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DEFORMATIONS OF CONVEX REAL PROJECTIVE
MANIFOLDS AND ORBIFOLDS

SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

Abstract. In this survey, we study representations of finitely generated groups into Lie
groups, focusing on the deformation spaces of convex real projective structures on closed
manifolds and orbifolds, with an excursion on projective structures on surfaces. We survey
the basics of the theory of character varieties, geometric structures on orbifolds, and Hilbert
geometry. The main examples of finitely generated groups for us will be Fuchsian groups,
3-manifold groups and Coxeter groups.
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1. Introduction

The goal of this paper is to survey the deformation theory of convex real projective struc-
tures on manifolds and orbifolds. Some may prefer to speak of discrete subgroups of the group
PGLd+1(R) of projective transformations of the real projective space RPd which preserve a
properly convex open subset of RPd, and some others prefer to speak of Hilbert geometries.

Some motivations for studying this object are the following:

S. Choi was supported by the Mid-career Researcher Program through the NRF grant NRF-
2013R1A1A2056698 funded by the MEST. G.-S. Lee was supported by the DFG research grant “Higher
Teichmüller Theory” and he acknowledges support from the U.S. National Science Foundation grants DMS
1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties” (the GEAR Net-
work). L. Marquis acknowledges support from the French ANR programs Finsler and Facets. The authors
thank Lizhen Ji, Athanase Papadopoulos and Shing-Tung Yau for the opportunity to publish this survey in
“Handbook of Group Actions”. Finally, we would like to thank the referee and Athanase Papadopoulos for
carefully reading this paper and suggesting several improvements.
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1.1. Hitchin representations. Let S be a closed surface of genus g ⩾ 2 and let Γ be the fun-
damental group of S. There is a unique irreducible representation im ∶ PSL2(R) → PSLm(R),
up to conjugation. A representation ρ ∶ Γ → PSLm(R) is called a Hitchin representation if
there are a continuous path ρt ∈ Hom(Γ,PSLm(R)) and a discrete, faithful representation
τ ∶ Γ→ PSL2(R) such that ρ0 = ρ and ρ1 = im ○ τ ∶ Γ→ PSLm(R). The space Hitm(Γ) of con-
jugacy classes of Hitchin representations of Γ in PSLm(R) has a lot of interesting properties:
Each connected component is homeomorphic to an open ball of dimension 2(g − 1)(m2 − 1)
(see Hitchin [65]), and every Hitchin representation is discrete, faithful, irreducible and purely
loxodromic (see Labourie [78]).

When m = 3, the first author and Goldman [35] showed that each Hitchin representation
preserves a properly convex domain1 of RP2. In other words, Hit3(Γ) is the space C(S) of
marked convex real projective structures on the surface S.

To understand the geometric properties of Hitchin representations, Labourie [78] intro-
duced the concept of Anosov representation. Later on, Guichard and Wienhard [63] studied
this notion for finitely generated Gromov-hyperbolic groups. For example, if M is a closed
manifold whose fundamental group is Gromov-hyperbolic, then the holonomy representations
of convex real projective structures on M are Anosov.

1.2. Deformations of hyperbolic structures. Let M be a closed hyperbolic manifold
of dimension d ⩾ 3, and let Γ = π1(M). By Mostow rigidity, up to conjugation, there is a
unique faithful and discrete representation ρgeo of Γ in PSOd,1(R). The group PSOd,1(R) is
canonically embedded in PGLd+1(R). We use the same notation ρgeo ∶ Γ → PGLd+1(R) to
denote the composition of ρgeo ∶ Γ → PSOd,1(R) with the canonical inclusion. Now, there is
no reason that ρgeo is the unique faithful and discrete representation of Γ in PGLd+1(R), up
to conjugation.

In fact, there are examples of closed hyperbolic manifold M of dimension d such that Γ
admits discrete and faithful representations in PGLd+1(R) which are not conjugate to ρgeo

(see Theorem 5.2). We can start looking at the connected component Ben(M) of the space of
representations of Γ into PGLd+1(R) containing ρgeo, up to conjugation. The combination of
a theorem of Koszul and a theorem of Benoist implies that every representation in Ben(M)
is discrete, faithful, irreducible and preserves a properly convex domain Ω of RPd.2

At the moment of writing this survey, there is no known necessary and sufficient condition
on M to decide if Ben(M) consists of exactly one element, which is the hyperbolic structure.
There are infinitely many closed hyperbolic 3-manifoldsM such that Ben(M) is the singleton
(see Heusener-Porti [64]), and there are infinitely many closed hyperbolic 3-orbifolds M such
that Ben(M) is homeomorphic to an open k-ball, for any k ∈ N (see Marquis [84]).

1.3. Building blocks for projective surfaces. Let S be a closed surface. We might wish
to understand all possible real projective structures on S, not necessarily only the convex
one. The first author showed that convex projective structures are the main building blocks
to construct all possible projective structures on the surface S (see Theorem 6.9).

1We abbreviate a connected open set to a domain.
2The action of Γ on Ω is automatically proper and cocompact for general reasons.



DEFORMATIONS OF CONVEX REAL PROJECTIVE MANIFOLDS AND ORBIFOLDS 3

1.4. Geometrization. Let Ω be a properly convex domain of RPd, and let Aut(Ω) be the
subgroup of PGLd+1(R) preserving Ω. There is an Aut(Ω)-invariant metric dΩ on Ω, called
the Hilbert metric, that make (Ω, dΩ) a complete proper geodesic metric space, called a
Hilbert geometry. We will discuss these metrics in Section 4.2. The flavour of the metric
space (Ω, dΩ) really depends on the geometry of the boundary of Ω. For example, on the one
hand, the interior of an ellipse equipped with the Hilbert metric is isometric to the hyper-
bolic plane, forming the projective model of the hyperbolic plane, and on the other hand, the
interior of a triangle is isometric to the plane with the norm whose unit ball is the regular
hexagon (see de la Harpe [48]).

Unfortunately, Hilbert geometries are almost never CAT(0): A Hilbert geometry (Ω, dΩ)
is CAT(0) if and only if Ω is an ellipsoid (see Kelly-Straus [70]). However, the idea of Riem-
manian geometry of non-positive curvature is a good guide towards the study of the metric
properties of Hilbert geometry.

An irreducible symmetric space X = G/K is “Hilbertizable” if there exist a properly convex
domain Ω of RPd for some d and an irreducible representation ρ ∶ G → PSLd+1(R) such that
ρ(G) acts transitively on Ω and the stabilizer of a point of Ω is conjugate to K. The symmet-
ric spaces for PSOd,1(R), PSLm(K) for K = R,C,H, and the exceptional Lie group E6,−26 are
exactly the symmetric spaces that are Hilbertizable (see Vinberg [103, 104] or Koecher [74]).

Nevertheless we can ask the following question to start with:
“Which manifold or orbifold M can be realized as the quotient of a properly convex
domain Ω by a discrete subgroup Γ of Aut(Ω)?”

If this is the case, we say that M admits a properly convex real projective structure.

In dimension 2, the answer is easy: a closed surface S admits a convex projective structure
if and only if its Euler characteristic is non-positive. The universal cover of a properly convex
projective torus is a triangle, and a closed surface of negative Euler characteristic admits a
hyperbolic structure, which is an example of a properly convex projective structure.

In dimension greater than or equal to 3, no definite answer is known; see Section 5 for a
description of our knowledge. To arouse the reader’s curiosity we just mention that there
exist manifolds which admit a convex real projective structure but which cannot be locally
symmetric spaces.

1.5. Coxeter groups. A Coxeter group is a finitely presented group that “resembles” the
groups generated by reflections; see Section 7 for a precise definition, and de la Harpe [47]
for a beautiful invitation. An important object to study Coxeter group, denoted W , is a
representation ρgeo ∶ W → GL(V ) introduced by Tits [24]. The representation ρgeo, in fact,
preserves a convex domain of the real projective space P(V ). For example, Margulis and
Vinberg [83] used this property of ρgeo to show that an irreducible Coxeter group is either
finite, virtually abelian or large.3

3A group is large if it contains a subgroup of finite index that admits an onto morphism to a non-abelian
free group.
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From our point of view, Coxeter groups are a great source for building groups acting on
properly convex domains of P(V ). Benoist [14, 15] used them to construct the first example
of a closed 3-manifold that admits a convex projective structure Ω/Γ such that Ω is not
strictly convex, or to build the first example of a closed 4-manifold that admits a convex
projective structure Ω/Γ such that (Ω, dΩ) is Gromov-hyperbolic but not quasi-isometric to
the hyperbolic space (see Section 5).

2. Character varieties

All along this article, we study the following kind of objects:
● a finitely generated group Γ which we think of as the fundamental group of a complete
real hyperbolic manifold/orbifold or its siblings,

● a Lie group G which is also the set of real points of an algebraic group G, and
● a real algebraic set Hom(Γ,G).

We want to understand the space Hom(Γ,G). First, the group G acts on Hom(Γ,G) by
conjugation. We can notice that the quotient space is not necessarily Hausdorff since the
orbit of the action of G on Hom(Γ,G) may not be closed. But the situation is not bad since
each orbit closure contains at most one closed orbit. Hence, a solution to the problem is to
forget the representations whose orbits are not closed. Let us recall the characterization of
the closedness of the orbit:

Lemma 2.1 (Richardson [97]). Assume that G is the set of real points of a reductive4 algebraic
group defined over R. Let ρ ∶ Γ → G be a representation. Then the orbit G ⋅ ρ is closed if
and only if the Zariski closure of ρ(Γ) is a reductive subgroup of G. Such a representation is
called a reductive representation.

Define

R(Γ,G) = Hom(Γ,G)/G and χ(Γ,G) = {[ρ] ∈ R(Γ,G) ∣ρ is reductive}.
These spaces are given with the quotient topology and the subspace topology, respectively.

Theorem 2.2 (Topological, geometric and algebraic viewpoint, Luna [81, 82] and Richard-
son-Slodowy [98]). Assume that G and ρ are as in Lemma 2.1. Then

● There exists a unique reductive representation Ð→ρ ∈ G ⋅ ρ, up to conjugation.
● The space χ(Γ,G) is Hausdorff and it is identified with the Hausdorff quotient of
R(Γ,G).

● The space χ(Γ,G) is also a real semi-algebraic variety which is the GIT-quotient5 of
the action of G on Hom(Γ,G).

The real semi-algebraic Hausdorff space χ(Γ,G) is called the character variety of the pair
(Γ,G).
Remark 2.3. Theorem 2.2 is not explicitly stated in Luna’s work. The statement can be
founded in Remark 7.3.3 of Richardson-Slodowy [98] and is also proved by independent
method via the action of the reductive group G on the affine variety Hom(Γ,G). See also
Section 3 of Bergeron [18].

4An algebraic group is reductive if its unipotent radical is trivial.
5GIT is the abbreviation for the Geometric Invariant Theory; see the lecture notes of Brion [26] for

information on this subject.
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A baby example. The space χ(Z,G) is the set of semi-simple elements of G modulo con-
jugation.

● If G = SLm(C), then χ(Z,G) = Cm−1.
● If G = SL2(R), then χ(Z,G) is a circle {eiθ ∣ 0 ⩽ θ < 2π} with two half-lines that are
glued on the circle at the points {1} and {−1}.

3. Geometric structures on orbifolds

In this section, we recall the vocabulary of orbifolds and of geometric structures on orb-
ifolds. The reader can skip this section if he or she is familiar with these notions. A classical
reference are Thurston’s lecture notes [100]. See also Goldman [55], Choi [34], Boileau-
Maillot-Porti [22]. For the theory of orbifolds itself, we suggest the article of Moerdijk-Pronk
[90], the books of Adem-Leida-Ruan [1] and of Bridson-Haefliger [25].

3.1. Orbifolds. An orbifold is a topological space which is locally homeomorphic to the
quotient space of Rd by a finite subgroup of Diff(Rd), the diffeomorphism group of Rd. Here
is a formal definition: A d-dimensional orbifold O consists of a second countable, Hausdorff
space XO with the following additional structure:

(1) A collection of open sets {Ui}i∈I , for some index I, which is a covering of XO and is
closed under finite intersections.

(2) To each Ui are associated a finite group Γi, a smooth action of Γi on an open subset
Ũi in Rd and a homeomorphism φi ∶ Ũi/Γi → Ui.

