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CONVEX REAL PROJECTIVE STRUCTURES ON MANIFOLDS AND
ORBIFOLDS

SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

Abstract. In this survey, we study deformations of finitely generated groups into Lie
groups, focusing on the case underlying convex projective structures on manifolds and orb-
ifolds, with an excursion on projective structures on surfaces.

We survey the basics of the theory of deformations, (G,X)-structures on orbifolds, Hilbert
geometry and Coxeter groups. The main examples of finitely generated groups for us will be
Fuchsian groups, 3-manifold groups and Coxeter groups.
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1. Introduction

The goal of this paper is to survey convex real projective structures on manifolds and orb-
ifolds. Some may prefer to speak of discrete subgroups of the group PGLd+1(R) of projective
transformations of the real projective space RPd which preserves a properly convex open set
of RPd, and some other prefer to speak of Hilbert geometries.

Some motivations for studying this object are the following:

1.1. Hitchin representations. Let S be a closed surface of genus g ⩾ 2 and let Γ be the fun-
damental group of S. There is a unique irreducible representation im ∶ PSL2(R)→ PSLm(R),
up to conjugation. A representation ρ ∶ Γ → PSLm(R) is called a Hitchin representation if
there is a discrete and faithful representation τ ∶ Γ→ PSL2(R) such that ρ can be continuously

G.-S. Lee was supported by the DFG research grant “Higher Teichmüller Theory”. L. Marquis acknowl-
edges support from the french ANR Finsler and Facets.
The second author acknowledges support from U.S. National Science Foundation grants DMS 1107452,
1107263, 1107367 "RNMS: GEometric structures And Representation varieties" (the GEAR Network).

1



2 SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

deformed to a representation im○τ ∶ Γ→ PSLm(R). The space Hitm(Γ) of conjugacy classes of
Hitchin representations of Γ in PSLm(R) has a lot of interesting properties: Each connected
component is homeomorphic to an open ball of dimension 2(g−1)(m2−1) [Hit92], and every
Hitchin representation is discrete, faithful, irreducible and purely loxodromic [Lab06].

When m = 3, the first author and Goldman [CG93] show that each Hitchin representation
preserves a properly convex open set of RP2, in other words, Hit3(Γ) is the space C(S) of
marked convex real projective structures on the surface S.

To understand the geometric properties of Hitchin representations, Labourie [Lab06] intro-
duces the concept of Anosov representation for surface groups. Later on, this notion is gener-
alized for finitely generated Gromov-hyperbolic groups by Guichard and Wienhard [GW12].
For example, if M is a closed manifold whose fundamental group is Gromov-hyperbolic, then
the holonomy representations of convex real projective sturctures on M are Anosov.

1.2. Deformations of hyperbolic structures. Let M be a closed hyperbolic manifold of
dimension d ⩾ 3, and let Γ = π1(M). By Mostow rigidity, up to conjugation, there is a unique
faithful and discrete representation ρgeo of Γ in SOd,1(R). The group SOd,1(R) is canonically
embedded inside PGLd+1(R). We use the same notation ρgeo ∶ Γ→ PGLd+1(R) to denote the
composition of ρgeo ∶ Γ→ SOd,1(R) with the canonical inclusion. Now, there is no reason that
ρgeo is the unique faithful and discrete representation of Γ in PGLd+1(R), up to conjugation.

In fact, there are examples of closed hyperbolic manifold M of dimension d such that Γ
admits discrete and faithful representations in PGLd+1(R) which are not conjugate to ρgeo

(see Theorem 5.2). We can start looking at the connected component Ben(M) of the space of
representations of Γ into PGLd+1(R) containing ρgeo, up to conjugation. The combination of
a theorem of Koszul and a theorem of Benoist implies that every representation in Ben(M)
is discrete, faithful, irreducible and preserves1 a properly convex open set Ω of RPd. Hence
Ben(M) is indeed the connected component of the space C(M) of marked convex projective
structures on M containing the hyperbolic structure.

At the moment of writing, there is no known necessary and sufficient condition on M to
decide if Ben(M) consists of exactly one element, which is the hyperbolic structure. There
are infinitely many closed hyperbolic 3-manifolds M such that Ben(M) is the singleton (see
[HP11]), and there are infinitely many closed hyperbolic 3-orbifolds M such that Ben(M) is
homeomorphic to an open k-ball, for any k ∈ N (see [Mar10a]).

1.3. Building block for projective surfaces. Let S be a closed surface. We can wake
up one day with a wish to understand all the possible real projective structures on S, not
necessarily only the convex one. The first author has shown that convex projective structures
are the main building blocks to construct all the possible projective structures on the surface
S (see Theorem 6.9 for details).

1.4. Geometrization. Let Ω be a properly convex open set of RPd, and let Aut(Ω) be the
subgroup of PGLd+1(R) preserving Ω. There is an Aut(Ω)-invariant metric dΩ on Ω, called

1The action of Γ on Ω is automatically proper and cocompact for general reason.
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the Hilbert metric, that make (Ω, dΩ) a complete proper geodesic metric space, called a Hilbert
geometry. We will discuss about these in Section 4.2. The flavour of the metric space (Ω, dΩ)
really depends on the geometry of the boundary of Ω. For example, on one side, the interior
of an ellipse equipped with the Hilbert metric is isometric to the hyperbolic plane, forming
the projective model of the hyperbolic plane, and on the other side, the interior of a triangle
is isometric to the plane with the norm whose unit ball is the regular hexagon (see [dlH91]).

Unfortunately, Hilbert geometries are almost never CAT(0): A Hilbert geometry (Ω, dΩ)
is CAT(0) if and only if Ω is an ellipsoid [KS58]. However, the idea of Riemmanian geometry
of non-positive curvature is a good guide toward the study of the metric property of Hilbert
geometry.

An irreducible symmetric space X = G/K is "Hilbertizable" if there exist a properly convex
open set Ω of RPd for some d and an irreducible representation ρ ∶ G → SLd+1(R) such that
ρ(G) acts transitively on Ω and the stabilizer of a point of Ω is conjugate to K. The sym-
metric spaces for SOd,1(R), SLm(K) for K = R,C,H, and the exceptional Lie group E6,−26 are
exactly the symmetric spaces that are Hilbertizable (see Vinberg [Vin63b, Vin65] or Koecher
[Koe99]).

Nevertheless we can ask the following question to start with:
“Which manifold or orbifold M can be realized as the quotient of a properly convex
open set Ω by a discrete subgroup Γ of Aut(Ω)?”

If so, we say that M admits a convex real projective structure.

In dimension 2, the answer is easy: a closed surface S admits a convex projective struc-
ture if and only if its Euler characteristic is non-positive. The universal cover of a convex
projective torus is a triangle, and a closed surface of negative Euler characteristic admits a
hyperbolic structure, which is an example of a convex projective structure.

In dimension greater than or equal to 3, no definite answer is known; see Section 5 for a
description of our knowledge. To arouse the reader’s curiosity we just mention that there exist
manifolds which can be geometrized thanks to Hilbert geometry but cannot be geometrized
thanks to symmetric spaces.

1.5. Coxeter groups. A Coxeter group is a finitely presented group that “resembles” the
groups generated by reflections; see Section 7 for a precise definition, and [dlH91] for a beau-
tiful invitation if you want more. An important object to study Coxeter group, denoted W ,
is a representation ρgeo ∶ W → GL(V ) introduced by Tits [Bou68]. The representation ρgeo,
in fact, preserves a convex open set of the real projective space P(V ). For example, Margulis
and Vinberg use this property of ρgeo to show that an irreducible Coxeter group is either
finite, virtually abelian or large2 [MV00].

From our point of view, Coxeter groups are a great source for building groups acting on
properly convex open sets of P(V ). Benoist uses them to construct the first example of closed
3-manifold that admits a convex projective structure Ω/Γ such that Ω is not strictly convex,

2It contains a subgroup of finite index that admits an onto morphism to a non-abelian free group.
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or to build the first example of a closed 4-manifold that admits a convex projective structure
Ω/Γ such that (Ω, dΩ) is Gromov-hyperbolic but not quasi-isometric to the hyperbolic space
(see Section 5).

2. Character varieties

All along this article, we study this kind of objects:

● a group Γ of finite type which we are thinking of as the fundamental group of a
complete real hyperbolic manifold/orbifold or its siblings,

● a Lie group G which is also the set of real points of an algebraic group G, and
● a real algebraic variety Hom(Γ,G).

We want to understand the space Hom(Γ,G). First, the group G acts on Hom(Γ,G) by
conjugation. We can notice that the quotient space is not necessarily Hausdorff since the
orbit of the action of G on Hom(Γ,G) may not be closed. But, the situation is not bad since
each orbit closure contains at most one closed orbit. Hence, the solution to the problem is
to forget the representations whose orbit are not closed. Let’s recall the characterization of
the closedness on the orbit:

Lemma 2.1 (Richardson [Ric88]). Assume that G is the set of real points of a reductive3

algebraic group defined over R. Let ρ ∶ Γ→ G be a representation. Then the orbit G⋅ρ is closed
if and only if the Zariski closure of ρ(Γ) is a reductive subgroup of G. Such a representation
is called a reductive representation.

Define

R(Γ,G) = Hom(Γ,G)/G and χ(Γ,G) = {[ρ] ∈ R(Γ,G) ∣ρ is reductive}.

These are given with the quotient topology and the subspace topology, respectively.

Theorem 2.2 (Topological, geometric and algebraic view point, Luna [Lun75, Lun76]).
Assume that G is as in Lemma 2.1. Let ρ ∶ Γ → G be a representation. Then there exists a
unique reductive representation Ð→ρ ∈ G ⋅ ρ, up to conjugation.

The space χ(Γ,G) is Hausdorff and it identifies with the Hausdorff quotient of R(Γ,G).
Also, it is a real semi-algebraic variety which is the GIT-quotient4 of the action of G on
Hom(Γ,G).

The real semi-algebraic Hausdorff set χ(Γ,G) is called the character variety of the pair
(Γ,G).

A baby example: Z. The space χ(Z,G) is the set of semi-simple elements of G modulo
conjugation.

● If G = SLm(C) then χ(Z,G) = Cm−1.
● If G = SL2(R) then χ(Z,G) is a circle {eiθ ∣0 ⩽ θ < 2π} with two half-line that are
glued on the circle at the points {1} and {−1}.

3Its unipotent radical is trivial.
4The Geometric Invariant Theory quotient; see the lecture note [Bri10] to go in that direction.
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3. Geometric structures on orbifolds

In this section, we recall the vocabulary of orbifolds and of geometric structures on orb-
ifolds. You can skip this section if you are familiar with these notions. A classical reference
is the lecture note of Thurston [Thu02]. See also [Gol88a, Cho12, BMP03]. For the theory
of orbifolds itself, we suggest the book of Adem, Leida, and Ruan [ALR07] and Bridson and
Haefliger [BH99].

3.1. Orbifolds. An orbifold is a topological space which is locally homeomorphic to the
quotient space of Rd by a finite subgroup of Diff(Rd), the diffeomorphism group of Rd. Here
is a formal definition: A d-dimensional orbifold O consists of a second countable, Hausdorff
space XO with the following additional structure:

(1) A collection of open sets {Ui}i∈I , for some index I, which is a covering of XO and is
closed under finite intersections.

