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Impulse output rapid stabilization for heat equations

Kim Dang Phung∗, Gengsheng Wang†, Yashan Xu‡

Abstract

In this paper, we study the output rapid stabilization for heat equations with lower terms.

Our controls are active in a subdomain and at discrete time points, while our observations

are made in another subdomain and at discrete time points which are ahead of control time

points. Through studying a kind of minimal norm impulse control problems, we not only build

up, for each decay rate, a feedback law, but also provide bounds for feedback laws in terms of

decay rates. In the studies of the above-mentioned minimal norm impulse control problems, the

unique continuation estimate at one time point, as well as some new observations on it, plays

an important role.

Keywords: Rapid stabilization, impulse control, heat equation.

AMS subject classifications: 34H15, 34K45, 49J20, 93D15.

1 Introduction

Let Ω ⊂ R
d, d ≥ 1, be a bounded domain, with a C2 boundary ∂Ω. Let V be a function in L∞(Ω)

with its norm ‖ · ‖∞. Define

A , ∆− V, with D(A) = H2(Ω) ∩H1
0 (Ω).

Write {etA, t ≥ 0} for the semigroup generated by A on L2(Ω). It is well-known that when V = 0,

the semigroup {etA, t ≥ 0} has the exponential decay with the rate α1, which is the first eigenvalue

of −∆ with the homogeneous Dirichlet boundary condition. The aim of this study is to build up,

for each γ > 0, an output feedback law Fγ so that any solution to the closed-loop controlled heat

equation, associated with A and Fγ , has an exponential decay with the rate γ. Two requirements

on this aim are as follows: First, our controls are active in a subdomain ω ⊂ Ω and at discrete time

points τ + nT (with n = 0, 1, . . . ), while our observations are made in another subdomain ω1 ⊂ Ω
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and at discrete time points s+ nT (with n = 0, 1, . . . ). (Here and throughout the paper, T , τ and

s are arbitrarily fixed three time points with 0 < s < τ < T .) Second, at all control time points,

we take the same feedback law. Therefore, the closed-loop controlled equation under consideration

reads: 



y′(t)−Ay(t) = 0, t ∈ R
+\

(
τ + N̄T

)
,

y(τ + nT ) = y((τ + nT )−) + 1ωF
(
1∗ω1

y (s+ nT )
)

for n ∈ N̄.
(1.1)

Here, R+ , (0,∞); N̄ , N ∪ {0}, with N the set of all natural numbers; y((τ + nT )−) denotes the

left limit of the function: t→ y(·) (from R
+ to L2(Ω)) at time τ +nT ; ω is an open and nonempty

subset of Ω; 1ω denotes the zero-extension operator from L2(ω) to L2(Ω) (i.e., for each f ∈ L2(ω),

1ω(f) is defined to be the zero-extension of f over Ω); 1∗ω1
stands for the adjoint operator of 1ω1 ;

F is a linear and bounded operator from L2(ω1) to L
2(ω). This operator is what we will build up.

Throughout this paper, we denote by ‖ · ‖ and 〈·, ·〉 the norm and the inner product of L2(Ω)

respectively; denote by ‖ · ‖ω and 〈·, ·〉ω the norm and the inner product of L2(ω); set L(H1,H2) be

the space consisting of all bounded linear operators from one Hilbert space H1 to another Hilbert

space H2; write {λj}∞j=1 for the family of all eigenvalues of −A so that

λ1 ≤ λ2 ≤ ·· ≤ λm ≤ 0 < λm+1 ≤ · · · and lim
j→∞

λj = ∞, (1.2)

and let {ξj}∞j=1 be the family of the corresponding normalized eigenfunctions.

The main theorem of this paper will be precisely presented in section 4. It can be simply

stated as follows: For each γ > 0, there is Fγ ∈ L(L2(ω1);L
2(ω)) so that each solution yγ(·) to the

equation (1.1) (with F = Fγ) satisfies the inequality:

‖yγ (t)‖ ≤ Cγe
−γt ‖yγ(0)‖ for any t ∈ R

+. (1.3)

We now give two comments on this result. First, the aforementioned Fγ has the form:

Fγ(w) = −
Kγ∑

j=1

e2λjs
〈
w, hj

〉
ω1
fj for any w ∈ L2(ω1). (1.4)

Here, Kγ ∈ N is the number of all eigenvalues λj which are less that γ + ln 3
T (where ln 3

T is not

optimal); hj and fj are vectors in L2(ω1) and L
2(ω) respectively. These vectors are minimal norm

controls for a kind of minimal norm problems which can be given by constructive methods. Second,

the operator norm of Fγ is bounded by C1e
C2γ , with C1 > 0 and C2 > 0 independent of γ.

We next explain our strategy and key points to prove the above-mentioned results. First,

we realize that if a solution yγ to the equation (1.1), (with F being replaced by some Fγ ∈
L(L2(ω1);L

2(ω))) the satisfies that

‖yγ((n+ 1)T )‖ ≤ e−γT ‖yγ(nT )‖ for all n ∈ N̄,

then this solution satisfies the inequality (1.3). From this and the time translation invariance of
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the equation, we can focus our study on the controlled equation:




y′(t)−Ay(t) = 0, t ∈ [0, T ] ,

y(τ) = y((τ)−) + 1ωf ,

y (0) ∈ L2 (Ω) ,

(1.5)

where f is a control taken from L2(ω). Thus, our aim turns to find, for each γ > 0, an operator

Fγ ∈ L(L2(ω1);L
2(ω)) so that each solution yγ,T (·) to the equation (1.5) (with f = Fγ(1

∗
ω1
y(s)))

satisfies the inequality:

‖yγ,T (T )‖ ≤ e−γT ‖yγ,T (0)‖ .

Second, we project the equation (1.5) with the null control into subspaces span{ξ1, . . . , ξKγ} and

span{ξKγ+1, ξKγ+2, . . . } respectively. Write PKγ for the orthogonal projection of L2(Ω) onto the

first subspace. We only need control the projected equation on the first subspace, since the projected

equation on the second subspace is already stable. (Though the feedback term may cause some

”bad” influence on the second equation, such influence, compared with the natural decay of the

second equation, can be ignored when the feedback law is built up in a right way.) Third, we

consider the special case that ω1 = Ω and s = τ . In this case, we construct a linear and bounded

operator C from span{ξ1, . . . , ξKγ} to L2(ω) in the following manner: C(z) , ∑Kγ

j=1〈z, ξj〉fj. Here,

fj is the minimal norm control to a minimal norm control problem. In this minimal norm problem,

the equation is (1.5), with the initial datum ξj; the target is a ball in L2(Ω), centered at the origin

and with a sufficiently small radius. Then the desired feedback law Fγ reads: CPKγ with a suitable

Kγ . The key to make the above method work is the unique continuation estimate at one time

for heat equations. Such an estimate was built up in [PWZ] (see also [PW] and [PW1]). Indeed,

this estimate is equivalent to the null approximate controllability at one time with a cost. Such

kind of controllability not only ensures the existence of minimal norm controls but also provides a

bound for the minimal norm of the above-mentioned minimal norm problem. Based on these, the

above-mentioned C can be constructed, and furthermore, the bound of its operator norm can be

estimated. Finally, we back to the general case where ω1 6= Ω and s ≤ τ . In this case, with the aid

of the above-mentioned unique continuation estimate at one point, we can approximately recover

PKγ (z0) from 1∗ω1
esAz0 for each z0 ∈ L2(Ω). More precisely, for each ε > 0, we can build up a linear

and bounded operator Rε : L2(ω1) → span{ξ1, . . . , ξKγ} so that

‖Rε(1∗ω1
esAz0)− PKγz0‖ / ε‖z0‖ uniformly w.r.t. z0 ∈ L2(Ω).

Furthermore, the bound of Rε can be estimated. The construction of Rε is based on a kind of

minimal norm control problems which are essentially the same as those used in the construction of

the operator C. Then, the desired feedback law Fγ reads: CRε with a suitable ε depending on γ.

Several remarks are given in order. (a) Impulse control belongs to a class of important control

and has wide applications. There are many studies on optimal control and controllability for impulse

controlled equations (see, for instance, [BL1], [R], [BL2], [LM], [Z], [LY], [BC], [DS], [MR], [OS],

[Be] and references there in). However, we have not found any published paper on stabilization for
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impulse controlled equations. From this perspective, the problem studied in the current paper is

new. (b) Stabilization is one of the most important subject in control theory. In most studies of

this subject, the aim of stabilization is to ask for a feedback law so that the closed loop equation

decays exponentially. The current work aims to find, for each decay rate γ, a feedback law so that

the closed loop equation has an exponential decay with rate γ. Such kind of stabilization is called

the rapid stabilization. About this subject, we would like to mention the works [K], [U], [CCr],

[V], [CCo], [CL2], and [CL1]. (c) When observation region is not the whole Ω, the corresponding

stabilization is a kind of output stabilization. Such stabilization is very useful in applications.

Unfortunately, there is no systematic study on this subject, even for the simplest case when the

controlled system is time-invariant linear ODE (see [Br]). Most of publications on this subject

focus on how to construct an output feedback law for a single special equation. (see, for instance,

[I], [Cu], [YY], [Co], [NS] and references therein). Our study also only provides an output feedback

law for a special equation. (d) In most studies on stabilization, the structures of feedback laws

are based on LQ theory or Lyapunov functions (see, for instance, [Ba] and [C] ). In this paper,

we present another way to build up the feedback law. (e) As mentioned above, one of the keys

to build up our feedback law is the use of the unique continuation estimate at one time, built up

in [PWZ] (see also [PW] and [PW1]). Some new observations are made on it in this paper (see

Theorem 2.1, Remark 2.2) and Remark 3.6). (f) The following extensions of the current work

should be interesting: The first case is that V depends on both x and t variables; The second case

is that the equation is semi-linear; The third case is that the equation is other types of PDEs.

The rest of this paper is organized as follows. Section 2 provides several inequalities which are

equivalent to the unique continuation estimate at one time. Section 3 introduces several impulse

approximately controllability problems, as well as a kind of minimal norm problems. Section 4

presents the main result, as well as its proof.

2 Observation at one time

In this section, we present several equivalent inequalities. One of them is the unique continuation

estimate at one time built up in [PWZ] (see also [PW] and [PW1]).

Theorem 2.1 Let ω̂ be an open and nonempty subset of Ω. Then the following propositions are

equivalent and are true:

(i) There are two constants C1 > 0 and β ∈ (0, 1), which depend only on Ω and ω̂, so that for all

t > 0 and ξ ∈ L2 (Ω),

∥∥etAξ
∥∥ ≤ eC1(1+ 1

t
+t‖V ‖∞+‖V ‖2/3∞ ) ‖ξ‖β

∥∥1∗ω̂etAξ
∥∥1−β

ω̂
.

(ii) There is a positive constant C2, depending only on Ω and ω̂, so that for each λ ≥ 0 and each

sequence of real numbers {aj} ⊂ R,

∑

λj<λ

|aj|2 ≤ eC2(1+‖V ‖2/3∞ +
√
λ)

∫

ω̂

∣∣∣
∑

λj<λ

ajξj

∣∣∣
2
dx.
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(iii) There is a positive constant C, depending only on Ω and ω̂, so that for all θ ∈ (0, 1), t > 0

and ξ ∈ L2 (Ω) ∥∥etAξ
∥∥ ≤ eC(1+

1
θt
+t‖V ‖∞+‖V ‖2/3∞ ) ‖ξ‖θ

∥∥1∗ω̂etAξ
∥∥1−θ

ω̂
.

(iv) There is a positive constant C, depending only on Ω and ω̂, so that for all ε > 0, θ ∈ (0, 1),

t > 0 and ξ ∈ L2 (Ω),

∥∥etAξ
∥∥2 ≤ 1

ε
θ

1−θ

e
2C
1−θ (1+

1
θt
+t‖V ‖∞+‖V ‖2/3∞ ) ∥∥1∗ω̂etAξ

∥∥2
ω̂
+ ε ‖ξ‖2 .

