)
)

DuΦg, DuH = DΦg(u)HDuΦg.

Hence, by (3.3),

DΦg(uξ)H = ξ ·Duξ
F
(

Duξ
Φg

)−1
= DΦg(uξ)(ξ · F ◦Φg−1)

=DΦg(uξ)(Adgξ · F )

and therefore

DΦg(uξ) (H − ξ · F ) = DΦg(uξ)((Adgξ − ξ) · F ).
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Now let η ∈ g, consider g = exp(tη) and take the derivative at t = 0 in the previous
relation. One finds, for all v ∈ E,

D2
uξ
(H − ξ · F )(Xη(uξ), v) = Duξ

[η, ξ] · F (v). (4.14)

Taking v ∈ KerDuξ
F , the right hand side above vanishes for any η ∈ g, and one

finds (4) follows.
To prove (5), note that, taking η ∈ gξ so that [η, ξ] = 0, we see that Zξ ⊂

KerD2
uξ
Lξ. Finally, let v ∈ E, then (4.13) yields, for all η ∈ g

D2
uξ
Lξ(η · ∇ξuξ, v) = η ·Duξ

F (v).

Hence, if v ∈ Ker (D2
uξ
Lξ), it follows that v ∈ Ker (Duξ

F ). �

Finally, we state some properties of symmetric bilinear forms and their associated
quadratic forms in the form of a short lemma. In what follows, if B is a bilinear
form on some vectorspace E, and Y is a subspace of E, then we write (B | Y) for
the restriction of B to Y × Y.
Lemma 4.3. Let E be a vector space and B a symmetric bilinear form on E.

(i) Let X− be a maximally negative definite subspace for B in E. Suppose
Y ⊂ E is a subspace of E with the property that X− ∩ Y = {0} and such
that B(X−,Y) = 0. Then Y is a positive subspace for B.

(ii) Let Y1,Y2 be two subspaces of Y, such that B(Y1,Y2) = 0. Then

Ker (B | Y1 + Y2) = Ker (B | Y1) + Ker (B | Y2). (4.15)

(iii) Let Y be a positive subspace for B. Suppose u ∈ Y satisfies B(u, u) = 0.
Then u ∈ Ker(B | Y).

Note that the B-orthogonality of the subspaces is crucial in parts (i) and (ii).

Proof. (i) Suppose the statement is false, then there exists y ∈ Y, so that B(y, y) <
0. Clearly, y 6= 0 and hence, by assumption, y 6∈ X−. Now consider Z =
vect{y,X−}. Let 0 6= z ∈ Z. Then, there exist λ ∈ R and z− ∈ X−, not both
zero, so that z = λy + z−. It follows from the B orthogonality of X− and Y that

B(z, z) = λ2B(y, y) +B(z−, z−) < 0.

Hence B is negative definite on Z. Since dimX− ( Z this is a contradiction.
(ii) Immediate.
(iii) One has, for all v ∈ Y, and for all λ ∈ R,

0 ≤ B(λu + v, λu + v) = 2λB(u, v) +B(v, v).

If B(u, v) 6= 0, this is a contradiction. �

5. Proof of Theorem 3.1

Let n− = dimE− and {η1, ..., ηn−
} ⊂ Rm a family of linearly independent ele-

ments of Rm such that D2
ξW (η, η) > 0 for all η ∈ span{η1, ..., ηn−

}. As a conse-

quence of (4.8), X− := span
{

η1 · ∇ξuξ, ..., ηn−
· ∇ξuξ

}

is a negative definite sub-

space for D2
uξ
Lξ in E. Moreover, since dimX− = n−, X− is a maximally negative

definite subspace.
Next, since D2

ξW is non-degenerate by hypothesis, Lemma 4.2 (1) implies that F̂

is a local diffeomorphism. Hence, thanks to Lemma 4.1, X−∩Tuξ
Σµξ

= {0}. More-

over, thanks to (4.9), X− and Tuξ
Σµξ

are D2
uξ
Lξ-orthogonal. As a consequence,
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we can apply Lemma 4.3 (i) and conclude that Tuξ
Σµξ

is a positive subspace for

D2
uξ
Lξ.

Furthermore, since by hypothesis (ii) of the theorem, E0 = KerD2
uξ
Lξ = Tuξ

Ouξ
,

it follows from Lemma 4.3 (ii) that

Y := Tuξ
Σµξ

∩
(

Tuξ
Ouξ

)⊥
(5.1)

is a positive definite subspace for D2
uξ
Lξ, meaning that

D2
uξ
Lξ(v, v) > 0, ∀v ∈ Y = Tuξ

Σµξ
∩
(

Tuξ
Ouξ

)⊥
, v 6= 0. (5.2)

To obtain the desired coercive bound, we now use the spectral information on
∇2Lξ(uξ) provided by the hypotheses of the theorem. Note first that, since∇2Lξ(uξ)

is self-adjoint, E⊥
0 =

(

Tuξ
Ouξ

)⊥ ⊂ E is an invariant subspace for ∇2Lξ(uξ): it is

the spectral subspace of ∇2Lξ(uξ) corresponding to R∗.
Let ∇Fj(uξ) ∈ E be defined by Duξ

Fj(v) = 〈∇Fj(uξ), v〉E for j = 1, ...,m.
Then, since µξ is a regular value,

(

Tuξ
Σµξ

)⊥
= span {∇Fj(uξ)}j=1,...,m.

and dim
(

Tuξ
Σµξ

)⊥
= m. Moreover, since Tuξ

Ouξ
⊂ Tuξ

Σµξ
, one obtains the

following orthogonal decomposition of E⊥
0 :

E⊥
0 =

(

Tuξ
Ouξ

)⊥
= Y ⊕

(

Tuξ
Σµξ

)⊥
.

Note that ∇2Lξ(uξ) does not leave this decomposition invariant: we are interested
in controlling it on Y. For that purpose, let P be the projection on Y ⊂ E⊥

0 and
consider the following decomposition of the restriction of the operator ∇2Lξ(uξ) to
E⊥

0 ,

∇2Lξ(uξ)|E⊥
0
=P∇2Lξ(uξ)P + P∇2Lξ(uξ)(IE⊥

0
− P )

+ (IE⊥
0
− P )∇2Lξ(uξ)P + (IE⊥

0
− P )∇2Lξ(uξ)(IE⊥

0
− P ).

Since
(

Tuξ
Σµξ

)⊥
is finite dimensional, the projector IE⊥

0
− P is finite rank. Hence

∇2Lξ(uξ)|E⊥
0
= P∇2Lξ(uξ)P +K with K a compact operator and it follows that

σess(P∇2Lξ(uξ)P ) = σess

(

∇2Lξ(uξ)|E⊥
0

)

. In particular, 0 6∈ σess(P∇2Lξ(uξ)P )

by hypotheses (iii) and(iv) of Theorem 3.1.

Now, note that KerP∇2Lξ(uξ)P =
(

Tuξ
Σµξ

)⊥ ⊂ E⊥
0 . Indeed, let u ∈ E⊥

0 be

such that P∇2Lξ(uξ)Pu = 0. Then

D2
uξ
L(uξ)(Pu, Pu) = 〈u, P∇2Lξ(uξ)Pu〉 = 0.

Since D2
uξ
L(uξ) is strictly positive on Y (see (5.2)), it follows that Pu = 0, which

means that u ∈
(

Tuξ
Σµξ

)⊥
.

We now consider P∇2Lξ(uξ)P as an operator on Y. We have just shown that 0 6∈
σ(P∇2Lξ(uξ)P ) = σess(P∇2Lξ(uξ)P ) ∪ σd(P∇2Lξ(uξ)P ) and that P∇2Lξ(uξ)P
is a strictly positive operator on Y (see (5.2)). It therefore has a spectral gap:

δ = inf
v∈Yr{0}

〈P∇2Lξ(uξ)Pv, v〉
〈v, v〉 > 0.
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Finally, for all v ∈ Y, v 6= 0, one finds

D2
uξ
Lξ(v, v) = 〈∇2Lξ(uξ)v, v〉 = 〈P∇2Lξ(uξ)Pv, v〉 ≥ δ‖v‖2

which is the desired estimate.

6. Main result: the Banach space setting

In this section, we extend the result of Theorem 3.1 to a more general Banach
space setting that we now describe.