(3) Whenever Ui ⊂ Uj, there are an injective homomorphism fij ∶ Γi → Γj and a smooth
embedding φ̃ij ∶ Ũi → Ũj equivariant with respect to fij, i.e. φ̃ij(γx) = fij(γ)φ̃ij(x)
for γ ∈ Γi and x ∈ Ũi, such that the following diagram commutes:

Ũi Ũj

Ũi/Γi Ũj/fij(Γi)

Ũj/Γj

Ui Uj

φ̃ij

φi

φj
⊂

(4) The collection {Ui} is maximal relative to the conditions (1) – (3).
This additional structure is called an orbifold structure, and the space XO is the underlying

space of O. Here, it is somewhat important to realize that φ̃ij is uniquely determined up to
compositions of elements of Γi and Γj.

Example. If M is a smooth manifold and Γ is a subgroup of Diff(M) acting properly
discontinuously on M , then the quotient space M/Γ has an obvious orbifold structure.

An orbifold is said to be connected, compact or noncompact according to whether the un-
derlying space is connected, compact or noncompact, respectively.
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A smooth map between orbifoldsO andO′ is a continuous map f ∶XO →XO′ satisfying that
for each x ∈ O there are coordinate neighborhoods U ≈ Ũ/Γ of x in O and U ′ ≈ Ũ ′/Γ′ of f(x)
in O′ such that f(U) ⊂ U ′ and the restriction f ∣U can be lifted to a smooth map f̃ ∶ Ũ → Ũ ′

which is equivariant with respect to a homomorphism Γ→ Γ′. Note that the homomorphism
Γ → Γ′ may not be injective nor surjective. An orbifold-diffeomorphism between O and O′

is a smooth map O → O′ with a smooth inverse map. If there is an orbifold-diffeomorphism
between O and O′, we denote this by O ≈ O′.

An orbifold S is a suborbifold of an orbifold O if the underlying space XS of S is a subset
of XO and for each point s ∈XS , there are a coordinate neighborhood U = φ(Ũ/Γ) of s in O
and a closed submanifold Ṽ of Ũ preserved by Γ such that V = φ(Ṽ /(Γ∣Ṽ )) is a coordinate
neighborhood of s in S. Here, since the submanifold Ṽ is preserved by Γ, we denote by Γ∣Ṽ
the group obtained from the elements of Γ by restricting their domains and codomains to Ṽ .
Note that the restriction map Γ → Γ∣Ṽ may not be injective (see also Borzellino-Brunsden
[23]). For example, let σx (resp. σy) be the reflection in the x-axis Lx (resp. y-axis Ly) of R2.
Then Lx/⟨σy⟩ and Ly/⟨σx⟩ are suborbifolds of R2/⟨σx, σy⟩, however both maps ⟨σx, σy⟩ → ⟨σy⟩
and ⟨σx, σy⟩ → ⟨σx⟩ are not injective. Our definition is more restrictive than Adem-Leida-
Ruan’s [1] and less restrictive than Kapovich’s [69], however, this definition seems to be
better for studying decompositions of 2-orbifolds along 1-orbifolds.

3.2. (G,X)-orbifolds. Let X be a real analytic manifold and let G be a Lie group acting
analytically, faithfully and transitively on X. An orbifold is a (G,X)-orbifold if Γi is a sub-
group of G, Ũi is an open subset of X, and φ̃ij is locally an element of G (c.f. the definition
of orbifold). A (G,X)-manifold is a (G,X)-orbifold with Γi trivial. A (G,X)-structure on
an orbifold O is an orbifold-diffeomorphism from O to a (G,X)-orbifold S.

Here are some examples: Let Ed be the d-dimensional Euclidean space and let Isom(Ed) be
the group of isometries of Ed. Having an (Isom(Ed),Ed)-structure (or Euclidean structure)
on a manifold O is equivalent to having a Riemannian metric on O of sectional curvature
zero. We can also define a spherical structure or a hyperbolic structure on O and give a similar
characterization for each structure.

Let Ad be the d-dimensional affine space and let Aff(Ad) be the group of affine transfor-
mations, i.e. transformations of the form x ↦ Ax + b where A is a linear transformation of
Ad and b is a vector in Ad. An (Aff(Ad),Ad)-structure (or affine structure) on an orbifold
O is equivalent to a flat torsion-free affine connection on O (see Kobayashi-Nomizu [73]).
Similarly, a (PGLd+1(R),RPd)-structure (or real projective structure) on O is equivalent to a
projectively flat torsion-free affine connection on O (see Eisenhart [49]).

3.3. A tool kit for orbifolds. To each point x in an orbifold O is associated a group Γx
called the isotropy group of x: In a local coordinate system U ≈ Ũ/Γ this is the isomorphism
class of the stabilizer Γx̃ ⩽ Γ of any inverse point x̃ of x in Ũ . The set {x ∈ XO ∣Γx ≠ {1}} is
the singular locus of O.

In general, the underlying space of an orbifold is not even a manifold. However, in dimen-
sion two, it is homeomorphic to a surface with/without boundary. Moreover, the singular
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locus of a 2-orbifold can be classified into three families because there are only three types
of finite subgroups in the orthogonal group O2(R) :

● Mirror: R2/Z2 when Z2 acts by reflection.
● Cone points of order n ⩾ 2: R2/Zn when Zn acts by rotations of angle 2π

n .
● Corner reflectors of order n ⩾ 2: R2/Dn when Dn is the dihedral group of order 2n
generated by reflections in two lines meeting at angle π

n .
In the definition of an orbifold, if we allow Ũi to be an open set in the closed half-space Rd

+ of
Rd, then we obtain the structure of an orbifold with boundary. To make a somewhat redundant
remark, we should not confuse the boundary ∂O of an orbifold O with the boundary ∂XO of
the underlying space XO, when XO is a manifold with boundary.

Example. A manifold M with boundary ∂M can have an orbifold structure in which ∂M
becomes a mirror, i.e. a neighborhood of any point x in ∂M is orbifold-diffeomorphic to
Rd/Z2 such that Z2 acts by reflection. Notice that the singular locus is then ∂M and the
boundary of the orbifold is empty.

Given a compact orbifold O, we can find a cell decomposition of the underlying space
XO such that the isotropy group of each open cell is constant. Define the orbifold Euler
characteristic to be

χ(O) ∶= ∑
ci

(−1)dim ci
1

∣Γ(ci)∣
.

Here, ci ranges over the cells and ∣Γ(ci)∣ is the order of the isotropy group Γ(ci) of any point
in the relative interior of ci.

A covering orbifold of an orbifold O is an orbifold O′ with a continuous surjective map
p ∶ XO′ →XO between the underlying spaces such that each point x ∈XO lies in a coordinate
neighborhood U ≈ Ũ/Γ and each component Vi of p−1(U) is orbifold-diffeomorphic to Ũ/Γi
with Γi a subgroup of Γ. The map p is called a covering map.

Example. If a group Γ acts properly discontinuously on a manifold M and Γ′ is a subgroup
of Γ, thenM/Γ′ is a covering orbifold ofM/Γ with covering mapM/Γ′ →M/Γ. In particular,
M is a covering orbifold of M/Γ.

Even if it is more delicate than for manifold, we can define the universal covering orbifold
of an orbifold O: A universal covering orbifold of O is a covering orbifold Õ with covering
map p ∶ Õ → O such that for every covering orbifold Õ′ with covering map p′ ∶ Õ′ → O, there
is a covering map q ∶ Õ → Õ′ which satisfies the following commutative diagram:

Õ

Õ′

O p′

p

q

It is important to remark that every orbifold has a unique universal covering orbifold (up
to orbifold-diffeomorphism). The orbifold fundamental group πorb1 (O) of O is the group of
deck transformations of the universal covering orbifold Õ.



8 SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

Example. If Γ is a cyclic group of rotations acting on the sphere S2 fixing the north and
south poles, then the orbifold S2/Γ is a sphere with two cone points. Therefore its orbifold
fundamental group is Γ, even though the fundamental group of the sphere, which is the
underlying space of S2/Γ, is trivial.

An orbifold O is good if some covering orbifold of O is a manifold. In this case, the
universal covering orbifold Õ is a simply connected manifold and the group πorb1 (O) acts
properly discontinuously on Õ. In other words, a good orbifold is simply a manifold M with
a properly discontinuous group action on M . Moreover, we have the following good news:

Theorem 3.1 (Chapter 3 of Thurston [100]). Every (G,X)-orbifold is good.

3.4. Geometric structures on orbifolds. We will discuss the deformation space of geo-
metric structures on an orbifold O as Goldman [55] exposed the theory for manifolds.

Suppose that M and N are (G,X)-orbifolds. A map f ∶ M → N is a (G,X)-map if,
for each pair of charts φ ∶ Ũi/Γi → Ui ⊂ M from the (G,X)-orbifold structure of M and
ψ ∶ Ṽj/Γj → Vj ⊂ N from the (G,X)-orbifold structure of N , the composition ψ−1 ○ f ○ φ
restricted to φ−1(Ui ∩f−1(Vj)) lifts to the restriction of an element of G on the inverse image
in Ũi of φ−1(Ui ∩ f−1(Vj)).

Recall a (G,X)-structure on an orbifold O is an orbifold-diffeomorphism f from O to a
(G,X)-orbifold S. Two (G,X)-structures f ∶ O → S and f ′ ∶ O → S′ on O are equivalent
if the map f ′ ○ f−1 ∶ S → S′ is isotopic to a (G,X)-map from S to S′ (in the category of
orbifold). The set of equivalence classes of (G,X)-structures on O is denoted by Def(O).
There is a topology on Def(O) informally defined by stating that two (G,X)-structures f
and f ′ are close if the map f ′ ○f−1 ∶ S → S′ is isotopic to a map close to a (G,X)-map. Below
is a formal definition.

The construction of the developing map and the holonomy representation of manifolds
extends to orbifolds without difficulty; see Goldman [55] for manifolds and Choi [34] for
orbifolds. For a (G,X)-orbifold O, there exists a pair (D,ρ) of an immersion D ∶ Õ → X
and a homomorphism ρ ∶ πorb1 (O) → G such that for each γ ∈ πorb1 (O), the following diagram
commutes:

Õ X

Õ X

γ

D

D

ρ(γ)

We call D a developing map and ρ a holonomy representation of O. Moreover if (D′, ρ′) is
another such pair, then there exists g ∈ G such that

D′ = g ○D and ρ′(γ) = gρ(γ)g−1 for each γ ∈ πorb1 (O).
In other words, a developing pair (D,ρ) is uniquely determined up to the action of G:

(1) g ⋅ (D,ρ(⋅)) = (g ○D,gρ(⋅)g−1), for each g ∈ G.
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Consider the space

Def ′2(O) = {(D,ρ) ∣D ∶ Õ →X is an immersion

equivariant with respect to a homomorphism ρ ∶ πorb1 (O) → G}/ ∼ .
Here (D,ρ) ∼ (D′, ρ′) if D′ =D○ ι̃ for the lift ι̃ of an isotopy ι ∶ O → O satisfying γ ○ ι̃ = ι̃○γ for
every γ ∈ πorb1 (O). We topologize this space naturally using the Cr-compact-open topology,
r ⩾ 2, before taking the quotient, and denote by Def2(O) the quotient space of Def ′2(O) by
the action of G (see Equation (1)).

We can define a map µ ∶ Def2(O) → Def(O) from [(D,ρ)] to a (G,X)-structure on O
by pulling back the canonical (G,X)-structure on X to Õ by D and taking the orbifold
quotient. The inverse map is derived from the construction of the developing pair, hence µ
is a bijection. This gives a topology on Def(O).
3.5. Ehresmann-Thurston principle. One of the most important results in this area is the
following theorem first stated for closed manifolds. However, it can be easily generalized to
closed orbifolds. There exist many proofs of this theorem for manifolds; see Canary-Epstein-
Green [27], Lok [80] following John Morgan, Bergeron-Gelander [19], Goldman [55]. For a
proof for orbifolds, see Choi [31], which is a slight modification of the proof for manifolds.

Suppose that G is the real points of a reductive algebraic group defined over R. A rep-
resentation ρ ∶ πorb1 (O) → G is stable when ρ is reductive and the centralizer of ρ is finite.6

Denote by Homst(πorb1 (O),G) the space of stable representations. It is shown in Johnson-
Millson [66] that this is an open subset of Hom(πorb1 (O),G) and that the action of G on
Homst(πorb1 (O),G) is proper. Denote by Defst2 (O) the space of (G,X)-structures on O whose
holonomy representation is stable.

Theorem 3.2 (Ehresmann-Thurston principle). Let O be a closed orbifold. Then the map

Def ′2(O) → Hom(πorb1 (O),G) and Defst2 (O) → Homst(πorb1 (O),G)/G
induced by (D,ρ) → ρ are local homeomorphisms.

This principle means that sufficiently nearby (G,X)-structures are completely determined
by their holomony representations.