(v) There is a positive constant C, depending only on Ω and ω̂, so that for all ε, β > 0, t > 0 and

ξ ∈ L2 (Ω),
∥∥etAξ

∥∥2 ≤ 1

εβ
e
2C(1+β)

(
1+ 1+β

βt
+t‖V ‖∞+‖V ‖2/3∞

) ∥∥1∗ω̂etAξ
∥∥2
ω̂
+ ε ‖ξ‖2 .

(vi) There is a positive constant C3, depending only on Ω and ω̂, so that for all ε, β ∈ (0, 1], s and

T̃ , with 0 ≤ s < T̃ , and ξ ∈ L2 (Ω)

∥∥∥eT̃Aξ
∥∥∥
2
≤ 1

εβ
e
C3

(
1+ 1

β(T̃−s)
+T̃‖V ‖∞+‖V ‖2/3∞

) ∥∥∥1∗ω̂e(T̃−s)Aξ
∥∥∥
2

ω̂
+ ε ‖ξ‖2 .

Moreover, constants C in (iii), (v) and (iv) can be chosen as the same number, and C3 in (vi)

can be chosen as 8max{1, C}.

Proof. We organize the proof by several steps.

Step 1: On the proposition (i)

The conclusion (i) has been proved in [PWZ] (see also [PW] and [PW1]).

Step 2: To prove that (i)⇒ (ii)

Let C1 > 0 and β ∈ (0, 1) be given by (i). Arbitrarily fix λ ≥ 0 and {aj} ⊂ R. By applying the

inequality in (i), with ξ =
∑

λj<λ aje
λjtξj, we get that

∑

λj<λ

|aj |2 ≤ e2C1(1+ 1
t
+t‖V ‖∞+‖V ‖2/3∞ )

( ∑

λj<λ

∣∣∣ajeλjt
∣∣∣
2 )β( ∫

ω̂

∣∣∣
∑

λj<λ

ajξj

∣∣∣
2
dx

)1−β
,

which implies that

∑

λj<λ

|aj |2 ≤ e
2

1−β
C1(1+

1
t
+t‖V ‖∞+‖V ‖2/3∞ )e

2β
1−β

λt
∫

ω̂

∣∣∣
∑

λj<λ

ajξj

∣∣∣
2
dx for each t > 0. (2.1)

Meanwhile, since ‖V ‖1/2∞ ≤ 1 + ‖V ‖2/3∞ and β ∈ (0, 1), we see that

inf
t>0

[
C1(1 +

1

t
+ t‖V ‖∞ + ‖V ‖2/3∞ ) + βλt

]

= inf
t>0

[
C1(1 + ‖V ‖2/3∞ ) +

C1

t
+ (C1‖V ‖∞ + βλ)t

]

= C1(1 + ‖V ‖2/3∞ ) + 2
√
C1(C1‖V ‖∞ + βλ) ≤ C1(1 + ‖V ‖2/3∞ ) + 2

(√
C2
1‖V ‖∞ +

√
C1βλ

)

= C1(1 + ‖V ‖2/3∞ + 2‖V ‖1/2∞ ) + 2
√
C1

√
βλ ≤ max{3C1, 2

√
C1}(1 + ‖V ‖2/3∞ +

√
λ).
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This, along with (2.1), leads to the conclusion (ii), with C2 = max{ 6C1
1−β ,

4
√
C1

1−β }.
Step 3: To show that (ii)⇒ (iii)

Arbitrarily fix λ ≥ 0, t > 0 and ξ =
∑

j≥1 ajξj with {aj} ⊂ l2. Write

etAξ =
∑

λj<λ

aje
−λjtξj +

∑

λj≥λ

aje
−λjtξj.

Then by (ii), we find that

‖etAξ‖ ≤
∥∥∥
∑

λj<λ

aje
−λjtξj

∥∥∥+
∥∥∥
∑

λj≥λ

aje
−λjtξj

∥∥∥

≤
( ∑

λj<λ

∣∣aje−λjt
∣∣2
)1/2

+ e−λt‖ξ‖

≤
(
eC2(1+‖V ‖2/3∞ +

√
λ)

∫

ω̂

∣∣∣
∑

λj<λ

aje
−λjtξj

∣∣∣
2
dx

)1/2
+ e−λt‖ξ‖.

This, along with the triangle inequality for the norm ‖ · ‖ω̂, yields that

‖etAξ‖ ≤
(
eC2(1+‖V ‖2/3∞ +

√
λ)

∫

ω̂

∣∣∣
∑

j≥1

aje
−λjtξj

∣∣∣
2
dx

)1/2

+
(
eC2(1+‖V ‖2/3∞ +

√
λ)

∫

ω̂

∣∣∣
∑

λj≥λ

aje
−λjtξj

∣∣∣
2
dx

)1/2
+ e−λt‖ξ‖.

Hence, it follows that

‖etAξ‖ ≤ e
C2
2
(1+‖V ‖2/3∞ +

√
λ)‖1∗ω̂etAξ‖ω̂ + e

C2
2
(1+‖V ‖2/3∞ +

√
λ)e−λt‖ξ‖ + e−λt‖ξ‖

≤ 2e
C2
2
(1+‖V ‖2/3∞ +

√
λ)
[
‖1∗ω̂etAξ‖ω̂ + e−λt‖ξ‖

]
.

This indicates that for all ε ∈ (0, 2),

‖etAξ‖ ≤ 2e
C2
2
(1+‖V ‖2/3∞ )e

1
2tε

(
C2
2
)2
(
e

ε
2
λt‖1∗ω̂etAξ‖ω̂ + e−

2−ε
2

λt‖ξ‖
)
. (2.2)

Here, we used the following inequality:

C2

2

√
λ ≤ ε

2
λt+

1

2tε

(
C2

2

)2

for any ε > 0.

Since λ was arbitrarily taken from [0,∞), by (2.2), we deduce that for all ε ∈ (0, 2) and µ ∈ (0, 1),

‖etAξ‖ ≤ 2e
C2
2
(1+‖V ‖2/3∞ )e

1
2tε

(
C2
2
)2
( 1

µ
ε

2−ε

‖1∗ω̂etAξ‖ω̂ + µ‖ξ‖
)
. (2.3)

Because

‖etAξ‖ ≤ et‖V ‖∞(µ‖ξ‖) for each µ ∈ [1,+∞),
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we see from (2.3) that for all ε ∈ (0, 2) and µ > 0,

‖etAξ‖ ≤ max
{
2e

C2
2
(1+‖V ‖2/3∞ )e

1
2tε

(
C2
2
)2 , et‖V ‖∞}( 1

µ
ε

2−ε

‖1∗ω̂etAξ‖ω̂ + µ‖ξ‖
)

≤ 2e
C2
2
(1+‖V ‖2/3∞ )e

1
2tε

(
C2
2
)2et‖V ‖∞

( 1

µ
ε

2−ε

‖1∗ω̂etAξ‖ω̂ + µ‖ξ‖
)

≤ 2e
(
C2
4
+1)2(1+ 1

t ε2
+t‖V ‖∞+‖V ‖2/3∞ )

( 1

µ
ε

2−ε

‖1∗ω̂etAξ‖ω̂ + µ‖ξ‖
)
. (2.4)

Meanwhile, one can directly check that for each ε ∈ (0, 2):

inf
µ>0

[ 1

µ
ε

2−ε

‖1∗ω̂etAξ‖ω̂ + µ‖ξ‖
]

=
1

( ε2 )
ε
2 (1− ε

2 )
1− ε

2

‖1∗ω̂etAξ‖
1− ε

2
ω̂ ‖ξ‖ ε

2

≤ e‖1∗ω̂etAξ‖
1− ε

2
ω̂ ‖ξ‖ ε

2 .

From this and (2.4), after some simple computations, we get the inequality in (iii).

Step 4: To show that (iii)⇒ (iv)

Let C > 0 be given by (iii). Arbitrarily fix θ ∈ (0, 1), t > 0 and ξ ∈ L2(Ω). Write

Ĉ , e2C(1+ 1
θt
+t‖V ‖∞+‖V ‖2/3∞ ), α , ‖ξ‖ and γ , ‖1∗ω̂etAξ‖ω̂. (2.5)

By the Young inequality, we see that for all ε > 0,

Ĉα2θγ2(1−θ) = (εθα2θ)
(
Ĉε−θγ2(1−θ)

)

≤ θ(εθα2θ)1/θ + (1− θ)
(
Ĉε−θγ2(1−θ)

)1/(1−θ)

≤ (εθα2θ)1/θ + Ĉ1/(1−θ)
(
ε−θγ2(1−θ)

)1/(1−θ)

= εα2 + Ĉ1/(1−θ)ε−
θ

1−θ γ2.

This, along with (2.5) and the inequality in (iii), implies that the inequality in (iv) with the same

constant C as that in (iii).

Step 5: To show that (iv)⇒ (v).

By taking β =
θ

1− θ
in the inequality in (iv), we are led to the inequality in (v) with the same

constant C as that in (iv).

Step 6: To show that (v)⇒ (vi)

Let C > 0 be given by (v). Arbitrarily fix s and T̃ so that 0 ≤ s < T̃ . Then fix ξ ∈ L2(Ω).

Since

‖eT̃Aξ‖ ≤ es‖V ‖∞‖e(T̃−s)Aξ‖,
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by taking t = T̃ − s in the inequality in (v), we find that for all ε > 0 and β ∈ (0, 1],

‖eT̃Aξ‖2 ≤ e2s‖V ‖∞‖e(T̃−s)Aξ‖2

≤ e2s‖V ‖∞
[
1

εβ
e
2C(1+β)

(
1+ 1+β

β(T̃−s)
+(T̃−s)‖V ‖∞+‖V ‖2/3∞

)
‖1∗ω̂e(T̃−s)Aξ‖2ω̂ + ε‖ξ‖2

]

=
e2(1+β)s‖V ‖∞

(εe2s‖V ‖∞)β
e
2C(1+β)(1+ 1+β

β(T̃−s)
+(T̃−s)‖V ‖∞+‖V ‖2/3∞ )‖1∗ω̂e(T̃−s)Aξ‖2ω̂

+(εe2s‖V ‖∞)‖ξ‖2. (2.6)

Meanwhile, we have that for all β ∈ (0, 1],

2(1 + β)s‖V ‖∞ + 2C(1 + β)
(
1 +

1 + β

β(T̃ − s)
+ (T̃ − s)‖V ‖∞ + ‖V ‖2/3∞

)

= 2(1 + β)

[
C +

C(1 + β)

β(T̃ − s)
+

(
s+ C(T̃ − s)

)
‖V ‖∞ + C‖V ‖2/3∞

]

≤ 2(1 + β)2 max{1, C}
[
1 +

1

β(T̃ − s)
+ T̃‖V ‖∞ + ‖V ‖2/3∞

]

≤ 8max{1, C}
[
1 +

1

β(T̃ − s)
+ T̃‖V ‖∞ + ‖V ‖2/3∞

]
.

This, along with (2.6), implies that the inequality in (vi), with C3 = 8max{1, C}.
Step 7: to show that (vi)⇒ (i)

Let C3 > 0 be given by (vi). Arbitrarily fix t > 0 and ξ ∈ L2(Ω). Write

D , e
C3
2

(
1+ 1

βt
+t‖V ‖∞+‖V ‖2/3∞

)

‖1∗ω̂etAξ‖ω̂. (2.7)

Then it follows from the inequality in (vi) (where β = 1, s = 0 and T̃ = t) that

‖etAξ‖2 ≤ inf
ε>0

(
1

ε
D2 + ε‖ξ‖2

)
,

from which, it follows that

‖etAξ‖ ≤
√

2D‖ξ‖ ≤
√
2e

C3
4

(
1+ 1

βt
+t‖V ‖∞+‖V ‖2/3∞

)

‖1∗ω̂etAξ‖
1/2
ω̂ ‖ξ‖1/2.

This, along with (2.7), leads to the inequality in (i).

Finally, we see from Steps 4-5 that the constants C in (iii), (iv) and (v) can be chosen as the

same number, while C3 in (vi) can be taken as 8max{1, C} (see Step 6). This ends the proof.