Let (E, ‖ · ‖E) be a Banach space and 〈·, ·〉 be a scalar product on E which is
continuous in the sense that

|〈v, w〉| ≤ ‖v‖E‖w‖E
for all v, w ∈ E. Let ‖ · ‖ be the norm associated to the scalar product 〈·, ·〉 and

define by Ê the closure of E with respect to the ‖ · ‖-norm, that is Ê = E
‖·‖

. Note

that Ê is a Hilbert space and E ⊂ Ê. As an example, one can think of E = H1(Rn)

and 〈·, ·〉 = 〈·, ·〉L2(Rn) so that Ê = L2(Rn) in that case. This is the typical situation
for the nonlinear Schrödinger equation; we refer to [7] and Section 7 for details and
further examples.

Let (E,D,J ) be a symplectic Banach triple and H , G, Φ and F as in Section 3.

Let Ω be an open set in g ≃ Rm and ũ, F̂ and W defined by (3.1), (3.2) and (3.4)
respectively. As before, for each ξ ∈ Ω, uξ is a solution to (3.3), µξ = F (uξ) is a
regular value of F and ũ ∈ C1(Ω ⊂ g, E). Define p(D2

ξW ), n(D2
ξW ) and n(D2

uξ
Lξ)

as in Section 3.
To associate to D2

uξ
Lξ a self-adjoint operator on Ê we proceed as follow.

Lemma 6.1. Let (E, ‖ · ‖E) be a Banach space and 〈·, ·〉 be a continuous scalar

product on E. Let ‖ · ‖ =
√

〈·, ·〉 and Ê = E
‖·‖

. Let D2
uξ
Lξ(v, w) be defined as

above for all v, w ∈ E. If there exist ε, C > 0 such that

D2
uξ
Lξ(v, v) ≥ ε‖v‖2E − C‖v‖2 (6.1)

for all v ∈ E, then there is a self-adjoint operator ∇2Lξ(uξ) : D(∇2Lξ(uξ)) ⊂ Ê →
Ê defined by

D(∇2Lξ(uξ)) = {z ∈ E | ∃w ∈ Ê such that D2
uξ
Lξ(z, v) = 〈w, v〉 for all v ∈ E},

∇2Lξ(uξ)z = w for all z ∈ D(∇2Lξ(uξ)).

(6.2)
Moreover, D(∇2Lξ(uξ)) is a form core for D2

uξ
Lξ.

Remark 6.2. Note that

(1) E is the form domain of the operator ∇2Lξ(uξ),
(2) Since D(∇2Lξ(uξ)) is a form core for D2

uξ
Lξ and condition (6.1) holds,

D(∇2Lξ(uξ)) is dense in E.

The existence and the uniqueness of the operator ∇2Lξ(uξ) is a consequence of
the First Representation theorem in Kato [15, Theorem 2.1 and 2.6 in Chapter VI].
Condition (6.1) ensures that the hypotheses of the First Representation theorem
are satisfied (see [26, Lemma 3.3]). See also [24, 27] for more details.

We can now state our main result.
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Theorem 6.3. Under the previous hypotheses, in particular those of Lemma 6.1,
suppose

(i) D2
ξW is non-degenerate,

(ii) KerD2
uξ
Lξ = Tuξ

Ouξ
,

(iii) inf(σ(∇2Lξ(uξ)) ∩ (0,+∞)) > 0,
(iv) p(D2

ξW ) = n(D2
uξ
Lξ),

(v) for all u ∈ Ouξ
and for all j = 1, ...,m, there exists ∇Fj(u) ∈ D(∇2Lξ(uξ)) ⊂

E such that

DuFj(w) = 〈∇Fj(u), w〉, ∀w ∈ E. (6.3)

Then there exists δ > 0 such that

∀v ∈ Tuξ
Σµξ

∩
(

Tuξ
Ouξ

)⊥
, D2

uξ
Lξ(v, v) ≥ δ‖v‖E (6.4)

with
(

Tuξ
Ouξ

)⊥
= {v ∈ Ê | 〈v, w〉 = 0 ∀w ∈ Tuξ

Ouξ
}.

Let us point out that the hypotheses on the bilinear form D2
uξ
Lξ in Theorem

6.3 can be re-expressed in terms of spectral hypotheses on the unbounded self-
adjoint operator ∇2Lξ(uξ), as shown in the following lemma. This is important
in applications, since it allows one to use the tools of spectral analysis for partial
differential operators to establish those conditions.

Lemma 6.4. Under the hypotheses of Lemma 6.1, Ker∇2Lξ(uξ) = KerD2
uξ
Lξ.

If, in addition dimKer∇2Lξ(uξ) < +∞, the negative spectral subspace of ∇2Lξ(uξ)
is finite dimensional, and hypothesis (iii) of Theorem 6.3 is satisfied then the di-

mension of the negative spectral subspace of ∇2Lξ(uξ) in Ê is equal to the Morse
index n(D2

uξ
Lξ) of uξ ∈ E for Lξ.

This lemma constitutes a slight generalization of Lemma 5.4 in [26] and its proof
follows along the same lines. We give it for completeness.

Proof. By definition Ker∇2Lξ(uξ) = {v ∈ D(∇2Lξ(uξ)) | ∇2Lξ(uξ)v = 0} and
a straightforward calculation leads to Ker∇2Lξ(uξ) = KerD2

uξ
Lξ ∩ D(∇2Lξ(uξ)).

Moreover, using the definition (6.2), it easy to see that KerD2
uξ
Lξ ⊂ D(∇2Lξ(uξ)).

As a consequence, Ker∇2Lξ(uξ) = KerD2
uξ
Lξ.

Now, we know that

dimKer∇2Lξ(uξ) = n0 < +∞
inf(σ(∇2Lξ(uξ)) ∩ (0,+∞)) > 0

and we denote by 0 ≤ n− < +∞ the dimension of the negative spectral subspace of

∇2Lξ(uξ) in Ê. It follows that there exists Γ > 0 such that σ(∇2Lξ(uξ))∩(0,Γ] = ø.

Let P(−∞,0] ∈ B(Ê, Ê) denote the orthogonal projection onto the finite dimensional

span of all the eigenvectors of∇2Lξ(uξ) corresponding to the eigenvalues in (−∞, 0],

and let Q = I − P(−∞,0]. We have that P(−∞,0](Ê) ⊂ D(∇2Lξ(uξ)) and that

Qz ∈ D(∇2Lξ(uξ)) if and only if z ∈ D(∇2Lξ(uξ)). Also dimP(−∞,0](Ê) = n0+n−

and 〈∇2Lξ(uξ)Qz,Qz〉 ≥ Γ‖Qz‖2 for all z ∈ D(∇2Lξ(uξ)). Thus, for any z ∈
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D(∇2Lξ(uξ))

D2
uξ
Lξ(z, z) = 〈∇2Lξ(uξ)z, z〉 = 〈Q∇2Lξ(uξ)z, z〉+ 〈P(−∞,0]∇2Lξ(uξ)z, z〉

= 〈∇2Lξ(uξ)Qz,Qz〉+ 〈P(−∞,0]∇2Lξ(uξ)z, z〉
≥Γ‖Qz‖2 + 〈P(−∞,0]∇2Lξ(uξ)z, z〉
≥Γ‖z‖2 − Γ‖P(−∞,0]z‖2 + 〈∇2Lξ(uξ)P(−∞,0]z, z〉
≥Γ‖z‖2 + 〈(∇2Lξ(uξ)− IΓ)P(−∞,0]z, z〉.

As a consequence, using (6.1) and the fact that D(∇2Lξ(uξ)) is dense in E, we
obtain

(

1 +
Γ

C

)

D2
uξ
Lξ(z, z)− 〈(∇2Lξ(uξ)− IΓ)P(−∞,0]z, z〉 ≥

εΓ

C
‖z‖2E

for all z ∈ E, which implies

D2
uξ
Lξ(z, z)−

C

Γ + C
〈(∇2Lξ(uξ)− IΓ)P(−∞,0]z, z〉 ≥

εΓ

Γ + C
‖z‖2E

for all z ∈ E. Moreover, for all z ∈ Q(E),

D2
uξ
Lξ(z, z) ≥

εΓ

Γ + C
‖z‖2E (6.5)

since P(−∞,0]z = 0. ButQ(E) ⊂ E since P(−∞,0](E) ⊂ P(−∞,0](Ê) ⊂ D(∇2Lξ(uξ)) ⊂
E. So we have shown that Q(E) is a positive subspace of E, forD2

uξ
L. Now consider

the direct sum decomposition of E given by

E = Q(E)⊕ P(−∞,0)(E)⊕Ker(D2Lξ).