4. A starting point for convex projective structures

4.1. Convexity in the projective sphere or in the projective space.
Let V be a real vector space of dimension d + 1. Consider the action of R∗

+ on V by
homothety, and the projective sphere

S(V ) = (V ∖ {0}) /R∗
+ = {rays of V }.

Of course, S(V ) is the 2-fold cover of the real projective space P(V ). The canonical projec-
tion map V ∖ {0} → S(V ) is denoted by S.

A convex cone C is sharp if C does not contain an affine line. A subset C of S(V ) is convex
(resp. properly convex) if the subset S−1(C) ∪ {0} of V is a convex cone (resp. sharp convex

6A representation ρ ∈ Hom(πorb
1 (O),G) being stable is equivalent to the fact that the image of ρ is not

contained in any parabolic subgroup of G (see Johnson-Millson [66])
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cone). Given a hyperplane H of S(V ), we call the two connected components of S(V ) ∖H
affine charts. An open set Ω ⫋ S(V ) is convex (resp. properly convex) if and only if there
exists an affine chart A such that Ω ⊂ A (resp. Ω ⊂ A) and Ω is convex in the usual sense in
A. A properly convex set Ω is strictly convex if every line segment in ∂Ω is a point. All these
definitions can be made for subset of P(V ). The projective space is more common but the
projective sphere allows to get rid of some technical issues. It will be clear from the context
whether our convex domain is inside S(V ) or P(V ).

The group SL±(V ) of linear automorphisms of V of determinant ±1 is identified to the
group of automorphisms of S(V ). A properly convex projective structure on an orbifold O is
a (PGL(V ),P(V ))-structure (or a (SL±(V ),S(V ))-structure) whose developing map is a dif-
feomorphism onto a properly convex subset of RPd (or Sd). We refer the reader to Section 1 of
Marquis [88] to see the correspondence between properly convex (PGL(V ),P(V ))-structures
and properly convex (SL±(V ),S(V ))-structures (see also p.143 of Thurston [99]).

From now on, C(O) will denote the space of properly convex projective structures on an
orbifold O. This is a subspace of the deformation space of real projective structures on O.

4.2. Hilbert geometries.
On every properly convex domain Ω, there exists a distance dΩ on Ω defined using the

cross ratios: take two points x ≠ y ∈ Ω and draw the line between them. This line intersects
the boundary ∂Ω of Ω in two points p and q. We assume that x is between p and y. If
[p ∶ x ∶ y ∶ q] denotes the cross ratio of p, x, y, q, then the following formula defines a metric
(see Figure 1):

dΩ(x, y) =
1

2
log ([p ∶ x ∶ y ∶ q]), for every x, y ∈ Ω.

This metric gives to Ω the same topology as the one inherited from S(V ). The metric
space (Ω, dΩ) is complete and the closed balls in Ω are compact. The group Aut(Ω) acts on
Ω by isometries, and therefore properly.

x
y

p

qv

p−

p+

Ω

Figure 1. The Hilbert metric

This metric is called the Hilbert metric and it can also be defined by a Finsler norm
on the tangent space TxΩ at each point x of Ω: Let v be a vector of TxΩ. The quantity
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d
dt
∣
t=0
dΩ(x,x + tv) defines a Finsler norm FΩ(x, v) on TxΩ. Let us choose an affine chart A

containing Ω and a Euclidean norm ∣ ⋅ ∣ on A. If p+ (resp. p−) is the intersection point of ∂Ω
with the half-line determined by x and v (resp. −v), and ∣ab ∣ is the distance between two
points a, b of A (see Figure 1), then we obtain

FΩ(x, v) =
d

dt
∣
t=0

dΩ(x,x + tv) =
∣v∣
2

⎛
⎝

1

∣xp−∣ +
1

∣xp+∣
⎞
⎠
.

The regularity of the Finsler norm is the same as the regularity of the boundary ∂Ω. The
Finsler structure gives rise to an absolutely continuous measure µΩ with respect to Lebesgue
measure, called the Busemann measure.

If Ω is an ellipsoid, then (Ω, dΩ) is the projective model of the hyperbolic space. More
generally, if Ω is round, i.e. strictly convex with C1-boundary, then the metric space (Ω, dΩ)
exhibits some hyperbolic behaviour even though (Ω, dΩ) is not Gromov-hyperbolic.7

A properly convex domain Ω is a polytope if and only if (Ω, dΩ) is bi-Lipschitz to the Eu-
clidean space [101]. If Ω is the projectivization of the space of real positive definite symmetric
m ×m matrices, then Aut(Ω) = SLm(R).

Convex projective structures are therefore a special kind of (G,X)-structures, whose golden
sisters are hyperbolic structures and whose iron cousins are higher-rank structures, i.e. the
(G,G/K)-structures where G is a semi-simple Lie group without compact factor of (real)
rank ⩾ 2, K is the maximal compact subgroup of G and G/K is the symmetric space of G.

The above fact motivated an interest in convex projective structures. However, it is prob-
able that this is not the main reason why convex projective structures are interesting. The
main justification is the following theorem.

4.3. Koszul-Benoist’s theorem. Recall that the virtual center of a group Γ is the subset
in Γ consisting of the elements whose centralizer is of finite index in Γ. It is easy to check
that the virtual center of a group is a subgroup, and the virtual center of a group is trivial
if and only if every subgroup of finite index has a trivial center.

Theorem 4.1 (Koszul [75], Benoist [13]). Let O be a closed orbifold of dimension d admitting
a properly convex real projective structure. Suppose that the group πorb1 (O) has a trivial virtual
center. Then the space C(O) of properly convex projective structures on O corresponds to a
union of connected components of the character variety χ(πorb1 (O),SL±

d+1(R)).
Proof. Let Γ = πorb1 (O) and G = SL±

d+1(R). It was proved by Koszul [75] that the space of
holonomy representations of elements of C(O) is open in χ(Γ,G). The closedness follows
from Benoist [13] together with the following explanation. Assume that ρ ∈ χ(Γ,G) is an
algebraic limit of a sequence of holonomy representations ρn ∈ χ(Γ,G) of elements of C(O).
This means that ρn(Γ) acts on a properly convex domain Ωn such that Ωn/ρn(Γ) is orbifold-
diffeomorphic to O. Then the representation ρ is discrete, faithful and irreducible and ρ(Γ)
acts on a properly convex domain Ω by Theorem 1.1 of Benoist [13]. We need to show that

7If Ω is strictly convex and ∂Ω is of class C2 with a positive Hessian, then (Ω, dΩ) is Gromov-hyperbolic
(see Colbois-Verovic [41]), but unfortunately the convex domain we are interested in will be at most round,
except the ellipsoid. See also the necessary and sufficient condition of Benoist [11].
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the quotient orbifold Q ∶= Ω/ρ(Γ) is orbifold-diffeomorphic to O: The openness implies that
there is a neighbourhood U of ρ in χ(Γ,G) consisting of holonomy representations of elements
of C(Q). Since ρn ∈ U for sufficiently large n, there is a properly convex domain Ω′

n such that
Ω′
n/ρn(Γ) is diffeomorphic to Q. Proposition 3 of Vey [102] implies that Ω′

n = Ωn (see also
Theorem 3.1 of Choi-Lee [38] and Proposition 2.4 of Cooper-Delp [42]). Since

Q ≈ Ω′
n/ρn(Γ) = Ωn/ρn(Γ) ≈ O,

the orbifold Q is orbifold-diffeomorphic to O, completing the proof that ρ is the holonomy
representation of an element of C(O). �

Remark 4.2. The closedness of Theorem 4.1 was proved by Choi-Goldman [35] in dimension
d = 2, and by Kim [72] in the case that Γ is a uniform lattice of PSO3,1(R).

The condition that the virtual center of a group is trivial is transparent as follows:

Proposition 4.3 (Corollary 2.13 of Benoist [13]). Let Γ be a discrete subgroup of PGLd+1(R).
Suppose that Γ acts on a properly convex domain Ω in RPd and Ω/Γ is compact. Then the
following are equivalent.

● The virtual center of Γ is trivial.
● Every subgroup of finite index of Γ has a finite center.
● Every subgroup of finite index of Γ is irreducible in PGLd+1(R).8
● The Zariski closure of Γ is semisimple.
● The group Γ contains no infinite nilpotent normal subgroup.
● The group Γ contains no infinite abelian normal subgroup.

4.4. Duality between convex real projective orbifolds. We start with linear duality.
Every sharp convex open cone C of a real vector space V gives rise to a dual convex cone

C⋆ = {ϕ ∈ V ⋆ ∣ϕ∣C∖{0} > 0}.
It can be easily verified that C⋆ is also a sharp convex open cone and that C⋆⋆ = C. Hence,
the duality leads to an involution between sharp convex open cones.

Now, consider the “projectivization” of linear duality: If Ω is a properly convex domain of
P(V ) and CΩ is the cone of V over Ω, then the dual Ω⋆ of Ω is P(C⋆

Ω). This is a properly
convex domain of P(V ⋆). In a more intrinsic way, the dual Ω⋆ is the set of hyperplanes H of
V such that P(H) ∩Ω = ∅. Since there is a correspondence between hyperplanes and affine
charts of the projective space, the dual Ω⋆ can be defined as the space of affine charts A of
RPd such that Ω is a bounded subset of A.

The second interpretation offers us a map Ω⋆ → Ω: namely to A ∈ Ω⋆ we can associate the
center of mass of Ω in A. The map is well defined since Ω is a bounded convex domain of
A. In fact, Vinberg showed that this map is an analytic diffeomorphism (see Vinberg [103]
or Goldman [56]), so we call it the Vinberg duality diffeomorphism.

Finally, we can bring the group in the playground. Recall that the dual representation
ρ⋆ ∶ Γ → PGL(V ⋆) of a representation ρ ∶ Γ → PGL(V ) is defined by ρ⋆(γ) = tρ(γ−1),
i.e. the dual projective transformation of ρ(γ). All the constructions happen in projective
geometry, therefore if a representation ρ preserves a properly convex domain Ω, then the

8We call Γ strongly irreducible if every finite index subgroup of Γ is irreducible.
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dual representation ρ⋆ preserves the dual properly convex domain Ω⋆. Even more, if we
assume the representation ρ to be discrete, then the Vinberg duality diffeomorphism induces
a diffeomorphism between the quotient orbifolds Ω/ρ(Γ) and Ω⋆/ρ⋆(Γ).

5. The existence of deformations or exotic structures

5.1. Bending construction. Johnson and Millson [66] found an important class of deforma-
tions of convex real projective structures on an orbifold. The bending construction was intro-
duced by Thurston to deform (PSO2,1(R),H2)-structures on a surface into (PSO3,1(R),S2)-
structures, i.e. conformally flat structures, and therefore in particular to produce quasi-
Fuchsian groups. This was extended by Kourouniotis [76] to deform (PSOd,1(R),Hd)-structures
on a manifold into (PSOd+1,1(R),Sd)-structures.

Johnson and Millson indicated several other deformations, all starting from a hyperbolic
structure on an orbifold. However we will focus only on real projective deformations. Just
before that we stress that despite the simplicity of the argument, the generalization is not
easy. Goldman and Millson [58], for instance, show that there exists no non-trivial9 defor-
mation of a uniform lattice of SUd,1 into SUd+1,1.

Let sld+1(R) be the Lie algebra of SLd+1(R), and let O be a closed properly convex projec-
tive orbifold. Suppose that O contains a two-sided totally geodesic suborbifold Σ of codimen-
sion 1. For example, all the hyperbolic manifolds obtained from standard arithmetic lattices
of PSOd,1(R), up to a finite cover, admit such a two-sided totally geodesic hypersurface (see
Section 7 of Johnson-Millson [66] for the construction of standard arithmetic lattices). Let
Γ = πorb1 (O) and A = πorb1 (Σ). Recall that the Lie group SLd+1(R) acts on the Lie algebra
sld+1(R) by the adjoint action.

Lemma 5.1 (Johnson-Millson [66]). Let ρ ∈ Hom(Γ,SLd+1(R)). Suppose that ρ(A) fixes
an element x1 in sld+1(R) and that x1 is not invariant under Γ. Then Hom(Γ,SLd+1(R))
contains a non-trivial curve (ρt)t∈(−ε,ε), ε > 0, with ρ0 = ρ, i.e. the curve is transverse to the
conjugation action of SLd+1(R).
Theorem 5.2 (Johnson-Millson [66], Koszul [75], Benoist [12, 13]). Suppose that a closed hy-
perbolic orbifold O contains r disjoint totally geodesic suborbifolds Σ1, . . . ,Σr of codimension-
one. Then the dimension of the space C(O) at the hyperbolic structure is greater than or equal
to r. Moreover, the bending curves lie entirely in C(O) and all the properly convex structures
on O are strictly convex.

