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ABSTRACT. In this paper, we present a new parallel algorithm for time dependent problems based on
coupling parareal with non-overlapping domain decomposition method in order to increase parallelism
in time and in space. For this we focus on the iterative methods of parallization in space to solve
the interface problem like Neumann-Neumann method. In the new algorithm, the coarse temporel
propagator is defined on the global domain and the Neumann-Neumann method is chosen as a fine
propagator with a few iterations. We present the rigorous convergence analysis of the new coupled
algorithm on bounded time interval. Numerical experiments illustrate the performance of this new
algorithm and confirm our analysis.

RÉSUMÉ. Dans ce papier, nous présentons un nouvel algorithme parallèle pour les problèmes dé-
pendant du temps basé sur le couplage du pararéel avec les méthodes de décomposition de domaine
sans recouvrement afin d’augmenter le parallélisme dans le temps et l’espace. Nous nous concen-
trons sur les méthodes itératives de parallélisation en espace pour résoudre le problème d’interface
par la méthode de Neumann-Neumann. Dans ce nouvel algorithme, le propagateur grossier est dé-
finie sur le domaine global et la méthode de Neumann-Neumann est choisi pour le propagateur fin
avec quelques itérations. Nous présentons l’analyse rigoureuse de convergence du nouvel algorithme
couplé sur un intervalle de temps borné. Des expèriences numériques illustrent les performances de
ce nouvel algorithme et confirment notre analyse.

KEYWORDS : Parallel Algorithm, Parareal algorithm, Non-overlapping domain decomposition method,
Schur complement, Neumann-Neumann method.

MOTS-CLÉS : Algorithme parallèle, Algorithme du pararéel, Méthodes de décomposition de domaine
sans recouvrement, Complément de Schur, Méthode de Neumann-Neumann.



1. Introduction
In this paper we will focus on domain decomposition methods (DDM)[13, 11] ap-

plied to Finite Element Method (FEM). Though non-overlapping domain decomposition
methods are powerful techniques for solving elliptic partial differential equations (PDEs).
These methods consist of splitting the global domain into serval non overlapping subdo-
mains and using a parallel solver to solve the local problems. This procedure leads to
iterative methods to find interface unknowns connecting domains together, namely the
interface displacements in the Schur complement methods.

The performance of the method depends on the choice of efficient preconditioner for
the interface operators. In this context three methods arose in 91’s such as the Neumann-
Neumann method, Finite Element Tearing and Interconnect (FETI) [5] and Balanced Do-
main Decomposition (BDD)[10]. In the present paper, the method of non-overlapping
domain decomposition used is Neumann-Neumann method [7]. This method consists
of solving the subdomain problems using Dirichlet interface conditions, followed by a
correction step involving Neumann interface conditions.

Non-overlapping domain decomposition method can be extended to time dependent
problems. The classical approach consists in discretizing in time with an implicit scheme
and applying a domain decomposition method for the steady problems obtained at each
time step [4]. The numerical temporal evolution schemes are sequential in nature and
can be costly on a parallel computer. To reduce the computational cost over the whole
time interval, recent interest arose in order to exploit modern engineering and modern
hardware architectures, increased parallelism in numericals algorithms are of great im-
portance. This development have lead to an increased focus on temporal paralleliza-
tion in research, for this purpose we adopt the parareal algorithm introduced for the first
time by Lions and al [8] which need to be solved in real-time. The parareal algorithm
can be interpreted as different approaches, such as mutltigrid-in-time algorithm [6] or
predictor-corrector method [3]. To be valuable to solve stiff models in real-time simu-
lations, parareal use different models for the coarse and the fine solvers. The parareal
algorithm has been applied to many fields by many authors [2, 9].

For problems with a larger size, or larger complexity, the parareal method suffers
from the size of the spatial subproblem to solve, in this case we propose to combine
the parareal algorithm with the domain decomposition method in order to reduce the
complexity and performs the parallelism both in space and in time subdomains. There are
at least three variants of the parareal algorithm which all contain some spatial parallelism:
the first variant, which is the subject of this contribution, uses for the fine propagator
a domain decomposition method; the second variant uses for the coarse propagator a
domain decomposition method, and finally the third variant employs for both the coarse
and fine propagators a domain decomposition method.

We develop in this paper a new parallel algorithm for advection-dominated diffusion
problem by coupling the parareal algorithm and the non-overlapping domain decomposi-
tion like Neumann-Neumann method.

In this new algorithm, the Neumann-Neumann method is chosen as the fine propagator
on each sub-interval with only a few iterations, where the interface problem is solved by
Krylov type such as GMRES. In particular there is no coarse mesh needed in the case of
many subdomains, if the time step is not too big. The remainder of the paper proceeds
as follows. The model problem is presented in Section 2. In Section 3, we present the
Neumann-Neumann method. Section 4 describes the parareal in time algorithm. We



propose our new coupled-algorithm in Section 5. Some experimental results are reported
in Section 6. Our conclusion is given finally in Section 7.

2. Model problem
Let Ω be a bounded domain in Rd, d = 1, 2, 3 with a Lipschitz boundary ∂Ω. Our

model problem is the advection-dominated diffusion problem defined by
∂u

∂t
− ν∆u+ α.∇u = f(t) in Ω×]0, T ],

u(x, t = 0) = u0 in Ω,
u(x, t) = 0 on ∂Ω× [0, T ],

(1)

where α = (α1, α2) is the advection velocity and f is the second term . If u0∈H1
0 (Ω),

the unique weak solution u is in L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)).
Once equation (1) discretized in time by an implicit scheme of first order, with a uniform
time step equal to ∆t, the model problem reduces at every time step Tn+1 = (n + 1)∆t
to the solution of

L̄(un+1) := (
1

∆t
− ν∆+ α∇)un+1 = fn+1 +

un

∆t
= fn+1. (2)

After discretization of the problem by finite element we have

Aun+1 := (I +∆tK)un+1 = bn+1 (3)

where un(x) is the vector of nodal values of the approximation of the solution u(x, Tn), I
is a identity matrix, K is a symmetric positive definite matrix arising from the discretiza-
tion of the advection-dominated diffusion problem and bn+1 the vector of nodal values
of the right hand side depending on un(x). At a fixed time level Tn+1, we have to solve
the problem (2) depending on the time step parameter by applying domain decomposition
methods.