Remark 2.2 (a) The inequality in (i) of Theorem 2.1 is indeed equivalent to a kind of impulse

controllability, i.e., the impulse null approximate controllability, which will be explained in the next

section. Such controllability is the base for our study on the stabilization. (b) In the following studies

of this paper, we will only use the inequality in (v) of Theorem 2.1. However, other inequalities seem

to be interesting independently. For instance, when V = 0, the inequality in (ii) of Theorem 2.1 is
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exactly the Lebeau-Robbiano spectral inequality (see [LR]). Here, we get, in the case that V 6= 0,

the same inequality, and find how the constant (on the right hand side of the inequality) depends

on ‖V ‖∞. (c) It deserves to mention that all constant terms on the right hand side of inequalities

in Theorem 2.1 have explicit expressions in terms of the norm of V and time, but not Ω and ω̂.

(d) It was realized that when V = 0, the inequality in (i) of Theorem 2.1 can imply the inequality

(ii) of Theorem 2.1 (see Remark 1 in [AEWZ])

3 Impulse null approximate controllability

The main purposes of this section are to introduce impulse null approximate controllability problems

and to show that such controllability is a consequence of the inequality in (v) of Theorem 2.1.

Throughout this section, we arbitrarily fix numbers T̂ , ŝ and t̂, with T̂ > ŝ ≥ t̂ ≥ 0, and fix an

open and non-empty subset ω̂ ⊂ Ω.

3.1 Several impulse approximate controllability problems

Consider the following two equations:




y′(t)−Ay(t) = 0, t ∈ [t̂, T̂ ],

y(ŝ) = y((ŝ)−) + 1ωf,

y(t̂) = z ,

(3.1)

and 



ϕ′(t) +Aϕ(t) = 0, t ∈ [t̂, T̂ ],

ϕ(T̂ ) = ξ.
(3.2)

Here, z ∈ L2(Ω), f ∈ L2(ω̂), and ξ ∈ L2(Ω). The first equation is an impulse controlled equation

over [t̂, T̂ ], while the second one is the dual equation of the first one. Write y(·; f, z) and ϕ(·; ξ) for
the solutions to (3.1) and (3.2), respectively. Then we have that

y(t; f, z) =

{
e(t−t̂)Az, when t ∈ [t̂, ŝ) and t̂ < ŝ,

e(t−t̂)Az + e(t−ŝ)A1ω̂f when t ∈ [ŝ, T̂ ],
(3.3)

and

ϕ(t; ξ) = e(T̂−t)Aξ for any t ∈ [t̂, T̂ ]. (3.4)

Several concepts on the impulse approximate controllability for Equation (3.1) are given in

order. The first one is the impulse approximate controllability for Equation (3.1), i.e., for each

z ∈ L2(Ω),
{
y(T̂ ; f, z)

∣∣ f ∈ L2(ω̂)
}‖·‖

= L2(Ω). (3.5)

The second one is the impulse null approximate controllability, i.e., for each z ∈ L2(Ω) and each

δ > 0, there is a control f ∈ L2(ω) so that y(T̂ ; f, z) ∈ B(δ‖z‖, 0). Here and in what follows,

B(δ‖z‖, 0) denotes the closed ball in L2(Ω), centered at the origin and of radius δ‖z‖. The third
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one is the impulse null approximate controllability with a cost, i.e., for each δ > 0, there is a constant

C > 0 so that for each z ∈ L2(Ω), there is a control f ∈ L2(ω̂) satisfying that y(T̂ ; f, z) ∈ B(δ‖z‖, 0)
and ‖f‖ω̂ ≤ C‖z‖.

We now introduce two problems and one property related to the above-mentioned impulse null

approximate controllability and impulse null approximate controllability with a cost. The first one

is the following minimal norm impulse control problem (NP )z, δ
T̂ , ŝ, t̂, ω̂

(where z ∈ L2(Ω) \ {0} and

δ > 0 are arbitrarily fixed):

N z,δ(T̂ ) , inf
{
‖f‖ω̂

∣∣ ‖y(T̂ ; f, z)‖ ≤ δ‖z‖
}
. (3.6)

This problem is to ask for a control which has the minimal norm among all controls (in L2(ω̂))

driving solutions of Equation (3.1) from the initial state z to B(δ‖z‖, 0) at the ending time T̂ .

In this problem, N z,δ(T̂ ) is called the minimal norm, while f∗ ∈ L2(ω̂) is called a minimal norm

control, if

y(T̂ ; f∗, z)‖ ≤ δ‖z‖ and ‖f∗‖ω̂ = N z,δ(T̂ ). (3.7)

The second one is the following problem (NP )δ
T̂ , ŝ, t̂, ω̂

(where δ > 0 are arbitrarily fixed):

N δ(T̂ ) , sup
‖z‖≤1

N z,δ(T̂ ) = sup
‖z‖≤1

inf
{
‖f‖ω̂

∣∣ ‖y(T̂ ; f, z)‖ ≤ δ‖z‖
}
. (3.8)

The quantity N δ(T̂ ) is called the value of the problem (NP )δ
T̂ , ŝ, t̂, ω̂

. The last one is following

property (C)C,δ (where C > 0 and δ > 0): For any z ∈ L2 (Ω), there is a control f ∈ L2 (ω̂) so that

max

{
1

C
‖f‖ω̂ ,

1

δ

∥∥∥y(T̂ ; f, z)
∥∥∥
}

≤ ‖z‖ . (3.9)

We would like to mention that the property (C)C,δ may not hold for arbitrary C > 0 and δ > 0.

However, we will see that given δ > 0, there is C > 0 so that the property (C)C,δ is true.

The following lemma gives the impulse approximate controllability for (3.1). This result will

not be used in our study on the stabilization, but for the completeness of the introduction on the

impulse approximate controllability, we present it here. It deserves to mention that such result may

have existed already. Unfortunately, we did not find the exact reference.

Theorem 3.1 Equation (3.1) is impulse approximate controllable.

Proof. Define a linear and bounded operator G : L2(ω̂) → L2(Ω) in the following manner:

G , e(T̂−ŝ)A1ω̂.

Then we find that for each z ∈ L2(Ω) and each f ∈ L2(ω̂),

y(T̂ ; f, z) = e(T̂−t̂)Az + Gf.

From this and (3.5), we see that Equation (3.1) is impulse approximate controllable if and only if

R(G)‖·‖ = L2(Ω), (3.10)
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It is clear that (3.10) is equivalent to

N (G∗) = {0}. (3.11)

Because

G∗ = 1∗ω̂e
(T̂−ŝ)A ∈ L(L2(Ω), L2(ω̂)),

we see that (3.11) is equivalent to the following property:

χω̂ϕ(ŝ; ξ) = 0 =⇒ ξ = 0.

(Here and in what follows, χω̂ denotes the characteristic function of ω̂.) The later is exactly the

unique continuation property of heat equations built up in [L] (see also [EFV]). Hence, Equation

(3.1) is impulse approximate controllable. This ends the proof.

3.2 Minimal norm impulse control

This subsection presents some properties on the minimal norm impulse control problem (NP )z, δ
T̂ , ŝ, t̂, ω̂

.

Lemma 3.2 For each z ∈ L2(Ω) \ {0} and each δ > 0, the problem (NP )z, δ
T̂ , ŝ, t̂, ω̂

has a unique

minimal norm control.

Proof. Arbitrarily fix z ∈ L2(Ω) \ {0} and δ > 0. Write

F z,δ
ad

∆
=
{
f ∈ L2(ω̂)

∣∣ ‖y(T̂ ; f, z)‖ ≤ δ‖z‖
}
.

By Theorem 3.1, we see that F z,δ
ad 6= ∅. Meanwhile, one can easily check that F z,δ

ad is weakly closed

in L2(ω̂). From these, it follows that (NP )z, δ
T̂ , ŝ, t̂, ω̂

has a minimal norm control.

Suppose that f1 and f2 are two minimal norm controls to (NP )z, δ
T̂ , ŝ, t̂, ω̂

. Then we have that

0 ≤ ‖f1‖ω̂ = ‖f2‖ω̂ = N z,δ(T̂ ) <∞, (3.12)

where N z,δ(T̂ ) is given by (3.6). Meanwhile, one can easily check that (f1+ f2)/2 is also a minimal

norm control to (NP )z, δ
T̂ , ŝ, t̂, ω̂

. This, along with the Parallelogram Law, yields that

(
N z,δ(T̂ )

)2
= ‖(f1 + f2)/2‖2ω̂ =

1

2

(
‖f1‖2ω̂ + ‖f2‖2ω̂

)
− ‖(f1 − f2)/2‖2ω̂ . (3.13)

From (3.12) and (3.13), we find that f1 = f2. Thus, the minimal norm control to (NP )z, δ
T̂ , ŝ, t̂, ω̂

is

unique. This ends the proof.

To characterize the minimal norm control of (NP )z, δ
T̂ , ŝ, t̂, ω̂

, we introduce its dual problem (DP )z, δ
T̂ , ŝ, t̂, ω̂

in the following manner (which is inspired by [FPZ]):

inf
ξ∈L2(Ω)

J(ξ; z, δ, T̂ , ŝ, t̂, ω̂), (3.14)

where

J(ξ; z, δ, T̂ , ŝ, t̂, ω̂) ,
1

2
‖1∗ω̂ ϕ(ŝ; ξ)‖2ω̂ +

〈
z, ϕ(t̂; ξ)

〉
+δ‖z‖‖ξ‖, ξ ∈ L2(Ω). (3.15)
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Lemma 3.3 For each z ∈ L2(Ω) \ {0} and each δ > 0, the functional J(· ; z, δ, T̂ , ŝ, t̂, ω̂) has the

following properties:

(i) It satisfies that

lim
r→∞

inf
‖ξ‖=r

J(ξ; z, δ, T̂ , ŝ, t̂, ω̂)

‖ξ‖ ≥ δ‖z‖. (3.16)

(ii) It has a unique minimizer over L2(Ω).

(iii) Write ξz,δ
T̂ ,ŝ,t̂,ω̂

for its minimizer. Then

ξz,δ
T̂ ,ŝ,t̂,ω̂

= 0 if and only if
∥∥∥y(T̂ ; 0, z)

∥∥∥ ≤ δ‖z‖. (3.17)

Proof. Arbitrarily fix z ∈ L2(Ω) \ {0} and δ > 0. We will prove conclusions (i)− (iii) one by one.

(i) By contradiction, suppose that (3.16) was not true. Then there would be an ε ∈ (0, δ) and

a sequence {ηn}∞n=1 in L2(Ω) so that

lim
n→∞

∥∥ηn
∥∥= ∞ (3.18)

and
J(ηn; z, δ, T̂ , ŝ, t̂, ω̂)

‖ηn‖
≤ (δ − ε)‖z‖ for all n ∈ N. (3.19)

From (3.18), we can assume, without loss of generality, that ηn 6= 0 for all n. Thus we can set

φn =
ηn

‖ηn‖
for all n ∈ N. (3.20)

From (3.20), we see that {ϕ(t̂;φn}∞n=1 is bounded in L2(Ω). Then, from (3.15), (3.20), (3.18) and

(3.19), we find that

lim
n→∞

1

2
‖1∗ω̂ ϕ(ŝ;φn)‖2ω̂

= lim
n→∞

1

‖ηn‖
·
[
J(ηn; z, δ, T̂ , ŝ, t̂, ω̂)

‖ηn‖
−

〈
z, ϕ(t̂;φn)

〉
− δ‖z‖

]

≤ lim
n→∞

−ε‖z‖
‖ηn‖

+ lim
n→∞

−〈z, ϕ(t̂;φn)〉
‖ηn‖

= 0.