(2) To each Ui are associated a finite group Γi, a smooth action of Γi on an open subset
Ũi in Rd and a homeomorphism φi ∶ Ũi/Γi → Ui.

(3) Whenever Ui ⊂ Uj, there is an injective homomorphism fij ∶ Γi → Γj and a smooth
embedding φ̃ij ∶ Ũi → Ũj equivariant with respect to fij, i.e. φ̃ij(γx) = fij(γ)φ̃ij(x)
for γ ∈ Γi and x ∈ Ũi, such that the following diagram commutes:

Ũi Ũj

Ũi/Γi Ũj/fij(Γi)

Ũj/Γj

Ui Uj

φ̃ij

φi

φj
⊂

(4) The collection {Ui} is maximal relative to the conditions (1) – (3).
This additional structure is called an orbifold structure, and the space XO is the under-

lying space of O. For example, if M is a smooth manifold and Γ is a subgroup of Diff(M)
acting properly discontinuously on M , then the quotient space M/Γ has an obvious orbifold
structure.

An orbifold is said to be connected, compact or noncompact according to whether the
underlying space is connected, compact or noncompact, respectively.

3.2. (G,X)-orbifolds. Let X be a real analytic manifold and let G be a Lie group acting
faithfully and analytically on X. A (G,X)-structure is an orbifold structure so that Γi is a
subgroup of G, Ũi is an open subset of X, and φ̃ij is locally an element of G (compare to
the definition of an orbifold). A (G,X)-orbifold is an orbifold with a (G,X)-structure. A
(G,X)-manifold is a (G,X)-orbifold with Γi being trivial.

Here are some examples: Let Ed, Sd, Hd be the Euclidean, spherical, hyperbolic space of
dimension d, respectively. Having an (Isom(Ed),Ed)-structure (or Euclidean structure) on
an orbifold M is equivalent to having a Riemannian metric on M of sectional curvature zero.
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We can also define a spherical structure or a hyperbolic structure on M and we have similar
characterisation.

Let Ad be Rd and Aff(Ad) be the group of affine transformations, i.e. transformations of the
form x↦ Ax + b for A ∈ GLd(R) and b ∈ Rd. An (Aff(Ad),Ad)-structure (or affine structure)
on an orbifold M is equivalent to a flat torsion-free affine connection on the tangent space of
M (see Kobayashi [KN96] for the details). Similarly, a (PGLd+1(R),RPd)-structure (or real
projective structure) on M is equivalent to a projectively flat torsion-free affine connection
on the tangent space of M (see Eisenhart [Eis90] for the details).

3.3. A tool kit for orbifolds. To each point x in an orbifold O is associated a group Γx
called the isotropy group of x: In a local coordinate system Ui ≈ Ũi/Γi, it is the isomorphism
class of the stabilizer Γx̃ ⩽ Γi of any inverse point x̃ of x in Ũi. The set {x ∈XO ∣Γx ≠ {1}} is
the singular locus of O.

In general, the underlying space of an orbifold is not even a manifold. However, in dimen-
sion two, it is homeomorphic to a surface with/without boundary. Moreover, the singular
locus of a 2-orbifold can be classified into three families because there are only three types
of finite subgroups in the orthogonal group O2 :

● Mirror: R2/Z2 when Z2 acts by reflection.
● Cone points of order n ⩾ 2: R2/Zn when Zn acts by rotations of angle 2π/n.
● Corner reflectors of order n ⩾ 2: R2/Dn when Dn is the dihedral group of order 2n
generated by reflections on two lines meeting at angle π/n.

In the definition of an orbifold, if we allow Ũi to be an open set in the closed half-space Rd
+ of

Rd, then it gives us the structure of an orbifold with boundary. To make a somewhat redundant
remark, we should not confuse the boundary ∂O of an orbifold O with the boundary ∂XO of
the underlying space XO, when XO is a manifold with boundary.

Example. A manifold M with boundary ∂M can have an orbifold structure in which ∂M
becomes a mirror, i.e. a neighborhood of any point x in ∂M is isomorphic to Rd/Z2 such
that Z2 acts by reflection. Notice that the singular locus is then ∂M and the boundary of
the orbifold is empty.

Given a compact orbifold O, we can find a cellular decomposition of the underlying space
XO such that the isotropy group of each open cell is constant. Define the orbifold Euler
characteristic to be

χ(O) ∶=∑
ci

(−1)dim ci
1

∣Γ(ci)∣
.

Here, ci ranges over the cells and ∣Γ(ci)∣ is the order of the isotropy group Γ(ci) of any point
in the relative interior of ci.

A covering orbifold of an orbifold O is an orbifold O′ with a continuous surjective map
between the underlying spaces p ∶ XO′ →XO such that each point x ∈XO lies in a coordinate
neighborhood U ≈ Ũ/Γ and each component Vi of p−1(U) is isomorphic to Ũ/Γi with Γi a
subgroup of Γ. The map p is called a covering map.

Example. If a group Γ acts properly discontinuously on a manifold M and Γ′ is a subgroup
of Γ, then M/Γ′ is a covering orbifold of M/Γ with the covering map M/Γ′ → M/Γ. In
particular, M is a covering orbifold of M/Γ.

Now we can define the universal covering orbifold of an orbifold O in the same way as we
define the universal covering space of a manifold: The universal covering orbifold of O is a
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covering orbifold Õ with the covering map p ∶ Õ → O such that for every covering orbifold Õ′

with p′ ∶ Õ′ → O, there is a covering map q ∶ Õ → Õ′ which satisfies the following commutative
diagram:

Õ

Õ′

O p′

p

q

It is important to remark that any orbifold has a unique universal covering orbifold (up to
isomorphism). The (orbifold) fundamental group π1(O) of O is the group of deck transfor-
mations of the universal covering orbifold Õ.

Example. If Γ is a cyclic group of rotations acting on the sphere S2 fixing the north and
south poles, then the orbifold S2/Γ is a sphere with two cone points. So its (orbifold) funda-
mental group is Γ, even though the fundamental group of the sphere, which is the underlying
topological space of S2/Γ, is trivial.

An orbifold O is good if a covering orbifold of O is a manifold. In this case, the universal
covering orbifold Õ is a simply connected manifold and the group π1(O) acts properly dis-
continuously on Õ. In other words, a good orbifold is simply a manifold M with a properly
discontinuous group action on M . Moreover, we have a good news:

Theorem 3.1 (Chapter 3 of Thurston [Thu02]). Every (G,X)-orbifold is good.

3.4. Geometric structures on orbifolds. Suppose that M and N are (G,X)-orbifolds.
A map f ∶ M → N is a (G,X)-map if, for each pair of charts φ ∶ Ũi/Γi → Ui ⊂ M from
the (G,X)-structure of M and ψ ∶ Ṽj/Γj → Vj ⊂ N from the (G,X)-structure of N , the
composition ψ−1 ○ f ○φ restricted to φ−1(Ui ∩ f−1(Vj)) lifts to the restriction of an element of
G on the inverse image in Ũi of φ−1(Ui ∩ f−1(Vj)).

We will discuss the deformation space of geometric structures on an orbifold O as Goldman
[Gol88a] exposes the theory for manifolds.

A (G,X)-structure on an orbifold O is a homeomorphism f ∶ O → S such that S is a
(G,X)-orbifold. Two (G,X)-structures f ∶ O → S and f ′ ∶ O → S′ on O are equivalent if the
map f ′ ○ f−1 ∶ S → S′ is isotopic to a (G,X)-map from S to S′. The set of (G,X)-structures
on O, up to the equivalence relation, is denoted by Def(O).

There is a topology on Def(O) informally defined by saying that two (G,X)-structures f
and f ′ are close if the map f ′ ○f−1 ∶ S → S′ is isotopic to a map close to a (G,X)-map. Below
is a formal definition.

The construction of the developing map and the holonomy representation extends to orb-
ifolds without difficulty; see [Gol88a] for manifolds and [Cho12] for orbifolds. For a (G,X)-
orbifold O, there exists a pair (D,ρ) of an immersion D ∶ Õ → X and a homomorphism
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ρ ∶ π1(O)→ G such that for each γ ∈ π1(O), the following diagram commutes:

Õ X

Õ X

γ

D

D

ρ(γ)

We call D a developing map and ρ a holonomy representation. Moreover if (D′, ρ′) is another
such pair, then there exists g ∈ G such that

D′ = g ○D and ρ′(γ) = gρ(γ)g−1 for each γ ∈ π1(O).
In other words, a developing pair (D,ρ) is uniquely determined up to the action of G:

(1) g ⋅ (D,ρ(⋅)) = (g ○D,gρ(⋅)g−1), for each g ∈ G.
Consider the space

Def ′2(O) = {(D,ρ) ∣D ∶ Õ →X is an immersion
equivariant with respect to a homomorphism ρ ∶ π1(O)→ G}/ ∼ .

Here (D,ρ) ∼ (D′, ρ′) if D′ =D○ ι̃ for the lift ι̃ of an isotopy ι ∶ O → O satisfying γ ○ ι̃ = ι̃○γ for
every γ ∈ π1(O). We topologize this space naturally using the compact-open topology before
taking the quotient, and denote by Def2(O) the quotient space of Def ′2(O) by the action of
G (see Equation (1)).

We can define a map µ ∶ Def2(O) → Def(O) from [(D,ρ)] to a (G,X)-structure on O
by pulling back the canonical (G,X)-structure on X to Õ by D and taking the orbifold
quotient. The inverse map is derived from the construction of the developing pair, hence µ
is a bijection. This gives a topology on Def(O).

3.5. Ehresmann-Thurston principle. One of the most important result in this area is
the following theorem first stated for closed manifolds. However, it easily generalizes to
closed orbifolds. There exist many proofs of this theorem for manifolds; see Canary-Epstein
[CEG06], Lok [Lok84] following John Morgan, Bergeron-Gelander [BG04], Goldman [Gol88a].
For a proof for orbifolds, see the first author [Cho04], which is a slight modification of the
proof for manifolds.

Suppose that G is the real point of a reductive algebraic group defined over R. A repre-
sentation ρ ∶ π1(O) → G is stable when ρ is reductive and the centralizer of ρ is finite5. Let
Homst(π1(O),G) be the space of stable representations. It is shown that it is an open subset
of Hom(π1(O),G) and that the action of G on Homst(π1(O),G) is proper, in Johnson-Millson
[JM87]. Let Defst2 (O) be the space of (G,X)-structures on O whose holonomy representation
is stable.

Theorem 3.2 (Ehresmann-Thurston principle). Let O be a closed orbifold. The map

Def ′2(O)→ Hom(π1(O),G) and Defst2 (O)→ Homst(π1(O),G)/G
induced by (D,ρ)→ ρ are local homeomorphisms.

5This is equivalent to the fact that the image of ρ is not contained in any parabolic subgroup of G (see
[JM87])
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This principle means that nearby (G,X)-structures are completely determined by their
holomony representations.

4. A starting point for convex projective structures

4.1. Convexity in the projective sphere or in the projective space.
Let V be a real vector space Rd+1. Consider the action of R∗

+ on V by homothety, and the
projective sphere

S(V ) = (V ∖ {0}) /R∗
+ = {rays of V }.

Of course, S(V ) is the 2-fold cover of the real projective space P(V ). The canonical projec-
tion map V ∖ {0}→ S(V ) is denoted by S.