3. The Neumann-Neumann preconditioner
We decompose the computational domain Ω into finitely many non-overlapping sub-

domains Ωi, i = 1 . . . Ns and denote the subdomain boundaries by ∂Ωi. The local inter-
faces are defined by Γij = (∂Ωi ∩Ωj) \ ∂Ω. Furthermore, at a fixed time level Tn+1, we
define the global interface of this decomposition Γ =

∪
i ̸=j

Γij . Let A(i) be the local stiff-

ness matrix corresponding to subdomain Ωi, un+1
i be the vector of degrees of freedom

corresponding to all elements in Ωi, and let R(i) denote the restriction matrix with entries
0 or 1 mapping the degrees of freedom ui into global degrees of freedom. We introduce
the interface degrees of freedom , γn+1 := R(i)un+1

i |Γ and b(i,n+1) the vector of nodal
values of the right hand side in Ωi. The stiffness matrix A is obtained by the standard
subassembly process

A =

Ns∑
i=1

R(i)TA(i)R(i), (4)



the system Aun+1 = bn+1 can now be rewritten

A
(1)
II . . . 0 A

(1)
IΓR

(1)

...
. . .

...
...

0 . . . A
(Ns)
II A

(Ns)
IΓ R(Ns)

R(1)TA
(1)
IΓ

T
. . . R(Ns)

T
A

(Ns)
IΓ

T
Ns∑
i=1

R(i)TA
(i)
ΓΓR

(i)




un+1
1,I
...

un+1
Ns,I

γn+1

 =



b
(1,n+1)
I

...
b
(Ns,n+1)
I

Ns∑
i=1

R(i)T b
(i,n+1)
Γ


.

(5)
Eliminating the unknowns corresponding to the subdomain interior i.e. un+1

i,I and in (3)
we arrive at(

Ns∑
i=1

R(i)T (A
(i)
ΓΓ −A

(i)
IΓ

T
A

(i)
II

−1
A

(i)
IΓ)R

(i)

)
γn+1 =

ns∑
i=1

R(i)T
(
b
(i)
Γ,n+1 −A

(i)
IΓ

T
A

(i)
II

−1
b
(i,n+1)
I

)
.

(6)
We introduce the following notation

Si =

(
A

(i)
ΓΓ −A

(i)
IΓ

T
A

(i)
II

−1
A

(i)
IΓ

)
, S =

M∑
i=1

R(i)TSiR
(i),

gn+1
i =

(
b
(i,,n+1)
Γ −A(i)

IΓ

T
A

(i)
II

−1
b
(i,n+1)
I

)
, gn+1 =

M∑
i=1

R(i)T gn+1
(i) ,

(7)

where Si is the local primal Schur complement. We obtain the following Schur comple-
ment problem on interface

Sγn+1 = gn+1. (8)

The parallel preconditioner "Neumnan-Neumann" PNN is then defined as follows

P−1
NN =

Ns∑
i=1

R(i)TD(i)Si
−1D(i)R(i), (9)

with Di is a scaling diagonal subdomain matrix and form a decomposition of unity on the
interface.

Ns∑
i=1

R(i)TD(i)R(i) = IΓ. (10)

The Neumann-Neumann algorithms are preconditioned GMRES methods for solving the
preconditioned linear system

P−1
NNSγn+1 = P−1

NNg.

3.1. Convergence analysis

3.1.1. Schur complement algorithm in the continuous case
To define the Schur complement in the continuous case for the model problem (1) at

each time step Tn+1 on the space domain Ω, where Ω = [0, 1] × R. We assume that the
spatial domain is partitioned into two non-overlapping subdomains Ω1 = [0, c] × R and



Ω2 = [c, 1] × R where c ∈]0, 1[. We denote by Γ = {(x, y) ∈ [0, 1]× R | x = c}, ni

the unit outward normal for Ω on the interface Γ and n the unit outward normal vector on
Γ directed from Ω1 to Ω2. We split the original problem (2) into two locals problems as
follows 

L̄un+1
i (x, y) = fn+1

i
(x, y) in Ωi, i = 1, 2,

un+1
1 (x, y) = un+1

2 (x, y) on Γ,

∂un+1
1

∂n
(x, y) =

∂un+1
2

∂n
(x, y) on Γ,

un+1
i (x, y) = 0 on ∂Ωi ∩ ∂Ω, i = 1, 2.

(11)

The split problem (11) with transmission conditions (11)2, (11)3 is equivalent to the orig-
inal one, in the sense we introduce the Dirichlet data on the interface γn+1 = un+1

|Γ.
Introducing the extension operatorsHi and Gi as follows

L̄Hiγ
n+1 = 0 in Ωi, i = 1, 2,

Hiγ
n+1 = γn+1 on Γ,

Hiγ
n+1 = 0 on ∂Ωi ∩ ∂Ω,

(12)

and 
L̄Gifn+1

i
= fn+1

i
in Ωi, i = 1, 2,

Gifn+1

i
= 0 on Γ,

Gifn+1

i
= 0 on ∂Ωi ∩ ∂Ω.

(13)

The solution is constructed by defining

un+1
i = Hiγ

n+1 + Gifn+1

i
, i = 1, 2. (14)

The Steklov-Poincaré equation is given by

Sγn+1 = χn+1 (15)

where χn+1

χn+1 :=
∂G2fn+1

∂n
−
∂G1fn+1

1

∂n

= −
2∑

i=1

∂Gifn+1

i

∂ni
,

and

Sγ :=
∂H1γ

∂n
− ∂H2γ

∂n

=
2∑

i=1

∂Hiγ

∂ni
.