Here P(−∞,0) is the projector onto the n−-dimensional space spanned by the eigen-

vectors of ∇2Lξ(uξ) with strictly negative eigenvalue. Clearly, P(−∞,0)(E) is a

negative definite space for D2
uξ
Lξ. We now show it is maximal. For that purpose,

suppose z∗ ∈ E, z∗ 6∈ P(−∞,0)(E) and suppose span{z∗, P(−∞,0)(E)} is a negative

definite subspace of E for D2
uξ
Lξ of dimension n− + 1. We can suppose, without

loss of generality, that z∗ ∈ Ker(D2Lξ)⊕Q(E). Writing z∗ = z∗,0 + z∗,+, we see

D2
uξ
Lξ(z∗, z∗) = D2

uξ
Lξ(z∗,+, z∗,+) ≥ 0,

where we used (6.5). This contradicts the fact that span{z∗, P(−∞,0)(E)} is negative
definite space forD2

uξ
Lξ and shows that P(−∞,0)(E) is a maximally negative definite

subspace for D2
uξ
Lξ. Thus n(D

2
uξ
Lξ) = n−.

�

For the proof of Theorem 6.3, we will need the following two lemmas.

Lemma 6.5. Let (H, ‖ · ‖) be a Hilbert space and W ⊂ K ⊂ H with W a closed

subspace of H and K a dense subspace of H (K‖·‖
= H). Then

W⊥ ∩ K‖·‖
= W⊥ (6.6)

Proof. Let u ∈ W⊥. There exists a sequence kn ∈ K so that kn → u. Since W is
closed, we can write kn = wn+vn, with wn ∈ W, vn ∈ W⊥. Moreover, since kn ∈ K
and wn ∈ W ⊂ K, vn ∈ W⊥ ∩ K. Clearly both sequences wn and vn converge,
respectively to w ∈ W, v ∈ W⊥. Since u = w + v ∈ W⊥, we find w = 0 and v = u.
Hence vn ∈ K ∩W⊥ converges to u. �
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We introduce, as before E0 = Ker∇2
uξ
Lξ. We know from Lemma 6.4 that

Ker∇2
uξ
Lξ = KerD2

uξ
Lξ. Hypothesis (ii) of the theorem then implies

E0 = Tuξ
Ouξ

⊂ D(∇2Lξ(uξ)). (6.7)

We define furthermore

V = span{∇Fj(uξ), j = 1, ...m}. (6.8)

Note that, by hypothesis (v) of Theorem 6.3, V ⊂ D(∇2Lξ(uξ)) ⊂ E.

Lemma 6.6. Under the hypotheses of Theorem 6.3, we have

(i) E⊥
0 ∩ Tuξ

Σµξ

‖·‖
= E⊥

0 ∩ Tuξ
Σµξ

‖·‖
.

(ii) Tuξ
Σµξ

∩ D(∇2Lξ(uξ))
‖·‖

= Tuξ
Σµξ

‖·‖
.

(iii) Define

Y = Tuξ
Σµξ

∩ D(∇2Lξ(uξ)) ∩ E⊥
0 . (6.9)

Then

Ŷ := Y‖·‖
= E⊥

0 ∩ V ⊥, (6.10)

where V is defined in (6.8). Hence

E⊥
0 = Tuξ

O⊥
uξ

= Ŷ ⊕⊥ V, Ê = E0 ⊕⊥ Ŷ ⊕⊥ V. (6.11)

(iv) Let P be the orthogonal projector onto Ŷ. Let u ∈ D(∇2Lξ(uξ)) ∩ E⊥
0 . Then

Pu ∈ Y.

We use the notation ⊕⊥ to indicate a direct sum that is orthogonal for the inner
product 〈·, ·〉.

Proof. (i) Note that E0 ⊂ Tuξ
Σµξ

⊂ Tuξ
Σµξ

‖·‖
. We now apply Lemma 6.5 with

W = E0,K = Tuξ
Σµξ

,H = Tuξ
Σµξ

‖·‖
to obtain

E⊥σ

0 = E⊥σ

0 ∩ Tuξ
Σµξ

‖·‖

.

Here we wrote E⊥σ

0 for the orthogonal complement to E0 in Tuξ
Σµξ

‖·‖
, i.e.

E⊥σ

0 = E⊥
0 ∩ Tuξ

Σµξ

‖·‖
. (6.12)

The last two equations imply the result.

(ii) Since V is a closed finite dimensional subspace of Ê, we have Ê = V ⊥ ⊕⊥ V
with

V ⊥ = {w ∈ Ê | 〈v, w〉 = 0 ∀v ∈ V }.
Since by hypothesis (v) of Theorem 6.3, for all w ∈ E, Duξ

Fj(w) = 〈∇Fj(uξ), w〉
for j = 1, ...,m, we see that

Tuξ
Σµξ

= V ⊥ ∩ E (6.13)

and hence

E = Tuξ
Σµξ

⊕⊥ V. (6.14)

Using Lemma 6.5, and the fact that V ⊂ E ⊂ Ê, with E dense in Ê, (6.13)

implies Tuξ
Σµξ

‖·‖
= V ⊥ ∩ E

‖·‖
= V ⊥ meaning that

Ê = Tuξ
Σµξ

‖·‖ ⊕⊥ V. (6.15)
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From (6.14) one concludes

D(∇2Lξ(uξ)) =
(

D(∇2Lξ(uξ)) ∩ Tuξ
Σµξ

)

⊕⊥ V,

and hence

Ê = D(∇2Lξ(uξ)) ∩ Tuξ
Σµξ

‖·‖ ⊕⊥ V

Comparing this to (6.15), one concludes

Tuξ
Σµξ

‖·‖
= D(∇2Lξ(uξ)) ∩ Tuξ

Σµξ

‖·‖
. (6.16)

In other words, D(∇2Lξ(uξ)) ∩ Tuξ
Σµξ

is dense in Tuξ
Σµξ

‖·‖
. This proves (ii).

(iii) Note that E0 ⊂ D(∇2Lξ(uξ))∩Tuξ
Σµξ

⊂ Tuξ
Σµξ

‖·‖
. Then we can, in view of

part (ii) of the Lemma, apply Lemma 6.5 withW = E0,K = D(∇2Lξ(uξ))∩Tuξ
Σµξ

,

and H = Tuξ
Σµξ

‖·‖
to obtain:

E⊥σ

0 = E⊥σ

0 ∩D(∇2Lξ(uξ)) ∩ Tuξ
Σµξ

‖·‖

= E⊥
0 ∩ D(∇2Lξ(uξ)) ∩ Tuξ

Σµξ

‖·‖
= Ŷ ,

where E⊥σ

0 is defined in (6.12). Since

E⊥
0 = E⊥σ

0 ⊕⊥ V,

part (iii) follows.

(iv) Let u ∈ D(∇2Lξ(uξ)) ∩ E⊥
0 . Since E⊥

0 = Ŷ ⊕⊥ V , u = Pu + v with Pu ∈ Ŷ
and v ∈ V . Moreover, since u ∈ D(∇2Lξ(uξ)) and V ⊂ D(∇2Lξ(uξ)), it follows

Pu ∈ D(∇2Lξ(uξ)) ∩ Ŷ. To conclude, we observe that

D(∇2Lξ(uξ)) ∩ Ŷ = Y.
Indeed, using (6.10) and (6.13),

D(∇2Lξ(uξ)) ∩ Ŷ =D(∇2Lξ(uξ)) ∩ E⊥
0 ∩ V ⊥ = D(∇2Lξ(uξ)) ∩ E⊥

0 ∩ V ⊥ ∩ E

=D(∇2Lξ(uξ)) ∩ E⊥
0 ∩ Tuξ

Σµξ
= Y.

Finally, Pu ∈ Y.
�

We can now proceed with the proof of Theorem 6.3.

Proof of Theorem 6.3. Let n− = n(D2
uξ
Lξ). As in the proof of Theorem 3.1,

X− = span
{

η1 · ∇ξuξ, ..., ηn−
· ∇ξuξ

}

is a maximally negative definite subspace

for D2
uξ
Lξ, X− ∩ Tuξ

Σµξ
= {0}, and Tuξ

Σµξ
is a positive subspace for D2

uξ
Lξ.

Furthermore, note that by hypothesis KerD2
uξ
Lξ = Tuξ

Ouξ
⊂ Tuξ

Σµξ
. Hence,

by Lemma 4.3 (ii), Tuξ
Σµξ

∩
(

Tuξ
Ouξ

)⊥
is a positive definite subspace for D2

uξ
Lξ,

meaning

D2
uξ
Lξ(v, v) > 0, ∀v ∈ Tuξ

Σµξ
∩
(

Tuξ
Ouξ

)⊥
, v 6= 0. (6.17)

We note for further reference that, by Lemma 6.4, KerD2
uξ
Lξ = Ker∇2Lξ(uξ), so

that Tuξ
Ouξ

⊂ D(∇2Lξ(uξ)).