(3.21)

Meanwhile, by (3.20), there is a subsequence of {φn}, denoted in the same manner, so that

φn → φ weakly in L2(Ω),

for some φ ∈ L2(Ω). Since the semigroup
{
eAt

}
t≥0

is compact, the above convergence leads to

ϕ(ŝ;φn) → ϕ(ŝ;φ) strongly in L2(Ω); 1∗ω̂ ϕ(ŝ;φn) → 1∗ω̂ ϕ(ŝ;φ) strongly in L2(ω̂). (3.22)

From (3.21) and the second convergence in (3.22), we find that

1∗ω̂ ϕ(ŝ;φ) = 0,
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which, along with the unique continuation property of heat equations built up in [L], yields that

φ = 0. Then by (3.15) and the first convergence in (3.22), we see that

lim
n→∞

J(ηn; z, δ, T̂ , ŝ, t̂, ω̂)

‖ηn‖
≥ lim

n→∞

[〈
z, ϕ(t̂;φn)

〉
+δ‖z‖

]

=
〈
z, ϕ(t̂; 0)

〉
+δ‖z‖ = δ‖z‖.

This, along with (3.19), leads to a contradiction. Therefore, (3.16) is true.

(ii) From (3.16), we see that the functional J(· ; z, δ, T̂ , ŝ, t̂, ω̂) is coercive on L2(Ω). From (3.15),

we find that this functional is continuous and convex on L2(Ω). Thus, it has a minimizer on L2(Ω).

Next, we show the uniqueness of the minimizer. It suffices to prove that the functional

J(· ; z, δ, T̂ , ŝ, t̂, ω̂) is strictly convex. For this purpose, we arbitrarily fix ξ1, ξ2 ∈ L2(Ω) \ {0},
with ξ1 6= ξ2. There are only three possibilities: (a) ξ1 6= µξ2 for any µ ∈ R; (b) ξ1 = −µ0ξ2 for

some µ0 > 0; (c) ξ1 = µ0ξ2 for some µ0 > 0. In the cases (a) and (b), one can easily check that

‖λξ1 + (1− λ)ξ2‖ < λ‖ξ1‖+ (1− λ)‖ξ2‖ for all λ ∈ (0, 1). (3.23)

In the case (c), we let

H(λ) , J(λξ2 ; z, δ, T̂ , ŝ, t̂, ω̂), λ > 0.

Since ξ2 6= 0 in L2(Ω), it follows by the unique continuation property of heat equations (built

up in [L]) that ‖1∗ω̂ ϕ(ŝ; ξ2)‖ω̂ 6= 0. Thus, H(·) is a quadratic function with a positive leading

coefficient. Hence, H(·) is strictly convex. This, along with (3.23), yields the strict convexity of

J(· ; z, δ, T̂ , ŝ, t̂, ω̂).
(iii) We first show that

∥∥∥y(T̂ ; 0, z)
∥∥∥ ≤ δ‖z‖ =⇒ ξz,δ

T̂ ,ŝ,t̂,ω̂
= 0. (3.24)

In fact, by (3.3) and (3.4), we see that

〈
z, ϕ(t̂; ξ)

〉
=

〈
y(T̂ ; 0, z), ξ

〉
for all z, ξ ∈ L2(Ω).

This, along with (3.15) and the inequality on the left hand side of (3.24), yields that

J(ξ; z, δ, T̂ , ŝ, t̂, ω̂) ≥
〈
y(T̂ ; 0, z), ξ

〉
+δ‖z‖‖ξ‖ ≥ 0 = J(0; z, δ, T̂ , ŝ, t̂, ω̂) for all ξ ∈ L2(Ω).

This implies the equality on the right hand side of (3.24). Hence, (3.24) is true.

We next show that

ξz,δ
T̂ ,ŝ,t̂,ω̂

= 0 =⇒
∥∥∥y(T̂ ; 0, z)

∥∥∥ ≤ δ‖z‖. (3.25)

By contradiction, suppose that (3.25) were not true. Then we would have that

∥∥∥y(T̂ ; 0, z)
∥∥∥ > δ‖z‖ and ξz,δ

T̂ ,ŝ,t̂,ω̂
= 0. (3.26)
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Set ψ , −y(T̂ ; 0, z), which clearly belongs to ψ ∈ L2(Ω) \ {0}. Then we have that

〈
z, ϕ(t̂;ψ)

〉
=
〈
y(T̂ ; 0, z), ψ

〉
= −‖y(T̂ ; 0, z)‖‖ψ‖.

This, along with the first inequality in (3.26), yields that

〈
z, ϕ(t̂;ψ)

〉
+δ‖z‖‖ψ‖ < 0.

Thus, there is an ε > 0 so that

J(εψ; z, δ, T̂ , ŝ, t̂, ω̂) = ε2
1

2
‖1∗ω̂ϕ(ŝ;ψ)‖2ω̂ + ε

[〈
z, ϕ(t̂;ψ)

〉
+δ‖z‖‖ψ‖

]
< 0.

This, along with the second equation in (3.26), indicates that

0 = J(0; z, δ, T̂ , ŝ, t̂, ω̂) = min
ξ∈L2(Ω)

J(ξ; z, δ, T̂ , ŝ, t̂, ω̂) < 0,

which leads to a contradiction. So we have proved (3.25).

Finally, (3.17) follows from (3.24) and (3.25) at once. This ends the proof of Lemma 3.3 .

Now we will present some properties on the minimal norm control of the problem (NP)z,δ
T̂ ,ŝ,t̂,ω̂

.

Theorem 3.4 Let z ∈ L2(Ω) \ {0} and δ > 0. The following conclusions are true:

(i) The minimal norm control f z,δ
T̂ ,ŝ,t̂,ω̂

to (NP)z,δ
T̂ ,ŝ,t̂,ω̂

satisfies that

f z,δ
T̂ ,ŝ,t̂,ω̂

= 0 if and only if
∥∥∥y(T̂ ; 0, z)

∥∥∥ ≤ δ‖z‖.

(ii) The minimal norm control f z,δ
T̂ ,ŝ,t̂,ω̂

to (NP)z,δ
T̂ ,ŝ,t̂,ω̂

and the minimizer ξz,δ
T̂ ,ŝ,t̂,ω̂

to (DP)z,δ
T̂ ,ŝ,t̂,ω̂

have

the following connection:

f z,δ
T̂ ,ŝ,t̂,ω̂

= 1∗ω̂
(
ϕ
(
ŝ; ξz,δ

T̂ ,ŝ,t̂,ω̂

))
.

Proof. Arbitrarily fix z ∈ L2(Ω) \ {0} and δ > 0. According to Lemma 3.2 and the conclusion (ii)

in Lemma 3.3, (NP)z,δ
T̂ ,ŝ,t̂,ω̂

has a unique minimal norm control f z,δ
T̂ ,ŝ,t̂,ω̂

and (DP)z,δ
T̂ ,ŝ,t̂,ω̂

has a unique

minimizer ξz,δ
T̂ ,ŝ,t̂,ω̂

.

The first conclusion in this theorem follows from the definition of Problem (NP)z,δ
T̂ ,ŝ,t̂,ω̂

(see (3.6))

at once.

To show the second conclusion of this theorem, we notice that when ‖y(T̂ ; 0, z)‖ ≤ δ‖z‖, it
follows respectively from the first conclusion of this theorem and the conclusion (iii) of Lemma 3.3

that

f z,δ
T̂ ,ŝ,t̂,ω̂

= 0 and ξz,δ
T̂ ,ŝ,t̂,ω̂

= 0.

Hence, the second of this theorem is true in this case.

We now consider the case where

∥∥∥y(T̂ ; 0, z)
∥∥∥ > δ‖z‖. (3.27)
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Write

ξ̂ , ξz,δ
T̂ ,ŝ,t̂,ω̂

, and f̂ , 1∗ω̂
(
ϕ
(
ŝ; ξ̂

))
. (3.28)

We first claim that

f̂ ∈ F z,δ
ad

∆
=
{
f ∈ L2(ω̂)

∣∣ ‖y(T̂ ; f, z)‖ ≤ δ‖z‖
}
. (3.29)

In fact, by (3.27) and (iii) of Lemma 3.3, we find that ξ̂ 6= 0. Then the Euler-Lagrange equation

associated to ξ̂ reads:

e(T̂−ŝ)Aχω̂e
(T̂−ŝ)Aξ̂ + e(T̂−t̂)Az + δ‖z‖ ξ̂

‖ξ̂‖
= 0. (3.30)

Since 1ω̂1
∗
ω̂ = χω, it follows from (3.3), (3.28) and (3.4) that

y(T̂ ; f̂ , z) = e(T̂−ŝ)Aχω̂e
(T̂−ŝ)Aξ̂ + e(T̂−t̂)Az.

This, together with (3.30), indicates that

y(T̂ ; f̂ , z) = −δ‖z‖ ξ̂

‖ξ̂‖
, (3.31)

from which, (3.29) follows at once.

We next claim that

‖f̂‖ω̂ ≤ ‖f‖ω̂ for all f ∈ F z,δ
ad . (3.32)

To this end, we arbitrarily fix an f ∈ F z,δ
ad . Then we have that

‖y(T̂ ; f, z)‖ ≤ δ‖z‖. (3.33)

Since 1ω̂1
∗
ω̂ = χω̂ and χω̂1ω̂ = 1ω̂, we find from (3.28), (3.3) and (3.33) that

‖f‖ω̂ · ‖f̂‖ω̂ ≥
〈
1ω̂f, 1ω̂f̂

〉
=

〈
1ω̂f, χω̂e

(T̂−ŝ)Aξ̂
〉

=
〈
e(T̂−ŝ)A1ω̂f, ξ̂

〉
=

〈
y(T̂ ; f, z)− e(T̂−t̂)Az, ξ̂

〉

≥ −δ‖z‖‖ξ̂‖ −
〈
e(T̂−t̂)Az, ξ̂

〉
.

This, along with (3.30), yields that

‖f‖ω̂ · ‖f̂‖ω̂

≥ −δ‖z‖‖ξ̂‖+
〈
e(T̂−ŝ)Aχω̂e

(T̂−ŝ)Aξ̂ + δ‖z‖ ξ̂

‖ξ̂‖
, ξ̂

〉

= −δ‖z‖‖ξ̂‖+
∥∥∥1∗ω̂e(T̂−ŝ)Aξ̂

∥∥∥
2

ω̂
+ δ‖z‖‖ξ̂‖

=
∥∥∥1∗ω̂e(T̂−ŝ)Aξ̂

∥∥∥
2

ω̂
= ‖f̂‖2ω̂. (3.34)

Since ξ̂ 6= 0 in this case, we see from (3.28) and the unique continuation estimate at one time (given

by (i) of Theorem 2.1), combined with the classical backward uniqueness for parabolic equations,

that f̂ 6= 0. This, along with (3.34), leads to (3.32). From (3.29) and (3.32), we find that f̂ is a
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minimal norm control to (NP)z,δ
T̂ ,ŝ,t̂,ω̂

. Since the minimal norm control of (NP)z,δ
T̂ ,ŝ,t̂,ω̂

is unique, we

have that f̂ = f z,δ
T̂ ,ŝ,t̂,ω̂

. So the second conclusion of this theorem is true.

In summary, we end the proof of this theorem.

3.3 Impulse null approximate controllability with a cost

This subsection presents connections among the problem (NP )δ
T̂ , ŝ, t̂, ω̂

, the property (C)C,δ and an

inequality on solutions of (3.2). The later can be treated as a kind of observability estimate. Such

connections, along with the estimate in (v) of Theorem 2.1, provide a bound for the minimal norm

of (NP)z,δ
T̂ ,ŝ,t̂,ω̂

. With the aid of this bound, we can get a bound of the norm for the desired feedback

law.

Theorem 3.5 Let δ > 0 and C > 0. The following statements are equivalent:

(i) Let N δ(T̂ ) be given by (3.8). Then C ≥ N δ(T̂ ).

(ii) The property (C)C,δ (defined by (3.9)) is true.

(iii) The following property (O)C,δ is true: For each ξ ∈ L2 (Ω), the solution ϕ(·; ξ) to (3.2) satisfies

∥∥ϕ(t̂; ξ)
∥∥ ≤ C ‖1∗ω̂ϕ(ŝ; ξ)‖ω̂ + δ ‖ξ‖ .