A convex cone C is sharp if C does not contain an affine line. A subset C of S(V ) is convex
(resp. properly convex ) if the subset S−1(C) ∪ {0} of V is a convex cone (resp. sharp convex
cone). Given a hyperplane H of S(V ), we call the two connected components of S(V ) ∖H
affine charts. An open set Ω ≠ S(V ) is convex (resp. properly convex) if and only if there
exists an affine chart A such that Ω ⊂ A (resp. Ω ⊂ A) and Ω is convex in the usual sense in
A. A properly convex set Ω is strictly convex if every line segment in ∂Ω is a point. All those
definitions can be made for subset of P(V ). The projective space is more common but the
projective sphere allows to get ride of some technical issue. It will be clear from the context
whether our convex open set is inside S(V ) or P(V ).

The group SL±(V ) of linear automorphisms of V of determinant ±1 identifies to the group of
automorphisms of S(V ). A convex projective structure on an orbifold O is a (PGL(V ),P(V ))-
structure (or a (SL±(V ),S(V ))-structure) such that the developing map is injective and its
image is a properly convex subset of RPd (or Sd). We send the reader to Section 1 of [Mar14a]
to see the equivalence between properly convex (PGL(V ),P(V ))-structures and properly con-
vex (SL±(V ),S(V ))-structures.

From now on, C(O) will denote the space of convex projective structures on an orbifold O,
which is a subspace of Def(O).

4.2. Hilbert geometries.
On every properly convex open set Ω, there exists a distance dΩ on Ω thanks to the cross

ratio: take two points x ≠ y ∈ Ω and draw the line between them. This line intersects the
boundary ∂Ω of Ω in two points p and q. We assume that x is between p and y. If [p ∶ x ∶ y ∶ q]
denote the cross ratio of p, x, y, q, then the following formula defines a metric (see Figure 1):

dΩ(x, y) =
1

2
log ([p ∶ x ∶ y ∶ q]), for every x, y ∈ Ω.

This metric gives to Ω the same topology as the one inherited from S(V ). The metric
space (Ω, dΩ) is complete, the closed balls in Ω are compact, the group Aut(Ω) acts on Ω by
isometries, and therefore acts properly.

The metric is called the Hilbert metric and can be also defined by a Finsler norm on
the tangent space TxΩ at each point x of Ω: Let v be a vector of TxΩ. The quantity
d
dt
∣
t=0
dΩ(x,x + tv) defines a Finsler norm FΩ(x, v) on TxΩ. Let’s choose an affine chart A

containing Ω and a Euclidean norm ∣ ⋅ ∣ on A. If p+ (resp. p−) is the intersection point of ∂Ω
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x
y

p

qv

p−

p+

Ω

Figure 1. The Hilbert metric

and the half-line determined by x and v (resp. −v), and ∣ab ∣ is the distance between two
points a, b of A (see Figure 1), then we obtain

FΩ(x, v) =
d

dt
∣
t=0

dΩ(x,x + tv) =
∣v∣
2

⎛
⎝

1

∣xp−∣ +
1

∣xp+∣
⎞
⎠
.

The regularity of the Finsler norm is same as the regularity of the boundary ∂Ω, and the
Finsler structure gives rise to an absolutely continuous measure µΩ with respect to Lebesgue
measure, called the Busemann measure.

If Ω is the ellipsoid then (Ω, dΩ) is the projective model of the hyperbolic space. More
generally, if Ω is round, i.e. strictly convex with C1-boundary, then the metric space (Ω, dΩ)
exhibits some hyperbolic behaviour even though (Ω, dΩ) is not Gromov-hyperbolic 6.

A properly convex open set Ω is a polytope if and only if (Ω, dΩ) is bi-Lipschitz to the
Euclidean space [Ver15]. If Ω is the projectivization of the space of real positive definite
symmetric matrices of size m ×m then Aut(Ω) = SLm(R).

Convex projective structures are therefore a special kind of (G,X)-structures, whose golden
sisters are hyperbolic structures and whose iron cousins are higher-rank structures, i.e. the
(G,G/K)-structures where G is a semi-simple Lie group without compact factor of (real)
rank ⩾ 2, K is the maximal compact subgroup of G and G/K is the symmetric space of G.

The above fact leads to initiate an interest in convex projective structures, however, prob-
ably it is not the main reason why the convex projective structures are interesting. The main
justification is the following theorem.

6If Ω is strictly convex and ∂Ω is of class C2 with a positive Hessian then (Ω, dΩ) is Gromov-hyperbolic
(see Colbois-Verovic [CV04]), but unfortunately the convex set we are interested in will be at most round,
except the ellipsoid.
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4.3. Koszul-Benoist’s theorem. Recall that the virtual center of a group Γ is the subgroup
consisting of the element whose centralizer is of finite index in Γ. So, the virtual center of a
group is trivial if and only if every subgroup of finite index has a trivial center.

Theorem 4.1 (Koszul-Benoist, [Kos68, Ben05]). Let O be a closed orbifold of dimension d
admitting a convex real projective structure. Suppose that the group π1(O) has a trivial virtual
center. Then the space C(O) of convex projective structures on O is a union of connected
components of the character variety χ(π1(O),SL±

d+1(R)).
History of the proof. As stated in Theorem 4.1, Koszul and Benoist proved the openness and
closedness, respectively, but in dimension 2, it was proved by the first author and Goldman
[CG93] and when Γ is a uniform lattice of SO3,1, it was proved by Kim [Kim01]. �

The condition that the virtual center of a group is trivial is transparent as follows:

Proposition 4.2 (Corollary 2.13 [Ben05]). Let Γ be a discrete subgroup of PGLd+1(R).
Suppose that Γ acts on a properly convex open subset Ω in RPd and Ω/Γ is compact. Then
the following are equivalent.

● The virtual center of Γ is trivial.
● Every subgroup of finite index of Γ has a finite center.
● Every subgroup of finite index of Γ is irreducible in PGLd+1(R)7.
● The Zariski closure of Γ is semisimple.
● The group Γ does not contain an infinite nilpotent normal subgroup.
● The group Γ does not contain an infinite abelian normal subgroup.

4.4. Duality between convex real projective orbifolds. We start from the linear du-
ality. Every sharp convex open cone C of a real vector space V gives rise to a dual convex
cone

C⋆ = {ϕ ∈ V ⋆ ∣ϕ∣C∖{0} > 0}.
It can be easily verified that C⋆ is also a sharp convex open cone and that C⋆⋆ = C. Hence,
the duality leads to an involution between the sharp convex open cones.

Now, consider the “projectivization” of linear duality: If Ω is a properly convex open sub-
set of P(V ) and CΩ is the cone of V over Ω, then the dual Ω⋆ of Ω is P(C⋆

Ω), which is a
properly convex open subset of P(V ⋆). In a more intrinsic way, the dual Ω⋆ is the set of
the hyperplanes H of V such that P(H) ∩ Ω = ∅. Since there is a correspondence between
hyperplanes and affine charts of the projective space, Ω⋆ can be defined as the space of affine
charts A of RPd such that Ω is a bounded subset of A.

The second interpretation offers us a map Ω⋆ → Ω: namely to A ∈ Ω⋆ we can associate the
center of mass of Ω in A. The map is well-defined since Ω is a bounded convex open subset of
A. In fact, Vinberg shows that this map is an analytic diffeomorphism (See [Vin63a, Gol88b]
for details), so we call it the Vinberg duality diffeomorphism.

Finally, we can bring the group in the playground. Recall that the dual representation
ρ⋆ ∶ Γ → PGL(V ⋆) of a representation ρ ∶ Γ → PGL(V ) is defined by ρ⋆(γ) = tρ(γ−1),
i.e. the dual projective transformation of ρ(γ). All the constructions happen in projective

7That is, Γ is strongly irreducible.



12 SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

geometry, therefore if a representation ρ preserves a properly convex open set Ω then the
dual representation ρ⋆ preserves the dual properly convex set Ω⋆. Even more, if we assume
the representation ρ to be discrete, then the Vinberg duality diffeomorphism will induce a
diffeomorphism between the quotient orbifolds Ω/ρ(Γ) and Ω⋆/ρ⋆(Γ).

5. The existence of deformation or exotic structures

5.1. Bending construction. Johnson and Millson [JM87] found an important class of de-
formations of convex real projective structures on an orbifold. The bending construction was
introduced by Thurston to deform (SO2,1(R),H2)-structures on a surface into (SO3,1(R),S2)-
structures, i.e. conformally flat structures, and so in particular to produce quasi-Fuchsian
groups. It was extended by Kourouniotis [Kou85] to deform (SOd,1(R),Hd)-structures on a
manifold into (SOd+1,1(R),Sd)-structures.

Johnson and Millson indicated several other deformations, all starting from a hyperbolic
structure on an orbifold, however we will focus only on real projective deformations. Just
before that we stress that despite the simplicity of the argument, the generalisation is not
easy. Goldman and Millson [GM88], for instance, show that there exists no such deformation
of a uniform lattice of SUd,1 into SUd+1,1.

Let sld+1(R) be the Lie algebra of SLd+1(R), and let O be a closed convex projective
orbifold. Suppose that O contains a two-sided totally geodesic hypersurface Σ. For example,
all the hyperbolic manifolds obtained from standard arithmetic lattices of SOd,1(R), up to
a finite cover, admit such a totally geodesic hypersurface (see Section 7 of [JM87] for the
construction of standard arithmetic lattices). Let Γ = π1(O) and A = π1(Σ). Recall that the
Lie group SLd+1(R) acts on the Lie algebra sld+1(R) by the adjoint action.

Lemma 5.1 (Johnson-Millson [JM87]). Let ρ ∈ Hom(Γ,SLd+1(R)). Suppose that ρ(A) fixes
an element x1 in sld+1(R) and that x1 is not invariant under Γ. Then Hom(Γ,SLd+1(R))
contains a non-trivial curve (ρt)t∈(−ε,ε), ε > 0, with ρ0 = ρ, i.e. the curve is transverse to the
conjugation action of SLd+1(R).
Theorem 5.2 (Johnson-Millson [JM87], Koszul [Kos68], Benoist [Ben04, Ben05]). Suppose
that a closed hyperbolic orbifold O contains r disjoint, embedded, totally geodesic suborbifold
Σ1, . . . ,Σr of codimension-one. Then the dimension of the space C(O) at the hyperbolic
structure is greater than or equal to r. Moreover, the bending curves lie entirely in C(O) and
all the properly convex structure on O are strictly convex.

We abbreviate a connected open set to a domain, and say that a convex domain of the
real projective space is divisible (resp. quasi-divisible) if there exists a discrete subgroup Γ of
Aut(Ω) such that the action of Γ on Ω is cocompact (resp. of finite Busemann covolume).

Theorem 5.3 (Johnson-Millson [JM87], Koszul [Kos68], Benoist [Ben04]). For every integer
d ⩾ 2, there exists a non-symmetric divisible strictly convex domain of dimension d.

Remark 5.4. Kac and Vinberg [KV67] made the first examples of non-symmetric divisible
convex domains of dimension 2 using Coxeter groups (see Section 7).