We say that a convex domain Ω of the real projective space is divisible (resp. quasi-divisible)
if there exists a discrete subgroup Γ of Aut(Ω) such that the action of Γ on Ω is cocompact
(resp. of finite Busemann covolume).

Theorem 5.3 (Johnson-Millson [66], Koszul [75], Benoist [12]). For every integer d ⩾ 2,
there exists a non-symmetric divisible strictly convex domain of dimension d.

Remark 5.4. Kac and Vinberg [67] made the first examples of non-symmetric divisible convex
domains of dimension 2 using Coxeter groups (see Section 7).

Remark 5.5. The third author with Ballas [86, 8] extended Theorem 5.3 to non-symmetric
quasi-divisible (not divisible) convex domains.

9A deformation of a representation ρ ∶ Γ→ G is trivial if it is a conjugation of ρ in G.
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5.2. The nature of the exotics. Now we have seen the existence of non-symmetric divisible
convex domains in all dimensions d ⩾ 2. We first remark that so far all the divisible convex
domains built are round if they are not the products of lower dimensional convex domains. So
we might want to know if we can go further, specially if we can find indecomposable divisible
convex domains that are not strictly convex. The first result in dimension 2 is negative:10

5.2.1. Dimension 2 : Kuiper-Benzécri’s Theorem.

Theorem 5.6 (Kuiper [77], Benzécri [17], Marquis [87]). A quasi-divisible convex domain of
dimension 2 is round, except the triangle.

The next result in dimension 3 is positive:

5.2.2. Dimension 3 : Benoist’s Theorem. First, we can classify the possible topology for
closed convex projective 3-manifold or 3-orbifold.

Theorem 5.7 (Benoist [14]). If a closed 3-orbifold O admits an indecomposable11 properly
convex projective structure, then O is topologically the union along the boundaries of finitely
many 3-orbifolds each of which admits a finite-volume hyperbolic structure on its interior.

Second, these examples do exist.

Theorem 5.8 (Benoist [14], Marquis [84], Ballas-Danciger-Lee [7]). There exists an inde-
composable divisible properly convex domain Ω of dimension 3 which is not strictly convex.
Moreover, every line segment in ∂Ω is contained in the boundary of a properly embedded
triangle.12

At the time of writing this survey, Theorem 5.7 is valid only for divisible convex domain.
However, Theorem 5.8 is true also for quasi-divisible convex domains which are not divisible
(see Marquis [89]).

The presence of properly embedded triangles in the convex domain is related to the ex-
istence of incompressible Euclidean suborbifolds on the quotient orbifold. Benoist and the
third author made examples using Coxeter groups and a work of Vinberg [105]. We will
explore more this technique in Section 7. Ballas, Danciger and the second author [7] found
a sufficient condition under which the double of a cusped hyperbolic three-manifold admits
a properly convex projective structure, to produce the examples.

In order to obtain the quasi-divisible convex domains in [89], the third author essentially
keeps the geometry of the cusps. In other words, the holonomy of the cusps preserves an
ellipsoid as do the cusps of finite-volume hyperbolic orbifolds. From this perspective, there
is a different example whose cusps vary in geometry.

Theorem 5.9 (Ballas [6], Choi [33]). There exists an indecomposable quasi-divisible (neces-
sarily not divisible) properly convex domain Ω of dimension 3 which is not strictly convex nor
with C1-boundary such that the quotient is homeomorphic to a hyperbolic manifold of finite
volume.

10The word “positive/negative” in this subsection reflects only the feeling of the authors.
11A convex projective orbifold is indecomposable if its holonomy representation is strongly irreducible.
12A simplex ∆ in Ω is properly embedded if ∂∆ ⊂ ∂Ω.



DEFORMATIONS OF CONVEX REAL PROJECTIVE MANIFOLDS AND ORBIFOLDS 15

More precisely, the example of Ballas is an explicit convex projective deformation of the
hyperbolic structure on the figure-eight knot complement. Note that the first author gave
such an example in Chapter 8 of [33] earlier without verifying its property.

We do not survey results about cofinite volume action of discrete groups on Hilbert ge-
ometries, and we refer the reader to: Marquis [87, 89], Crampon-Marquis [46], Cooper-Long-
Tillmann [45], Choi [33].

5.2.3. Orbifolds of dimension 4 and beyond. Until now, there are only three sources for non-
symmetric divisible convex domains of dimension d ⩾ 4: from the “standard” bending of
Johnson-Millson [66], from the “clever” bending of Kapovich [68], and using Coxeter groups.
The last method was initiated by Benoist [14, 15] and extended by the three authors [40]:

Theorem 5.10 (Benoist [14], Choi-Lee-Marquis [40]). For d = 4, . . . ,7, there exists an inde-
composable divisible convex domain Ω of dimension d which is not strictly convex nor with
C1-boundary such that Ω contains a properly embedded (d−1)-simplex. Moreover, the quotient
is homeomorphic to the union along the boundaries of finitely many d-orbifolds each of which
admits a finite-volume hyperbolic structure on its interior.

Other examples were built by Benoist in dimension 4 and by Kapovich in every dimension:

Theorem 5.11 (Benoist [15], Kapovich [68]). For d ⩾ 4, there exists a divisible convex domain
Ω of dimension d such that (Ω, dΩ) is Gromov-hyperbolic but it is not quasi-isometric to a
symmetric space. In particular, Ω is strictly convex. However it is not quasi-isometric to the
hyperbolic space Hd.

The three authors recently construct somehow different examples:

Theorem 5.12 (Choi-Lee-Marquis [39]). For d = 4, . . . ,7, there exists an indecomposable
divisible convex domain Ω of dimension d which is not strictly convex nor with C1-boundary
such that Ω contains a properly embedded (d − 2)-simplex but does not contain a properly
embedded (d − 1)-simplex.

6. Real projective surfaces

Another motivation for studying convex projective structures is that these structures are
just the right building blocks for all projective structures on closed surfaces.

6.1. Affine and projective structures on tori.

6.1.1. Classification of affine surfaces. Compact affine surfaces are topologically restrictive:

Theorem 6.1 (Benzécri [17]). If S is a compact affine surface with empty or geodesic13

boundary, then χ(S) = 0.

In the early 1980s, Nagano and Yagi [93] classified the affine structures on a torus and an
annulus with geodesic boundary; see Benoist [10] for a modern viewpoint and Baues [9] for
an extensive survey on this topic.

Let Q be the closed positive quadrant of R2 and let U be the closed upper-half plane. An
elementary affine annulus is the quotient of Q ∖ {0} by the group generated by a diagonal

13An arc of a projective (or affine) surface is geodesic if it has a lift which is developed into a line segment.
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linear automorphism with all eigenvalues greater than 1 or the quotient of U ∖ {0} by the
group generated by a linear automorphism ( λ µ

0 λ
) with λ > 1. It is indeed an affine annulus

with geodesic boundary. An affine torus A is complex if its affine structure comes from a
(C ∖ {0},C∗)-structure (see page 112 of Thurston [99]).

Theorem 6.2 (Nagano-Yagi [93]). If A is a compact affine surface with empty or geodesic
boundary, then one of the following holds :

● The universal cover of A is either a complete affine space, a half-affine space, a closed
parallel strip or a quadrant.

● The surface A is a complex affine torus.
● The surface A is decomposed into elementary affine annuli along simple closed geodesics.

6.1.2. Classification of projective tori. Let γ be an element of SL3(R). A matrix γ is positive
hyperbolic if γ has three distinct positive eigenvalues, that is, γ is conjugate to

⎛
⎜
⎝

λ 0 0
0 µ 0
0 0 ν

⎞
⎟
⎠

(λµν = 1 and 0 < λ < µ < ν).

A matrix γ is planar if γ is diagonalizable and it has only two distinct eigenvalues. A matrix γ
is quasi-hyperbolic if γ has only two distinct positive eigenvalues and it is not diagonalizable,
that is, γ is conjugate to

(2)
⎛
⎜
⎝

λ 1 0
0 λ 0
0 0 λ−2

⎞
⎟
⎠

(0 < λ ≠ 1).

A matrix γ is a projective translation (resp. parabolic) if γ is conjugate to

⎛
⎜
⎝

1 1 0
0 1 0
0 0 1

⎞
⎟
⎠

(resp.
⎛
⎝

1 1 0
0 1 1
0 0 1

⎞
⎠
).

These types of matrices represent all conjugacy classes of non-trivial elements of SL3(R)
with positive eigenvalues.

Let ϑ be a positive hyperbolic element of SL3(R) with eigenvalues λ < µ < ν. It is easy to
describe the action of ϑ on the projective plane. This action preserves three lines meeting at
the three fixed points. The fixed point r (resp. s, a) corresponding to the eigenvector for λ
(resp. µ, ν) is said to be repelling (resp. saddle, attracting).

Let △ be a triangle with vertices r, s, a.14 An elementary annulus of type I is one of the
two15 real projective annuli (△∪ ar○ ∪ as○)/⟨ϑ⟩ and (△∪ ar○ ∪ rs○)/⟨ϑ⟩ (see Figure 2). These
annuli are in fact compact since we can find a compact fundamental domain. We call the
image of ar○ in the annulus a principal closed geodesic, and the image of as○ and the image
of rs○ weak closed geodesics.

14To be precise, in RP2 (resp. S2) there are four (resp. eight) different choices for △ and a unique choice
(resp. two choices) for each r, s, a. However, once the triangle △ in S2 is chosen, the points r, s, a of S2 are
uniquely determined. Of course, this choice does not affect the later discussion.

15If P = △∪as○∪rs○, then the space P /⟨ϑ⟩ is not Hausdorff: Let x be a point of as○, and let y be a point of
rs○. For any neighborhood U ,V of x, y, respectively, in P , there exists N ∈ N such that ϑ−N(U)∩ϑN(V) ≠ ∅.
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Figure 2. Elementary annuli of type I and type II

Now, let ϑ be a quasi-hyperbolic element conjugate to the matrix (2) with λ > 1. In this
case, it is easier to give a description of ϑ in S2 than in RP2, hence we work in S2. The fixed
point a (resp. r) corresponding to the eigenvalue λ (resp. λ−2) is attracting (resp. repelling).
Let C be the line on which the action of ϑ is parabolic, and let β be the invariant segment
in C with endpoints a and −a, the antipodal point of a, such that, for each point x ∈ β○, the
sequence ϑn(x) converges to a.

Let L be an open lune bounded by β, ar, −ar. An elementary annulus of type II is one of
two real projective annuli (L ∪ ar○ ∪ −ar○)/⟨ϑ⟩ and (L ∪ β○ ∪ ar○)/⟨ϑ⟩ (see Figure 2). These
annulli are also compact with geodesic boundary. We call the image of ar○ and of −ar○ in
the annulus a principal closed geodesic, and the image of β○ a weak closed geodesic.

By pasting the boundaries of finitely many compact elementary annuli, we obtain an
annulus or a torus. The gluing of course requires that boundaries are either both principal
or both weak, and their holonomies are conjugate to each other.

Theorem 6.3 (Goldman [52]). If T is a projective torus or a projective annulus with geodesic
boundary, then T is an affine torus or T can be decomposed into elementary annuli.

6.2. Automorphisms of convex 2-domain. A 2-orbifold O is of finite-type if the under-
lying space of O is a surface of finite-type16 and the singular locus of O is a union of finitely
many suborbifolds of dimension 0 or 1. An element γ of πorb1 (O) is peripheral if γ is isotopic
to an element of πorb1 (O ∖ (C ∪ ∂O)) for every compact subset C of O ∖ ∂O.

16A surface of finite-type is a compact surface with a finite number of points removed.
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Let C be a properly convex subset of S2 and let Γ be a discrete subgroup of SL3(R) acting
properly discontinuously on C. A closed geodesic g in S = C/Γ is principal when the holonomy
γ of g is positive hyperbolic or quasi-hyperbolic, and the lift of g is the geodesic segment
in C connecting the attracting and repelling fixed points of γ. In addition, if γ is positive
hyperbolic, then g is said to be h-principal.

The following theorem generalizes well-known results of hyperbolic structures on surfaces,
and is essential to understand the convex real projective 2-orbifolds. The nonorientable
orbifold version exists but is a bit more complicated to state (see Choi-Goldman [36]).

Theorem 6.4 (Kuiper [77], Choi [28], Marquis [87]). Let S = C/Γ be an orientable properly
convex real projective 2-orbifold of finite type with empty or geodesic boundary, for a properly
convex subset C ⊂ S2. We denote by Ω the interior of C. Suppose that Ω is not a triangle.