Proof. We organize the proof by three steps as follows:

Step 1. To show that (i) ⇔ (ii)

We first prove that (i) ⇒ (ii). Assume that (i) is true. When z = 0 in L2(Ω), we find that (3.9)

holds for f = 0. Thus, it suffices to show (ii) with an arbitrarily fixed z ∈ L2(Ω) \ {0}. For this

purpose, we write ẑ = z/‖z‖. Let f̂ be the solution to (NP)ẑ,δ
T̂ ,ŝ,t̂,ω̂

. Then by (3.6), we see that

‖y(T̂ ; f̂ , ẑ)‖ ≤ δ‖ẑ‖ = δ.

Setting f = ‖z‖f̂ in the above leads to that

‖y(T̂ ; f, z)‖ = ‖z‖‖y(T̂ ; f̂ , ẑ)‖ ≤ δ‖z‖.

Thus, to show that the above f satisfies (3.9), we only need to prove that ‖f‖ω̂ ≤ C‖z‖. This will
be done in what follows: Since f̂ is the solution to (NP)ẑ,δ

T̂ ,ŝ,t̂,ω̂
, we have that ‖f̂‖ω̂ = N ẑ,δ(T̂ ). This,

along with (3.8), (3.6) and (i), yields that

‖f‖ω̂ = ‖z‖‖f̂‖ω̂ = ‖z‖N ẑ,δ(T̂ ) ≤ ‖z‖N δ(T̂ ) ≤ C‖z‖.

Hence, (ii) is true.

We next show that (ii) ⇒ (i). Assume that (ii) is true. By contradiction, we suppose that (i)

were false. Then there would be z ∈ B(1, 0) so that N z,δ(T̂ ) > C. It is clear that z 6= 0. Let

ẑ = z/‖z‖. Then
N ẑ,δ(T̂ ) =

1

‖z‖N
z,δ(T̂ ) > N z,δ(T̂ ) > C.
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From this and (3.6), we see that there is no f ∈ L2(Ω) so that

∥∥∥y(T̂ ; f, ẑ)
∥∥∥ ≤ δ‖ẑ‖ and ‖f‖ω̂ ≤ C = C‖ẑ‖.

This contradicts (ii). Hence, (i) stands.

Step 2. To show that (ii) ⇒ (iii)

Suppose that (ii) holds. Then, given z ∈ L2(Ω), there is fz ∈ L2(Ω) so that (3.9), with f = fz,

holds. Meanwhile, it follows by (3.3) and (3.4) that

〈
y(T̂ ; fz, z), ξ

〉
−
〈
z, ϕ(t̂; ξ)

〉
=
〈
1ω̂fz, ϕ(ŝ; ξ)

〉
for all z, ξ ∈ L2(Ω).

This, along with the inequality (3.9), yields that for each ξ ∈ L2(Ω),

‖ϕ(t̂; ξ)‖ = sup
‖z‖≤1

〈ϕ(t̂; ξ), z〉

= sup
‖z‖≤1

[
〈y(T̂ ; fz, z), ξ〉 − 〈1ω̂fz, ϕ(ŝ; ξ)〉

]

≤ sup
‖z‖≤1

[
‖y(T̂ ; fz, z)‖ · ‖ξ‖+ ‖fz‖ω̂ · ‖1∗ω̂ϕ(ŝ; ξ)‖ω̂

]

≤ sup
‖z‖≤1

[(
δ‖ξ‖ + C ‖1∗ω̂ϕ(s; ξ)‖ω̂

)
‖z‖

]

= C ‖1∗ω̂ϕ(s; ξ)‖ω̂ + δ ‖ξ‖ ,

which leads to (O)C,δ. Hence, (iii) is true.

Step 3. To show that (iii) ⇒ (ii)

Suppose that (iii) is true. Arbitrarily fix z ∈ L2 (Ω). In the case that ‖y(T̂ ; 0, z)‖ ≤ δ‖z‖, (3.9)
holds for f = 0. Thus, we only need to consider the case that

‖y(T̂ ; 0, z)‖ > δ‖z‖. (3.35)

In this case, we let fz , 1∗ω̂ϕ(ŝ; ξ
z,δ), where ξz,δ , ξz,δ

T̂ ,ŝ,t̂,ω̂
is the solution to (DP)z,δ

T̂ ,ŝ,t̂,ω̂
. Then

according to (ii) of Theorem 3.4, f∗ is the minimal norm control to (NP)z,δ
T̂ ,ŝ,t̂,ω̂

. By Lemma 3.3

and (3.35), we see that ξz,δ 6= 0. Then using (3.4) and (3.30) (with ξ̂ = ξz,δ), and noticing that

χω̂ = 1ω̂1
∗
ω̂, we find that

〈
z, ϕ(t̂; ξz,δ)

〉
=

〈
eT̂−t̂)Az, ξz,δ

〉

= −
〈
e(T̂−ŝ)Aχω̂e

(T̂−ŝ)Aξz,δ + δ‖z‖ ξz,δ

‖ξz,δ‖ , ξ
z,δ

〉

= −
∥∥1∗ω̂ϕ(ŝ; ξz,δ)

∥∥2
ω̂
− δ‖z‖‖ξz,δ‖.

Since fz = 1∗ω̂ϕ(ŝ; ξ
z,δ), the above equality, along with (3.15), shows that

J(ξz,δ; z, δ, T̂ , ŝ, t̂, ω̂) =
1

2

∥∥∥1∗ω̂ϕ(ŝ; ξz,δ)
∥∥∥
2

ω̂
+

〈
z, ϕ(t̂; ξz,δ)

〉
+ δ‖z‖‖ξz,δ‖ = −1

2
‖fz‖2ω̂. (3.36)
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Meanwhile, it follows from (3.15) and the inequality in (iii) in (O)C,δ that

J(ξz,δ; z, δ, T̂ , ŝ, t̂, ω̂) =
1

2

∥∥∥1∗ω̂ϕ(ŝ; ξz,δ)
∥∥∥
2

ω̂
+

〈
z, ϕ(t̂; ξz,δ)

〉
+ δ‖z‖‖ξz,δ‖

≥ 1

2

∥∥∥1∗ω̂ϕ(ŝ; ξz,δ)
∥∥∥
2

ω̂
+ δ‖z‖‖ξz,δ‖ − ‖ϕ(t̂; ξz,δ)‖‖z‖

≥ 1

2

∥∥∥1∗ω̂ϕ(ŝ; ξz,δ)
∥∥∥
2

ω̂
+ δ‖z‖‖ξz,δ‖ −

[
C
∥∥∥1∗ω̂ϕ(ŝ; ξz,δ))

∥∥∥
ω̂
+ δ

∥∥∥ξz,δ
∥∥∥
]
‖z‖

≥ 1

2
‖fz‖2ω̂ − C‖fz‖ω̂‖z‖.

(3.37)

From (3.36) and (3.37), it follows that

‖fz‖ω̂ ≤ C‖z‖. (3.38)

On the other hand, since fz is the minimal norm control to (NP)z,δ
T̂ ,ŝ,t̂,ω̂

, it follows from (3.6)

that ‖y(T̂ ; fz, z)‖ ≤ δ‖z‖. From this and (3.38), we find that (3.9) is true. Hence, (ii) stands.

In summary, we complete the proof.

Remark 3.6 The value N δ(T̂ ) (given by by (3.8)) is indeed the optimal coefficient C so that the

following inequality holds:

∥∥ϕ(t̂; ξ)
∥∥ ≤ C ‖1∗ω̂ϕ(ŝ; ξ)‖ω̂ + δ ‖ξ‖ for any ξ ∈ L2(Ω). (3.39)

Indeed, the above-mentioned optimal coefficient reads:

C∗ , inf
{
C > 0

∣∣∣ C satisfies (3.39)
}
.

We now claim that

C∗ = N δ(T̂ ). (3.40)

In fact, if C satisfies (3.39), then it follows from Theorem 3.5 that C ≥ N δ(T̂ ). From this, we find

that

C∗ ≥ N δ(T̂ ). (3.41)

On the other hand, if we can prove that the property (C)N
δ(T̂ ),δ holds, then by making use of

Theorem 3.5, we see that

C∗ ≤ N δ(T̂ ),

which, along with (3.41) leads to (3.40).

Therefore, the remainder is that for each z ∈ L2 (Ω), there is a control f ∈ L2 (ω̂) satisfying

that

max

{
1

N δ(T̂ )
‖f‖ω̂ ,

1

δ

∥∥∥y(T̂ ; f, z)
∥∥∥
}

≤ ‖z‖ . (3.42)

When z = 0, we can easily get (3.42) by taking f = 0. So it suffices to prove (3.42) for an arbitrarily

fixed z ∈ L2(Ω) \ {0}. To this end, we let ẑ = z/‖z‖. It follows from (3.8) that

inf
{
‖f‖ω̂

∣∣ ‖y(T̂ ; f, ẑ)‖ ≤ δ‖ẑ‖
}
≤ N δ(T̂ ).
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Because the infimum on the left hand side of the above inequality can be reached, there is f̂ ∈ L2(ω̂)

so that

y(T̂ ; f̂ , ẑ)‖ ≤ δ‖ẑ‖ with ‖f̂‖ω̂ ≤ N δ(T̂ ).

From these, we see that (3.42) holds for f = ‖z‖f̂ . Thus we finish the proof of the claim.

3.4 Bound of minimal norm

The next theorem provides a bound of the minimal norm for (NP)z,δ
T̂ ,ŝ,t̂,ω̂

, defined by (3.6). Its proof

is based on Theorem 3.5 and (v) of Theorem 2.1.

Theorem 3.7 Let t̂, ŝ and T̂ be so that 0 ≤ t̂ < ŝ < T̂ . Let δ > 0, z ∈ L2(Ω) and ω̂ be a nonempty

open subset of Ω. Then the minimal norm control f z,δ
T̂ ,ŝ,t̂,ω̂

to Problem (NP )z,δ
T̂ ,ŝ,t̂,ω̂

satisfies the

following estimate:

∥∥f z,δ
T̂ ,ŝ,t̂,ω̂

∥∥
ω̂
≤ e

C

(
B

T̂ ,ŝ,t̂,‖V ‖∞+

√
[ln(1/δ)]+

T̂−ŝ

)

‖z‖, (3.43)

where C > 1 is a constant (depending only on Ω and ω̂), [ln(1/δ)]+ , max{ln 1
δ , 0} and

BT̂ ,ŝ,t̂,‖V ‖∞ , 1 +
1

T̂ − ŝ
+ (T̂ − t̂)‖V ‖∞ + ‖V ‖2/3∞ . (3.44)

Proof. Arbitrarily fix t̂, ŝ, T̂ , z and ω̂ as required. First of all, we notice that
∥∥∥f z,δ

T̂ ,ŝ,t̂,ω̂

∥∥∥
ω̂
, as a

function of δ ∈ (0,∞), is decreasing. Thus, it suffices to show (3.43) in the case when δ ∈ (0, 1).

To this end, we arbitrarily fix δ ∈ (0, 1) and ξ ∈ L2(Ω). Since

√
a+ b ≤ √

a+
√
b for all a, b ≥ 0, (3.45)

by taking t = T̂ − ŝ in (v) of Theorem 2.1, we see that for all ε > 0 and β > 0,

‖e(T̂−ŝ)Aξ‖ ≤
[ 1

εβ
e
2Ĉ(1+β)

(
1+ 1+β

β(T̂−ŝ)
+(T̂−ŝ)‖V ‖∞+‖V ‖2/3∞

)
‖1∗ω̂e(T̂−ŝ)Aξ‖2ω̂ + ε‖ξ‖2

]1/2

≤ 1

(
√
ε)β

e
Ĉ(1+β)

(
1+ 1+β

β(T̂−ŝ)
+(T̂−ŝ)‖V ‖∞+‖V ‖2/3∞

)
‖1∗ω̂e(T̂−ŝ)Aξ‖ω̂ +

√
ε‖ξ‖,

where Ĉ , 1 + C and C is given by (v) of Theorem 2.1. From this, we find that

‖e(T̂−t̂)Aξ‖ ≤ e(ŝ−t̂)‖V ‖∞‖e(T̂−ŝ)Aξ‖

≤ e(ŝ−t̂)‖V ‖∞

(
√
ε)β

e
Ĉ(1+β)

(
1+ 1+β

β(T̂−ŝ)
+(T̂−ŝ)‖V ‖∞+‖V ‖2/3∞

)
‖1∗ω̂e(T̂−ŝ)Aξ‖ω̂ + e(ŝ−t̂)‖V ‖∞√

ε‖ξ‖.