Remark 5.5. The third author with Sam Ballas [Mar12a, BM] extends Theorem 5.3 to non-
symmetric quasi-divisible (not divisible) convex domains.
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5.2. The nature of the exotics. Now that we have seen the existence of non-symmetric
divisible convex domains in all dimensions d ⩾ 2. We first remark that so far all the divisible
convex domains built are round8 if there are not the product of lower dimensional convex
domains. So we might want to know if we can go further, specially if we can find indecom-
posable divisible convex domains that are not strictly convex. The first result in dimension
2 is negative9:

5.2.1. Dimension 2 : Kuiper-Benzécri’s Theorem.

Theorem 5.6 (Kuiper [Kui54], Benzécri [Ben60], M. [Mar12b]). A quasi-divisible convex
domain of dimension 2 is round, except the triangle.

The next result in dimension 3 is positive:

5.2.2. Dimension 3 : Benoist’s Theorem. First, we can classify the possible topology for
closed convex projective 3-manifold or 3-orbifold.

Theorem 5.7 (Benoist [Ben06a]). If a closed 3-orbifold O admits an indecomposable10 convex
projective structure, then O is topologically the union along the boundaries of finitely many
3-orbifolds each of which admits a finite volume hyperbolic structure on its interior.

Second, these examples do exist.

Theorem 5.8 (Benoist [Ben06a], M. [Mar10a], Ballas-Danciger-L. [BDL]). There exists an
indecomposable divisible properly convex domain Ω of dimension 3 which is not strictly convex.
Moreover, every line segment in ∂Ω is contained in the boundary of a properly embedded
triangle11.

At the time of writing, Theorem 5.7 is valid only for divisible convex domain. However,
Theorem 5.8 is true also for quasi-divisible convex domains which are not divisible [Mar14b].

The presence of properly embedded triangles in the convex domain links to the existence
of incompressible Euclidean orbifolds on the quotient orbifold. Benoist and the third author
made the examples using Coxeter groups and a work of Vinberg [Vin71]. We will explore
more this technique in Section 7. Ballas, Danciger and the second author [BDL] found a
sufficient condition under which the double of a cusped hyperbolic three-manifold admits a
convex projective structure, to produce the examples.

In order to obtain the quasi-divisible convex domains in [Mar14b], the second author
essentially keeps the geometry of the cusps. In other words, the holonomy of the cusps
preserve an ellipsoid as does the cusps of finite volume hyperbolic orbifolds. From this
perspective, there is a different type of exotic, thanks to Ballas:

Theorem 5.9 (Ballas [Bal15]). There exists an indecomposable quasi-divisible (necessarily
not divisible) properly convex domain Ω of dimension 3 which is not strictly convex nor with
C1-boundary such that the quotient is homeomorphic to a hyperbolic manifold of finite volume.

More precisely, the Ballas’s example is an explicit convex projective deformation of the
hyperbolic structure on the figure-eight knot complement.

8Strictly convex with C1-boundary.
9The word “positive/negative” in this subsection reflects only the feeling of the authors.
10A convex projective orbifold is indecomposable if its holonomy representation is strongly irreducible.
11A simplex ∆ in Ω is properly embedded if ∂∆ ⊂ ∂Ω.
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5.2.3. Orbifolds of dimension 4 and beyond. Until now, there are only three sources for non-
symmetric divisible convex domains of dimension d ⩾ 4: from the “standard” bending of
Johnson-Millson [JM87], from the “clever” bending of Kapovich [Kap07], and using Coxeter
groups. The last method was initiated by Benoist [Ben06a, Ben06b] and extended by the
three authors [CLMb]:

Theorem 5.10 (Benoist [Ben06a], C. L. M. [CLMb]). For d = 4, . . . ,7, there exists an
indecomposable divisible convex domain Ω of dimension d which is not strictly convex nor
with C1-boundary such that Ω contains a properly embedded (d − 1)-simplex. Moreover, the
quotient is homeomorphic to the union along the boundaries of finitely many d-orbifolds each
of which admits a finite volume hyperbolic structure on its interior.

Other exotics are built by Benoist in dimension 4 and by Kapovich in every dimension:

Theorem 5.11 (Benoist [Ben06b], Kapovich [Kap07]). For d ⩾ 4, there exists a divisible
convex domain Ω of dimension d such that (Ω, dΩ) is Gromov-hyperbolic but it is not quasi-
isometric to a symmetric space. In particular, Ω is strictly convex, however it is not quasi-
isometric to the hyperbolic space Hd.

The three authors recently construct somehow different exotics:

Theorem 5.12 (C. L. M. [CLMa]). For d = 4, . . . ,7, there exists an indecomposable divisible
convex domain Ω of dimension d which is not strictly convex nor with C1-boundary such that
Ω contains a properly embedded (d − 2)-simplex but it does not contain a properly embedded
(d − 1)-simplex.

6. Real projective surfaces

Another motivation for studying convex projective structures is that these structures are
just the right building blocks to construct all the projective structures on closed surfaces.

6.1. Affine and projective structures on tori.

6.1.1. Classification of affine surfaces. Compact affine surfaces are topologically restrictive:

Theorem 6.1 (Benzécri [Ben60]). If S is a compact affine surface with empty or geodesic12

boundary, then χ(S) = 0.

Afterwards, in early 1980s, Nagano and Yagi [NY74] classified the affine structures on
a torus and an annulus with geodesic boundary; see [Ben94] for a modern viewpoint and
[Bau14] for an extensive survey on this topic.

Let Q be the closed positive quadrant of R2. An elementary affine annulus is the quotient
of Q ∖ {0} by the group generated by a diagonal matrix with all eigenvalues greater than 1.
It is indeed an affine annulus with geodesic boundary.

An affine torus A is complex if there are complex numbers a, b independent over R such
that A is the quotient of C∖ {0} by the group generated by the elements z ↦ az and z ↦ bz.

Theorem 6.2 (Nagano-Yagi [NY74]). If A is a compact affine surface with empty or geodesic
boundary, then one of the following hold :

12An arc of a projective (or affine) surface is geodesic if it has a lift which is developed into a line segment.
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● The universal cover of A is either a complete affine space, a half-affine space, a closed
parallel strip or a quadrant.

● The surface A is a complex affine torus.
● The surface A decomposes into elementary affine annuli along simple closed geodesics.

6.1.2. Classification of projective tori. Let γ be an element of SL3(R). A matrix γ is positive
hyperbolic if γ has three distinct positive eigenvalues, that is, γ is conjugate to

⎛
⎜
⎝

λ 0 0
0 µ 0
0 0 ν

⎞
⎟
⎠

(λµν = 1 and 0 < λ < µ < ν).

A matrix γ is planar if γ is diagonalizable and it has only two distint eigenvalues. A matrix γ
is quasi-hyperbolic if γ has only two distint positive eigenvalues and it is not diagonalizable,
that is, γ is conjugate to

(2)
⎛
⎜
⎝

λ 1 0
0 λ 0
0 0 1/λ2

⎞
⎟
⎠

(0 < λ ≠ 1).

A matrix γ is a projective translation (resp. parabolic) if γ is conjugate to

⎛
⎜
⎝

1 1 0
0 1 0
0 0 1

⎞
⎟
⎠

(resp.
⎛
⎜
⎝

1 1 0
0 1 1
0 0 1

⎞
⎟
⎠
).

These represent all conjugacy classes of non-trivial elements of SL3(R) with positive eigen-
values.

Let ϑ be a positive hyperbolic element of SL3(R) with eigenvalues λ < µ < ν. It is easy
to describe the action of ϑ on the projective plane preserves three lines meeting at the three
fixed points. The fixed point r (resp. s, a) corresponding to the eigenvector for λ (resp. µ,
ν) is said to be repelling (resp. saddle, attracting).

Let △ be the open triangle with vertices r, s, a. An elementary annulus of type I is one of
the two13 real projective annuli (△ ∪ ar○ ∪ as○)/⟨ϑ⟩ and (△ ∪ ar○ ∪ rs○)/⟨ϑ⟩ (see Figure 2).
These annulli are in fact compact since we can find a compact fundamental domain. We call
the image of ar○ in the annulus a principal closed geodesic, and the image of as○ and the
image of rs○ weak closed geodesics.

Now, let ϑ be a quasi-hyperbolic element conjugate to the matrix (2) with λ < 1. The
fixed point r (resp. a) corresponding to the eigenvalues λ (resp. 1/λ2) is repelling (resp. at-
tracting). Let C be the line on which the action of ϑ is parabolic, and let β be the invariant
segment in C with endpoints a and −a, the antipodal point of a, such that, for each point
x ∈ β○, the sequence ϑn(x) converges to a.

Let L be an open lune bounded by β, ar, −ar. An elementary annulus of type II is one of
two real projective annuli (L ∪ ar○ ∪ −ar○)/⟨ϑ⟩ and (L ∪ β○ ∪ ar○)/⟨ϑ⟩ (see Figure 2). These
annulli are also compact with geodesic boundary. We call the image of ar○ and of −ar○ in

13Note that the space (△∪ sa○ ∪ rs○)/⟨ϑ⟩ is not Hausdorff.
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Figure 2. Elementary annuli of type I and type II

the annulus a principal closed geodesic, and the image of β○ a weak closed geodesic.

By pasting the boundaries of finitely many compact elementary annuli, we obtain an
annulus or a torus. The gluing of course requires that boundaries are either both principal
or both weak, and their holonomies are conjugate to each other.

Theorem 6.3 (Goldman [Gol77]). If T is a projective torus or a projective annulus with
geodesic boundary, then T is an affine torus or T decompose into elementary annuli.

6.2. Automorphisms of convex 2-domain. A finite-type 2-orbifold is a 2-orbifold whose
underlying space is a finite-type surface and the singular locus is a union of finitely many
suborbifolds of dimension 0 or 1. A peripheral element of the fundamental group of an orbifold
is a loop that can be isotope outside any compact suborbifold.

Let S = C/Γ be an orientable properly convex real projective 2-orbifold of finite type with
empty or geodesic boundary, for a properly convex subset C ⊂ S2. We denote by Ω the interior
of C. A closed geodesic g in S is principal when the holonomy of g is positive hyperbolic
or quasi-hyperbolic and the lift g̃ of g is the geodesic segment in C connecting the attracting
and repelling fixed points of γ.

The following theorem generalizes well-known results of hyperbolic structures on surfaces,
and is essential to understand the convex real projective orbifolds. The nonorientable orbifold
version exists but is a bit more complicated to state (See C. -Goldman [CG05]).

Theorem 6.4 (Kuiper [Kui54], C. [Cho94a], M. [Mar12b]). Let S = C/Γ be an orientable
properly convex real projective 2-orbifold of finite type with empty or geodesic boundary, for
a properly convex subset C ⊂ S2. We denote by Ω the interior of C. Suppose that Ω is not a
triangle.

● An element has a finite order if and only if it fixes a point in Ω.
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● Each infinite order element γ of Γ is positive hyperbolic, quasi-hyperbolic or parabolic.
● If an infinite order element γ is nonperipheral, then γ is positive hyperbolic and a
unique closed geodesic g realizes the homotopy class of γ. Moreover, g is principal
and any lift of g is inside Ω.

● If γ is represented by a nonpheripheral simple closed curve in S, then γ is positive
hyperbolic and realized by a simple closed geodesic in S.

● A peripheral positive hyperbolic element is realized by a unique principal geodesic g,
and either all the lifts of g are inside Ω or all the lifts of g are in C ∩ ∂Ω.