The local Steklov-Poincaré operators Si are then defined as follows

Siγ :=
∂Hiγ

∂ni
. (16)

For accelerating the convergence we initialize the interface condition with the previous
solution at convergence (computed in time Tn). γn+1,0 = γn,Pmax . Now the Schur



complement algorithm consists of the following steps: at every time step Tn+1, given an
initial guess γ0,0 = u0|Γ along the interface Γ, compute for p = 1, 2 . . .

L̄(un+1,p+1
i )(x, y) = f

i,n+1
(x, y) in Ωi, i = 1, 2,

un+1,p+1
i (x, y) = 0 on ∂Ωi ∩ ∂Ω,
un+1,p+1
i (x, y) = γn+1,p on Γ,

(17)

and then update the value along the interface using

γn+1,p+1 = γn+1,p − θ(Sγn+1,p − gn+1), on Γ, (18)

θ ∈]0, 1] being a relaxation parameter. To investigate the convergence of the iterative
solutions of split problem (17) we define the error en,pi between the exact solution un

and the iterates un,pi at fixed time level Tn. By linearity, the error satisfies a homoge-
neous advection-dominated diffusion. We study in the sequel the homogenuous problem
with data on the interfaces only. Let γ̃n,p = γn,p − un|Γ with γ̃p(0) = 0 to satisfy the
compatibility condition. The error equations are given by

L̄(en+1,p+1
1 ) =0 in Ω1,

en+1,p+1
1 (.) =0 on ∂Ωi ∩ ∂Ω,
en+1,p+1
1 (.) =γ̃n+1,p, on Γ,

(19)


L̄(en+1,p+1

2 ) = 0 in Ω2,
en+1,p+1
2 (.) =0 on ∂Ωi ∩ ∂Ω,
en+1,p+1
2 (.) = γ̃n+1,p on Γ,

(20)

γ̃n+1,p+1 = γ̃n+1,p − θ(S1 + S2)γ̃
n+1,p on Γ,

= (Id− θ(S1 + S2))γ̃
n+1,p, on Γ.

We define the Fourier transform of en,pi in the y direction by

ên,pi (x,w) :=

∫
R
exp(−iwy)en,pi (x, y)dy. (21)

Applying formally the Fourier transform to the equations (19) and (35), we obtain
̂̄Lên+1,p+1

1 (x,w) = 0 for (x,w) ∈]0, c[×R,
ên+1,p+1
1 (0, w) =0 on R,
ên+1,p+1
1 (c, w) =̂̃γn+1,p

(w) on R,
(22)


̂̄Lên+1,p+1

2 (x,w) = 0 pour (x,w) ∈]c, 1[×R,
ên+1,p+1
2 (1, w) =0 on R,
ên+1,p+1
2 (c, w) =̂̃γn+1,p

(w) on R,
(23)

where ̂̄L = −ν∂2/∂2x+ α1∂/∂x+ (iα2νw + νw2). (24)

The characteristic equation of the second order ordinary differential equation in the x-
variable will give us

−νx2 + α1x+ (
1

∆t
+ iα2w + νw2) = 0, (25)



where the solutions have the form

ên+1,p+1
1 (x,w) = C+

1,1 exp(σ
+x) + C−

1,2 exp(σ
−x), x ∈ [0, c],

ên+1,p+1
2 (x,w) = C+

2,1 exp(σ
+(x− 1)) + C−

2,2 exp(σ
−(x− 1)), x ∈ [c, 1],

(26)

with the characteristic roots

σ+ =
α1 +

√
r

2ν
and σ− =

α1 −
√
r

2ν
,

where r = Re+ iIm is a complex number with a real part Re = α2
1 + 4ν(

1

∆t
+ νw2)

and a imaginary part Im = 4να2w. The complex square root is defined by

√
r =

1√
2
(Re+

√
Re2 + Im2)1/2 + i

Im

| Im |
√
2
(−Re+

√
Re2 + Im2)1/2 (27)

The coeffcients Ci,1 and Ci,2 are computed from the boundary conditions in the error
equations (26)1, (26)2, we get

ên+1,p+1
1 (0, w) = 0 ⇒ C1,1 = −C1,2

ên+1,p+1
1 (c, w) = ̂̃γn+1,p

⇒ C1,1 =
̂̃γn+1,p

exp(α1

2ν c) sinh(
√
r

2ν c)

ên+1,p+1
2 (1, w) = 0 ⇒ C2,1 = −C2,2

ên+1,p+1
2 (c, w) = ̂̃γn+1,p

⇒ C+
2 =

̂̃γn+1,p

exp(α1

2ν (c− 1)) sinh(
√
r

2ν (c− 1))
,

(28)

and inserting them into the error equations (26)1, (26)2 we deduce the subdomain solu-
tions

ên+1,p+1
1 (x,∆t, w) = exp(

α1

2ν
(x− c))

sinh(
√
r

2ν x)

sinh(
√
r

2ν c)
̂̃γn+1,p

, x ∈ [0, c],

ên+1,p+1
2 (x,∆t, w) = exp(

α1

2ν
(x− c))

sinh(
√
r

2ν (x− 1))

sinh(
√
r

2ν (c− 1))
̂̃γn+1,p

, x ∈ [c, 1],

(29)

We obtain for the transformed local Steklov-Poincaré operators
Ŝ1
̂̃γn+1,p

=
∂ên+1,p+1

1

∂x |x=c
=

[
α1

2ν
+

√
r

2ν
coth(

√
r

2ν
c)

] ̂̃γn+1,p
,

Ŝ2
̂̃γn+1,p

= −∂ê
n+1,p+1
2

∂x |x=c
= −

[
α1

2ν
+

√
r

2ν
coth(

√
r

2ν
(c− 1))

] ̂̃γn+1,p
,

(30)

hence the global Steklov-Poincaré operator can be written as

Ŝ = Ŝ1 + Ŝ2 =

√
r

2ν

[
coth(

√
r

2ν
c)− coth(

√
r

2ν
(c− 1))

]
. (31)

Remark For studying the error solutions of the subproblems (17) over bounded subdo-
mains Ω1 = [0, c] × [a, b] and Ω2 = [c, 1] × [a, b], where 0 < a < b. We define for any
bounded functions h the norm

∥h(., .)∥∞ := sup
(x,y)∈Ω

| h(x, y) | .