(1) An element has finite order if and only if it fixes a point in Ω.
(2) Each infinite-order element γ of Γ is positive hyperbolic, quasi-hyperbolic or parabolic.
(3) If an infinite-order element γ is nonperipheral, then γ is positive hyperbolic and a

unique closed geodesic g realizes γ. Moreover, g is principal and any lift of g is
contained in Ω. If γ is represented by a simple closed curve in S, then g is also
simple.

(4) A peripheral positive hyperbolic element is realized by a unique principal geodesic g,
and either all the lifts of g are contained in Ω or all the lifts of g are in C ∩ ∂Ω.

(5) A quasi-hyperbolic element γ is peripheral and is realized by a unique geodesic g in C.
Moreover, g is principal and any lift of g is in C ∩ ∂Ω.

(6) A parabolic element γ is peripheral and is realized by the projection of E ∖ {p} where
E is a γ-invariant ellipse whose interior is inside Ω and p ∈ ∂Ω is the unique fixed
point of γ.

Note that in the fourth item, the closed geodesics homotopic to g may not be unique.

6.3. Convex projective structures on surfaces. Let S be a compact surface with or
without boundary. When S has boundary, in general, the holonomy of a convex projective
structure on S does not determine the structure. More precisely, there exists a convex
projective structure whose holonomy preserves more than one convex domain. Therefore we
need to make some assumptions on the convex projective structure in order to avoid this
problem hence we consider the subspace, denoted by Cpgb(S), in C(S) of convex projective
structures on S for which each boundary component is a principal geodesic.

Theorem 6.5 (Goldman [57]). If S is a closed surface of genus > 1, then the space C(S) is
homeomorphic to an open cell of dimension −8χ(S).

The following two propositions illustrate the proof of Theorem 6.5. Recall that for a Lie
group G, a fiber bundle π ∶ P → X is G-principal if there exists an action of G on P such
that G preserves the fibers and acts simply transitively on them.

Let c be a non-peripheral simple closed curve in S. The complement of c in S can be
connected, or a disjoint union of S1 and S2. In the first case, the completion S′ of S ∖ c has
two boundary components c′1 and c′2 corresponding to c. Denote by Cpgbc (S′) the subspace of
structures in Cpgb(S′) satisfying that the holonomies of c′1 and c′2 are both positive hyperbolic
and conjugate to each other. In the second case, the completion of each Si, i = 1,2, has
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a boundary component corresponding to c. Denote by Cpgbc (S′1) ⊠c C
pgb
c (S′2) the subspace of

structures (P1, P2) in Cpgb(S′1) × C
pgb(S′2) whose holonomies corresponding to c are positive

hyperbolic and conjugate to each other.

Proposition 6.6 (Goldman [57], Marquis [85]). Let S be a compact surface with or without
boundary such that χ(S) < 0, and let c be a non-peripheral simple closed curve in S. If S ∖ c
is connected (resp. a disjoint union of S1 and S2), then the forgetful map Cpgb(S) → Cpgbc (S′)
(resp. Cpgb(S) → Cpgbc (S′1) ⊠c C

pgb
c (S′2)) is an R2-principal fiber bundle.

Proposition 6.6 should be compared with Lemma 5.1. Since the holonomy γ of a non-
peripheral simple closed curve c is positive hyperbolic, the centralizer of γ is 2-dimensional.
The first gluing parameter is the twist parameter like in hyperbolic geometry, and the second
gluing parameter is the bending parameter we obtain in view of Lemma 5.1.

Next, we need to understand the convex projective structures on a pair of pants. Assume
that γ is an element of SL3(R) with positive eigenvalues. We denote by λ(γ) the smallest
eigenvalue of γ and by τ(γ) the sum of the two other eigenvalues, and we call the pair
(λ(γ), τ(γ)) the invariant of γ. The map [γ] ↦ (λ(γ), τ(γ)) is a homeomorphism between
the space of conjugacy classes of positive hyperbolic or quasi-hyperbolic elements γ of SL3(R)
and the space

R ∶= {(λ, τ) ∈ R2 ∣ 0 < λ < 1,
2√
λ
⩽ τ ⩽ λ + 1

λ2
}

(see Figure 3). Note that (1,2) ∉ R corresponds to the conjugacy class of parabolic elements.

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

Figure 3. The region R between the graphs y = 2√
x
and y = x + 1

x2

Let S be a compact surface with n (oriented) boundary components ci, i = 1, . . . , n. Let
us define a map

R∂S ∶ Cpgb(S) → Rn
from each structure to the n-tuples of invariants (λ(γi), τ(γi)) of the holonomy γi of ci.

Proposition 6.7 (Goldman [57], Marquis [85]). If P is a pair of pants, then the map R∂P ∶
Cpgb(P ) → R3 is an R2-principal fiber bundle, and the interior of Cpgb(P ) is exactly the space
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of convex projective structures with h-principal geodesic boundary. In particular it is an open
cell of dimension 8.

Now consider a surface S of finite type with ends. A properly convex projective structure
on S is of relatively finite volume if for each end of S, there exists an end neighborhood
V such that µS(V) < ∞. Let Cpgbgf (S) denote the subspace in Cpgb(S) of convex projective
structures with principal geodesic boundary and of relatively finite volume. The following
theorem generalizes to such structures:
Theorem 6.8 (Fock-Goncharov [50], Theorem 3.7 of Marquis [85]). Let S be a surface of
finite-type. If b is the number of boundary components of S and p is the number of ends of S,
then the space Cpgbgf (S) is a manifold with corner homemorphic to R16g−16+6p+7b × [0,1]b, and
the interior of Cpgbgf (S) is exactly the space of structures with h-principal geodesic boundary
and of relatively finite volume.

6.4. The convex decomposition of projective surfaces of genus > 1. Now let us
consider compact real projective surfaces with geodesic boundary.
Theorem 6.9 (Choi [28, 29]). Let S be a compact projective surface with geodesic boundary.
If χ(S) < 0, then S can be decomposed along simple closed geodesics into convex projective
subsurfaces with principal geodesic boundary and elementary annuli.

The annuli with principal geodesic boundary whose holonomies are positive hyperbolic
(resp. quasi-hyperbolic) were classified by Goldman [52] (resp. Choi [29]).

If A is an annulus with quasi-hyperbolic principal geodesic boundary, then by Proposition
5 of Choi [30] only one boundary can be identified with a boundary of a convex real projective
surface with principal geodesic boundary. Hence, if a compact real projective surface S has
quasi-hyperbolic holonomy for a closed curve, then S must have a boundary.
Remark 6.10. Given a convex projective surface S = Ω/Γ with a h-principal boundary and an
elementary annulus A, we can obtain a new projective surface S′ by identifying the respective
boundary components of S and A. The surface S′ is still convex since the union of Ω and
the triangles given by the universal cover of A is convex.
6.5. Projective structures on a closed surface of genus > 1. Let S be a closed surface
of genus greater than 1 and let P(S) denote the space of real projective structures on S. For
each connected component of P(S), any two elements share the same decomposition up to
isotopy, given by Theorem 6.9. Let S(S) denote the collection of mutually disjoint isotopy
classes of non-trivial simple closed curves, and let F +,even

2 be the set of elements of the free
semigroup on two generators whose word-lengths are even.

In [52] Goldman constructs a map
P(S) → S(S) × F +,even

2

that describes the gluing patterns of elementary annuli of type I (with h-principal geodesic
boundary) in a projective structure P on S. Finally, by removing all the annuli from P and
reattaching it, we obtain a convex projective structure on S.
Theorem 6.11 (Choi [28, 29], Goldman [57]). Let S be a closed surface with χ(S) < 0. Then
each fiber of the map P(S) → S(S) ×F +,even

2 can be identified with C(S). In particular, P(S)
is homeomorphic to a disjoint union of countably many open cells of dimension 16(g − 1).
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6.6. Convex projective orbifolds of negative Euler characteristic. Every compact 2-
orbifold Σ is obtained from a surface with corners by making some arcs mirrors and putting
cone-points and corner-reflectors in a locally finite manner. An endpoint of a mirror arc
can be either in a boundary component of Σ or a corner-reflector in Σ that should be an
endpoint of another mirror arc. Moreover, the smooth topology of a 2-orbifold is determined
by the underlying topology of the surface with corners, the number of cone-points of order
q ∈ N ∖ {0,1}, the number of corner-reflectors of order r ∈ N ∖ {0,1}, and the boundary pat-
terns of the mirror arcs.

A full 1-orbifold is a segment with two mirror endpoints. Let Σ be a compact 2-orbifold
with m cone points of order qi, i = 1, . . . ,m, and n corner-reflectors of order rj, j = 1, . . . , n,
and nΣ boundary full 1-orbifolds. The orbifold Euler characteristic of Σ is

χ(Σ) = χ(XΣ) −
m

∑
i=1

(1 − 1

qi
) − 1

2

n

∑
j=1

(1 − 1

rj
) − 1

2
nΣ.

This is called the generalized Riemman-Hurwitz formula (see Section 3.3 for the definition
of the orbifold Euler characteristic).

Theorem 6.12 (Thurston [100]). Let Σ be a compact 2-orbifold of negative orbifold Euler
characteristic with the underlying space XΣ. Then the deformation space T (Σ) of hyperbolic
structures on Σ is a cell of dimension −χ(XΣ)+2m+n+2nΣ where m is the number of cone-
points, n is the number of corner-reflectors and nΣ is the number of boundary full 1-orbifolds.

In order to understand the deformation spaces of convex projective structures on surfaces,
we saw that it is important to study the convex projective structures on a pair of pants,
which is the most “elementary” surface. Similarly, in the case of 2-orbifolds, we should firstly
understand the elementary 2-orbifolds.

Let us discuss the process of splitting and sewing of 2-orbifolds. Note that orbifolds always
have a path-metric. For example, we can define a notion of Riemannian metric on an orb-
ifold Σ, i.e. for all coordinate neighborhoods Ui ≈ Ũi/Γi, there exist Γi-invariant Riemannian
metrics on Ũi which are compatible each other (see Choi [34]). Let c be a simple closed curve
or a full 1-orbifold in the interior17 of a 2-orbifold Σ and let Σ̂ be the completion of Σ ∖ c
with respect to the path-metric induced from one on Σ. We say that Σ̂ is obtained from
the splitting of Σ along c. Conversely, if ĉ is the union of two boundary components of Σ̂
corresponding to c, then Σ is obtained from sewing Σ̂ along ĉ.

An elementary 2-orbifold is a compact 2-orbifold of negative orbifold Euler characteristic
which we cannot split further along simple closed curves or full 1-orbifolds into suborbifolds.
We assume in this subsection that our orbifolds are of negative orbifold Euler characteristic.

The following is the classification of elementary 2-orbifolds (see Figure 4). Arcs with/without
dotted arcs next to them indicate boundary/mirror components, respectively, and black
points indicate singular points. We can obtain the orbifolds (Pj), j = 2,3,4, from changing
the boundary components of (P1) to cusps and then to elliptic points, considering them as

17The interior of an orbifold Σ is Σ ∖ ∂Σ.
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hyperbolic surfaces with singularities. For each j = 1, . . . ,4, the orbifold (Dj) (resp. (Aj)) is
the quotient orbifold of (Pj) by an order-two involution preserving (resp. switching a pair
of) boundary components or cone-points. Note that the underlying space of (P1) is a pair of
pants, the ones of (P2), (A1) and (A2) are closed annuli, the ones of (P3), (A3), (A4) and
(D1)-(D4) are closed disks, and the one of (P4) is a sphere.

(P1)

(A1)

(D1)

(P2) (P3) (P4)

(A2) (A3) (A4)

(D2) (D3) (D4)

Figure 4. Elementary orbifolds

(P1) A pair of pants (χ = −1).
(P2) An annulus with a cone-point of order p (χ = 1

p − 1).
(P3) A disk with two cone-points of orders p, q (χ = 1

p + 1
q − 1).

(P4) A sphere with three cone-points of order p, q, r (χ = 1
p + 1

q + 1
r − 1).

(A1) An annulus with a boundary circle, a boundary arc and a mirror arc (χ = −1
2).

(A2) An annulus with a boundary circle and a corner-reflector of order p (χ = 1
2p − 1

2).
(A3) A disk with a boundary arc, a mirror arc and a cone-point of order p (χ = 1

p − 1
2).

(A4) A disk with a corner-reflector of order p and a cone-point of order q (χ = 1
2p + 1

q − 1
2).

(D1) A disk with three mirror arcs and three boundary arcs (χ = −1
2).

(D2) A disk with a corner-reflector of order p at which two mirror arcs meet, one more
mirror arc and two boundary arcs (χ = 1

2p − 1
2).

(D3) A disk with two corner-reflectors of order p, q, and a boundary arc (χ = 1
2p + 1

2q − 1
2).