● A quasi-hyperbolic element is peripheral and is realized by a unique geodesic in C.
Moreover, g is principal and any lift of g is in C ∩ ∂Ω.

● A parabolic element γ is peripheral and is realized by the projection of E ∖ {p} where
E is a γ-invariant ellipse whose interior is inside Ω and p ∈ ∂Ω is the unique fixed
point of γ.

Note for the fifth item, the closed geodesics homotopic to g may not be unique.

6.3. Convex projective structures on surfaces. Let S be a compact surface with or
without boundary. When S has a boundary, in general, the holonomy of a convex projec-
tive structure on S does not determine the structure. More precisely, there exists convex
projective structure whose holonomy preserves more than one convex domains. So we need
to make some assumptions on the convex projective structure in order to avoid this issue
and therefore we consider the subspace, denoted by Cpgb(S), in C(S) of convex projective
structures on S for which each boundary component is positive hyperbolic and has a lift
which is developed into the principal axis. We call such a boundary principal, hence Cpgb(S)
is the space of convex projective surface with principal geodesic boundary.

Theorem 6.5 (Goldman [Gol90]). If S is a closed surface of genus > 1, then the space C(S)
is homeomorphic to an open cell of dimension −8χ(S).

The following two propositions illustrate the proof of Theorem 6.5.

Proposition 6.6 (Goldman [Gol90], M. [Mar10b]). Let S be a compact surface with or
without boundary such that χ(S) < 0, and let c be a simple closed curve in S.

● Suppose that S∖c is a disjoint union of S1 and S2. Let S′i, i = 1,2, be the completion of
Si, and let Cpgb(S′1)⊠cC

pgb(S′2) the subspace of structures (P1, P2) in Cpgb(S′1)×C
pgb(S′2)

whose holonomies corresponding to c are conjugate each other. Then the forgetful map
Cpgb(S)→ Cpgb(S′1) ⊠c C

pgb(S′2) is a R2-principal fiber bundle.
● Suppose that S ∖ c is connected. If S′ is the completion of S − c, then the forgetful
map Cpgb(S)→ Cpgb(S1) is a R2-principal fiber bundle.

Proposition 6.6 should be compared to Lemma 5.1. For each simple closed curve, since the
holonomy of c is positive hyperbolic, its centralizer is 2-dimensional. The first gluing param-
eter is the twist parameter like in hyperbolic geometry, and the second gluing parameter is
the bending parameter we get a sight of in Lemma 5.1.

Next, we need to understand the convex projective structures on a pair of pants. Assume
that γ is an element of SL3(R) with positive eigenvalues. We denote by λ(γ) the smallest
eigenvalue of γ and by τ(γ) the sum of the two other eigenvalues, and we call the pair
(λ(γ), τ(γ)) the invariant of γ. The map [γ] ↦ (λ(γ), τ(γ)) is a homeomorphism between



18 SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

the space of conjugacy classes of positive hyperbolic, quasi-hyperbolic or parabolic element
γ of SL3(R) and the space

R ∶= {(λ, τ) ∈ R2 ∣ 0 < λ ⩽ 1, 2/
√
λ ⩽ τ ⩽ λ + λ−2}

(see Figure 3). Note that (1,2) ∈R corresponds to the conjugacy class of parabolic elements.
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Figure 3. The region R between the graphs y = 2√
x
and y = x + 1

x2

Let S be a compact surface with n (oriented) boundary components ci, i = 1, . . . , n. Let’s
define a map

R∂S ∶ Cpgb(S)→Rn
from each structure to the n-tuples of invariants (λ(γi), τ(γi)) of the holonomy γi of ci.

Proposition 6.7 (Goldman [Gol90], M. [Mar10b]). If P is a pair of pants, then the map
R∂P ∶ Cpgb(P ) → R3 is a R2-principal fiber bundle, and the interior of Cpgb(P ) is exactly the
convex projective structures with principal geodesic boundary and in particular it is an open
cell of dimension 8.

Let S be a surface with ends. We say that a convex projective structure on S is of relatively
finite volume, if for each end of S, there exists an end neighborhood V such that µS(V) <∞.
Let Cpgbgf (S) denote the subspace in Cpgb(S) of convex projective structures with principal
geodesic boundary and of relatively finite volume. The following theorem generalizes to
these kind of structures:

Theorem 6.8 (Fock-Goncharov [FG07], Theorem 3.7 of M. [Mar10b]). Let S be a surface of
finite-type. If b is the number of boundary components of S and p is the number of ends of S,
then the space Cpgbgf (S) is a manifold with corner homemorphic to R16g−16+6p+7b × [0,1]b, and
the interior of Cpgbgf (S) is exactly the structures whose end holonomies are positive hyperbolic.

6.4. The convex decomposition of projective surfaces of genus > 1. Now let’s consider
compact real projective surfaces with geodesic boundary.

Theorem 6.9 (C. [Cho94a, Cho94b]). Let S be a compact projective surface with geodesic
boundary. If χ(S) < 0, then S canonically decomposes along simple closed geodesics into
convex projective subsurfaces with principal geodesic boundary and elementary annuli.
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The annuli with principal geodesic boundary whose holonomies are positive hyperbolic
(resp. quasi-hyperbolic) are classified by Goldman [Gol77] (resp. C. [Cho94b]).

If A is an annulus with quasi-hyperbolic principal geodesic boundary, then only one bound-
ary can be identified with a boundary of a convex real projective surface with principal ge-
odesic boundary by Proposition 5 of [Cho96]. Hence, if a compact real projective surface S
has quasi-hyperbolic holonomy for a closed curve, then S must have a boundary.

Remark 6.10. Given a convex projective surface S = Ω/Γ with a positive hyperbolic principal
boundary and an elementary annulus A, we can obtain a new projective surface S′ identifying
the boundaries of S and A. The surface S′ is still convex since the union of Ω and the triangles
given by the universal cover of A, remains convex.

6.5. Projective structures on a closed surface of genus > 1. Let S be a closed surface
of genus greater than 1 and let P(S) denote the space of projective structures on S. For each
connected component of P(S), any two elements share the same canonical decomposition up
to isotopy, given by Theorem 6.9. Let S(S) denote the collection of mutually disjoint isotopy
classes of non-trivial simple closed curves, and let F +,even

2 be the set of elements of the free
semigroup on two generators whose word-lengths are even.

In [Gol77] Goldman constructs a map

P(S)→ S(S) × F +,even
2

that describes the combinatorics of the glued elementary annuli of type I. Finally, by removing
all annuli with principal geodesic boundary and reattaching, we obtain a convex projective
structure on S, and get:

Theorem 6.11 (C.-Goldman [Gol90, Cho94a, Cho94b]). Let S be a closed surface with
χ(S) < 0. Then each fiber of the map P(S) → S(S) × F +

2 identifies with C(S). In particular,
P(S) is homeomorphic to a countable many disjoint union of open cells of dimension 16(g−1).

6.6. Convex projective orbifolds of negative Euler characteristic.

Definition 6.12. A suborbifold of an orbifold O is an orbifold O′ such that the underlying
space XO′ of O′ is an embedded subspace of XO and, for each point x ∈ XO′ , there are
coordinate neighborhoods U ′ ≈ Ũ ′/Γ′ in O′ and U ≈ Ũ/Γ in O such that Ũ ′ is a Γ-invariant
closed submanifold of Ũ and Γ′ is the restriction of Γ to Ũ ′. Sometimes Γ′ → Γ may not be
injective.

Our definition is more restrictive than Adem-Leida-Ruan’s [ALR07] and less restrictive
than Kapovich’s [Kap09], however, this definition seems to be better for studying decom-
positions of 2-orbifolds along 1-orbifolds. For example, a mirror arc ending at two corner-
reflectors of order 2 is a suborbifold.

Every 2-orbifold is obtained from a surface with corners by making some arcs mirrors and
putting cone-points and corner-reflectors in a locally finite manner. A mirror arc is either
open or its end is a corner-reflector that should be an end of another mirror arc. Moreover,
the smooth topology of a 2-orbifold is classified by the underlying topology of the surface
with corners, the number of cone-points and corner-reflectors, and the boundary patterns of



20 SUHYOUNG CHOI, GYE-SEON LEE, AND LUDOVIC MARQUIS

the mirror arcs.

A full 1-orbifold is a segment with two mirror endpoints. Let Σ be a compact 2-orbifold
with m cone points of order qi, i = 1, . . . ,m, and n corner-reflectors of order rj, j = 1, . . . , n,
and nΣ boundary full 1-orbifolds. The orbifold Euler characteristic of Σ is

χ(Σ) = χ(XΣ) −
m

∑
i=1

(1 − 1

qi
) − 1

2

n

∑
j=1

(1 − 1

rj
) − 1

2
nΣ

called the generalized Riemman-Hurwitch formula (see Section 3.3 for the definition of the
orbifold Euler characteristic).

Theorem 6.13 (Thurston [Thu02]). Let Σ be a compact 2-orbifold of negative orbifold Euler
characteristic with the underlying space XΣ. Then the deformation space T (Σ) of hyperbolic
structures on Σ is a cell of dimension −χ(XΣ)+2k+l+2n where k is the number of cone-points
and l is the number of corner-reflectors and n is the number of boundary full 1-orbifolds.

In order to understand the deformation spaces of convex projective structures on surfaces,
we have seen that it is important to find out the convex projective structures on a pair of
pants, which is the most "elementary" surface. Similarly, in the case of 2-orbifolds, we should
firstly understand the elementary 2-orbifolds.

Let’s discuss the splitting and sewing of 2-orbifolds. Note that orbifolds always have a
path-metric. For example, it has a notion of Riemannian metric, i.e. a Riemannian metric
on neighborhoods invariant under the finite group action compatible with other neighbor-
hoods (See C. [Cho12] for details). Let l be a simple closed curve or a full 1-orbifold in the
interior of a 2-orbifold Σ. We complete Σ− l with respect to the path-metric on Σ− l induced
from a standard one on Σ. The completion Σ̂ of Σ − l is called the splitting of Σ along l.
Conversely, if l̂ is the union of boundary components of Σ̂ mapping to l, then Σ is obtained
from sewing Σ̂ along l̂.

An elementary 2-orbifold is a compact 2-orbifold so that we cannot split further along
simple closed curves or full 1-orbifolds into 2-orbifolds. We assume in this subsection that
our orbifolds have negative orbifold Euler characteristic.