The error-estimates of the error solutions (19) and (35) are presented in the following
lemma :

Lemma 1. (Super-Solutions) At each time step Tn+1, for all p ∈ N and r = α2
1 + 4ν(

1

∆t
+ νb2),

the error solutions of the subproblems (17) with α2 = 0 satisfy

0 ≤ en+1,p
i (x, y) ≤ ẽn+1,p

i , i = 1, 2,

where the super-solutions ẽn+1,p
i are the solutions of the linear problems

L̄(ẽn+1,p+1
1 ) =0 in Ω1,

ẽn+1,p+1
1 =0 on ∂Ωi ∩ ∂Ω,

ẽn+1,p+1
1 (x) =exp(

α1

2ν
(x− c))

sinh(
√
r

2ν x)

sinh(
√
r

2ν c)
∥γ̃n+1,p∥∞, x ∈ [0, c]

(32)


L̄(ẽn+1,p+1

2 ) = 0 in Ω2,
ẽn+1,p+1
2 =0 on ∂Ωi ∩ ∂Ω,

ẽn+1,p+1
2 (x) = exp(

α1

2ν
(x− c))

sinh(
√
r

2ν (x− 1))

sinh(
√
r

2ν (c− 1))
∥γ̃n+1,p∥∞, x ∈ [c, 1],

(33)

The solutions to (32) and (33) state non-negative solutions
ẽn+1,p+1
1 (x,∆t) = exp(

α1

2ν
(x− c))

sinh(
√
r

2ν x)

sinh(
√
r

2ν c)
∥γ̃n+1,p∥∞, x ∈ [0, c],

ẽn+1,p+1
2 (x,∆t, w) = exp(

α1

2ν
(x− c))

sinh(
√
r

2ν (x− 1))

sinh(
√
r

2ν (c− 1))
∥γ̃n+1,p∥∞. x ∈ [c, 1],

(34)

The difference Ei := ẽp+1
i − ep+1

i , i = 1, 2 satisfy
L̄(En+1,p+1

i ) = 0 in Ωi,
En+1,p+1

i (.) =0 on ∂Ωi ∩ ∂Ω,
En+1,p+1

i (.) ≥ 0 on Γ,
(35)

Now the Positivity Lemma [3] applies therefore En+1,p+1
i = ẽn+1,p+1

i − en+1,p+1
i ≥ 0

and similarly for Ẽn+1,p+1
i = ẽn+1,p+1

i + en+1,p+1
i ≥ 0 the error solutions (19) and (35)

can be bounded by
| en+1,p+1

1 | ≤ ẽn+1,p+1
1 (x,∆t) = exp(

α1

2ν
(x− c))

sinh(
√
r

2ν x)

sinh(
√
r

2ν c)
∥γ̃n+1,p∥∞, x ∈ [0, c],

| en+1,p+1
2 | ≤ ẽn+1,p+1

2 (x,∆t) = exp(
α1

2ν
(x− c))

sinh(
√
r

2ν (x− 1))

sinh(
√
r

2ν (c− 1))
∥γ̃n+1,p∥∞. x ∈ [c, 1],

(36)
Evaluating the derivates of these equations at x = c taking the supremum over Γ the
symbol of the global Steklov-Poincaré operator can be bounded by the quantity

√
r

2ν

[
coth(

√
r

2ν
c)− coth(

√
r

2ν
(c− 1))

]
.



3.1.2. Neumann-Neumann algorithm
The Neumann-Neumann algorithm starts with an initial guess ψ0

i,n+1 along the in-
terface Γ × [0, T ] and then computes for θ ∈]0, 1] simultaneously for i = 1, 2 with
p = 1, 2, . . . 

L̄un+1,p+1
i = fn+1

i
in Ωi, i = 1, 2,

un+1,p+1
i = γn+1,p on Γ,

un+1,p+1
i = 0 on ∂Ωi ∩ ∂Ω, i = 1, 2,

(37)


L̄ψn+1,p+1

i = 0 in Ωi, i = 1, 2,
∂ψn+1,p+1

i

∂ni
=

1

2

(
∂un+1,p+1

1

∂n1
+
∂un+1,p+1

2

∂n2

)
on Γ,

ψn+1,p+1
i = 0 on ∂Ωi ∩ ∂Ω, i = 1, 2,

(38)

γn+1,p+1 = γn+1,p − θ(1
2
ψn+1,p+1
1 +

1

2
ψn+1p+1
2 ) on Γ. (39)

The Neumann-Neumann preconditionner is a weighted sum of inverse of transform lo-
cal Steklov-Poinaré. Thus the Fourier transform preconditionner for two sub-domains is
defined by:

P̂NN

−1
=

1

4
(Ŝ−1

1 + Ŝ−1
2 ),

where from (30)

Ŝ−1
1 =

2ν

α1 +
√
r coth(

√
r

2ν
c),

Ŝ−1
2 =

2ν

√
r coth(

√
r

2ν
(c− 1))− α1.