Recall that, since E0 is the kernel of ∇2Lξ(uξ), E
⊥
0 is the spectral space as-

sociated to R∗, and hence invariant under ∇2Lξ(uξ). Now, let P be the projec-

tion on Ŷ and consider the following decomposition of the operator ∇2Lξ(uξ) on
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E⊥
0 = Ŷ ⊕⊥ V ,

∇2Lξ(uξ)|E⊥
0
=P∇2Lξ(uξ)P + P∇2Lξ(uξ)(IE⊥

0
− P )

+ (IE⊥
0
− P )∇2Lξ(uξ)P + (IE⊥

0
− P )∇2Lξ(uξ)(IE⊥

0
− P ).

We claim that P∇2Lξ(uξ)P is a self-adjoint operator on E⊥
0 with domain E⊥

0 ∩
D(∇2Lξ(uξ)). Indeed, since V is finite dimensional, we can easily show that
P∇2Lξ(uξ)(IE⊥

0
− P ) + (IE⊥

0
− P )∇2Lξ(uξ)P and (IE⊥

0
− P )∇2Lξ(uξ)(IE⊥

0
− P )

are bounded self-adjoint operators on E⊥
0 . Hence P∇2Lξ(uξ)P is the sum of a

self-adjoint operator with domain E⊥
0 ∩ D(∇2Lξ(uξ)) and a bounded operator

on E⊥
0 and, by the Kato-Rellich theorem, it is self-adjoint on E⊥

0 with domain
E⊥

0 ∩ D(∇2Lξ(uξ)). In particular, ∇2Lξ(uξ) = P∇2Lξ(uξ)P + K with K a fi-
nite rank operator and σess(P∇2Lξ(uξ)P ) = σess(∇2Lξ(uξ)). As a consequence,
0 /∈ σess(P∇2Lξ(uξ)P ) by hypotheses (iii) and (iv) of Theorem 6.3.

Now note that kerP∇2Lξ(uξ)P = V ⊂ E⊥
0 ∩ D(∇2Lξ(uξ)). Indeed, let u ∈

E⊥
0 ∩ D(∇2Lξ(uξ)) be such that P∇2Lξ(uξ)Pu = 0. Then

D2
uξ
Lξ(Pu, Pu) = 〈u, P∇2Lξ(uξ)Pu〉 = 0

with Pu ∈ Y by Lemma 6.6. Since D2
uξ
Lξ is strictly positive on Y (see (6.17)), it

follows that Pu = 0, which means that u ∈ V .
We now consider P∇2Lξ(uξ)P on Y. We have just shown that 0 6∈ σ(P∇2Lξ(uξ)P ) =

σess(P∇2Lξ(uξ)P )∪σd(P∇2Lξ(uξ)P ) and that P∇2Lξ(uξ)P is strictly positive on
Y (see (6.17)). It therefore has a spectral gap:

δ̃ = inf
v∈Yr{0}

〈P∇2Lξ(uξ)Pv, v〉
〈v, v〉 > 0.

Next, using the inequality (6.1), we obtain for all v ∈ Y
(

1 +
δ̃

C

)

D2
uξ
Lξ(v, v) ≥

ǫδ̃

C
‖v‖2E

which implies

D2
uξ
Lξ(v, v) ≥

ǫδ̃

δ̃ + C
‖v‖2E.

Finally, the density of D(∇2Lξ(uξ)) in E for ‖ · ‖E yields (6.4). �

7. Examples

7.1. Plane wave solutions of a system of nonlinear Schrödinger equations.
As an application of our main theorem, we investigate the orbital stability of plane
waves of a cubic nonlinear system of coupled nonlinear Schrödinger equations on
the one-dimensional torus, defined by











i∂tu1(t, x) + β∆u1(t, x) + (γ1|u1(t, x)|2 + γ12|u2(t, x)|2)u1(t, x) = 0

i∂tu2(t, x) + β∆u2(t, x) + (γ12|u1(t, x)|2 + γ2|u2(t, x)|2)u2(t, x) = 0

u(0, x) = u(x)

(7.1)

with u(t, x) =

(

u1(t, x)
u2(t, x)

)

: R× T → C2. Here T = T1 is the one-dimensional torus

of length L > 0. The constants γ1, γ2, γ12 ∈ R and β ∈ R∗
+ are parameters of the

model.
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The coupled NLSE (7.1) have been used to model nonlinear wave propagation in
a variety of physical systems. In nonlinear optics, they describe light propagation
in birefringent fibers [2]. In the study of ocean waves, they have been proposed
as a model for the generation of rogue waves in crossing sea states : these are
two-component wave systems with different directions of propagation (See [20] and
references therein). They also appear in the study of two-component Bose-Einstein
condensates ([1, 23]). A central topic in each of these situations is the stability
or instability of the plane wave solutions of those equations. Linear instability is
in this context referred to as modulational instability and was studied for various
parameter ranges in [2, 6, 8], among others. We will use the methods exposed in
this paper to show that, in the parameter regimes where linear stability can be
established, orbital stability also holds.

The four-parameter family of plane waves

ũξ(t, x) =

(

α1e
ik1·xe−iξ1t

α2e
ik2·xe−iξ2t

)

(7.2)

with ξ = (ξ1, ξ2) ∈ R2, (k1, k2) ∈ 2π
L Z2 and α = (α1, α2) ∈ R2 such that

{

ξ1 = βk21 − (γ1α
2
1 + γ12α

2
2)

ξ2 = βk22 − (γ12α
2
1 + γ2α

2
2).

(7.3)

are solution to the equation (7.1) and we are interested in study their orbital stabil-
ity. Using Galilean invariance of the equation (see [7]), the stability of these plane
waves is seen to be equivalent to that of

ũξ(t, x) =

(

α1e
ikxe−iξ1t

α2e
−ikxe−iξ2t

)

(7.4)

with k = k1 = −k2. Furthermore, we can easily remark that ũξ(t, x) can be written
in the form

ũξ(t, x) =

(

eikx 0
0 e−ikx

)

uξ(t, x)

with

uξ(t, x) =

(

α1e
−iξ1t

α2e
−iξ2t

)

(7.5)

a solution to the system of coupled nonlinear Schrödinger equations











i∂tu1 + β∆u1 + 2βik∇u1 + (γ1|u1|2 + γ12|u2|2)u1 − βk2u1 = 0

i∂tu2 + β∆u2 − 2βik∇u2 + (γ12|u1|2 + γ2|u2|2)u2 − βk2u2 = 0

u(0, x) = u(x)

(7.6)

It is easy to show that the Cauchy problem (7.6) is globally well-posed in
H1(T,C2) (since we consider here only the dimension d = 1).
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Let E = H1(T,C2) be viewed as a real Banach space with the usual H1−norm
and let 〈·, ·〉 be the scalar product on E defined by

〈u, v〉 =Re

∫ L

0

(u1(x)v̄1(x) + u2(x)v̄2(x)) dx

=

∫ L

0

(Re(u1(x))Re(v1(x)) + Im(u1(x))Im(v1(x))) dx (7.7)

+

∫ L

0

(Re(u2(x))Re(v2(x)) + Im(u2(x))Im(v2(x))) dx. (7.8)

This scalar product is clearly continuous with respect to the H1−norm. In this
case we find that Ê = L2(T,C2), viewed as a real Hilbert space.

Now, equation (7.6) is the Hamiltonian differential equation associated to the
function H defined by

H(u) =
β

2

∫ L

0

(

|(∇+ ik)u1(x)|2 + |(∇− ik)u2(x)|2
)

dx

− 1

4

∫ L

0

(

γ1|u1(x)|4 + 2γ12|u1(x)|2|u2(x)|2 + γ2|u2(x)|4
)

dx. (7.9)

Next, let G = R× R and define its action on E via

∀u =

(

u1

u2

)

∈ H1(T,C2), (Φγ1,γ2
(u)) (x) =

(

e−iγ1u1(x)
e−iγ2u2(x)

)

. (7.10)

The group G is an invariance group for the dynamics and the quantities

F1(u) =
1

2

∫ L

0

|u1(x)|2 dx (7.11)

F2(u) =
1

2

∫ L

0

|u2(x)|2 dx (7.12)

are the corresponding constants of the motion.
The two-parameter family of plane waves

uξ(x) =

(

α1

α2

)

(7.13)

with ξ = (ξ1, ξ2) ∈ R2 and α1, α2 ∈ Rr {0} such that
{

ξ1 = βk2 − (γ1α
2
1 + γ12α

2
2)

ξ2 = βk2 − (γ12α
2
1 + γ2α

2
2).