The following is the classification of elementary 2-orbifolds. See Figure 4; Arcs with dotted
arcs next to them indicate boundary components and black points indicate singular points.
The P-rows can be obtained starting with (P1) and degenerating the boundary components
to cusps and then to elliptic points, considering them as hyperbolic surfaces with singularities.
The orbifolds in the P-row covers A-row’s as a quotient orbifold by an order-two involution
switching a pair of boundary components or cone-points. The orbifolds in the P-row covers
D-row’s by an order-two involution preserving boundary components and cone-points.
(P1) A pair-of-pants (χ = −1)
(P2) An annulus with a cone-point of order n (χ = −1 + 1/n)
(P3) A disk with two cone-points of orders p, q (χ = −1 + 1/p + 1/q)
(P4) A sphere with three cone-points of order p, q, r (χ = −1 + 1/p + 1/q + 1/r)
(A1) An annulus with a boundary circle, a boundary arc and a mirror arc (χ = −1/2)
(A2) An annulus with a boundary circle and a corner-reflector of order n (χ = −(n−1)/2n)
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(P1)

(A1)

(D1)

(P2) (P3) (P4)

(A2) (A3) (A4)

(D2) (D3) (D4)

Figure 4. Elementary orbifolds

(A3) A disk with a boundary arc, a mirror arc and a cone-point of order n (χ = 1/n − 1/2)
(A4) A disk with a corner-reflector of order m and a cone-point of order n (χ = 1/n+1/2m−

1/2)
(D1) A disk with three mirror arcs and three boundary arcs (χ = −1/2)
(D2) A disk with a corner-reflector of order n at which two mirror arcs meet, one more

mirror arc and two boundary arcs (χ = 1/2(1 − 1/n))
(D3) A disk with two corner-reflectors of order p, q, and a boundary arc (χ = −1/2+ 1/2p+

1/2q))
(D4) A disk with three corner-reflectors of order p, q, r and three mirror arcs (χ = −1/2 +

1/2p + 1/2q + 1/2r)
A geodesic full 1-orbifold in a convex real projective orbifold Σ is principal if the double

cover of Σ, which is a simple geodesic, is principal. Let Σ be a convex projective orbifold
with principal boundary. For an oriented boundary component c of Σ homeomorphic to a
circle, the space of projective invariants is given by the eigenvalues of the holonomy γ of c,
that is, the smallest eigenvalue λ of γ and the sum τ of two other eigenvalues, when γ is pos-
itive hyperbolic. Thus, C(c) = R○ (see Section 6.3). For a full 1-orbifold c, C(c) is defined to
be R. The set of convex real projective structures on c is parametrised by the Hilbert length.

Given Σ, if we denote B(Σ) is the set of boundary components of Σ, then we can define

C(∂Σ) ∶= ∏
c∈B(Σ)

C(c) and C(∅) = {∗} is a singleton.

Proposition 6.14 (C.-Goldman [CG05]). Let S be an elementary orbifold in each of the
above cases. The map C(S) → C(∂S) is a fibration of n-dimensional open cell over the
k-dimensional open cell with l-dimensional open cell fiber. We list (n, k, l) below.
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(P1): (8,6,2) (Goldman [Gol90])
(P2): (6,4,2) if there is no cone-point of order 2. Otherwise (4,4,0).
(P3): (4,2,2) if there is no cone-point of order 2. Otherwise (2,2,0).
(P4): (2,0,2) if there is no cone-point of order 2. Otherwise (0,0,0).
(A1): (4,3,1).
(A2): (2,2,0).
(A3): (2,1,1).
(A4): (1,0,0) if there is no corner-reflector of order 2. Otherwise (0,0,0).
(D1): (4,3,1).
(D2): (3,2,1) if there is no corner-reflector of order 2. Otherwise (2,2,0).
(D3): (2,1,1) if there is no corner-reflector of order 2. Otherwise (1,1,0).
(D4): (1,0,0) if there is no corner-reflector of order 2. Otherwise (0,0,0).

Finally, we can describe the deformation space of convex projective structures on closed
2-orbifolds.

Theorem 6.15 (C.-Goldman [CG05], Chapter 8 of the book [Cho12]). Let Σ be a closed
2-orbifold with χ(Σ) < 0. Then the space of C(Σ) of convex projective structures on Σ is
homeomorphic to a cell of dimension

−8χ(XΣ) + (6kc − 2bc) + (3kr − br)
where XΣ is the underlying space of Σ, kc is the number of cone-points, bc is the number
of cone-points of order 2, kr is the number of corner-reflectors, and br is the number of
corner-reflectors of order 2.

7. Convex projective Coxeter orbifolds

7.1. Definitions.

7.1.1. Coxeter groups. Let S be a finite set, and denote by ∣S∣ the cardinality of S. A Coxeter
matrix on S is an ∣S∣ × ∣S∣ symmetric matrix M = (Mst)s,t∈S with diagonal entries Mss = 1
and other entries Mst ∈ {2,3, . . . ,∞}. The couple (S,M) is called a Coxeter system.

To a Coxeter system (S,M) we can associate a Coxeter group W = WS: it is the group
generated by S with the relations (st)Mst = 1 for all (s, t) ∈ S × S such that Mst ≠ ∞. If
(S,M) is a Coxeter system, then for each subset T of S we can define the Coxeter sub-
system (T,MT = (Mst)s,t∈T ). The Coxeter group WT can be thought of as a subgroup of WS

since the canonical map from WT to WS is an embedding. We stress that the last sentence
is not an obvious statement and it is, in fact, a corollary of Theorem 7.1 of Tits and Vinberg.

The Coxeter graph of a Coxeter system (S,M) is the labeled graph such that the set of
vertices is S, two vertices s and t are connected by an edge st if and only if Mst ≠ 2, and the
label of the edge st is Mst. A Coxeter system (S,M) is irreducible when its Coxeter graph
is connected. It is a little abusive but we also say that the Coxeter group W is irreducible.

7.1.2. Coxeter orbifolds. We are interested in d-dimensional Coxeter orbifolds whose under-
lying space is homeomorphic to a d-dimensional polytope14 P minus some faces, and whose
singular locus is the boundary of P made up of mirrors. For the sake of clarity, facets are

14We implicitly assume that all the polytopes and polygons are convex.
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faces of codimension 1, ridges are faces of codimension 2 and proper faces are faces different
from P and ∅. Choose a polytope P and a Coxeter matrix M on the set S of facets of P ,
such that if two facets s and t are not adjacent15, then Mst = ∞. When two facets s, t are
adjacent, the ridge s ∩ t of P is said to be of order Mst. The first objects we get are the
Coxeter system (S,M) and the Coxeter group W .

We now build an orbifold whose fundamental group is W and whose underlying topolog-
ical space is the starting polytope P minus some faces: For each proper face f of P , let
Sf = {s ∈ S ∣ f ⊂ s}. If Wf ∶= WSf

is an infinite Coxeter group then the face f is said to be
undesirable. Let P̂ be the orbifold obtained from P with facets as mirrors, with ridges s ∩ t
as corner reflectors of orders Mst, and with undesirable faces removed. We call P̂ a Coxeter
d-orbifold. Remark that a Coxeter d-orbifold is closed if and only if for each vertex v of P ,
the Coxeter group Wv is finite.

For example, let P be a polytope in X = Sd,Ed or Hd with dihedral angles submultiples of
π. The uniqueness of the reflection across a hyperplane of X allows us to obtain a Coxeter
(Isom(X),X)-orbifold P̂ from P .

7.1.3. Deformation spaces. Recall that C(P̂ ) denote the deformation space of convex real
projective structures on the Coxeter orbifold P̂ , that is, the space of projective structures on
P̂ such that the image of the developing map is projectively isomorphic to a convex domain
in RPd and the holonomy is a discrete faithful representation.

7.2. Vinberg’s breakthrough. In this subsection we give a description of Vinberg’s results
in his article [Vin71]. An alternative treatment is given in Benoist’s notes [Ben09].

7.2.1. Groundwork. Let V be the real vector space of dimension (d + 1). A projective reflec-
tion (or simply reflection) σ is an element of order 2 of SL±(V ) which is the identity on a
hyperplane H. All reflections are of the form σ = Id−α⊗ b for some linear functional α ∈ V ⋆

and a vector b ∈ V with α(b) = 2. Here, the kernel of α is the subspace H of fixed points of
σ and b is the eigenvector corresponding to the eigenvalue −1.

Let P be a d-polytope in S(V ) and let S be the set of facets of P . For each s ∈ S, choose a
reflection σs = Id−αs⊗ bs with αs(bs) = 2 which fixes s. By making a suitable choice of signs,
we assume that P is defined by the inequalities αs ⩽ 0, s ∈ S. Let Γ ⊂ SL±(V ) be the group
generated by all these reflections (σs)s∈S and let P̊ be the interior of P . A couple (P, (σs)s)
is called a Coxeter polytope if the family {γP̊}γ∈Γ is pairwise disjoint.

The ∣S∣ × ∣S∣ matrix A = (Ast)s,t∈S, Ast = αs(bt), is called the Cartan matrix of a Coxeter
polytope P . For each reflection σs, the linear functional αs and the vector bs are defined up
to transformations

αs ↦ λsαs and bs ↦ λ−1
s bs with λs > 0.

Hence the Cartan matrix of P is defined up to the following equivalence relation: two matrices
A and B are equivalent if A = ΛBΛ−1 for a diagonal matrix Λ having positive entries. This
implies that for s ≠ t, the number AstAts is an invariant of the Coxeter polytope P .

15Two facets s and t are adjacent if and only if s ∩ t is a ridge of P .
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7.2.2. Vinberg’s results. Vinberg proved that the following conditions are necessary and suf-
ficient for P to be a Coxeter polytope:
(V1) Ast ⩽ 0 for s ≠ t, and Ast = 0 if and only if Ats = 0.
(V2) Ass = 2; and for s ≠ t, AstAts ⩾ 4 or AstAts = 4 cos2 π

mst
, mst ∈ N ∖ {0,1}.

The starting point of the proof is that for every two facets s and t of P , the automorphism
σsσt have to be conjugate to one of the following automorphisms of V /U with U = ker(αs) ∩
ker(αt):

[λ 0
0 λ−1] (λ > 0), [1 1

0 1
] or [cos θ − sin θ

sin θ cos θ
] (θ = 2π

mst
).

In the third case we call σsσt a rotation of angle θ.

To a Coxeter polytope P , we can associate the Coxeter matrix M = (Mst)s,t∈S with the set
S of facets of P such that Mst =mst if σsσt is a rotation of angle 2π

mst
, and Mst =∞ otherwise.

Now, from the Coxeter system (S,M) and the polytope P , we get the Coxeter group W and
Coxeter orbifold P̂ . Eventually, we are also interested in the subgroup Γ of SL±(V ) generated
by all the reflections across the facets of P .

Theorem 7.1 (Tits [Bou68], Vinberg [Vin71]). Let P be a Coxeter polytope. Then the
following are true :

● The morphism σ ∶W → Γ given by σ(s) = σs is an isomorphism.
● The group Γ is a discrete subgroup of SL±(V ).
● The union of tiles C ∶= ∪γ∈ΓγP is convex.
● The group Γ acts properly discontinuously on Ω the interior of C.
● An open face f of P lies in Ω if and only if the Coxeter group Wf is finite.

7.3. Convex projective Coxeter 2-orbifolds. In the previous section, we explain the de-
formation space C(Σ) of convex real projective structures on a closed 2-orbifold Σ of negative
orbifold Euler characteristic (Theorem 6.15). As a special case, if Σ is a closed Coxeter 2-
orbifold then the underlying space of Σ is a polygon and Σ does not contain cone-points. Let
v+ be the number of corner reflectors of order greater than 2, and let T (Σ) be the Teichmüller
space of Σ. The space C(Σ) is homeomorphic to an open cell of dimension

−8 + 3v − (v − v+) = v+ − 2 + 2(v − 3) = v+ − 2 + 2 dim T (Σ).
In his undergraduate thesis [Gol77], Goldman proved this result.