However, the Fourier transform of the interface equation (39) becomes

γ̂n+1,p+1 = (Id− θP̂NN

−1
Ŝ)γ̂n+1,p on Γ, (40)

where the symbol of the preconditioned operator is easily determined as

P̂−1
NN Ŝ =

1

4

r

(
coth(

√
r

2ν
c) + coth(

√
r

2ν
(c− 1))

)2

(
√
r coth(

√
r

2ν
c) + α1

)(
√
r coth(

√
r

2ν
(c− 1))− α1

) . (41)

3.1.3. Convergence analysis
The main goal of the analysis is to estimate the efficiency of the proposed precon-

ditioner. For this prupose we study the convergence factor. In numerical calculation,
the frequency parameter w can not be high and we have | w |∈ [wmin, wmax], where
wmin = π and wmax = π/h are the frequency minimum and maximum parameters. By
indication, the updating boundary condition in (40) satisfies the following inequality

max
|w|∈[wmin,wmax]

∣∣γ̂n+1,p
∣∣ = ρp max

|w|∈[wmin,wmax]

∣∣γ̂n+1,0
∣∣ , (42)



where the optimal convergence factor ρp is defined by

ρ := max
|w|∈[wmin,wmax]

∣∣∣∣∣∣∣∣∣1− θ
r

(
coth(

√
r

2ν
c) + coth(

√
r

2ν
(c− 1))

)2

(
√
r coth(

√
r

2ν
c) + α1

)(
√
r coth(

√
r

2ν
(c− 1))− α1

)
∣∣∣∣∣∣∣∣∣

(43)
Remark The convergence factor depends on the relaxation parameter θ but in practical
computation Krylov subspace method is more robust and gives better results. For this
prupose, in the discrete case, we remplace the Richardson iteration by GMRES iteration.

Lemma 2. For a symmetric decomposition c = 0.5. The convergence factor ρGMRES of
Neumann-Neumann preconditioning in a GMRES iteration is bounded from

ρGMRES ≤

1−
( min
w∈[π,πh ]

Re(ϕ(w)))2

max
w∈[π,πh ]

| ϕ(w) |2


1/2

, (44)

where ϕ(w) is the complex valued can be defined as

ϕ(w) =
r coth2(

√
rc

2ν
)

r coth2(

√
rc

2ν
)− α2

1

. (45)

Proof. The reduction factor in a GMRES iteration, for a positive real matrix A with sym-
metric part M = 1

2 (A+AT ), is bounded from above [12, 1]

ρGMRES =

(
1− (λmin(M))2

λmax(ATA)

)1/2

. (46)

where A = P̂−1
NN Ŝ, λmin and λmax are the minimum and maximum eigenvalues. After a

short calculation, we deduce from (??) the quantity for the preconditioned operator ϕ.

4. The parareal in time algorithm
The exact flow of the model problem (1) is denoted u(t) = Et(u0). The strategy of

parareal algorithm is to do a time decomposition in the spirit of domain decomposition.
We divide the total simulation time into N subintervals [Tn, Tn+1], n = 0, . . . , N − 1
of size ∆T . Then u(Tn) = E∆T (u(Tn)) = En∆T (u0), from the semigroup property
of E . In general E is not realizable and can only be approximated, we thus introduce
a fine and precise propagator F , it is based on an appropriate classical discretization
scheme based on a small enough time step δt, then we have the approximation u(Tn) ≃
Un = Fn∆T (u0). The original parareal algorithm makes it possible to define iteratively
a sequence Uk

n that converges toward Un as k goes to infinity. The definition of this
sequence requires a coarse propagator G , which represents a cheap and less accurate
approximation to F∆T and based on a similar scheme in time with the larger time step



∆T , δt ≪ ∆T . By nature G has to be run sequentially and F in parallel. In this way,
the algorithm starts with an initial approximation U0

n given for example by the sequential
computation :

U0
0 = u0, U0

n = G∆T (U
0
n−1),

the numerical scheme of the parareal method is given by :

Uk+1
n = G∆T (U

k+1
n−1) + F∆T (U

k
n−1)− G∆T (U

k
n−1), (47)

with the initial condition Uk
0 = u0. Note that after k iterations of the parareal method, the

solution Uk
m for m ≤ k is exactly equal to the numerical solution given by using the F

propagator in a serial manner. In an other hand, it is clear that we haveUn = Fn∆T (0, u0)
for any n and then we must converge with k << N iterations so that the algorithm is
interesting.

4.1. Convergence analysis
We review here the stability and the convergence of the standard parareal algorithm in

two dimensions. The convergence have been first presented in [3] on the entire domain
R. We define the error derived from the standard algorithm (47) for n = 1, ..., N and
k = 0, ..., kconv by ekn := Uk

n − Un. After adding and subtracting G∆T (Un−1) and
F̃∆T (U

k−1
n−1) this error ekn satisfies for n ≥ 1 and k ≥ 1

ekn = G∆T (U
k
n−1)− G∆T (, U

k−1
n−1)

+F∆T (U
k−1
n−1)−F∆T (, Un−1)

= [G∆T (U
k
n−1)− G∆T (Un−1)]

+[G∆T (FTn−1
(u0))−F∆T (Un−1)]

(48)

We now denote by ∆G the difference F −G. Then the relation (48) becomes over Ω ; for
every n and k

ekn = [ G∆T (, U
k
n−1)− G∆T (Un−1)]

+[ ∆G∆T (Un−1)−∆G∆T (U
k−1
n−1)].

(49)

Our purpose now is to have an estimation of the error ekn(x) based on the Fourier transfor-
mation of the exact and discrete solutions which is given for any h in the bounded domain
in R2 by

ĥ(t, ξ1, ξ2) =

+∞∑
ξ1=−∞

+∞∑
ξ2=−∞

h(t, x, y) exp(−i(ξ1x+ ξ2y)).