(7.14)

are solutions to the stationary equation (2.9). As a consequence, uξ is Gµξ
-relative

equilibria of (7.6) with µξ = F (uξ) =
L
2

(

α2
1

α2
2

)

.

The Gµξ
-orbit of the initial condition uξ(x) is given by

Ouξ
=

{(

α1e
−iγ1

α2e
−iγ2

)

, (γ1, γ2) ∈ Gµξ

}

. (7.15)

Our goal is to investigate the orbital stability of these plane wave solutions by
applying Theorem 6.3. From now, assume that γ1γ2 6= γ2

12. This is the necessary
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and sufficient condition for the map

µ = (
L

2
|α1|2,

L

2
|α2|2) → (ξ1, ξ2)

defined in (7.14) to be invertible. Its inverse is F̂ , which is a diffeomorphism. Note
that this condition corresponds to the case in which the system is not completely
integrable.

By definition (3.4) and by using the dispersion relation (7.14), we have

W (ξ) =H(uξ)− ξ1F1(uξ)− ξ2F2(uξ)

= − L

4

(

α2
1(ξ1 − βk2) + α2

2(ξ2 − βk2)
)

=
L

4(γ1γ2 − γ2
12)

[

γ2(ξ1 − βk2)2 − 2γ12(ξ1 − βk2)(ξ2 − βk2) + γ1(ξ2 − βk2)2
]

(7.16)

As a consequence,

D2
ξW =

L

2(γ1γ2 − γ2
12)

(

γ2 −γ12
−γ12 γ1

)

(7.17)

It is clear that D2
ξW is non-degenerate. Moreover a straightforward calculation

shows that

(1) If γ1γ2 − γ2
12 > 0 and min(γ1, γ2) > 0, then p(D2

ξW ) = 2;

(2) If γ1γ2 − γ2
12 > 0 and max(γ1, γ2) < 0, then p(D2

ξW ) = 0;

(3) If γ1γ2 − γ2
12 < 0, then p(D2

ξW ) = 1.

Next, we have to compute D2
uξ
Lξ(v, v) with Lξ(u) = H(u)− ξ1F1(u)− ξ2F2(u).

A straightforward calculation gives

D2
uξ
Lξ(v, v) =β

∫ L

0

(−∆Re(v1)Re(v1)−∆Re(v2)Re(v2)) dx

+ β

∫ L

0

(−∆Im(v1)Im(v1)−∆Im(v2)Im(v2)) dx

+ β

∫ L

0

(−2k∇Re(v1)Im(v1) + 2kRe(v1)∇Im(v1)) dx

+ β

∫ L

0

(2k∇Re(v2)Im(v2)− 2kRe(v2)∇Im(v2)) dx

− 2

∫ L

0

(

γ1α
2
1Re(v1)

2 + 2γ12α1α2Re(v1)Re(v2) + γ2α
2
2Re(v2)

2
)

dx

= 〈∇2Lξ(uξ)v, v〉 (7.18)

with

∇2Lξ(uξ) =









−β∆− 2γ1α
2
1 −2γ12α1α2 2βk∇ 0

−2γ12α1α2 −β∆− 2γ2α
2
2 0 −2βk∇

−2βk∇ 0 −β∆ 0
0 2βk∇ 0 −β∆









. (7.19)

In particular, in this functional space setting the hypotheses of Lemma 6.1 are
clearly satisfied by D2

uξ
Lξ(·, ·).
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7.1.1. Case k = 0. If k = 0, that is u1 and u2 have the same wave number, by
using Fourier series it is easy to show that the eigenvalues of ∇2Lξ(uξ) are of the
form

ρn = β

(

2π

L
n

)2

, n ∈ N (7.20)

with purely imaginary eigenvectors, and for all n ∈ N,

λ±,n = β

(

2π

L
n

)2

− (γ1α
2
1 + γ2α

2
2)±

√

(γ1α2
1 + γ2α2

2)
2 − 4α2

1α
2
2(γ1γ2 − γ2

12)

(7.21)

with real eigenvectors. By analyzing the sign of the eigenvalues λ±,0, we obtain the
following situation

(1) If γ1γ2 − γ2
12 > 0 and min(γ1, γ2) > 0, then n(D2

uξ
Lξ) ≥ 2 since λ+,0 and

λ−,0 are both negative.
(2) If γ1γ2 − γ2

12 > 0 and max(γ1, γ2) < 0, then n(D2
uξ
Lξ) = 0 since λ+,0 and

λ−,0 are both positive.
(3) If γ1γ2 − γ2

12 < 0, then n(D2
uξ
Lξ) ≥ 1 since λ−,0 < 0 and λ+,0 > 0. As a

consequence λ+,n > 0 for all n ∈ N.

So if we assume that

β

(

2π

L

)2

− (γ1α
2
1 + γ2α

2
2)−

√

(γ1α2
1 + γ2α2

2)
2 − 4α2

1α
2
2(γ1γ2 − γ2

12) > 0 (7.22)

which correspond to λ−,1 > 0 we can conclude that

p(D2
ξW ) = n(D2

uξ
Lξ).

Moreover, it is clear that

inf(σ(∇2Lξ(uξ)) ∩ (0,+∞)) > 0.

Finally, since ρ0 is the unique eigenvalue equal to 0, we have that

ker(D2
uξ
Lξ) = ker(∇2Lξ(uξ)) = span

{(

i
0

)

,

(

0
i

)}

= Tuξ
Ouξ

.

Hence Theorem 6.3 applies and, together with Proposition 2.2, leads to the
following result.

Proposition 7.1. Let k = 0, α1, α2 ∈ R∗ and γ1, γ2, γ12 ∈ R such that γ1γ2 6= γ2
12.

If

β

(

2π

L

)2

− (γ1α
2
1 + γ2α

2
2)−

√

(γ1α2
1 + γ2α2

2)
2 − 4α2

1α
2
2(γ1γ2 − γ2

12) > 0 (7.23)

then uξ =

(

α1

α2

)

is an orbitally stable Gµξ
- relative equilibrium.

We remark that condition (7.23) is a necessary and sufficient condition for linear

stability. To see this, note that the linearization of (7.6) around uξ =

(

α1

α2

)

is

given by the system
{

i∂tv1 + β∆v1 + 2βik∇v1 + (γ1α
2
1(v1 + v̄1) + γ12α1α2(v2 + v̄2)) = 0

i∂tv2 + β∆v2 − 2βik∇v2 + (γ12α1α2(v1 + v̄1) + γ2α
2
2(v2 + v̄2)) = 0

(7.24)
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that can be written as

∂t









Re(v1)
Re(v2)
Im(v1)
Im(v2)









= L









Re(v1)
Re(v2)
Im(v1)
Im(v2)









with

L =









−2βk∇ 0 −β∆ 0
0 2βk∇ 0 −β∆

β∆+ 2γ1α
2
1 2γ12α1α2 −2βk∇ 0

2γ12α1α2 β∆+ 2γ2α
2
2 0 2βk∇









. (7.25)

A solution to (7.6) is said to be linearly stable if all the eigenvalues of L are purely
imaginary. By using Fourier series, the eigenvalues of (7.25) can be seen to be the
zeros of the characteristic polynomial

Pn(λ) =λ4 − 2λ2βn2
L(−βn2

L + (γ1α
2
1 + γ2α

2
2)− 4βk2) + iλ8βn2

LβknL(γ1α
2
1 − γ2α

2
2)

+ (βn2
L)

3(βn2
L − 2(γ1α

2
1 + γ2α

2
2)) + 4(βn2

L)
2α2

1α
2
2(γ1γ2 − γ2

12)

+ 8βn2
Lβ

2k2n2
L(−βn2

L + (γ1α
2
1 + γ2α

2
2) + 2βk2)

with nL =
(

2π
L n
)

. So, whenever k = 0, Pn(λ) reduces to

Pn(λ) =λ4 − 2λ2βn2
L(−βn2

L + (γ1α
2
1 + γ2α

2
2))

+ (βn2
L)

3(βn2
L − 2(γ1α

2
1 + γ2α

2
2)) + 4(βn2

L)
2α2

1α
2
2(γ1γ2 − γ2

12).

and, for all n ∈ N the eigenvalues of L are

λ̃2
±,n =βn2

L

(

−βn2
L + (γ1α

2
1 + γ2α

2
2)±

√

(γ1α2
1 − γ2α2

2)
2 + 4α2

1α
2
2γ

2
12

)

.