7.4. Hyperbolic Coxeter 3-orbifolds. The Coxeter 3-orbifolds which admit a finite vol-
ume hyperbolic structure have been classified by Andreev [And70a, And70b].

A polytope is naturally a CW complex. The CW complex arose from a polytope is called
a combinatorial polytope. We abbreviate a 3-dimensional polytope to a polyhedron.

Let G be a combinatorial polyhedron and (∂G)∗ be the dual CW complex of the boundary
∂G. A simple closed curve γ is called a k-circuit if it consists of k edges of (∂G)∗. A circuit
γ is prismatic if all the edges of G intersecting γ are disjoint.

Theorem 7.2 (Andreev [And70a, And70b]). Let G be a combinatorial polyhedron, and let
{si}Ni=1 be the set of facets of G. Suppose that G is not a tetrahedron and non-obtuse angles
θij ∈ (0, π2 ] are given at each edge sij = si ∩ sj of G. Then the following conditions (A1)–(A4)
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are necessary and sufficient for the existence of a compact hyperbolic polyhedron P which
realizes16 G with dihedral angle θij at each edge sij.

(A1) If si ∩ sj ∩ sk is a vertex of G then θij + θjk + θki > π.
(A2) If si, sj, sk form a prismatic 3-circuit, then θij + θjk + θki < π.
(A3) If si, sj, sk, sl form a prismatic 4-circuit, then θij + θjk + θkl + θli < 2π.
(A4) If G is a triangular prism with triangular facets s1 and s2, then

θ13 + θ14 + θ15 + θ23 + θ24 + θ25 < 3π.

The following (F1)–(F6) are necessary and sufficient for the existence of a finite volume
hyperbolic polyhedron P which realizes G with dihedral angle θij ∈ (0, π/2] at each edge sij.

(F1) If si ∩ sj ∩ sk is a vertex of G then θij + θjk + θki ⩾ π.
(F2) (resp. (F3) or (F4)) is the same as (A2) (resp. (A3) or (A4)).
(F5) If si ∩ sj ∩ sk ∩ sl is a vertex of G then θij + θjk + θkl + θli = 2π.
(F6) If si, sj, sk are facets such that si and sj are adjacent, sj and sk are adjacent, and si

and sk are not adjacent but meet in a vertex not in sj, then θij + θjk < π.
In both cases, the hyperbolic polyhedron is unique up to hyperbolic isometries.

7.5. Convex projective Coxeter 3-orbifolds.

7.5.1. Restricted deformation spaces. A point (P0, (σs)s) of C(P̂ ) gives us its underlying poly-
tope P ⊂ RPd, well defined up to projective automorphisms. We can focus on the subspace of
C(P̂ ) with a fixed underlying polytope P0. This subspace is called the restricted deformation
space of P̂ and denoted by CP0(P̂ ).

Let P̂ be a Coxeter 3-orbifold. We now give a combinatorial hypothesis on P̂ , called
"the orderability", which allow us to say something about the restricted deformation space
CP0(P̂ ) of P̂ . A Coxeter 3-orbifold P̂ is orderable if the facets of P̂ can be ordered so that each
facet contains at most three edges that are edges of order 2 or edges in a facet of higher index.

Let e (resp. f , e2) be the number of edges (resp. facets, edges of order 2) of P , and let
k(P ) be the dimension of the group of projective automorphisms of P . Note that k(P ) = 3 if
P is tetrahedron, k(P ) = 1 if P is the cone over a polygon other than a triangle, and k(P ) = 0
otherwise.

Theorem 7.3 (C. [Cho06]). Let P̂ be a Coxeter 3-orbifold such that C(P̂ ) ≠ ∅. Suppose that
P̂ is orderable and the Coxeter group π1(P̂ ) is infinite and irreducible. Then every restricted
deformation space CP (P̂ ) is a smooth manifold of dimension 3f − e − e2 − k(P ).

A polyhedron with all facets triangular is orderable. By Andreev’s theorem, hyperbolic
triangular prisms are orderable. However the cube and dodecahedron do not carry an order-
able Coxeter orbifold structure, since the lowest index facet in an orderable orbifold must be
triangular.

16There is an isomorphism φ ∶ G → P such that the given angle at each edge e of G is the dihedral angle
at the edge φ(e) of P .
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7.5.2. Truncation polyhedra. Andreev’s theorem gives the necessary and sufficient conditions
for the existence of a closed or finite volume hyperbolic Coxeter 3-orbifold. We can think of
analogous questions for closed or finite volume convex projective Coxeter orbifolds.

The third author [Mar10a] completely answered whether or not a Coxeter 3-orbifold P̂
admits a convex projective structure assuming that the underlying space P is a truncation
polyehedron: a truncation d–polytope is a d-polytope obtained from the d-simplex by iterated
truncations of vertices. For example, a triangular prism is a truncation polyhedron, however
again the cube and the dodecahedron are not truncation polyhedra.

A prismatic 3-circuit formed by the facets r, s, t is bad if
1

Mrs
+ 1
Mst

+ 1
Mtr

⩾ 1 and 2 ∈ {Mrs,Mst,Mtr}.

Let e+ be the number of edges of order greater than 2 in P̂ .

Theorem 7.4 (M., [Mar10a]). Let P̂ be a Coxeter 3-orbifold arising from a truncation
polyhedron P . Assume that P̂ has no bad prismatic 3-circuits. If P̂ is not a triangular
prism and e+ > 3, then C(P̂ ) is homeomorphic to a finite union of open cells of dimension
e+ − 3. Moreover, if P̂ admits a hyperbolic structure, then C(P̂ ) is connected.

The third author actually provides an explicit homeomorphism between C(P̂ ) and the
union of q copies of Re+−3 when P̂ is a Coxeter truncation 3-orbifold. Moreover, the integer
q can be computed easily in terms of the combinatorics and the edge orders.

7.6. Near the hyperbolic structure.

7.6.1. Restricted deformation spaces. C.-Hodgson-L. [CHL12] described the local restricted
deformation space for a class of Coxeter orbifolds arising from ideal hyperbolic polyhedra,
i.e. polyhedra with all vertices on ∂H3.

Theorem 7.5 (C.-Hodgson-L. [CHL12]). Let P be an ideal hyperbolic polyhedron whose
dihedral angles are all equal to π

3 . If P is not a tetrahedron, then at the hyperbolic structure
the restricted deformation space CP (P̂ ) is smooth and of dimension 6.

7.6.2. Weakly orderable Coxeter orbifolds. The first and second authors [CL15] found a “large”
class of Coxeter 3-orbifolds whose local deformation spaces are understandable. A Coxeter
3-orbifold P̂ is weakly orderable if the facets of P can be ordered so that each facets contains
at most 3 edges of order 2 in a facet of higher index. Note that Greene [Gre13] gave an
alternative (cohomological) proof of the following theorem.

Theorem 7.6 (C.-L. [CL15], Greene [Gre13]). Let P̂ is a closed hyperbolic Coxeter 3-orbifold.
If P̂ is weakly orderable, then at the hyperbolic structure C(P̂ ) is smooth and of dimension
e+ − 3.

For example, if P is a truncation polyhedron, then P̂ is always weakly orderable. The
cube is not a truncation polyhedron; however, every closed hyperbolic Coxeter 3-orbifold
arising from the cube is weakly orderable. On the other hand, there exist closed hyperbolic
Coxeter 3-orbifolds arising from the dodecahedron which are not weakly orderable. However,
almost all the closed hyperbolic Coxeter 3-orbifolds arising from the dodecahedron are weakly
orderable:
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Theorem 7.7 (C.-L. [CL15]). Let P be a simple17 polyhedron. Suppose that P has no
prismatic 3-circuit and has at most one prismatic 4-circuit. Then

lim
m→∞

∣{weakly orderable, closed hyperbolic Coxeter 3-orbifolds P̂ with edge order ⩽m}∣
∣{closed hyperbolic Coxeter 3-orbifolds P̂ with edge order ⩽m}∣

= 1

A similar result to Theorem 7.6 is true for higher dimensional closed Coxeter orbifolds P̂
whose underlying polytope P is a truncation polytope:

Theorem 7.8 (C.-L. [CL15], Greene [Gre13]). If P̂ be a closed hyperbolic Coxeter orbifold
arising from a truncation polytope P , then at the hyperbolic structure C(P̂ ) is smooth and of
dimension e+ − d.

We remark that if P̂ is not weakly orderable then Theorem 7.6 is not true anymore: Let m
be a fixed integer greater than 3. Consider the compact hyperbolic Coxeter polyhedron P1

shown in Figure 5 (A). Here, if an edge is labeled m then its dihedral angle is π
m . Otherwise,

its dihedral angle is π
2 . Let P̂1 be the corresponding hyperbolic Coxeter 3-orbifold. Then

e+−3 = 0, but C(P̂1) = R (see [CL15]). Of course P̂1 is not weakly orderable, since every facet
in P̂1 contains four edges of order 2.

There is also a compact hyperbolic Coxeter 4-polytope P2 such that C(P̂2) is not homeo-
morphic to a manifold. The underlying polytope P2 is the product of two triangles and the
Coxeter graph of P̂2 is shown in Figure 5 (B).

m

m

m

(a)

5

5

5

(b)

Figure 5. (A) Coxeter 3-polytope P1 (B) Coxeter 4-polytope P2

The space C(P̂2) is homeomorphic to the following solution space (see [CL15]):

S = {(x, y) ∈ (R+)2 ∶ 8x − (5 +
√

5)y − (6 − 2
√

5)xy − (5 +
√

5)x2y + 8xy2 = 0},

which is pictured in Figure 6, and hence C(P̂2) is not a manifold. Here the singular point
(1,1) ∈ S corresponds to the hyperbolic structure in C(P̂2).

8. The tangent space to a representation: Infinitesimal deformations

8.1. Rigidity or deformability.

Definition 8.1. A representation ρ ∶ Γ→ G is locally rigid if the G-orbit of ρ in Hom(Γ,G)
contains a neighbourhood of ρ in Hom(Γ,G). Otherwise, ρ is locally deformable.

17Each vertex of P is adjacent to exactly three edges.
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Figure 6. 8x − (5 +
√

5)y − (6 − 2
√

5)xy − (5 +
√

5)x2y + 8xy2 = 0

If ρ is locally deformable then there exists a sequence of representations ρn ∶ Γ → G
converging to ρ such that ρn is not conjugate to ρ. We emphasise that ρn are no reason to
be discrete or faithful even if so is ρ.

Definition 8.2. Two representations ρ, ρ′ ∶ Γ → G are of the same type if for all γ ∈ Γ, ρ(γ)
and ρ′(γ) have the same type in the Jordan decompostion. A discrete faithful representation
ρ ∶ Γ → G is globally rigid if every discrete faithful representation in Hom(Γ,G) whose type
is the same as ρ is conjugate to ρ.

8.2. What is an infinitesimal deformation? In this subsection, we explore the tangent
space to a representation. In order to do that, we will exploit the fact that χ(Γ,G) is a
real semi-algebraic variety. Recall that differential geometers and algebraic geometers do not
always agree with the concept of the smoothness, e.g. the point (0,0) of the curve x3−y3 = 0
in the plane R2 is singular for an algebraic geometer, since the Zariski tangent space is all
R2, but the curve is a C∞-smooth submanifold of R2.