We apply the Fourier transform in x and y directions to the model problem (1) with u0 is
periodic, we obtain
∂û

∂t
(t, ξ1, ξ2) + (ν(ξ21 + ξ22) + i(α1ξ1 + α2ξ2))û(t, ξ1, ξ2) = 0, (ξ1, ξ2) ∈ Z× ∈ Z

û(t, ξ1, ξ2) = û0(ξ1, ξ2)

(50)
We note δ(ξ1, ξ2) := ((ν(ξ21 + ξ22) + i(α1ξ1 + α2ξ2))∆T and ξ = (ξ1, ξ2). The exact
solution of problem (50) is given at time Tn by

û(ξ, Tn) = exp(−nδ(ξ))û0(ξ) = ÊTn(δ(ξ), T0, û0) (51)



In a similar manner to (47), we introduce two approximations F̂ and Ĝ of ÊTn and we
define a sequence {Ûn}n≥1 by

Ûn(ξ) = F̂∆T (δ(ξ), Ûn−1(ξ)). ∀n, Û0 = û0,

and we construct a sequence {Ûk
n}k by

Û0
0 (ξ) = û0(ξ), Û0

n(ξ) = Ĝ∆T (δ(ξ), U
0
n−1(ξ)) for n = 1, . . . , N,

and then performs for k = 0, . . . , kconv the correction iterations :

λ̂k+1
n (ξ) = Ĝ∆T (δ(ξ), Û

k+1
n−1(ξ)− Ĝ∆T (δ(ξ), Û

k
n−1(ξ)) for n = 1, . . . , N.

Here specially, F̂ is taken exact so that Ûn(ξ) = exp(−nδ(ξ))Û0(ξ) and for implicit first
order Euler scheme Ĝ∆T (ξ, .) = (1 + δ(ξ))−1. Let êkn := Ûk

n − Ûn and ∆Ĝ = F̂ − Ĝ.
This error satisfies for all ξ ∈ Z2

êkn(ξ) = [ Ĝ∆T (δ(ξ), Û
k
n−1(ξ))− Ĝ∆T (δ(ξ), Ûn−1(ξ))]

+[ ∆Ĝ∆T (δ(ξ), Ûn−1(ξ))−∆Ĝ∆T (δ(ξ), Û
k−1
n−1(ξ))]

(52)

We introduce the stability function R

Rk,n(δ) =| Ĝ∆T (δ, Û
k
n−1(ξ)) |n−k| F̂∆T (δ, Û

k
n−1(ξ))− Ĝ∆T (δ, Û

k
n−1(ξ)) |k

(
n

k − 1

)
.

(53)
The parareal algorithm replaces an algorithm of orderm by an algorithm of order km and
requires to solve a fine scale problem k times to obtain this accuracy. The stability is then
stated in the following theorem (see Theorem 2 in [3]).

Theorem 1. Let us assume that the coarse scheme is an approximation of first order of
the exact propagator and that it is dissipative in the sense that there exist two constants
C and γ > 0 such that for all ξ

|F∆T (δ(ξ))− G∆T (δ(ξ))| ≤ C(|δ(ξ)|2 ∧ 1),
|G∆T (δ(ξ))| ≤ (1 + C∆T ) exp(−γ(|δ(ξ)| ∧ 1)).

(54)

Then the parallel algorithm is stable in the sense that Rk,n(δ) given by (53) is bounded
uniformly in k and δ = δ(ξ) for ξ ∈ Z2 where a ∧ b = min(a, b).

The one dimensional results (see Theorem 3 in [3]) have been generalized to two
dimensions and we have the following result of convergence at final time T = 1 by using

∥ u ∥H1(Ω)=
+∞∑

ξ1=−∞

+∞∑
ξ2=−∞

|û|2(1 + ξ21 + ξ22).

Theorem 2. Under the assumptions of theorem 1 and if u0 is periodic, the error ekn given
by (52) is bounded by

∥ ekn ∥H1(Ω)≤ C∆T k ∥ u0 ∥H1(Ω) . (55)



5. Parareal-Non-Overlapping Domain Decomposition Method
The parareal-domain decomposition algorithm does this by using a parareal approxi-

mation for the initial condition and a domain decomposition algorithms for the boundary
conditions. We use the Neumann-Neumann algorithm for the approximate resolution of
the fine propagator independently over each block Ωi × [Tn−1, Tn], i = 1, . . . Ns, n =
0, . . . , N . The coupled parareal is based on the dual iterative definition of the snapshots
Uk
n at each time Tn and on the interface condition γk,0n−1 := uk,0n−1,Γ. The algorithm is thus

expressed as follows

Uk+1
n = G∆T (U

k+1
n−1) + F̃∆T (U

k
n−1, γ

k,0
n−1)− G∆T (U

k
n−1), (56)

where F̃∆T (U
k
n−1, γ

k,0
n−1) is the approximate propagator with only some P domain de-

composition iterations.
More precisely we construct F̃∆T as following. We denote by uk,Pi,n−1(x, t) the local so-
lutions on the space-time slices Ωi × [Tn−1, Tn] at iteration k. The fine solution approx-
imated by the algorithm is built, for every fixed k and in each subdomain Ωi, in several
steps by a propagation over Ωi × [Tn−1, Tn], an update of the boundary conditions and
a new propagation over Ωi × [Tn−1, Tn] using the new boundary conditions. The defini-
tion of the fine solver is then completed by the compute of the new global solution over
Ω× [Tn−1, Tn]. More precisely, for p = 1, . . . , P we solve

L(uk,pi,n−1) = 0 in Ωi×]Tn−1, Tn[

uk,pi,n−1(x, t) = γk,p−1
n−1 (t) on Γ×]Tn−1, Tn[

uk,pi,n−1(0, t) = 0 in ]Tn−1, Tn[,
L(ψk,p

i,n−1) = 0 in Ωi×]Tn−1, Tn[

ψk,p
i,n−1(x, t) =

1

2

(
∂uk,p1,n−1

∂n1
+
∂uk,p2,n+1

∂n2

)
on Γ×]Tn−1, Tn[

ψk,p
i,n−1(x, t) = 0 in ]Tn−1, Tn[.

Then we define the global fine solution by

F̃∆T (U
k
n−1, u

k+1,0
n−1,Γ) =

Ns∑
i=1

χi(x)uk,pi,n−1(x, Tn),

where χi are a regular partition of unity defined by

∀x ∈ Ω,

Ns∑
i=1

χi(x) = 1, χi ≥ 0, i = 1, . . . , Ns.