Now it is clear that λ̃2
+,1 < 0 if and only if condition (7.23) holds. In that case, for

all n ∈ N∗, λ̃2
+,n ≤ λ̃2

+,1. Moreover, λ̃2
−,n ≤ λ̃2

+,n for all n ∈ N∗. As a consequence,
all the eigenvalues of L are purely imaginary and the corresponding plane wave is
linearly stable if and only if (7.23) holds.

7.1.2. Case k 6= 0. If k 6= 0, using Fourier series, we can show that the eigenvalues
of ∇2Lξ(uξ), for all n ∈ N, are of the form

λ+
±,n = β

(

2π

L
n

)2

+
1

2

(

C+ ±
√

C2
+ + 16β2k2n2

L

)

(7.26)

λ−
±,n = β

(

2π

L
n

)2

+
1

2

(

C− ±
√

C2
− + 16β2k2n2

L

)

(7.27)

with

C+ = −(γ1α
2
1 + γ2α

2
2) +

√

(γ1α2
1 + γ2α2

2)
2 − 4α2

1α
2
2(γ1γ2 − γ2

12),

C− = −(γ1α
2
1 + γ2α

2
2)−

√

(γ1α2
1 + γ2α2

2)
2 − 4α2

1α
2
2(γ1γ2 − γ2

12).

As before, by analyzing the sign of the eigenvalues for n = 0, we obtain the following
situation

(1) If γ1γ2−γ2
12 > 0 and min(γ1, γ2) > 0, then λ+

−,0 and λ−
−,0 are both negative

and n(D2
uξ
Lξ) ≥ 2.
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(2) If γ1γ2−γ2
12 > 0 and max(γ1, γ2) < 0, then λ+

+,0 and λ−
+,0 are both positive.

This implies λ+
+,n > 0 and λ−

+,n > 0 for all n ∈ N.

(3) If γ1γ2 − γ2
12 < 0, then λ−

−,0 < 0, λ+
+,0 > 0 and n(D2

uξ
Lξ) ≥ 1. As a

consequence λ+
+,n > 0 for all n ∈ N.

In all the cases, the two remaining eigenvalues are both 0 with purely imaginary
eigenvectors.

Next, a straightforward calculation shows that if we assume

C2
± + 16β2k2

(

2π

L

)2

> 16β2k4 (7.28)

then λ±
−,n is increasing as a function of n for all n ∈ N∗. Hence, it enough to

suppose that λ±
−,1 > 0, that is

β

(

2π

L

)2

+ C± > 4βk2, (7.29)

to conclude that

p(D2
ξW ) = n(D2

uξ
Lξ).

Note that condition (7.29) implies condition (7.28). Moreover, since C+ ≥ C−, it
is enough to assume that

β

(

2π

L

)2

+ C− > 4βk2.

Moreover, as before, it is clear that

inf(σ(∇2Lξ(uξ)) ∩ (0,+∞)) > 0.

and

ker(D2
uξ
Lξ) = ker(∇2Lξ(uξ)) = span

{(

i
0

)

,

(

0
i

)}

= Tuξ
Ouξ

.

Hence Theorem 6.3 applies and, together with Proposition 2.2, leads to the
following result.

Proposition 7.2. Let k ∈ 2π
L Z∗, α1, α2 ∈ R∗ and γ1, γ2 ∈ R, γ12 ∈ R∗ such that

γ1γ2 6= γ2
12. If

β

(

2π

L

)2

+ C− > 4βk2 (7.30)

then uξ =

(

α1

α2

)

is an orbitally stable Gµξ
- relative equilibrium.

In the particular case γ1α
2
1 = γ2α

2
2 which is a generalization of the set of param-

eters treated in [6], we can show that condition (7.30) is a necessary and sufficient
condition for linear stability.

Indeed, in this case, Pn(λ) the characteristic polynomial of (7.25) reduces to

Pn(λ) =λ4 − 2λ2βn2
L(−βn2

L + (γ1α
2
1 + γ2α

2
2)− 4βk2)

+ (βn2
L)

3(βn2
L − 2(γ1α

2
1 + γ2α

2
2)) + 4(βn2

L)
2α2

1α
2
2(γ1γ2 − γ2

12)

+ 8(βn2
L)

2βk2(−βn2
L + (γ1α

2
1 + γ2α

2
2) + 2βk2)



ORBITAL STABILITY VIA THE ENERGY-MOMENTUM METHOD 27

and, for all n ∈ N, the eigenvalues are given by

λ̃2
±,n =βn2

L

[

− βn2
L + (γ1α

2
1 + γ2α

2
2)− 4βk2

±
√

4α2
1α

2
2γ

2
12 + 16βk2(βn2

L − (γ1α2
1 + γ2α2

2))
]

.

Now, a tedious but straightforward calculation shows that λ̃2
+,n < 0 for all n ∈ N∗

if and only if condition (7.30) holds. Moreover, λ̃2
−,n ≤ λ̃2

+,n for all n ∈ N∗. As a
consequence, all the eigenvalues of L are purely imaginary and the corresponding
plane wave is linearly stable if and only if (7.30) holds.

7.1.3. Physical interpretation. To sum up, we can conclude that, given k = k1−k2 ∈
2π
L Z, α1, α2 ∈ R∗ and γ1, γ2, γ12 ∈ R∗ such that γ1γ2 6= γ2

12, if

β

(

2π

L

)2

− (γ1α
2
1 + γ2α

2
2)−

√

(γ1α2
1 + γ2α2

2)
2 − 4α2

1α
2
2(γ1γ2 − γ2

12) > 4βk2

(7.31)

then the plane waves

uξ(t, x) =

(

α1e
ik1·xe−iξ1t

α2e
ik2·xe−iξ2t

)

are orbitally stable Gµξ
- relative equilibria. Moreover, for k = 0, if this condition is

not satisfied the plane wave is unstable (at least linearly). For k 6= 0 this remains
true whenever γ1α

2
1 = γ2α

2.
We know from [7] that plane waves solutions to a cubic defocusing nonlinear

Schrödinger equation on the one-dimensional torus are orbitally stable. This means
that whenever, γ12 = 0, γ1 < 0 and γ2 < 0, all the plane waves of the form

uξ(t, x) =

(

α1e
ik1·xe−iξ1t

α2e
ik2·xe−iξ2t

)

are orbitally stable. It is natural to ask what happens if |γ12| 6= 0. We have two
different situations : k = 0 (i.e. the plane waves have the same wave number
k1 = k2) and k 6= 0. If k = 0 and γ2

12 < γ1γ2, which means that the coupling is
weak, then C− > 0 and condition (7.31) remains true. This means that the plane
waves with k = 0 then remain stable. If k = 0 and γ2

12 > γ1γ2, which means that
the coupling is strong, then C− < 0 and condition (7.31) fails at least if L is large
enough. Then the plane waves considered become unstable.

In the case k 6= 0, note that condition (7.31) can be satisfied only in the case (2)
above, namely when γ1γ2 − γ2

12 > 0, and max(γ1, γ2) < 0, since otherwise C− < 0.
This corresponds to a relatively small perturbation of two uncoupled defocusing
Schrödinger equations with orbitally stable plane wave solutions. Condition (7.31)
can then be satisfied for a finite number of values of k, provided C− is large enough,
but it fails for larger ones. The size of C− depends in particular on the “power” of
the plane wave, determined by |α1| and |α2|. For larger values of k, the plane wave
becomes linearly unstable, on the other hand, even at weak coupling. In other
words, high k plane waves show modulational instability, even at arbitrarily low
γ12.



28 S. DE BIÈVRE AND S. ROTA NODARI

8. On the link with Grillakis-Shatah-Strauss

8.1. The main coercivity estimate of Grillakis-Shatah-Strauss. We will now
compare the results in this paper to the work of [13]. Since in [13] the phase space
E on which the dynamics takes place is taken to be a Hilbert space, we place
ourselves for this discussion in the Hilbert space setting of Section 3 and consider
the situation described by (3.1)-(3.6).

To state the coercivity estimate of [13] which is the analog of our Theorem 3.1,
we need some additional notation. We define

W̃ : Ω ∩ gξ → Lξ(uξ) ∈ R, (8.1)

which is the restriction of the W-function (3.4) to the sub-Lie-algebra gξ of g,
defined in (4.5). Also

Õuξ
= ΦGξ

(uξ), (8.2)

is theGξ orbit through uξ. Since a prioriGξ differs fromGµξ
, one should not confuse

Õuξ
with Ouξ

, which is the Gµξ
-orbit through uξ. We introduce furthermore

Σ̃ξ = {v ∈ E | η · F (v) = η · µξ(uξ), ∀η ∈ gξ}. (8.3)

In other words, Σ̃ξ is the constraint surface corresponding to the constants of the

motion η · F for η ∈ gξ. Note that Σµξ
⊂ Σ̃ξ. In fact, when the moment map is

regular at µξ, then Σ̃ξ is a submanifold of E of co-dimension dimgξ which contains
the submanifold Σµξ

, itself of codimension dimg. The following theorem, which is
the analog of Theorem 3.1, can be inferred from [13].