(D4) A disk with three corner-reflectors of order p, q, r and three mirror arcs (χ = 1
2p + 1

2q +
1
2r − 1

2).
Let Σ be a properly convex real projective 2-orbifold. A geodesic full 1-orbifold c in Σ is

h-principal if there is a double cover Σ̃ of Σ such that the double cover of c in Σ̃ is a simple
closed geodesic and is h-principal.
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Assume that every boundary component of Σ is h-principal. Let c be an oriented boundary
component of Σ. We know from Section 6.3 that if c is homeomorphic to a circle, then the
space Inv(c) of projective invariants of c is homeomorphic to R○. However, if c is a full 1-
orbifold, then Inv(c) = R∗ because in that case the space C(c) of convex projective structures
on the Coxeter 1-orbifold c is parametrised by the Hilbert length of c in the universal cover
of c.

Denoting by B(Σ) the set of boundary components of Σ, we define

Inv(∂Σ) ∶= ∏
c∈B(Σ)

Inv(c) and Inv(∅) = {∗} is a singleton.

Proposition 6.13 (Choi-Goldman [36]). Let S be an elementary orbifold in Figure 4. The
map Cpgb(S)○ → Inv(∂S) is a fibration of an n-dimensional open cell over the k-dimensional
open cell with l-dimensional open cell fiber. We list (n, k, l) below.

(P1): (8,6,2) (Goldman [57]).
(P2): (6,4,2) if there is no cone-point of order 2. Otherwise (4,4,0).
(P3): (4,2,2) if there is no cone-point of order 2. Otherwise (2,2,0).
(P4): (2,0,2) if there is no cone-point of order 2. Otherwise (0,0,0).
(A1): (4,3,1).
(A2): (3,2,1) if there is no corner-reflector of order 2. Otherwise (2,2,0).
(A3): (2,1,1).
(A4): (1,0,1) if there is no corner-reflector of order 2. Otherwise (0,0,0).
(D1): (4,3,1).
(D2): (3,2,1) if there is no corner-reflector of order 2. Otherwise (2,2,0).
(D3): (2,1,1) if there is no corner-reflector of order 2. Otherwise (1,1,0).
(D4): (1,0,1) if there is no corner-reflector of order 2. Otherwise (0,0,0).

Finally, we can describe the deformation space of convex projective structures on closed
2-orbifolds.

Theorem 6.14 (Choi-Goldman [36]). Let Σ be a closed 2-orbifold with χ(Σ) < 0. Then the
space C(Σ) of convex projective structures on Σ is homeomorphic to a cell of dimension

−8χ(XΣ) + (6m − 2m2) + (3n − n2)
where XΣ is the underlying space of Σ, m is the number of cone-points, m2 is the number
of cone-points of order 2, n is the number of corner-reflectors, and n2 is the number of
corner-reflectors of order 2.

7. Convex projective Coxeter orbifolds

7.1. Definitions.

7.1.1. Coxeter group. Let S be a finite set and denote by ∣S∣ the cardinality of S. A Coxeter
matrix on S is an ∣S∣ × ∣S∣ symmetric matrix M = (Mst)s,t∈S with diagonal entries Mss = 1 and
other entries Mst ∈ {2,3, . . . ,∞}. The pair (S,M) is called a Coxeter system.

To a Coxeter system (S,M) we can associate a Coxeter group W = WS: it is the group
generated by S with the relations (st)Mst = 1 for all (s, t) ∈ S × S such that Mst ≠ ∞. If
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(S,M) is a Coxeter system, then for each subset T of S we can define the Coxeter sub-
system (T,MT = (Mst)s,t∈T ). The Coxeter group WT can be thought of as a subgroup of WS

since the canonical map from WT to WS is an embedding. We stress that the last sentence
is not an obvious statement and it is, in fact, a corollary of Theorem 7.1.

The Coxeter graph of a Coxeter system (S,M) is the labelled graph where the set of vertices
is S, two vertices s and t are connected by an edge st if and only if Mst ≠ 2, and the label
of the edge st is Mst. A Coxeter system (S,M) is irreducible when its Coxeter graph is
connected. It is a little abusive but we also say that the Coxeter group W is irreducible.

7.1.2. Coxeter orbifolds. We are interested in d-dimensional Coxeter orbifolds whose under-
lying space is homeomorphic to a d-dimensional polytope18 P minus some faces, and whose
singular locus is the boundary of P made up of mirrors. For the sake of clarity, facets are
faces of codimension 1, ridges are faces of codimension 2 and proper faces are faces different
from P and ∅. Choose a polytope P and a Coxeter matrix M on the set S of facets of P
such that if two facets s and t are not adjacent,19 then Mst = ∞. When two facets s, t are
adjacent, the ridge s ∩ t of P is said to be of order Mst. The first objects we obtain are the
Coxeter system (S,M) and the Coxeter group W .

We now build an orbifold whose fundamental group is W and whose underlying topolog-
ical space is the starting polytope P minus some faces: For each proper face f of P , let
Sf = {s ∈ S ∣ f ⊂ s}. If Wf ∶= WSf

is an infinite Coxeter group then the face f is said to be
undesirable. Let P̂ be the orbifold obtained from P with undesirable faces removed, with
facets as mirrors, with the remaining ridges s ∩ t as corner reflectors of orders Mst. We call
P̂ a Coxeter d-orbifold. We remark that a Coxeter d-orbifold is closed if and only if for each
vertex v of P , the Coxeter group Wv is finite.

For example, let P be a polytope in X = Sd,Ed or Hd with dihedral angles submultiples of
π. The uniqueness of the reflection across a hyperplane of X allows us to obtain a Coxeter
(Isom(X),X)-orbifold P̂ from P .

7.1.3. Deformation spaces. Recall that C(P̂ ) denotes the deformation space of properly con-
vex real projective structures on the Coxeter orbifold P̂ , that is, the space of projective
structures on P̂ whose developing map is a diffeomorphism onto a properly convex subset in
RPd.

7.2. Vinberg’s breakthrough. In this subsection we give a description of Vinberg’s results
in his article [105]. An alternative treatment is given in Benoist’s notes [16].

7.2.1. Groundwork. Let V be the real vector space of dimension d+1. A projective reflection
(or simply, reflection) σ is an element of order 2 of SL±(V ) which is the identity on a hyper-
plane H. All reflections are of the form σ = Id − α ⊗ b for some linear functional α ∈ V ⋆ and
some vector b ∈ V with α(b) = 2. Here, the kernel of α is the subspace H of fixed points of σ
and b is the eigenvector corresponding to the eigenvalue −1.

18We implicitly assume that all the polytopes and polygons are convex.
19Two facets s and t are adjacent if s ∩ t is a ridge of P .
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Let P be a d-polytope in S(V ) and let S be the set of facets of P . For each s ∈ S, choose a
reflection σs = Id−αs⊗ bs with αs(bs) = 2 which fixes s. By making a suitable choice of signs,
we assume that P is defined by the inequalities αs ⩽ 0, s ∈ S. Let Γ ⊂ SL±(V ) be the group
generated by all these reflections (σs)s∈S and let P̊ be the interior of P . A pair (P, (σs)s) is
called a projective Coxeter polytope if the family {γP̊}γ∈Γ is pairwise disjoint.

The ∣S∣ × ∣S∣ matrix A = (Ast)s,t∈S, Ast = αs(bt), is called the Cartan matrix of a projective
Coxeter polytope P . For each reflection σs, the linear functional αs and the vector bs are
defined up to transformations

αs ↦ λsαs and bs ↦ λ−1
s bs with λs > 0.

Hence the Cartan matrix of P is defined up to the following equivalence relation: two matrices
A and B are equivalent if A = ΛBΛ−1 for a diagonal matrix Λ having positive entries. This
implies that for every s, t ∈ S, the number AstAts is an invariant of the projective Coxeter
polytope P .

7.2.2. Vinberg’s results. Vinberg proved that the following conditions are necessary and suf-
ficient for P to be a projective Coxeter polytope:
(V1) Ast ⩽ 0 for s ≠ t, and Ast = 0 if and only if Ats = 0.
(V2) Ass = 2; and for s ≠ t, AstAts ⩾ 4 or AstAts = 4 cos2( π

mst
), mst ∈ N ∖ {0,1}.

The starting point of the proof is that for every two facets s and t of P , the automorphism
σsσt has to be conjugate to one of the following automorphisms of V /U with U = ker(αs) ∩
ker(αt):

[λ 0
0 λ−1] (λ > 0), [1 1

0 1
] or [cos θ − sin θ

sin θ cos θ
] (θ = 2π

mst
).

In the third case we call σsσt a rotation of angle θ.

To a projective Coxeter polytope P , we can associate the Coxeter matrix M = (Mst)s,t∈S
with the set S of facets of P such that Mst = mst if σsσt is a rotation of angle 2π

mst
, and

Mst = ∞ otherwise. Now, from the Coxeter system (S,M) and the polytope P , we obtain
the Coxeter group W and projective Coxeter orbifold P̂ . Eventually, we are also interested
in the subgroup Γ of SL±(V ) generated by all the reflections across the facets of P .

Theorem 7.1 (Tits [24], Vinberg [105]). Let P be a projective Coxeter polytope. Then the
following are true :

(1) The morphism σ ∶W → Γ given by σ(s) = σs is an isomorphism.
(2) The group Γ is a discrete subgroup of SL±(V ).
(3) The union of tiles C ∶= ∪γ∈ΓγP is convex.
(4) The group Γ acts properly discontinuously on Ω, the interior of C, hence the quotient

Ω/Γ is a convex real projective Coxeter orbifold.
(5) An open face f of P lies in Ω if and only if the Coxeter group Wf is finite.

Remark 7.2. Tits proved Theorem 7.1 (without the fifth item) assuming that P is a simplex
and the Cartan matrix A of P is symmetric and AstAts ⩽ 4 for all facets s, t of P . The
statements can be found in Chapter 5 (Theorem 1 of Section 4 and Proposition 6 of Section
6) of [24]. The final version is due to Vinberg [105].
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7.3. Convex projective Coxeter 2-orbifolds. In the previous section, we explain the
deformation space C(Σ) of properly convex projective structures on a closed 2-orbifold Σ of
negative orbifold Euler characteristic (see Theorem 6.14). As a special case, if Σ is a closed
projective Coxeter 2-orbifold, then the underlying space of Σ is a polygon and Σ does not
contain cone-points. Let v+ be the number of corner reflectors of order greater than 2, and
let T (Σ) be the Teichmüller space of Σ. Goldman [52] showed that C(Σ) is homeomorphic
to an open cell of dimension

−8 + 3v − (v − v+) = v+ − 2 + 2(v − 3) = v+ − 2 + 2 dim T (Σ).
7.4. Hyperbolic Coxeter 3-orbifolds. The Coxeter 3-orbifolds which admit a finite-volume
hyperbolic structure have been classified by Andreev [2, 3].

A polytope is naturally a CW complex. A CW complex arising from a polytope is called a
combinatorial polytope. We abbreviate a 3-dimensional polytope to a polyhedron. Let G be a
combinatorial polyhedron and (∂G)∗ be the dual CW complex of the boundary ∂G. A simple
closed curve γ is called a k-circuit if it consists of k edges of (∂G)∗. A circuit γ is prismatic
if all the edges of G intersecting γ are disjoint.

Theorem 7.3 (Andreev [2, 3]). Let G be a combinatorial polyhedron, and let {si}ni=1 be the
set of facets of G. Suppose that G is not a tetrahedron and non-obtuse angles θij ∈ (0, π2 ] are
given at each edge sij = si ∩ sj of G. Then the following conditions (A1)–(A4) are necessary
and sufficient for the existence of a compact hyperbolic polyhedron P which realizes20 G with
dihedral angle θij at each edge sij.
(A1) If si ∩ sj ∩ sk is a vertex of G, then θij + θjk + θki > π.
(A2) If si, sj, sk form a prismatic 3-circuit, then θij + θjk + θki < π.
(A3) If si, sj, sk, sl form a prismatic 4-circuit, then θij + θjk + θkl + θli < 2π.
(A4) If G is a triangular prism with triangular facets s1 and s2, then

θ13 + θ14 + θ15 + θ23 + θ24 + θ25 < 3π.

The following conditions (F1)–(F6) are necessary and sufficient for the existence of a finite-
volume hyperbolic polyhedron P which realizes G with dihedral angle θij ∈ (0, π2 ] at each edge
sij.
(F1) If si ∩ sj ∩ sk is a vertex of G, then θij + θjk + θki ⩾ π.
(F2) (resp. (F3) or (F4)) is the same as (A2) (resp. (A3) or (A4)).
(F5) If si ∩ sj ∩ sk ∩ sl is a vertex of G, then θij + θjk + θkl + θli = 2π.
(F6) If si, sj, sk are facets such that si and sj are adjacent, sj and sk are adjacent, and si

and sk are not adjacent but meet at a vertex not in sj, then θij + θjk < π.
In both cases, the hyperbolic polyhedron is unique up to hyperbolic isometries.