Remark
To accelerate convergence, we initialized the interface conditions by the previous iterate
parareal after a few iterations of domain decomposition methods

uk,0n−1,Γ = uk−1,P
n−1,Γ ,

where the boundary condition at the interface is compatible with the initial condition pro-
vided at time Tn−1 for each local problem.



For P → ∞ we have uk−1,∞
n−1,Γ the exact interface conditions associated with the ini-

tial condition Uk−1
n−1 which then verify F̃∆T (U

k
n−1, u

k,∞
n−1,Γ) = F∆T (U

k
n−1) we obtain the

standard parareal algorithm (47).

The parareal-Neumann-Neumann algorithm for the problem (1) can be written like
(see Algorithme 1) :

Algorithme 1 : Parareal-Neumann-Neumann algorithm

U0
0 ⇐ u0;

ϵ a tolerance of the algorithm ;
for n← 1 to N do
γ0,0n−1 ⇐ u0;
Step 1. solve G to obtain the initial guess U0

n

Un0 ⇐ G∆T (U
0
n−1)

end
repeat
Step 2. solve in parallel F̃ by Neumann-Neumann method
parallel for n← 1 to N do
parallel for i← 1 to Ns do
uki,n ⇐ F̃∆T (U

0
n−1, γ

k,P
n−1)

endfor
endfor
Step 3 . initialize the interface condition by the previous iterate parareal after a
few iterations of Neumann-Neumann method
for n← 1 to N do
γk+1,0
n−1 = γk,Pn−1

end
Step 4 . compute the new iterate Uk+1

n , n = 1 . . . N by a series of correction
iterations
for n← 1 to N do
Uk+1
n = G∆T (U

k+1
n−1) + F̃∆T (U

k
n−1, γ

k,0
n−1)− G∆T (U

k
n−1);

end
k ⇐ k + 1
until ∥Uk+1

n − Uk
n∥ < ϵ;

5.1. Convergence analysis
We present now a convergence result of the coupled parareal algorithm.

Theorem 3. Under the hypothesis (54) and assuming that

ρP ≈ 1

N
5
2

, (57)

The parareal algorithm (56) applied to the one dimensional convection diffusion problem
(1) with u0 in H1(Ω) satisfies the estimate

∥ Uk
n(x)− un(x) ∥H1(Ω)≤ C∆T k+1 + ρP∆T k−1 ∥ u0 ∥H1(Ω) . (58)



Proof. The proof of this theorem is based on the classic recurrence method and will ap-
pear in [7]. The estimations of the error v(x) = Uk

n(x) − un(x) provided from the
convergence rate ∆T k+1 of standard parareal algorithm and from the convergence factor
ρ of the domain decomposition method. We present however a detailed numerical study
of the convergence in the following section.

6. Numerical Results
We present now numerical experiments to study the theoretical convergence factor ρ

according to Lemma (2) of the discretized Neumann-Neumann algorithm for the model
problem on the unit square in two dimensions with the initial condition u0(x) = sin(πx) sin(πy),
advection velocity α = (α1, α2) and f(t) = 1 + t. We choose ν = 0.5, α1 = 1
and α2 = 0 The prototype implementation was done in FreeFem++, The library MPI
is used for the parallelization of the code. We discretize in space using finite elements
P 1-Lagrange on a uniform mesh with meshsize h. The time discretization is a charac-
teristics method of first order for the advection and implicit for the diffusion. We de-
compose the domain into two non-overlapping subdomains Ω1 = [0, 0.5] × [0, 1] and
Ω2 = [0.5, ] × [0, 1]. For determining the values of interface conditions for domain de-
composition algorithms the GMRES method is applied. We test the Neumann-Neumann
algorithm by choosing the interface condition γ0,0 = u0,Γ.

6.1. Convergence of the Neumann-Neumann algorithm
We wish to study the convergence factor. From Figure 1 to Figure 4, we show the

convergence factor behavior for different values of mesh size h for Schur complement al-
gorithm and for the best preconditionner Neumann-Neumann for different time-steps ∆t.
One can clearly see that the behavior of the algorithms depend on time step. We observe
in Figure 2 and Figure 4 that the Neumann-Neumann algorithm converges as fast as the
Schur complement algorithm for bigger time step. We deduce that the Schur complement
algorithm is much less sensitive with respect the mesh size. The use of parallel precon-
ditioner Neumann-Neumann propagator is necessary to accelerate convergence. From
Figure 1 and Figure 3 we observe convergence results for no preconditioner Schur com-
plement shows a strong mesh size h-dependence.

6.2. Convergence of the coupled parareal-Neumann-Neumann
algorithm

We now focus on the coupled parareal algorithm. We choose for the spatial discretiza-

tion step h =
1

128
, for the coarse time step ∆T = 1

10 and for the fine time step δt = ∆T
50 .

For the Neumann-Neumann algorithm we make the number GMRES constant (2 itera-
tions per subdomain) for fine time step ∆t = δt. We initialize the interface condition by



Figure 1. The theoretical convergence factor ρ of Schur complement for different values
of mesh size h = 1/8, 1/16, 1/32 and ∆t varying through [10−3, 10−2].
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Figure 2. The theoretical convergence factor ρ of Neumann-Neumann preconditioner for
different values of mesh size h = 1/8, 1/16, 1/32 and ∆t varying through [10−3, 10−2].
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Figure 3. The theoretical convergence factor ρ of Schur complement for different values
of mesh size h = 1/64, 1/128 and ∆t varying through [10−3, 10−2].
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Figure 4. The theoretical convergence factor ρ of Neumann-Neumann preconditioner for
different values of mesh size h1/64, 1/128 and ∆t varying through [10−3, 10−2].
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γk,0n = γk−1,2
n . To test the convergence of the solution obtained from the coupled parareal

algorithm to the monodomain fine solution F , we compare the relative errors

∥Uexact(Tn)−Fn∆T (u0)∥H1(Ω)

∥Uexact(Tn)∥H1(Ω)
(59)

with
∥Uexact(Tn)− Uk

n∥H1(Ω)

∥Uexact(Tn)∥H1(Ω)
(60)

where Uexact is supposed the exact solution (reference solution) computed in the global
domain with a very fine time step δt/10. Table 1 illustrates the errors between the exact
solution and the pure sequential fine solver F at the instant times Tn, 1 ≤ n ≤ 10.