Theorem 8.1. Under the previous hypotheses, let ξ ∈ Ω and suppose

(i) D2
ξW̃ is non-degenerate, i.e. Ker (D2

ξW̃ ) = {0},
(ii) KerD2

uξ
Lξ = Zξ,

(iii) inf(σ(∇2Lξ(uξ)) ∩ (0,+∞)) > 0,

(iv) p(D2
ξW̃ ) = n(D2

uξ
Lξ).

Then there exists δ > 0 such that

∀v ∈ Tuξ
Σ̃ξ ∩

(

Tuξ
Õuξ

)⊥

, D2
uξ
Lξ(v, v) ≥ δ‖v‖2. (8.4)

It is clear that, when the invariance group G is one-dimensional, i.e. dim g = 1,
this theorem is identical to Theorem 3.1. Indeed, then G = Gξ = Gµξ

and hence

W = W̃ so that both the assumptions and the conclusions of both theorems are
identical. This is the situation studied in [12] and [26]. The same conclusions
hold true more generally when the group G is abelian, since then again, Gξ =
Gµξ

= G. In general, however, the groups Gξ and Gµξ
may be distinct, and so

may therefore be the orbits Õuξ
and Ouξ

. Hence, a priori, the two approaches
could yield different coercivity estimates and hence different stability results. Their
comparison therefore needs to be done with care, a task we turn to in the next
subsection.

Remark 8.2. A proof of Theorem 8.1 can be given along the same lines as the proof
of Theorem 3.1 and we don’t reproduce it here. We point out that in fact only the
bound D2

uξ
Lξ(v, v) ≥ 0 is shown in [13]; the argument leading from that bound

to (8.4) is the same as in the proof of Theorem 3.1 above.
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8.2. Comparing Theorem 3.1 to Theorem 8.1. Let us first compare the re-
spective conclusions (3.7) and (8.4) as follows. Writing

C− = {u ∈ E | D2
uξ
L(u, u) < 0} (8.5)

for the negative cone of D2
uξ
Lξ, we see that they imply that

Tuξ
Σµξ

∩ C− = ø, respectively Tuξ
Σ̃ξ ∩ C− = ø, (8.6)

meaning that Tuξ
Σ, respectively Tuξ

Σ̃ξ are non-negative subspaces of E for D2
uξ
L.

Since Tuξ
Σµξ

⊂ Tuξ
Σ̃ξ the second of these statements implies the first and should

in general be harder to obtain. Indeed, the cone C− may avoid Tuξ
Σµξ

but have a

non-trivial intersection with Tuξ
Σ̃ξ. This is further reflected in the fact that (8.6)

implies that

codim(Tuξ
Σµξ

) ≥ n(D2
uξ
Lξ) respectively codim(Tuξ

Σ̃ξ) ≥ n(D2
uξ
Lξ).

When uξ is a regular relative equilibrium, one has dimg = codim(Tuξ
Σµξ

) ≥
dimgµξ

= codim(Tuξ
Σ̃ξ).

To understand how the stronger conclusion comes about, one may note that
condition (iv) of Theorem 8.1 has a more limited range of applicability than con-
dition (iv) of Theorem 3.1 since in general

p(D2
ξW̃ ) ≤ p(D2

ξW ) ≤ n(D2
uξ
Lξ). (8.7)

In particular, condition (iv) of Theorem 8.1 cannot be satisfied when p(D2
ξW̃ ) <

p(D2
ξW ). Below, we will give an example where

p(D2
ξW̃ ) < p(D2

ξW ) = n(D2
uξ
Lξ),

so that Theorem 3.1 applies, but Theorem 8.1 does not.
The following corollary further clarifies the link between the two results.

Corollary 8.3. Suppose the hypotheses of Theorem 8.1 are satisfied. Then

Tuξ
Õuξ

= Tuξ
Ouξ

so that there exists δ > 0 such that

∀v ∈ Tuξ
Σ̃ξ ∩

(

Tuξ
Ouξ

)⊥
, D2

uξ
Lξ(v, v) ≥ δ‖v‖2. (8.8)

Moreover hypotheses (ii), (iii) and (iv) of Theorem 3.1 are satisfied. One has
gξ ⊂ gµξ

and if, in addition, uξ is a regular relative equilibrium, then gµξ
= gξ.

We can conclude from the previous discussion and the corollary that, under the
non-degeneracy hypothesis Ker (D2

ξW ) = {0}, Theorem 3.1 provides the desired

coercivity estimate (3.7) under weaker conditions than Theorem 8.1. As a result,
to find a situation where Theorem 8.1 does apply, whereas Theorem 3.1 does not,
one has to suppose Ker (D2

ξW ) 6= {0}, whereas Ker (D2
ξW̃ ) = {0}. We did not find

an example of such a situation.

Proof. We know from Lemma 4.2 (5) that Ker (D2
uξ
Lξ) ⊂ Tuξ

Σµξ
, so that hypothe-

sis (ii) of the theorem implies Tuξ
Õuξ

⊂ Tuξ
Σuξ

. Since Õuξ
∩Σµξ

⊂ ΦG(uξ)∩Σµξ
=

Ouξ
, it follows that Tuξ

Õuξ
⊂ Tuξ

Oξ. Now, we know from Lemma 4.2 (4) that
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Tuξ
Ouξ

⊂ Ker (D2
uξ
Lξ | Tuξ

Σµξ
). So, if v ∈ Tuξ

Ouξ
⊂ Tuξ

Σµξ
⊂ Tuξ

Σ̃ξ, then

D2
uξ
Lξ(v, v) = 0. Writing

v = v‖ + v⊥, v‖ ∈ Tuξ
Õuξ

, v⊥ ∈ Tuξ
Õ⊥

uξ

we have,

0 = D2
uξ
L(v, v) = D2

uξ
Lξ(v‖, v‖) +D2

uξ
Lξ(v⊥, v⊥) + 2D2

uξ
Lξ(v‖, v⊥)

= D2
uξ
Lξ(v⊥, v⊥),

since v‖ ∈ Ker (D2
uξ
Lξ). It follows from (8.4) that v⊥ = 0 so that v ∈ Tuξ

Õuξ
.

We conclude that Tuξ
Õuξ

= Tuξ
Ouξ

and hence (8.8) follows from (8.4). It also
follows that hypothesis (ii) of Theorem 3.1 is satisfied. Hypothesis (iii) is the same
in both theorems and hypothesis (iv) of Theorem 8.1, together with (8.7), implies
hypothesis (iv) of Theorem 3.1 .

Now let η ∈ gξ. Since Tuξ
Õuξ

= Tuξ
Ouξ

there exists η′ ∈ gµξ
so that Xη(uξ) =

Xη′(uξ). Hence there exists η
′′ ∈ guξ

(which is the Lie-algebra of the isotropy group
Guξ

of uξ) so that η = η′ + η′′. Since guξ
⊂ gµξ

, it follows that η ∈ gµξ
. Hence

gξ ⊂ gµξ
. Finally, recall that Xη′′(uξ) = 0 is equivalent to η′′ ·Duξ

F = 0 and hence,
if uξ is a regular relative equilibrium, then guξ

= {0}; by the same argument, one
then shows that gµξ

⊂ gξ, so that the result follows. �

To complete our comparative analysis of those two theorems, we further analyse
the conditions on the kernel of D2

uξ
Lξ they impose. Similarly to the non-degeneracy

condition (i), those conditions are also not in a clear logical relation, in particular
because they refer to two a priori different subgroups of G, namely Gξ and Gµξ

.
The following lemma sheds further light on the situation.

Lemma 8.4. Suppose the hypotheses of Lemma 4.2 are satisfied. Let ξ ∈ Ω and
suppose Ker (D2

ξW ) = {0}. Then

Ker (D2
uξ
Lξ) = Ker (D2

uξ
Lξ | KerDuξ

F ). (8.9)

In addition, the following two statements are equivalent:

(i) Ker (D2
uξ
Lξ) = Tuξ

Õξ;

(ii) Ker (D2
uξ
Lξ) = Tuξ

Oξ and gξ = gµξ
.