7.5. Convex projective Coxeter 3-orbifolds.

7.5.1. Restricted deformation spaces. A point of C(P̂ ) gives us a projective Coxeter polytope
(P0, (σs)s), well defined up to projective automorphisms. We can focus on the subspace of
C(P̂ ) with a projectively fixed underlying polytope P0. This subspace is called the restricted
deformation space of P̂ and denoted by CP0(P̂ ).

20There is an isomorphism φ ∶ G → P such that the given angle at each edge e of G is the dihedral angle
at the edge φ(e) of P .
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Let P̂ be a Coxeter 3-orbifold. We now give a combinatorial hypothesis on P̂ , called
the “orderability”, which allows us to say something about the restricted deformation space
CP0(P̂ ) of P̂ . A Coxeter 3-orbifold P̂ is orderable if the facets of P̂ can be ordered so that each
facet contains at most three edges that are edges of order 2 or edges in a facet of higher index.

Let e (resp. f , e2) be the number of edges (resp. facets, edges of order 2) of P , and let
k(P ) be the dimension of the group of projective automorphisms of P . Note that k(P ) = 3 if
P is tetrahedron, k(P ) = 1 if P is the cone over a polygon other than a triangle, and k(P ) = 0
otherwise.

Theorem 7.4 (Choi [32]). Let P̂ be a Coxeter 3-orbifold such that C(P̂ ) ≠ ∅. Suppose that
P̂ is orderable and that the Coxeter group πorb1 (P̂ ) is infinite and irreducible. Then every
restricted deformation space CP (P̂ ) is a smooth manifold of dimension 3f − e − e2 − k(P ).

A simplicial polyhedron21 is orderable. By Andreev’s theorem, hyperbolic triangular prisms
are orderable. However the cube and the dodecahedron do not carry any orderable Coxeter
orbifold structure, since the lowest index facet in an orderable orbifold must be triangular.

7.5.2. Truncation polyhedra. Andreev’s theorem gives the necessary and sufficient conditions
for the existence of a closed or finite-volume hyperbolic Coxeter 3-orbifold. We can think of
analogous questions for closed or finite-volume properly convex projective Coxeter orbifolds.

The third author [84] completely answered the question of whether or not a Coxeter 3-
orbifold P̂ admits a convex projective structure assuming that the underlying space P is a
truncation polyehedron: a truncation d–polytope is a d-polytope obtained from the d-simplex
by iterated truncations of vertices. For example, a triangular prism is a truncation polyhe-
dron. However the cube and the dodecahedron are not truncation polyhedra.

A prismatic 3-circuit of P̂ formed by the facets r, s, t is bad if

1

Mrs

+ 1

Mst

+ 1

Mtr

⩾ 1 and 2 ∈ {Mrs,Mst,Mtr}.

Let e+ be the number of edges of order greater than 2 in P̂ .

Theorem 7.5 (Marquis [84]). Let P̂ be a Coxeter 3-orbifold arising from a truncation poly-
hedron P . Assume that P̂ has no bad prismatic 3-circuits. If P̂ is not a triangular prism
and e+ > 3, then C(P̂ ) is homeomorphic to a finite union of open cells of dimension e+ − 3.
Moreover, if P̂ admits a hyperbolic structure, then C(P̂ ) is connected.

The third author actually provided an explicit homeomorphism between C(P̂ ) and the
union of q copies of Re+−3 when P̂ is a Coxeter truncation 3-orbifold. Moreover, the integer
q can be computed easily in terms of the combinatorics and the edge orders.

7.6. Near the hyperbolic structure.

21A simplicial polyhedron is a polyhedron whose facets are all triangles.
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7.6.1. Restricted deformation spaces. The first and second authors and Hodgson [37] de-
scribed the local restricted deformation space for a class of Coxeter orbifolds arising from
ideal hyperbolic polyhedra, i.e. polyhedra with all vertices on ∂H3. Note that a finite volume
hyperbolic Coxeter obifold is unique up to hyperbolic isometries by Andreev’s theorem [2, 3]
or Mostow-Prasad rigidity theorem [92, 95].

Theorem 7.6 (Choi-Hodgson-Lee [37]). Let P be an ideal hyperbolic polyhedron whose dihe-
dral angles are all equal to π

3 . If P is not a tetrahedron, then at the hyperbolic structure the
restricted deformation space CP (P̂ ) is smooth and of dimension 6.

7.6.2. Weakly orderable Coxeter orbifolds. The first and second authors [38] found a “large”
class of Coxeter 3-orbifolds whose local deformation spaces are understandable. A Coxeter
3-orbifold P̂ is weakly orderable if the facets of P can be ordered so that each facet contains at
most 3 edges of order 2 in a facet of higher index. Note that Greene [60] gave an alternative
(cohomological) proof of the following theorem.

Theorem 7.7 (Choi-Lee [38], Greene [60]). Let P̂ is a closed hyperbolic Coxeter 3-orbifold.
If P̂ is weakly orderable, then at the hyperbolic structure C(P̂ ) is smooth and of dimension
e+ − 3.

For example, if P is a truncation polyhedron, then P̂ is always weakly orderable. The cube
is not a truncation polyhedron, but every closed hyperbolic Coxeter 3-orbifold arising from
the cube is weakly orderable. On the other hand, there exist closed hyperbolic Coxeter 3-
orbifolds arising from the dodecahedron which are not weakly orderable. However, almost all
the closed hyperbolic Coxeter 3-orbifolds arising from the dodecahedron are weakly orderable:

Theorem 7.8 (Choi-Lee [38]). Let P be a simple22 polyhedron. Suppose that P has no
prismatic 3-circuit and has at most one prismatic 4-circuit. Then

lim
m→∞

∣{weakly orderable, closed hyperbolic Coxeter 3-orbifolds P̂ with edge order ⩽m}∣
∣{closed hyperbolic Coxeter 3-orbifolds P̂ with edge order ⩽m}∣

= 1

A result similar to Theorem 7.7 is true for higher dimensional closed Coxeter orbifolds P̂
whose underlying polytope P is a truncation polytope:

Theorem 7.9 (Choi-Lee [38], Greene [60]). If P̂ be a closed hyperbolic Coxeter orbifold
arising from a truncation polytope P , then at the hyperbolic structure C(P̂ ) is smooth and of
dimension e+ − d.

We remark that if P̂ is not weakly orderable, then Theorem 7.7 is not true anymore: Let
m be a fixed integer greater than 3. Consider the compact hyperbolic Coxeter polyhedron
P1 shown in Figure 5 (A). Here, if an edge is labelled m, then its dihedral angle is π

m . Oth-
erwise, its dihedral angle is π

2 . Let P̂1 be the corresponding hyperbolic Coxeter 3-orbifold.
Then e+ − 3 = 0, but C(P̂1) = R (see Choi-Lee [38]). Of course P̂1 is not weakly orderable,
since every facet in P̂1 contains four edges of order 2.

There is also a compact hyperbolic Coxeter 4-polytope P2 such that C(P̂2) is not homeo-
morphic to a manifold. The underlying polytope P2 is the product of two triangles and the
Coxeter graph of P̂2 is shown in Figure 5 (B).

22A polyhedron P is simple if each vertex of P is adjacent to exactly three edges.
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(a)

5

5
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(b)

Figure 5. (A) Coxeter 3-polytope P1 (B) Coxeter 4-polytope P2

The space C(P̂2) is homeomorphic to the following solution space (see Choi-Lee [38]):

S = {(x, y) ∈ (R+)2 ∣ 8x − (5 +
√

5)y − (6 − 2
√

5)xy − (5 +
√

5)x2y + 8xy2 = 0},

which is pictured in Figure 6, and hence C(P̂2) is not a manifold. Here the singular point
(1,1) ∈ S corresponds to the hyperbolic structure in C(P̂2).

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Figure 6. 8x − (5 +
√

5)y − (6 − 2
√

5)xy − (5 +
√

5)x2y + 8xy2 = 0

8. Infinitesimal deformations

8.1. Rigidity or deformability. We first discuss some general theory.

Definition 8.1. A representation ρ ∶ Γ → G is locally rigid if the G-orbit of ρ in Hom(Γ,G)
contains a neighborhood of ρ in Hom(Γ,G). Otherwise, ρ is locally deformable.

If ρ is locally deformable, then there exists a sequence of representations ρn ∶ Γ → G
converging to ρ such that ρn is not conjugate to ρ. We emphasise that ρn has no reason to
be discrete or faithful even if ρ is so.

Definition 8.2. Two representations ρ, ρ′ ∶ Γ → G are of the same type if for all γ ∈ Γ, ρ(γ)
and ρ′(γ) have the same type in the Jordan decomposition. A discrete faithful representation
ρ ∶ Γ → G is globally rigid if every discrete faithful representation in Hom(Γ,G) whose type
is the same as ρ is conjugate to ρ.

For example, two representations ρ, ρ′ ∶ Γ → PGL(2,R) are of the same type if and only if
for each γ ∈ Γ, ρ(γ) and ρ′(γ) are both hyperbolic, parabolic or elliptic.
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8.2. What is an infinitesimal deformation? In this subsection, we explore the tangent
space to a representation. In order to do that, we will combine differential geometry with
algebraic geometry. Given a semi-algebraic set X and a point x ∈ X, we say that X is a
smooth manifold of dimension r at x if there is an open neighborhood U of x such that the
subset U ∩X is a smooth r-manifold. Such a point x is said to be smooth.

Assume now that X is an algebraic set. We can define the Zariski tangent space at any
point x ∈X. If X is a smooth manifold of dimension r at x, then the Zariski tangent space at
x is of dimension at least r. Conversely, if the Zariski tangent space at x is of dimension r and
there is a smooth r-manifold in X containing x, then X is a smooth manifold of dimension
r at x. A point x ∈ X is said to be singular if there is a Zariski tangent vector which is not
tangent to a smooth curve in X.

8.3. First order. Assume that ρt is a smooth path in Hom(Γ,G), i.e. for each γ ∈ Γ, a path
ρt(γ) in G is smooth. Then there exists a map u1 ∶ Γ→ g such that

∀γ ∈ Γ, ρt(γ) = exp(t u1(γ) +O(t2))ρ0(γ).
Since ρt is a homomorphism, i.e. ρt(γ δ) = ρt(γ)ρt(δ), it follows that u1 is a 1-cocycle.
Conversely, if u1 ∶ Γ → g is a 1-cocyle, then ρt is a homomorphism up to first order. This
computation motivates the following: Given a representation ρ ∶ Γ → G, we define the space
of 1-cocycles Γ→ g:

Z1(Γ,g)ρ = {u1 ∶ Γ→ g ∣u1(γδ) = u1(γ) +Adρ(γ)u1(δ), ∀γ, δ ∈ Γ}.

Moreover, since the Zariski tangent space to an algebraic variety is the space of germs of
paths satisfying the equations up to first order, the Zariski tangent space TZarρ Hom(Γ,G) to
Hom(Γ,G) at ρ can be identified with the space of 1-cocyles Z1(Γ,g)ρ via the following:

∀γ ∈ Γ,
d

dt
ρt(γ)ρ0(γ−1)∣t=0 = u1(γ).

Eventually we want to understand the tangent space to the character variety, hence we
need to figure out which cocycles come from the conjugation. We introduce the space of
1-coboundaries:

B1(Γ,g)ρ = {v1 ∶ Γ→ g ∣ ∃u0 ∈ g such that v1(γ) = Adρ(γ)u0 − u0}.
Every coboundary v1, in fact, is tangent to the conjugation path ρt = exp(−tu0)ρ0 exp(tu0).
The first cohomology group with coefficients in g twisted by the adjoint action of ρ is

H1(Γ,g)ρ = Z1(Γ,g)ρ/B1(Γ,g)ρ.

Basically, we explain that the map TZarρ Hom(Γ,G) → Z1(Γ,g)ρ is an isomorphism. In
addition, under this isomorphism, the Zariski tangent vectors coming from the G-conjugation
of ρ exactly correspond to the coboundaries.

Definition 8.3. A representation ρ ∶ Γ→ G is infinitesimally rigid if H1(Γ,g)ρ = 0.

The following theorem motivates the terminology.
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Theorem 8.4 (Weil’s rigidity theorem [107]). If ρ is infinitesimally rigid, then ρ is locally
rigid.