Since ξ was arbitrarily taken from L2(Ω), by taking ε =
(

δ
e(ŝ−t̂)‖V ‖∞

)2
in the above inequality and

then using (3.4), we see that for each β > 0,

‖ϕ(t̂; ξ)‖ ≤ Cβ,δ‖1∗ω̂ϕ(ŝ; ξ)‖ω̂ + δ‖ξ‖ for all ξ ∈ L2(Ω), (3.46)
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where

Cβ,δ ,
1

δβ
e(1+β)(ŝ−t̂)‖V ‖∞e

Ĉ(1+β)
(
1+ 1+β

β(T̂−ŝ)
+(T̂−ŝ)‖V ‖∞+‖V ‖2/3∞

)
. (3.47)

By (3.46), we see that for each β > 0, the property (O)Cβ,δ,δ (given in (i) of Theorem 3.5) is true.

Then we can apply Theorem 3.5 to find that (i) of Theorem 3.5 holds. Thus, the minimal norm

control f z,δ
T̂ ,ŝ,t̂,ω̂

to Problem (NP )z,δ
T̂ ,ŝ,t̂,ω̂

satisfies

∥∥f z,δ
T̂ ,ŝ,t̂,ω̂

∥∥
ω̂
≤ Cβ,δ‖z‖ for each β > 0. (3.48)

Next, we will prove that

inf
β>0

Cβ,δ ≤ exp
[
4Ĉ

(
BT̂ ,ŝ,t̂,‖V ‖∞ +

√
[ln(1/δ)]+

T̂ − ŝ

)]
, (3.49)

where BT̂ ,ŝ,t̂,‖V ‖∞ is given by (3.44). In fact, since Ĉ > 1, we find from (3.47) that for all β > 0,

Cβ,δ ≤ 1

δβ
eĈ(1+β)(ŝ−t̂)‖V ‖∞e

Ĉ(1+β)
(
1+ 1+β

β(T̂−ŝ)
+(T̂−ŝ)‖V ‖∞+‖V ‖2/3∞

)

= e(ln
1
δ
)βe

Ĉ(1+β)
(
1+ 1+β

β(T̂−ŝ)
+(T̂−t̂)‖V ‖∞+‖V ‖2/3∞

)

= exp
[(
ĈBT̂ ,ŝ,t̂,‖V ‖∞ + ln

1

δ

)
β +

Ĉ

β(T̂ − ŝ)
+ Ĉ

(
BT̂ ,ŝ,t̂,‖V ‖∞ +

1

T̂ − ŝ

)]
,

which, along with (3.45), yields that

inf
β>0

Cβ,δ = exp
{
2

√
Ĉ2BT̂ ,ŝ,t̂,‖V ‖∞

T̂ − ŝ
+
Ĉ ln 1

δ

T̂ − ŝ
+ Ĉ

(
BT̂ ,ŝ,t̂,‖V ‖∞ +

1

T̂ − ŝ

)}

≤ exp
{
2Ĉ

√
BT̂ ,ŝ,t̂,‖V ‖∞
T̂ − ŝ

+ 2

√
Ĉ ln 1

δ

T̂ − ŝ
+ Ĉ

(
BT̂ ,ŝ,t̂,‖V ‖∞ +

1

T̂ − ŝ

)}
. (3.50)

Meanwhile, we have that

√
BT̂ ,ŝ,t̂,‖V ‖∞
T̂ − ŝ

≤ 1

2
BT̂ ,ŝ,t̂,‖V ‖∞ +

1

2

1

T̂ − ŝ
.

This, together with (3.50), indicates that

inf
β>0

Cβ,δ ≤ exp
{
2Ĉ

(
BT̂ ,ŝ,t̂,‖V ‖∞ +

1

T̂ − ŝ

)
+ 2

√
Ĉ ln 1

δ

T̂ − ŝ

}
.

Since Ĉ > 1, the above inequality, as well as (3.44), implies that

inf
β>0

Cβ,δ ≤ e
4Ĉ

(
B

T̂ ,ŝ,t̂,‖V ‖∞+

√
ln 1

δ
T̂−ŝ

)

.

This leads to (3.49) (in the case that δ ∈ (0, 1)). Now, (3.43), with δ ∈ (0, 1), follows from (3.48)

and (3.49). This ends the proof.
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Remark 3.8 From Theorem 3.7, we see that the bound of the minimal norm control depends on

several quantities, such as time, domains, potential and δ (radius of the target ball). Among these

quantities, δ may be the most important. The way how it depends on δ is as: eC̃
√

[ln(1/δ)]+ for some

C̃ > 0 independent of δ. Meanwhile, from the proof of Theorem 3.7, we find that this bound is from

the minimization of Cβ,δ with respect to β. (Here, Cβ,δ is given by (3.47).) Thus, it follows by

(3.46) that

‖ϕ(t̂; ξ)‖ ≤ C̃eC̃
√

[ln(1/δ)]+‖1∗ω̂ϕ(ŝ; ξ)‖ω̂ + δ‖ξ‖ for all ξ ∈ L2(Ω). (3.51)

Meanwhile, in the special case when V = 0 and 0 ≤ t̂ = ŝ < T̂ , the following property is true: there

exists C0 > 0, {ηn} ⊂ L2(Ω) \ {0} and {δn} ⊂ (0, 1), with limn→∞ δn = 0, so that

‖ϕ(ŝ; ηn)‖ ≥ C0e
C0

√
ln(1/δn)‖1∗ω̂ϕ(ŝ; ηn)‖ω̂ + δn‖ηn‖ for all n. (3.52)

From (3.51) and (3.52), we see that when V = 0 and 0 ≤ t̂ = ŝ < T̂ , the quantity
√
[ln(1/δ)]+ is

optimal in the following sense: For any function δ → α(δ), δ > 0, with limδ→0+
α(δ)√

[ln(1/δ)]+
= 0, the

following inequality is not true:

‖ϕ(ŝ; ξ)‖ ≤ α(δ)eα(δ)‖1∗ω̂ϕ(ŝ; ξ)‖ω̂ + δ‖ξ‖ for all ξ ∈ L2(Ω and δ > 0.

We now prove (3.52). According to Proposition 5.5 in [LL], there exists C ′
0 > 0 and n0 > 0 so

that for each n ≥ n0, there is {an,j}∞j=1 ⊂ l2 \ {0} satisfying that

‖
∑

λj≤n

an,jξj‖ ≥ C ′
0e

C′
0

√
n‖1∗ω̂

∑

λj≤n

an,jξj‖ω̂. (3.53)

Define, for each n ∈ N,

ηn ,
∑

λj≤n

eλj(T̂−ŝ)an,jξj and δn ,
1

2
e−n(T̂−ŝ). (3.54)

From (3.54) and (3.53), we find that for each n ≥ n0,

‖ϕ(ŝ; ηn)‖ = ‖
∑

λj≤n

an,jξj‖ = (1− δne
n(T̂−ŝ))‖

∑

λj≤n

an,jξj‖+ δne
n(T̂−ŝ)‖

∑

λj≤n

an,jξj‖

≥ 1

2
‖
∑

λj≤n

an,jξj‖+ δn‖
∑

λj≤n

eλj(T̂−ŝ)an,jξj‖

≥ 1

2
C ′
0e

C′
0

√
n‖1∗ω̂

∑

λj≤n

an,jξj‖ω̂ + δn‖ηn‖. (3.55)

Meanwhile, it follows from (3.54) that for each n ∈ N,

√
ln(1/δn) =

√
ln 2 + n(T̂ − ŝ) ≤ 1 +

√
n

√
T̂ − ŝ. (3.56)

By (3.55) and (3.56), we see that

‖ϕ(ŝ; ηn)‖ ≥ 1

2
C ′
0e

− C′
0√

T̂−ŝ e
C′
0√

T̂−ŝ

√
ln(1/δn)‖1∗ω̂

∑

λj≤n

an,jξj‖ω̂ + δn‖ηn‖,
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which leads to (3.52).

Next, we would like to mention the following fact: The order
√

[ln(1/ε)]+ is also optimal in the

inequality in (v) of Theorem 2.1 (with V = 0 and t̂ = ŝ) in the the above-mentioned sense. Then

according to Theorem 3.5, the following conclusion is not true: For each function α(·) over R
+,

with limη→0+
α(η)√

[ln(1/η)]+
= 0, each δ > 0 and each z ∈ L2(Ω), the minimal norm control f z,δ

T̂ ,ŝ,ŝ,ω̂
to

(NP )z,δ
T̂ ,ŝ,ŝ,ω̂

(with V = 0) satisfies the following estimate:

‖f z,δ
T̂ ,ŝ,ŝ,ω̂

‖ω̂ ≤ eα(δ)‖z‖.

Finally, it deserves mentioning that for any β > 0,

e
√

[ln(1/δ)] ≤ 1

δβ
, when δ > 0 is small. (3.57)

Indeed, we have that
1

δβ
= eβ ln(1/δ) for all β > 0 and δ > 0

and √
[ln(1/δ)] ≤ ln(1/δ), when δ > 0 is small.

From these, (3.57) follows at once.

4 Main result

This section presents the main result of this paper, as well as its proof. We first recall that s,

τ and T , with 0 < s ≤ τ < T , are three arbitrarily fixed time points and that ω1 and ω are

two arbitrarily fixed open and non-empty subsets of Ω. we next recall that {λj}∞j=1 is the family

of all eigenvalues of −A so that (1.2) holds, and that {ξj}∞j=1 is the family of the corresponding

normalized eigenfunctions. For each γ > 0, we define a natural number Kγ in the following manner:

Kγ , card

{
j ∈ N, λj < γ +

ln 3

T

}
. (4.1)

Then we define numbers ǫγ and ǫj,γ , with 1 ≤ j ≤ Kγ , as follows:

ǫγ ,
1

3K
1/2
γ

e−γT , ǫj,γ , e−2λjs
1

6K
1/2
γ

e−(γ+‖V ‖∞)T . (4.2)

Write respectively ξ
ξj ,ǫγ
T,τ,0,ω and ξ

ξj ,ǫj,γ
2s,s,0,ω1

for the solutions to problems (DP)
ξj ,ǫγ
T,τ,0,ω and (DP)

ξj ,ǫj,γ
2s,s,0,ω1

.

(These two problems are defined by (3.14), with (z, δ, T̂ , ŝ, t̂, ω̂) being replaced by (ξj, ǫγ , T, τ, 0, ω)

and (ξj , ǫj,γ, 2s, s, 0, ω1) respectively.) Then from (ii) of Theorem 3.4, we find that for each γ > 0

and each 1 ≤ j ≤ Kγ ,

fj,γ , f
ξj ,ǫγ
T,τ,0,ω = 1∗ω

(
e(T−τ)Aξ

ξj ,ǫγ
T,τ,0,ω

)
and hj,γ , f

ξj,ǫj,γ
2s,s,0,ω1

= 1∗ω1

(
esAξ

ξj ,ǫj,γ
2s,s,0,ω1

)
(4.3)

are respectively the minimal norm controls to problems (NP)
ξj ,ǫγ
T,τ,0,ω and (NP)

ξj ,ǫj,γ
2s,s,0,ω1

. (These

two problems are defined by (3.6), with (z, δ, T̂ , ŝ, t̂, ω̂) being replaced by (ξj, ǫγ , T, τ, 0, ω) and
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(ξj , ǫj,γ, 2s, s, 0, ω1) respectively.) Now for each γ > 0, we define a linear bounded operator Fγ from

L2 (ω1) into L
2 (ω) in the following manner:

Fγ(v) = −
Kγ∑

j=1

e2λjs
〈
1ω1v, 1ω1hj,γ

〉
fj,γ for each v ∈ L2(ω1). (4.4)

The closed-loop equation under consideration reads:




y′(t)−Ay(t) = 0 in R
+\

(
τ + N̄T

)
,

y(τ + nT ) = y((τ + nT )−) + 1ωFγ

(
1∗ω1

y (s+ nT )
)

for n ∈ N̄ ,

y(0) ∈ L2(Ω).