The lemma shows that, if uξ is a regular and non-degenerate relative equilibrium,
then the condition on the kernel of D2

uξ
Lξ of Theorem 8.1 implies not only the

kernel condition in Theorem 3.1, but in addition that gξ = gµξ
. This statement is

independent of the other spectral conditons of these theorems on D2
uξ
Lξ.

Proof. It follows from Ker (D2
ξW ) = {0}, together with Lemma 4.2 (1) and Lemma 4.1

that E = Uξ ⊕ Tuξ
Σµξ

. Hence (4.9) implies that

Ker (D2
uξ
Lξ) = Ker (D2

uξ
Lξ | Uξ)⊕Ker (D2

uξ
Lξ | KerDuξ

F ) (8.10)

On the other hand, it follows from (4.8) that

Ker (D2
uξ
Lξ | Uξ) = Dξũ(Ker (D2

ξW )) = {0},
so that the first statement of the Lemma follows.
(i) ⇒ (ii) From Lemma 4.2 (4), together with (8.9) and hypothesis (i), we conclude
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that

Tuξ
Ouξ

⊂ Ker (D2
uξ
Lξ | KerDuξ

F ) = Ker (D2
uξ
Lξ) = Tuξ

Õuξ
⊂ Tuξ

Σµξ
.

On the other hand, as in the proof of Corollary 8.3, we have Tuξ
Õuξ

⊂ Tuξ
Ouξ

.

Hence Tuξ
Õuξ

= Tuξ
Ouξ

and the first statement of (ii) follows. The second state-
ment is now proven as in the proof of Corollary 8.3.
(ii) ⇒ (i) This is obvious. �

8.3. Proving orbital stability. The above coercivity estimate (8.4) (or, equiva-
lently (8.8)) is used in [13] as an essential input to show the Gξ-orbital stability of
uξ. Note that this distinguishes their approach from the rest of the literature on
orbital stability, including this paper and [7], where instead Gµξ

-stability is proven.
The argument given in [13] leading from the above coercivity estimate to Gξ-orbital
stability of uξ is based on an implicit assumption on F , referred to as Hypothesis F
in [7]. It was explained in that last paper that it is typically not satisfied when
F takes values in Rm, with m > 1. As explained in Section 2 above, it is instead
possible to use arguments provided in [7] to prove Gµξ

-relative stability, using (3.7)
(or, a fortiori (8.8)) as a starting point. One may wonder if it would be possible
to prove Gξ-relative stability as well, which is potentially stronger, since according

the corollary it is possible that Õuξ
⊂ Ouξ

since gξ ⊂ gµξ
. We consider first the

case where Gµξ
is commutative. Then gξ is commutative and both for Gξ and Gµξ

the exponential map is surjective, so that Gξ ⊂ Gµξ
. On the other hand, when Gµξ

is commutative, the definition of Gξ implies that Gµξ
⊂ Gξ, so that then Gξ = Gµξ

and hence Õuξ
= Ouξ

. So Õuξ
( Ouξ

is only possible under the hypotheses of The-

orem 8.1 provided Gµξ
is not commutative. In addition, note that if Õuξ

and Ouξ

are submanifolds of E, then the corollary furthermore implies they have the same
dimension, so that Õuξ

is an open subset of Ouξ
. In conclusion, we are not aware

of a situation where the conditions of Theorem 8.1 hold, and where Õuξ
( Oµξ

. In
addition, should such a situation exist, it is not clear that the arguments provided
in the cited works would yield Gξ-orbital stability.

It remains to see if there exist circumstances where the conditions of Theorem 8.1
are satisfied, while those of Theorem 3.1 are not. Note that, according to the
corollary, conditions (ii), (iii) and (iv) of Theorem 3.1 are implied by the hypotheses
of Theorem 8.1. Concerning the non-degeneracy conditions (i), it is clear that one

has neither that Ker (D2
ξW ) = {0} implies Ker (D2

ξW̃ ) = {0}, nor the opposite. It
is therefore possible that the latter holds while the former is violated, but we are
not aware of such a situation.

8.4. An example. We end this section with a simple example in E = R6 where
Theorem 3.1 applies, but Theorem 8.1 does not. As already pointed out, G must
be non-commutative for this to happen. Consider the SO(3)-invariant Hamiltonian

Hα(q, p) = H0(q, p)− αF 2(q, p), with H0(q, p) =
‖p‖2
2

+ V (‖q‖), (8.11)

and F (q, p) = q ∧ p. Note that H0 is the Hamiltonian of a particle in a central
potential V and that the components of the angular momentum vector F generate
rotations. Since H0 Poisson commutes with F 2 and since F 2 generates rotations
about q ∧ p, it is easy to see that the circular orbits of H0 are also flow lines of Hα
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and that they are relative equilibria. These are the ones whose orbital stability we
shall study. Consider for that purpose the stationary equation, with ξ ∈ R3 ≃ so(3),

Duξ
Hα − ξ ·Duξ

F = 0,

where uξ = (qξ, pξ). A simple computation shows that any solution uξ is of the
form uξ = (qξ, pξ) = (ρξ q̂ξ, σξ p̂ξ) with

σ2
ξ = ρξV

′(ρξ), q̂ξ · p̂ξ = 0.

Here ρξ > 0, σξ > 0 and we write â = a/‖a‖ for each a ∈ R3. We have

µξ = F (uξ) = qξ ∧ pξ = ρξσξ q̂ξ ∧ p̂ξ,with ξ = ηα,ξµξ, ηα,ξ =
1− 2αρ2ξ

ρ2ξ
.

Clearly, in this situation Gξ = Gµξ
≃ SO(2). One has

F̂ (ξ) = ρξσξ ξ̂ = ρ
3/2
ξ [V ′(ρξ)]

1/2
ξ̂

‖ξ‖ = ρξσξ

|1− 2αρ2ξ|
ρ2ξ

= ρ
3/2
ξ [V ′(ρξ)]

1/2 |1− 2αρ2ξ|
ρ2ξ

=
[

ρ−1
ξ V ′(ρξ)

]1/2

|1− 2αρ2ξ|.

For illustrative purposes, it is sufficient to consider V (ρξ) =
1
2ωρ

2
ξ. Then it is clear

that, provided 2α > ρ−2
ξ , F̂ is a local diffeomorphism and

‖ξ‖ = ω1/2(2αρ2ξ − 1).

A simple computation then yields

W (ξ) = Hα(uξ)− ξ · F (uξ) = αωρ4ξ =
1

4

ω

α

(

1 +
‖ξ‖√
ω

)2

,

and furthermore that

D2
ξW (v, v) =

1

2α

[

1 +

√
ω

‖ξ‖

]

v2 −
√
ω

2α‖ξ‖(v · ξ̂)
2 ≥ v2

2α
,

which is positive definite so that p(D2
ξW ) = 3. Hence, n(D2Lξ) ≥ 3. A further

lengthy but straightforward computation shows that

n(D2Lξ) = 3,

and that Ker (D2
uξ
Lξ) = Tuξ

Ouξ
. Hence Theorem 3.1 implies that the circular

orbits are orbitally stable.
On the other hand the assumptions of [13] are too strong to apply in this simple

example. Indeed, in [13] the authors consider the Hessian of functionW restricted to

gξ. The main hypothesis of their stability theorem is that p(D2
ξW̃ ) = n(D2

uξ
Lα,ξ).

In the present situation this condition is not satisfied. Indeed, since gξ = so(2),

p(D2
ξW̃ ) ≤ 1. In fact, it is easy to see it is equal to 1. As a consequence, p(D2

ξW̃ ) <

n(D2
uξ
Lα,ξ) = 3 and so the hypothesis of Theorem 8.1 are not satisfied.
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8.5. Conclusions. In this paper we studied the stability of relative equilibria uξ,
meaning solutions of (2.9). Those can be classified as follows: regular equilibria
are those for which Duξ

F has maximal rank. Relative equilibria that are not
regular are called singular. Non-degenerate relative equilibria are those for which
Ker (D2

ξW ) = {0}. We have seen that non-degenerate equilibria are regular. Our
main results, Theorem 3.1 and Theorem 6.3, give sufficient conditions for non-
degenerate relative equilibria to be Gµξ

stable. They are stated in terms of the

hessian D2
ξW , and as such seem to be novel even in finite dimensional systems,

where sufficient conditions for orbital stability are usually given directly in terms of
D2

uξ
Lξ itself. We have further analysed the link between our results and the ones

of Grillakis-Shatah-Strauss in [13], thereby clarifying the latter.
It would be of interest to extend our results to degenerate but regular equilibria.

Results in that direction can be found in [13]. Singular equilibria are known to be
more difficult to deal with, even in finite dimensional systems, where their stability
has been studied in [17, 19].
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