A nice presentation of Theorem 8.4 can be found in Besson [20]. Weil, Garland and
Raghunathan also computed the group H1(Γ,g)ρ in a number of important cases and showed
that it is often trivial.

Theorem 8.5 (Weil [106], Garland-Raghunathan [51], Raghunathan [96]).
Suppose that G is a semi-simple group without compact factor and Γ is an irreducible lattice
of G. Denote by i ∶ Γ → G the canonical representation and let ρ ∶ G → H be a non-trivial
irreducible representation of G into a semi-simple group H.

● If H1(Γ,g)i ≠ 0, then
– either g = so2,1(R) = su1,1 = sl2(R),
– or g = so3,1(R) = sl2(C) and Γ is a non-uniform lattice.

● If H1(Γ,h)ρ○i ≠ 0 and Γ is a uniform lattice, then g = sod,1(R) or sud,1. Moreover, if
we write h = V1 ⊕⋯⊕Vr the decomposition of the g-semi-simple module h into simple
modules, then the highest weight of each Vi is a multiple of the highest weight of the
standard representation.

8.4. Higher order. Given a 1-cocycle u1 ∈ Z1(Γ,g)ρ, i.e. a Zariski tangent vector to the
representation variety, we may ask if u1 is integrable, i.e. the tangent vector to a smooth
deformation. We can start with the simplest investigation: Is the 1-cocycle u1 integrable up
to second order, i.e. the tangent vector to a smooth deformation up to order 2? Writing the
expression

∀γ ∈ Γ, ρt(x) = exp(t u1(γ) + t2 u2(γ) +O(t3))ρ0(γ)
and using the Baker-Campbell-Hausdorff formula, we see that ρt is a homomorphism up to
second order if and only if

∀γ, δ ∈ Γ, u2(γ) − u2(γδ) +Adρ0(γ)u2(δ) =
1

2
[Adρ0(γ)u1(δ), u1(γ)] ∶=

1

2
[u1, u1](γ, δ).

Hence, the 1-cocycle u1 is integrable up to second order if and only if the 2-cocycle [u1, u1] ∈
Z2(Γ,g) is a 2-coboundary. We could ask the same question for the third order and so on.
We would find a sequence of obstructions, which are all in H2(Γ,g)ρ. In other words, for
each n ⩾ 2, if we let

Vn ∶= {u1 ∈ Z1(Γ,g)ρ ∣ ok(u1) = 0 for every k = 2, . . . , n − 1},
then there exists a map on ∶ Vn → H2(Γ,g)ρ such that the 1-cocycle u1 is integrable up to
order n if and only if the obstructions ok(u1) = 0 for all k = 2, . . . , n.

The story ends with a good news. Recall that G = GR and RJtK is the ring of formal
power series. A formal deformation of ρ ∶ Γ → G is a representation ρ̃ ∶ Γ → GRJtK whose
evaluation at t = 0 is ρ. A 1-cocycle u1 is, by definition, the formal tangent vector to a formal
deformation (or simply formally integrable) if and only if the obstructions on(u1) = 0 for all
n ⩾ 2. A priori, this does not imply that u1 is the tangent vector to a smooth deformation,
but this is in fact true:

Theorem 8.6 (Artin [4]). If a 1-cocycle u1 is formally integrable, then u1 is integrable.
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8.5. Examples in hyperbolic geometry. The world of hyperbolic geometry offers a lot
of interesting behaviors. Assume that M is a hyperbolic d-dimensional manifold with or
without boundary and Γ is the fundamental group of M .

8.5.1. Hyperbolic surfaces. A lot is known on representations of surface groups, and the story
about surface groups is different from higher dimensional manifold groups, which we will
eventually concentrate on. Hence, we refer the readers to their favourite surveys on surface
group representations (see, for example, Goldman [53, 54], Labourie [79], Guichard [62]).

8.5.2. Finite-volume hyperbolic manifolds. If d ⩾ 3 andM has finite volume, then the famous
Mostow-Prasad rigidity theorem [92, 95] states that the holonomy ρ of M is globally rigid.
This (conjugacy class of) representation is the geometric representation of Γ.

However this does not imply that ρ is locally rigid. Indeed, the geometric representa-
tion might be deformed to non-faithful or non-discrete representations.23 It is a theorem of
Thurston for dimension d = 3 and of Garland and Raghunathan for dimension d ⩾ 4 that ρ
is locally deformable if and only if d = 3 and M has a cusp. This wonderful exception in
the local rigidity of finite-volume hyperbolic manifolds is the starting point of the Thurston
hyperbolic Dehn surgery theorem.

Theorem 8.7 (Thurston [100], Garland-Raghunathan [51]). The holonomy representation
of a finite-volume hyperbolic manifold M of dimension d ⩾ 3 is infinitesimally rigid except
if d = 3 and M is not compact. In the exceptional case, the geometric representation is a
smooth point of the character variety of dimension twice the number of cusps.

Bergeron and Gelander [19] gave an alternative proof of Theorem 8.7 using the Mostow-
Prasad rigidity.

8.5.3. Hyperbolic manifolds with boundary. We also wish to cite this beautiful theorem which
pushes this kind of question beyond the scope of finite-volume manifolds.

Theorem 8.8 (Kerckhoff-Storm [71]). The holonomy representation of a compact hyperbolic
manifold with totally geodesic boundary of dimension d ⩾ 4 is infinitesimally rigid.

9. Infinitesimal duality to complex hyperbolic geometry

We now return to the original interest of this survey: convex projective structures on man-
ifolds. From the point of view of representations, our problem is to understand deformations
ρt ∶ π1(M) → SLd+1(R) from the holonomy ρ0 ∶ π1(M) → PSOd,1(R) of the hyperbolic struc-
ture on M into representations in SLd+1(R).

Suppose thatM is a finite-volume hyperbolic manifold of dimension d ⩾ 3 and Γ is the fun-
damental group ofM . We have seen that there exists a unique discrete faithful representation
ρgeo of Γ into PSOd,1(R), up to conjugation. If G is a Lie group and i ∶ PSOd,1(R) → G is a
representation, then we call the conjugacy class [i○ρgeo] the hyperbolic point of the character
variety χ(Γ,G) and we denote it again by ρgeo. We abuse a little bit of notation here, since
we ignore i, but in the following i will always be the canonical inclusion.

23It is easy to see that every discrete and faithful representations of Γ are of the same type.
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Complex hyperbolic geometry can help us to understand local deformations into SLd+1(R).
Indeed, complex hyperbolic geometry is “dual” to Hilbert geometry, however, only at the
hyperbolic point and at the infinitesimal level.

Remark 9.1. The groups SLd+1(R) and SUd,1 are non-compact real forms of the complex
algebraic group SLd+1(C) that both contains the real algebraic group PSOd,1(R). Moreover,
the Lie algebra sld+1(R) splits as
(3) sld+1(R) = sod,1 ⊕ o

where o is the orthogonal complement to sod,1 in sld+1(R) with respect to the Killing form
of sld+1(R), and the adjoint action of PSOd,1(R) preserves the decomposition (3). Hence to
study the cohomology group H1(M, sld+1(R))ρ, we just have to understand H1(M,o)ρ, since
the cohomology groupH1(M, sod,1)ρ is well known. But, since the Lie algebra sud,1 = sod,1⊕io,
we can find H1(M,o)ρ using complex hyperbolic geometry (see Heusener-Porti [64], Cooper-
Long-Thistlethwaite [44] for more details).

Remark 9.1 evolves into the following theorem:

Theorem 9.2 (Cooper-Long-Thistlethwaite [44]). Let M be a closed hyperbolic manifold,
and Γ = π1(M). Then the hyperbolic point ρgeo in χ(Γ,SLd+1(R)) is smooth if and only
if the corresponding hyperbolic point in χ(Γ,SUd,1) is smooth. Moreover, in that case, the
dimensions of the two character varieties at the hyperbolic point are the same.

Theorem 9.3 (Guichard [61]). Let M be a closed hyperbolic manifold, and Γ = π1(M). In
χ(Γ,SLd+1(C)), hence in particular in χ(Γ,SLd+1(R)) and χ(Γ,SUd,1), the representations
close to the hyperbolic point ρgeo are faithful and discrete.

The local pictures of the character variety for G = SLd+1(R) and SUd,1 are therefore the
same; however the global pictures can be very different. The work of Morgan-Shalen [91],
Bestvina [21] and Paulin [94] shows that the space of discrete and faithful representations of
Γ in SUd,1 is compact (if d ⩾ 2), but this can be false if G = SLd+1(R).

10. Convex projective structures on 3-manifolds

10.1. Computing character varieties. Cooper, Long and Thistlethwaite [43] investigated
the local structure of the variety χ(Γ,SL4(R)) at the hyperbolic point ρ ∶= ρgeo when Γ is the
fundamental group of one of the first 4500 closed hyperbolic 3-manifolds with 2-generator
groups in the Hodgson-Weeks census:

http://www.math.uic.edu/t3m/SnapPy/censuses.html
We summarize their conclusions about the character variety χ(Γ,SL4(R)) around the

hyperbolic point:
● 4439 points, i.e. H1(Γ,SL4(R))ρ = 0.
● 9 singular points, i.e. H1(Γ,SL4(R))ρ ≠ 0 but no Zariski tangent vector is integrable.
● 43 smooth curves.
● 7 smooth surfaces.
● 1 singular surface such that H1(Γ,SL4(R))ρ is 3-dimensional.
● 1 singular 3-variety, which has two 3-dimensional branches meeting in a curve.

First, we should mention that these computations are mostly done in floating-point mode,
hence this summary is a very good speculation but not a statement. Second, the authors
checked rigorously their speculations on certain character varieties of this list.
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Remark 10.1. If Γ is the fundamental group of a closed hyperbolic 3-manifold, then the
first obstruction o2(u1) = 0, for every Zariski tangent vector u1 at the hyperbolic point ρ
(see Cooper-Long-Thistlethwaite [44]). Indeed, first, the infinitesimal rigidity of the closed
hyperbolic 3-manifold in PSO3,1(R) implies that u1 ∈H1(Γ,o). Second, since [o,o] ⊂ so3,1, it
follows that o2(u1) is not only an element of H2(Γ, sl4) but also an element of H2(Γ, so3,1).
Finally, we know from Poincaré duality that H2(Γ, so3,1) =H1(Γ, so3,1) = 0.

The singularities of some varieties are therefore more than quadratic, since for example the
manifold “Vol3” is locally rigid even if its Zariski tangent space is one-dimensional. Compare
to the result of Goldman-Millson [59] that the singularity at a reductive representation is at
most quadratic if Γ is the fundamental group of a Kähler manifold.

10.2. Infinitesimal rigidity relative to the boundary. Heusener and Porti made use of
a relative version of the infinitesimal rigidity for finite-volume hyperbolic 3-manifolds M in
order to obtain the infinitesimal rigidity for some Dehn fillings of M .

Let M be a 3-manifold with a boundary whose interior N carries a finite-volume complete
hyperbolic metric, and let ρ ∶= ρgeo be the holonomy representation of N . We say that M
(or N) is infinitesimally rigid relative to the boundary if the map H1(M,G)ρ →H1(∂M,G)ρ
is injective. Roughly speaking, at the infinitesimal level, every deformation must change the
geometry of the cusp. The combination of the following two theorems shows in particular
that infinitely many closed hyperbolic 3-manifolds are locally rigid in G = SL4(R).
Theorem 10.2 (Theorem 1.4 of Heusener-Porti [64]). Infinitely many Dehn fillings of a
non-compact hyperbolic 3-manifold of finite volume which is infinitesimally rigid relative to
the boundary are infinitesimally rigid.

Theorem 10.3 (Heusener-Porti [64]). There exist non-compact hyperbolic 3-manifolds of
finite volume which are infinitesimally rigid relative to the boundary.

Remark 10.4. For example, the figure-eight knot complement and the Whitehead link com-
plement are infinitesimally rigid relative to the boundary. A finite-volume non-compact
hyperbolic 3-manifold which contains an embedded totally geodesic closed hypersurface is
not infinitesimally rigid relative to the boundary. This raises the following question: Can
we find a (topological) characterization of finite-volume hyperbolic 3-manifolds which are
infinitesimally rigid relative to the boundary? An answer even for hyperbolic knot or link
complements would already be quite nice.

Surprisingly, the technique of Heusener and Porti, which is extended by Ballas, also pro-
duces deformations. A slope is a curve in the boundary, and a slope γ is rigid if the map
H1(M,o)ρ →H1(γ,o)ρ is non-trivial.

Theorem 10.5 (Heusener-Porti [64], Ballas [5]). Infinitely many (generalized ) Dehn fillings
of an amphichiral knot whose longitude is a rigid slope are deformable.
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