(4.5)

The main result of this paper is the following theorem:

Theorem 4.1 For each γ > 0, let Fγ be given by (4.4). Then the following conclusions are true:

(i) Each solution yγ(·) to the equation (4.5) satisfies that

‖yγ (t)‖ ≤ eT(γ+‖V ‖∞)
(
1 + ‖Fγ‖L(L2(ω1),L2(ω))

)
e−γt ‖yγ(0)‖ for all t ≥ 0.

(ii) The operator Fγ satisfies the estimate:

‖Fγ‖L(L2(ω1),L2(ω)) ≤ C1e
C2γ ,

where C1 and C2 are two positive constants depending on T , τ , s, d (dimension of the space),

‖V ‖∞, Ω, ω and ω1, but independent of γ. Moreover, the manner how it depends on T , τ , s, d

(dimension of the space), ‖V ‖∞ is explicitly given.

Proof. For each k ∈ N, let Vk , span{ξ1, . . . , ξk} and let Pk be the orthogonal projection of L2(Ω)

onto Vk. Arbitrarily fix γ > 0. We organize the proof by several steps.

In Step 1, we will show that if any solution yγ(·) to the equation (4.5) satisfies that

‖yγ ((n+ 1)T )‖ ≤ e−γT ‖yγ (nT )‖ for any n ∈ N̄, (4.6)

then the conclusion (i) in the theorem stands.

To prove this, we arbitrarily fix a solution yγ(·) to the equation (4.5). Then by (4.6), we see

that

‖yγ (nT )‖ ≤ e−γnT ‖yγ(0)‖ for all N̄. (4.7)

Arbitrarily fix an n ∈ N̄. From (4.5) and (4.7), we find that

‖yγ (t)‖ ≤ e(t−nT )‖V ‖∞ ‖yγ (nT )‖ ≤ e(t−nT )‖V ‖∞e−nγT ‖yγ(0)‖
≤ eτ‖V ‖∞e−nγT ‖yγ(0)‖ ≤ eT(γ+‖V ‖∞)e−γt ‖yγ(0)‖ , when t ∈ [nT, τ + nT ] ,

and

‖yγ (t)‖ ≤ e(t−τ−nT )‖V ‖∞ ‖yγ (τ + nT )‖
≤ e(t−τ−nT )‖V ‖∞

∥∥yγ
(
(τ + nT )−

)∥∥+ e(t−τ−nT )‖V ‖∞
∥∥Fγ

(
1∗ω1

y (s+ nT )
)∥∥

ω

≤ e(t−nT )‖V ‖∞ ‖yγ (nT )‖+ ‖Fγ‖L(L2(ω1),L2(ω)) e
(t−τ−nT )‖V ‖∞es‖V ‖∞ ‖yγ (nT )‖

≤ eT(γ+‖V ‖∞)
(
1 + ‖Fγ‖L(L2(ω1),L2(ω))

)
e−γt ‖yγ(0)‖ , when t ∈ [τ + nT, (n+ 1)T ] .
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From these, we see that the conclusion (i) in the theorem is true.

In Step 2, we will prove that for each ε > 0 and each k ∈ N with k > m, the linear operator

Cε,k : Vk → L2(ω), constructed in the following manner:

Cε,k(z) =
k∑

j=1

〈z, ξj〉f εj , z ∈ Vk, (4.8)

with f εj , f
ξj ,ε
T,τ,0,ω the minimal norm control to (NP)

ξj ,ε
T,τ,0,ω, satisfies that for each z0 ∈ L2(Ω),

∥∥∥eTAz0 + e(T−τ)A1ωCε,k(Pkz0)
∥∥∥ ≤ ε

√
k ‖Pkz0‖+ e−λk+1T ‖z0 − Pkz0‖ . (4.9)

To prove this, we first consider the following controlled equation:





y′(t)−Ay(t) = 0 in [nT, (n+ 1)T ]\
(
τ + nT

)
,

y(τ + nT ) = y((τ + nT )−) + 1ωf

y (nT ) = z0,

(4.10)

where z0 ∈ L2 (Ω), f ∈ L2(ω) and n ∈ N̄. Write yn(·; f, z0) for the solution of (4.10). The

relationship between yn(·; f, z0) and the solution y(·; f, z0) to the equation (3.1), where

(ŝ, t̂, T̂ , ω̂, z) = (τ, nT, (n + 1)T, ω, z0),

is as follows:

yn(t; f, z0) = y(t− nT ; f, z0) for each t ∈ [nT, (n+ 1)T ]. (4.11)

Arbitrarily fix ε > 0, k ∈ N with k > m, and z0 ∈ L2(Ω). Since f εj is the minimal norm control to

(NP)
ξj ,ε
T,τ,0,ω, from (3.7), where

(z, δ, T̂ , ŝ, t̂, ω̂) = (ξj , ε, T, τ, 0, ω),

we find that

‖y(T ; f εj , ξj)‖ ≤ ε for all 1 ≤ j ≤ k.

This, along with (4.11), yields that

‖yn((n+ 1)T ; f εj , ξj)‖ ≤ ε for all 1 ≤ j ≤ k. (4.12)

Define

f ε,kz0 ,
k∑

j=1

〈z0, ξj〉f εj , (4.13)

Since

‖yn((n+ 1)T ; 0, z0 − Pkz0)‖ ≤ e−λk+1T ‖z0 − Pkz0‖,

24



it follows by (4.12) and (4.13) that

‖yn((n + 1)T ; f ε,kz0 , z0)‖
= ‖yn((n + 1)T ; f ε,kz0 , Pkz0)‖+ ‖yn((n+ 1)T ; 0, z0 − Pkz0)‖

≤
k∑

j=1

[
|〈z0, ξj〉| · ‖yn((n + 1)T ; f εj , ξj)‖

]
+ e−λk+1T ‖z0 − Pkz0‖

≤ ε
k∑

j=1
|〈z0, ξj〉|+ e−λk+1T ‖z0 − Pkz0‖

≤ ε
√
k‖Pkz0‖+ e−λk+1T ‖z0 − Pkz0‖.

(4.14)

Meanwhile, we have from (4.10) and (4.13) that

yn((n+ 1)T ; f ε,kz0 , z0) = eTAz0 + e(T−τ)A1ω

k∑

j=1

〈z0, ξj〉f εj ,

while, we see from (4.8) that

Cε,k(Pkz0) =

k∑

j=1

〈z0, ξj〉f εj .

These, along with (4.14), leads to (4.9).

It deserves mentioning what follows: From (4.9), one can easily check that when ω1 = Ω and

s = τ , we can suitably choose ε and k in terms of γ and Nγ so that F̂γ , Cε,kPk plays the role of

such a feedback law that each solution ŷγ(·) to the equation (4.5), where

(ω1, s,Fγ) = (Ω, τ, F̂γ),

satisfies that

‖ŷγ(t)‖ ≤ Ĉγe
−γt‖ŷγ(0)‖, when t ≥ 0,

for some positive constant Ĉγ . However, in the current case, ω1 may not be Ω and s < τ . Thus we

need recover approximately Pkz0 from 1∗ω1
esAz0. This is the job in the next step.

In Step 3, we will construct, for each k > m and ε̂ > 0, a linear and bounded operator

Rε̂,k : L2 (ω1) → Vk so that

‖Rε̂,k
(
1∗ω1

esAz0
)
− Pkz0‖L2(Ω) ≤

√
k ε̂‖z0‖L2(Ω) for any z0 ∈ L2(Ω). (4.15)

To this end, we arbitrarily fix k > m and ε̂ > 0. Write

ε̂j , ε̂e−2λjs, j = 1, . . . , k. (4.16)

Let

ĥj , f
ξj ,ε̂j
2s,s,0,ω1

, 1 ≤ j ≤ k.

Then each ĥj is the minimal norm control to (NP)
ξj ,ε̂j
2s,s,0,ω1

. Write ỹ(·; ĥj , ξj) for the solution to the

equation (3.1), with

(T̂ , ŝ, t̂, ω̂, z, f) = (2s, s, 0, ω1, ξj , ĥj).
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Then by (3.7), it follows that

‖ỹ(2s; ĥj , ξj)‖ ≤ e−2λjsε̂.

Meanwhile, one can easily check that for each j with 1 ≤ j ≤ k,

ỹ(2s; ĥj , ξj) = e−2λjsξj + esA1ω1 ĥj .

From these and (4.16), we see that the vector ζj (with 1 ≤ j ≤ k), defined by

ζj , e−2λjsξj + esA1ω1 ĥj , (4.17)

satisfies that

‖ζj‖ ≤ ε̂j‖ξj‖ = e−2λjsε̂. (4.18)

Define a linear and bounded operator Rε̂,k : L2(ω1) → Vk in the following manner:

Rε̂,k(η) = −
k∑

j=1

〈
1ω1η, 1ω1 ĥj

〉
e2λjsξj for any η ∈ L2(ω1). (4.19)

By a direct calculation, we see that

Rε̂,k
(
1∗ω1

esAz0
)
− Pkz0 = −

k∑

j=1

〈
z0, e

2λjsζj

〉
ξj. (4.20)

Now, (4.15) follows from (4.20) and (4.18) at once.

In Step 4, we prove each solution yγ(·) to (4.5) satisfies (4.6).

To this end, we first let

k = Kγ , ε = ǫγ and ε̂ =
1

6K
1/2
γ

e−(γ+‖V ‖∞)T , (4.21)

where Kγ and ǫγ are given by (4.1) and (4.2) respectively. From (4.4), (4.8), (4.19) and (4.21), one

can directly check that

Fγ = Cε,k ◦ Rε̂,k. (4.22)

Next, we arbitrarily fix n ∈ N̄ and fix a solution yγ(·) to (4.5). Then from (4.22), (4.8) and

(4.19), we find that

yγ((n + 1)T ) = eTAyγ(nT ) + e(T−τ)A1ωCε,kRε̂,k(1∗ω1
esAyγ(nT ))

= eTA
[
Pkyγ(nT )−Rε̂,k(1∗ω1

esAyγ(nT ))
]

+

[
eTA

(
yγ(nT )− Pkyγ(nT ) +Rε̂,k(1∗ω1

esAyγ(nT ))

)
+e(T−τ)A1ωCε,kRε̂,k(1∗ω1

esAyγ(nT ))

]

∆
= Z1,n + Z2,n

(4.23)

On one hand, we see from (4.15), (4.21) and (4.1) that

∥∥∥Pkyγ(nT )−Rε̂,k(1∗ω1
esAyγ(nT ))

∥∥∥ ≤ 1

6
e−T (γ+‖V ‖∞)‖yγ(nT )‖. (4.24)
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From (4.24), we find that

‖Z1,n‖ ≤ eT‖V ‖∞
∥∥∥Pky(nT )−Rε̂,k(1∗ω1

esAyγ(nT ))
∥∥∥ ≤ 1

6
e−γT ‖yγ(nT )‖. (4.25)

On the other hand, we let

ẑ0 , yγ(nT )− Pkyγ(nT ) +Rε̂,k(1∗ω1
esAyγ(nT )). (4.26)

Because

Rε̂,k(1∗ω1
esAyγ(nT )) ∈ Vk,

we have that

Pkz0 = Rε̂,k(1∗ω1
esAyγ(nT )) ∈ Vk. (4.27)

From (4.26), (4.27) and (4.9), it follows that

‖Z2,n‖ =
∥∥eTAẑ0 + e(T−τ)A1ωCε,kRε̂,kPkẑ0

∥∥

≤ ε
√
k
∥∥Rε̂,k(1∗ω1

esAyγ(nT ))
∥∥+ e−λk+1T ‖y(nT )− Pkyγ(nT )‖

≤ ε
√
k ‖Pkyγ(nT )‖+ ε

√
k
∥∥Pkyγ(nT )−Rε̂,k(1∗ω1

esAyγ(nT ))
∥∥+ e−λk+1T ‖yγ(nT )‖

≤
(
ε
√
k + e−λk+1T

)
‖yγ(nT )‖+ ε

√
k
∥∥Pkyγ(nT )−Rε̂,k(1∗ω1

esAyγ(nT ))
∥∥ .