Tn
∥Uexact(Tn)−Fn∆T (u0)∥H1(Ω)

∥Uexact(Tn)∥H1(Ω)

0.1 1.85 10−4

0.2 8.80 10−5

0.3 1.16 10−4

0.4 1.63 10−4

0.5 1.91 10−4

0.6 2.11 10−4

0.7 2.28 10−4

0.8 2.43 10−4

0.9 2.58 10−4

1 2.73 10−4

Table 1. Error between a fine solution and the exact solution obtained with a very fine time
step δt/10 at the instant times Tn, 1 ≤ n ≤ 10.

Tn k=1 k=2 k=3 k=4
0.1 4.43 10−3 1.36 10−3 1.92 10−4 1.72 10−4

0.2 2.37 10−3 1.11 10−3 1.13 10−4 9.14 10−5

0.3 1.21 10−3 1.17 10−3 1.19 10−3 1.18 10−3

0.4 1.42 10−3 1.29 10−3 1.28 10−3 1.26 10−3

0.5 1.76 10−3 1.39 10−3 1.37 10−3 1.32 10−3

0.6 1.97 10−3 1.50 10−3 1.47 10−3 2.02 10−4

0.7 2.11 10−3 1.60 10−3 1.57 10−3 2.07 10−4

0.8 2.22 10−3 1.69 10−3 3.66 10−4 2.12 10−4

0.9 2.31 10−3 1.79 10−3 3.76 10−4 2.18 10−4

1 2.40 10−3 1.89 10−3 3.86 10−4 2.25 10−4

Table 2. Coupled parareal : Historic of the errors between the exact solution and solution
of coupled parareal for different values of iteration of parareal k = 1, 2, 3, 4 for P = 2.



The Tables 2 represent the error between the coupled parareal obtained after two itera-
tions of Neumann-Neumann algorithm and the numerical solution computed in the global
domain. Tables 2 shows the convergence of the coupled algorithm after k = 4. The con-
clusion reached from these experiment is that with algorithm, a few iterations in each time
step are sufficient to obtain convergence. The measured convergence factor of GMRES
ρP = 1.078 10−2, we notice that at convergence for modified algorithm it is sufficient
that ρP ≈ C∆T 2. The results confirm the theoretical hypothesis (57) derived in Theorem
(6.3).

6.3. Experiments with more than two subdomains
These experiments are of interest to generalize the convergence results for two subdo-

mains to many subdomains. We consider the same model problem with the same param-
eters. We decompose the global domain Ω = [0, 1]× [0, 1] into Ns = 4 non-overlapping
subdomains with cross-points,namely interface nodes that belong to more than two do-
mains, Ω1 = [0, 0.5] × [0, 0.5],Ω2 = [0.5, 1] × [0, 0.5], Ω3 = [0, 0.5] × [0.5, 1] and
Ω4 = [0.5, 1] × [0.5, 1]. We fixed two iteration of GMRES of preconditioner Neumann-
Neumann. We compare the maximum error in time of (59) with the error (60), the maxi-
mum error defined in the global domain is 2.73 10−4 . We report in Table 3 the maximum
error in time (60).
We note that convergence can be achieved in a finite number of a GMRES in two iter-
ations only after 4 iterations of parareal. The measured convergence factor of GMRES
ρ2 = 1.257 10−2 The results confirm the theoretical hypothesis in Theorem . Further-
more the convergence is independent of the number of subdomains.

k = 1 k = 2 k = 3 k = 4 k = 5

5.39 10−2 4.42 10−3 3.05 10−4 2.74 10−4 2.74 10−4

Table 3. Historic of the error using a norm L∞(0, T ;H1(Ω) between parareal-domain de-
composition solutions and the reference one, for different values of k

Numerical scalability of the parallel Finally we investigate the numerical scalability of
the parallel with respect to the coarse time step ∆T . We split the global domain Ω into
Ns = 8 from Ω1 = [0, 0.25]× [0, 0.5] to Ω8 = [0.75, 1]× [0.5, 1]. We use two iterations
of GMRES constant, next we fix the fine time step δt = 1

6000 and vary the coarse time
step ∆T . The log10 scale error between the global fine solution and the reference one is
-3.38. From Table 4, we observe that the convergence can be achieved after k = 4. One
can see that when increasing the number of time decompositions subdomains parareal is
barely affected.



k ∆T ∆T/2 ∆T/4 ∆T/8

1 -1.16 -1.57 -2.05 -2.1
2 -1.82 -2.26 -2.74 -2.85
3 -2.55 -3.03 -3.37 -3.37
4 -3.25 -3.31 -3.37 -3.37
5 -3.37 -3.38 -3.37 -3.37

Table 4. Historic of the error using a norm L∞(0, T ;H1(Ω)) in log10 scale between
parareal-domain decomposition solutions and the reference one, for different values of
k
7. Conclusion

The purpose of this paper was to develop an efficient algorithm for advection-dominated
diffusion problem by combining the parareal algorithm with Neumann-Neumann domain
decomposition algorithm, in order to perform the parallelism both in time and space. We
have studied more precisely the convergence factor of Neumann-Neumann algorithm, the
main properties used in the convergence analysis is a Fourier analysis and a maximum
principle for the 2D case and a two subdomain decomposition. Numerical results show
that, with only two iterations of GMRES with Neumann-Neumann preconditioner in each
parareal iteration, the new algorithm leads to a good monodomain solution.
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