This, along with (4.24), (4.21) and (4.2), yields that

‖Z2,n‖ ≤
(
2

3
+

1

18

)
e−γT ‖yγ(nT ))‖. (4.28)

Now, (4.6) follows from (4.23), (4.25) and (4.28). Then by the conclusion in Step 1, we see that

the conclusion (i) of the theorem holds.

In Step 5, we will prove the conclusion (ii) of the theorem. To this end, we let k, ε and ε̂ be

given by (4.21); let ε̂j be given by (4.16) (with aforementioned ε̂). From (4.22), (4.8) and (4.19),

we find that

‖Fγ‖L(L2(ω1),L2(ω)) ≤
∥∥∥Cε,k

∥∥∥
L(Vk ,L2(ω))

∥∥∥Rε̂,k
∥∥∥
L(L2(ω1),Vk)

, (4.29)

∥∥∥Cε,k
∥∥∥
L(Vk ,L2(ω))

≤
k∑

j=1

‖f εj ‖ω (4.30)

and

∥∥∥Rε̂,k
∥∥∥
L(L2(ω1),Vk)

≤




k∑

j=1

e4λjs
∥∥∥ĥj

∥∥∥
2

ω1




1/2

≤
√
ke2λksmax

j≤k

∥∥∥ĥj
∥∥∥
ω1

. (4.31)

Since f εj and ĥj are the minimal norm controls to (NP)
ξj ,ε
T,τ,0,ω and (NP)

ξj ,ε̂j
2s,s,0,ω1

respectively, accord-

ing to Theorem 3.7, there is a constant C > 1, depending only on Ω, ω and ω1, so that

‖f εj ‖ω ≤ e
C

(
BT,τ,0,‖V ‖∞+

√
[ln(1/ε)]+

T−τ

)

(4.32)
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and

‖ĥj‖ω1 ≤ e
C

(
B2s,s,0,‖V ‖∞+

√
[ln(1/ε̂j )]

+

s

)

, (4.33)

where BT,τ,0,‖V ‖∞ and B2s,s,0,‖V ‖∞ are given by (3.44), with (T̂ , ŝ, t̂, ‖V ‖∞) being replaced by

(T, τ, 0, ‖V ‖∞) and (2s, s, 0, ‖V ‖∞) respectively. (Here, we would like to mention that the constant

C in (4.32) only depends on Ω and ω, while the constant C in (4.33) only depends on Ω and ω1.)

We next estimate the terms on the right hand sides of (4.32) and (4.33). By (4.21), (4.2) and

(4.16), it follows that

1

ε
= 3K

1
2
γ e

γT and
1

ε̂j
=

1

ε̂
e2λjs = 6K

1
2
γ e

(γ+‖V ‖∞)T e2λjs.

From these and (4.1), we can apply Weyl’s asymptotic formula (see [SV]) to find a constant C > 0

(depending only on Ω) so that

1

ε
≤ C

(
γ +

ln 3

T

)d/4

eγT and
1

ε̂j
≤ C

(
γ +

ln 3

T

)d/4

e(γ+‖V ‖∞)T e2(γ+
ln 3
T

)s. (4.34)

By using the inequality: ln a ≤ a for all a > 0, we can derive from (4.34) that

ln(1/ε) ≤
(
lnC + d

)
+ d

1

T − τ
+ (1 + d)Tγ

and

ln(1/ε̂j) ≤
(
lnC + d

)
+ d

1

T − τ
+ ‖V ‖∞T + 4

s

T − τ
+ (1 + d)(T + s)γ.

Because (a+ b)+ ≤ a+ + b+ for all a, b ∈ R, the above two inequalities imply that

[ln(1/ε)]+ ≤ [lnC + d]+ + d
1

T − τ
+ (1 + d)Tγ (4.35)

and that

[ln(1/ε̂j)]
+ ≤ [lnC + d]+ + d

1

T − τ
+ ‖V ‖∞T + 4

s

T − τ
+ (1 + d)(T + s)γ. (4.36)

Since
√
a+ b ≤ √

a+
√
b and 2

√
a ≤ 1 + a for all a, b ≥ 0, we can get from (4.35) and (4.36), after

some simple computations, that

√
[ln(1/ε)]+

T − τ
≤ 1 +

[lnC + d]+ +
√
d

T − τ
+ (1 + d)

√
T

T − τ

√
γ (4.37)

and
√

[ln(1/ε̂j)]+

s
≤ 2 +

[lnC + d]+ +
√
d

s
+

√
‖V ‖∞

√
T

s
+

1 +
√
d

T − τ
+ (1 + d)

√
T + s

s

√
γ. (4.38)

Since it follows by (3.44) (with (T̂ , ŝ, t̂, ‖V ‖∞) being replaced by (T, τ, 0, ‖V ‖∞) and (2s, s, 0, ‖V ‖∞)

respectively) that
1

T − τ
≤ BT,τ,0,‖V ‖∞ and

1

s
≤ B2s,s,0,‖V ‖∞ ,
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we find from (4.37) and (4.38) that

e
C

(
BT,τ,0,‖V ‖∞+

√
[ln(1/ε)]+

T−τ

)

≤ e
C

(
BT,τ,0,‖V ‖∞+1+

[lnC+d]++
√

d
T−τ

)

e
C(1+d)

√
T

T−τ

√
γ

≤ eC
(
2+[lnC+d]++

√
d
)
BT,τ,0,‖V ‖∞e

C(1+d)
√

T
T−τ

√
γ

(4.39)

and that

e
C

(
B2s,s,0,‖V ‖∞+

√
[ln(1/ε̂j )]

+

s

)

≤ e
C
(
2+[lnC+d]++

√
d
)(

B2s,s,0,‖V ‖∞+
√

‖V ‖∞
√

T
s
+ 1

T−τ

)

e
C(1+d)

√
T+s
s

√
γ

≤ e
C
(
2+[lnC+d]++

√
d
)(

B2s,s,0,‖V ‖∞+
√

‖V ‖∞
√

T
s
+BT,τ,0,‖V ‖∞

)

e
C(1+d)

√
T+s
s

√
γ
. (4.40)

Write

Ĉ1 , e
C
(
2+[lnC+d]++

√
d
)(

BT,τ,0,‖V ‖∞+B2s,s,0,‖V ‖∞+
√

‖V ‖∞
√

T
s

)

,

Ĉ2 , e
C(1+d)

(√
T

T−τ
+
√

T+s
s

)

. (4.41)

From (4.32), (4.33), (4.39), (4.40) and (4.41), it follows that

‖f εj ‖ω ≤ Ĉ1e
Ĉ2

√
γ and ‖ĥj‖ω1 ≤ Ĉ1e

Ĉ2
√
γ . (4.42)

We now back to estimate
∥∥Cε,k

∥∥
L(Vk ,L2(ω))

and
∥∥Rε̂,k

∥∥
L(L2(ω1),Vk)

. To deal with
∥∥Cε,k

∥∥
L(Vk,L2(ω))

,

we see from (4.30), the first estimate in (4.42) and (4.21) that

∥∥∥Cε,k
∥∥∥
L(Vk,L2(ω))

≤
k∑

j=1

‖f εj ‖ω ≤ kĈ1e
Ĉ2

√
γ = KγĈ1e

Ĉ2
√
γ = Ĉ1e

lnKγeĈ2
√
γ . (4.43)

Meanwhile, from (4.1), Weyl’s asymptotic formula (see [SV]) and the inequality:

ln
√
a+ b ≤

√
a+ b ≤ √

a+
√
b for all a, b ≥ 0,

we deduce that

lnKγ ≤ ln

(
C(γ +

ln 3

T
)

)
= lnC + 2 ln

√
γ +

ln 3

T

≤ lnC + 2

√
γ +

ln 3

T
≤ lnC + 2

√
γ + 2

√
ln 3

T

≤ lnC + 2
√
γ +

4√
T − τ

, (4.44)

where C > 0 is a constant depending only on Ω. We can take two C > 0 in (4.44) and (4.34),

respectively, to be the same number. By (4.43) and (4.44), it follows that

∥∥∥Cε,k
∥∥∥
L(Vk,L2(ω))

≤ Ĉ1Ce
4√
T−τ e(Ĉ2+2)

√
γ ≤ Ĉ1Ce

4√
T−τ e(Ĉ2+2)(1+γ). (4.45)
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To estimate
∥∥Rε̂,k

∥∥
L(L2(ω1),Vk)

, we find from (4.31), (4.21), (4.1) and the second estimate in (4.42)

that
∥∥∥Rε̂,k

∥∥∥
L(L2(ω1),Vk)

≤
√
ke2λksmax

j≤k
‖ĥj‖ω1 ≤

√
Kγe

2(γ+ ln 3
T

)sĈ1e
Ĉ2

√
γ

= Ĉ1e
1
2
lnKγe2 ln 3 s

T e2sγeĈ2
√
γ ≤ Ĉ1e

1
2
lnKγe4

s
T e2sγeĈ2

√
γ .

This, along with (4.44), yields that
∥∥∥Rε̂,k

∥∥∥
L(L2(ω1),Vk)

≤ Ĉ1

√
Ce

2√
T−τ e4

s
T e2sγe(Ĉ2+1)

√
γ

≤ Ĉ1

√
Ce

2√
T−τ e4

s
T e2sγe(Ĉ2+1)(1+γ)

= Ĉ1

√
CeĈ2+1e

2√
T−τ e4

s
T e(Ĉ2+2s+1)γ . (4.46)

Finally, by (4.29), (4.45) and (4.46), we get that

‖Fγ‖L(L2(ω1),L2(ω)) ≤ C1e
C2γ ,

with

C1 , Ĉ2
1C

3/2
e
2Ĉ2+3+ 4s

T
+ 6√

T−τ and C2 , 2Ĉ2 + 2s+ 3.

In summary, we finish the proof of this theorem.

Remark 4.2 The feedback law Fγ constructed by (4.4) is robust with respective to V . Indeed, for

each V ε ∈ L∞(Ω), we let Aε , ∆ − V + V ε. Define an operator LV ε
from L2(Ω) to L2(Ω) in the

following manner:

LV ε
= eA

εT + eA
ε(T−τ)Fγ1

∗
ω1
eA

ε(T−s) for any V ε ∈ L∞(Ω). (4.47)

Then by (4.6), we see that

‖L0‖L(L2(Ω),L2(Ω)) ≤ e−γT . (4.48)

From (4.47) and (4.48), one can easily check that for any γ1 < γ, there is ε0 > 0 so that

‖LV ε‖L(L2(Ω),L2(Ω)) ≤ e−γ1T , when ‖V ε‖∞ ≤ ε0. (4.49)

Meanwhile, any solution yγ,ε(·) to the equation (4.5), where A is replaced by Aε, satisfies that

yγ,ε((n + 1)T ) = LV ε
yγ,ε(nT ) for all n ∈ N̄.

This, along with (4.49), yields that when ‖V ε‖∞ ≤ ε0,

‖yγ,ε((n + 1)T )‖ ≤ e−γ1T ‖yγ,ε(nT )‖ for all n ∈ N̄. (4.50)

From (4.50), we can use the same way as that used in Step 1 of the proof of Theorem 4.1 to prove

that when ‖V ε‖∞ ≤ ε0,

‖yγ,ε(t)‖ ≤ Cγ1e
−γ1T ‖yγ,ε(0)‖ for all t ≥ 0,

where Cγ1 is a positive constant depending on γ1. This proves the desired robust property of the

feedback law Fγ .
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[CCr] E. Cerpa and E. Crépeau, Rapid exponential stabilization for a linear Korteweg-de Vries

equation, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 655–668.

[C] J. Coron, Control and nonlinearity, Mathematical Surveys and Monographs, 136, American

Mathematical Society, Providence, RI, 2007.

[Co] J. Coron, On the stabilization of controllable and observable systems by an output feedback

law, Math. Control Signals Systems, 7 (1994), 187–216.
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