To clarify this issue, we want to introduce some terminology: Let V be a real semi-algebraic
subset of Rm. To each point x ∈ V we associate the dimension of the Zariski tangent space to
V at x. This map V → Z attains the minimum value at each point in a Zariski open subset
W of V . A point in W (resp. V ∖W ) is called regular (resp. singular). That is the point
of view of an algebraic geometer. If we can find a neighbourhood U of a point x in Rm such
that U ∩ V is a C∞-smooth submanifold of Rm, then we say that x is smooth. That is the
point of view of a differential geometer.

8.3. First order. Assume that ρt is a smooth path in Hom(Γ,G), i.e. for each γ ∈ Γ, a path
ρt(γ) in G is smooth. Then there exists a map u1 ∶ Γ→ g such that

∀γ ∈ Γ, ρt(γ) = exp(t u1(γ) +O(t2))ρ0(γ)
Since ρt is a homomorphism, i.e. ρt(γ δ) = ρt(γ)ρt(δ), it follows that u1 is a 1-cocycle.
Conversely, if u1 ∶ Γ → g is a 1-cocyle then ρt is a homomorphism up to first order. This
computation motivates the following: Given a representation ρ ∶ Γ → G, we define the space
of 1-cocycles Γ→ g:

Z1(Γ,g)ρ = {u1 ∶ Γ→ g ∣u1(γδ) = u1(γ) +Adρ(γ)u1(δ), ∀γ, δ ∈ Γ}.

Moreover, since the Zariski tangent space to an algebraic variety is the space of germs of
paths satisfying the equations up to first order, the Zariski tangent space TZarρ Hom(Γ,G) to
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Hom(Γ,G) at ρ can be identified with the space of 1-cocyle Z1(Γ,g)ρ thanks to the following:

∀γ ∈ Γ,
d

dt
ρt(γ)ρ0(γ−1)∣t=0 = u1(γ).

In the end, we want to understand the tangent space to the character variety, hence we
need to figure out which cocycle comes from the conjugation. We introduce the space of
1-coboundaries:

B1(Γ,g)ρ = {v1 ∶ Γ→ g ∣∃u0 ∈ g such that v1(γ) = Adρ(γ)u0 − u0}.
Every coboundary v1, in fact, is tangent to the conjugation path ρt = exp(−tu0)ρ0 exp(tu0).
The first cohomology group with coefficients in g twisted by the adjoint action of ρ is

H1(Γ,g)ρ = Z1(Γ,g)ρ/B1(Γ,g)ρ.

Theorem 8.3 (Weil [Wei64]). Let G be the group of real points of an algebraic group
defined over R. Assume that a representation ρ ∶ Γ → G is reductive. Then the map
TZarρ Hom(Γ,G) → Z1(Γ,g)ρ is an isomorphism. In addition, under this isomorphism, the
Zariski tangent vectors coming from the G-conjugation of ρ exactly correspond to the cobound-
aries. Hence, the Zariski tangent space to the character variety is isomorphic to the coho-
mology group H1(Γ,g)ρ.

Theorem 8.3 leads to the following definition and its classical corollary:

Definition 8.4. A representation ρ ∶ Γ→ G is infinitesimally rigid if H1(Γ,g)ρ = 0.

Theorem 8.5 (Weil’s rigidity theorem [Wei64]). If ρ is infinitesimally rigid, then ρ is locally
rigid.

A nice presentation of Theorem 8.5 can be found in Besson [Bes09]. Weil and Raghunathan
also compute the group H1(Γ,g)ρ in a number of important cases and show that it is often
trivial.

Theorem 8.6 (Weil [Wei64], Raghunathan [Rag67, Rag65]). Suppose that G is a semi-simple
group and Γ is a lattice of G. Denote by i ∶ Γ→ G the canonical representation.

● If H1(Γ,g)i ≠ 0 then
– Either g = so2,1(R) = su1,1 = sl2(R),
– Or g = so3,1(R) = sl2(C) and Γ is a non-uniform lattice.

● Let ρ ∶ G → H be a representation of G into a semi-simple group H. If Γ is now
a uniform lattice and H1(Γ,h)ρ○i ≠ 0 then g = sod,1(R) or sud,1. Moreover, if we
write h = V1 ⊕ ⋯ ⊕ Vr the decomposition of the g-semi-simple module h into simple
modules, then the highest weight of Vi is a multiple of the highest weight of the standard
representation.

8.4. Higher order. Given a 1-cocycle u1 ∈ Z1(Γ,g)ρ, (i.e a Zariski tangent vector to the
representation variety), we may ask if u1 is integrable (i.e. the tangent vector to a smooth
deformation). Since solving this question involves an infinite number of computations, we
can start up with the simplest investigation: Is the 1-cocycle u1 integrable up to second order
? (i.e. the tangent vector to a smooth deformation up to order 2). Writing the expression

∀γ ∈ Γ, ρt(x) = exp(t u1(γ) + t2 u2(γ) +O(t3))ρ0(γ)
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and using the Baker-Campbell-Hausdorff formula, we see that ρt is a homomorphism up to
second order if and only if

∀γ, δ ∈ Γ, u2(γ) − u2(γδ) +Adρ0(γ)u2(δ) =
1

2
[Adρ0(γ)u1(δ), u1(γ)] ∶=

1

2
[u1, u1](γ, δ)

Hence, the 1-cocycle u1 is integrable up to second order if and only if the 2-cocycle
[u1, u1] ∈ Z2(Γ,g) is a 2-coboundary. We could ask the same question for the third, fourth,
etc. order and we would find a sequence of obstructions, which are all lying in H2(Γ,g)ρ.
In other words, for each n ⩾ 2, there exists a map on ∶ H1(Γ,g)ρ → H2(Γ,g)ρ such that the
1-cocycle u1 is integrable up to order n if and only if the obstructions ok(u1) = 0 for all
k = 2, . . . , n.

The story ends with a good news. Recall that G = GR and RJtK is the ring of formal
power series. A formal deformation of ρ ∶ Γ → G is a representation ρ̃ ∶ Γ → GRJtK whose
evaluation at t = 0 is ρ. A 1-cocycle u1 is, by definition, the formal tangent vector to a formal
deformation (or simply formally integrable) if and only if the obstructions on(u1) = 0 for all
n ⩾ 2. A priori, this does not imply that u1 is the tangent vector to a smooth deformation,
but that is in fact true:

Theorem 8.7 (Artin [Art68]). If a 1-cocycle u1 is formally integrable, then u1 is integrable.

8.5. Examples in hyperbolic geometry. The world of hyperbolic geometry offers a lot
of interesting behaviors. Assume that M is a hyperbolic d-dimensional manifold with or
without boundary and Γ is the fundamental group of M .

8.5.1. Hyperbolic surfaces. Many are known on representations of surface group, and the
story about surface groups is different from higher dimensional manifold groups, which we
will eventually concentrate on. Hence, we send the readers to their favourite surveys on
surface group representations (see for example [Gol84, Gol85, Lab13, Gui11]).

8.5.2. Finite volume hyperbolic manifolds. If d ⩾ 3 and M has a finite volume, then the fa-
mous Mostow-Prasad rigidity theorem [Mos68, Pra73] states that the holonomy ρ of M is
globally rigid. This (conjugacy class of) representation is the geometric representation of Γ.

However this does not imply that ρ is locally rigid. Indeed, the geometric representa-
tion might be deformed to non-faithful or non-discrete representations18. It is a theorem of
Thurston for the dimension d = 3 and of Garland and Raghunathan for the dimension d ⩾ 4
that ρ is locally deformable if and only if d = 3 andM has a cusp. This wonderful exception in
the local rigidity of finite volume hyperbolic manifolds is the starting point of the Thurston’s
hyperbolic Dehn surgery theorem.

Theorem 8.8 (Thurston [Thu02], Garland-Raghunathan [GR70]). The holonomy represen-
tation of a finite volume hyperbolic manifold M of dimension d ⩾ 3 is infinitesimally rigid
except if d = 3 and M is not compact. In the exceptional case, the geometric representation
is a regular point of the character variety of dimension twice the number of cusps.

Bergeron and Gelander [BG04] give an alternative proof of Theorem 8.8 using the Mostow-
Prasad rigidity.

18It is easy to see that every discrete and faithful representation of Γ are of the same type.



CONVEX REAL PROJECTIVE STRUCTURES ON MANIFOLDS AND ORBIFOLDS 31

8.5.3. Hyperbolic manifolds with boundary. We also wish to cite this beautiful theorem which
push this kind of question beyond the scope of finite volume manifolds.

Theorem 8.9 (Kerckhoff-Storm [KS12]). The holonomy representation of a compact hyper-
bolic manifold with totally geodesic boundary of dimension d ⩾ 4 is infinitesimally rigid.

We now get back to the original interest of this survey: convex projective structures on
manifold. From the point of view of representations, our problem is to understand defor-
mations ρt ∶ π1(M) → SLd+1(R) from the holonomy ρ ∶ π1(M) → SOd,1 of the hyperbolic
structure on M into representations in SLd+1(R).

9. Infinitesimal duality to complex hyperbolic geometry

Suppose that M is a finite volume hyperbolic manifold of dimension d ⩾ 3 and Γ is the
fundamental group of M . We have seen that there exists a unique discrete faithful represen-
tation ρgeo of Γ into SOd,1(R), up to conjugation. If G is a Lie group and i ∶ SOd,1 → G is a
representation, then we call the conjugacy class [i○ρgeo] the hyperbolic point of the character
variety χ(Γ,G) and we denote it again by ρgeo. We abuse a little bit of notation here, since
we ignore i, but in the following i will always be the canonical inclusion.

The complex hyperbolic geometry can help us to understand local deformationations into
SLd+1(R). Indeed, the complex hyperbolic geometry is "dual" to Hilbert geometry, however,
only at the hyperbolic point and in the infinitesimal level.

Remark 9.1. The groups SLd+1(R) and SUd,1 are non-compact real forms of the complex
algebraic group SLd+1(C) that both contains the real algebraic group SOd,1(R). Moreover,
the Lie algebra sld+1(R) splits as

(3) sld+1(R) = sod,1 ⊕ o

where o is the orthogonal Lie subalgebra of sod,1 in sld+1(R) with respect to the Killing
form of sld+1(R), and the adjoint action preserves the decomposition (3). Hence to study
the cohomology group H1(M, sld+1(R))ρ, we just have to understand H1(M,o)ρ, since the
cohomology group H1(M, sod,1)ρ is well known. But, since the Lie algebra sod,1 ⊕ io = sud,1,
we can find out H1(M,o)ρ using complex hyperbolic geometry (see [HP11, CLT07] for more
details).

Remark 9.1 evolves into the following theorem:

Theorem 9.2 (Cooper-Long-Thistlethwaite [CLT07]). Let M be a closed hyperbolic mani-
fold, and Γ = π1(M). Then the hyperbolic point ρgeo in χ(Γ,SLd+1(R)) is regular if and only
if the corresponding hyperbolic point in χ(Γ,SUd,1) is regular. Moreover, in that case, the
dimensions of two character varieties at the hyperbolic point are the same.

Theorem 9.3 (Koszul [Kos68], Guichard [Gui04]). In both χ(Γ,SLd+1(R)) and χ(Γ,SUd,1),
the representations close to the hyperbolic point ρgeo are faithful and discrete.

The local pictures of the character variety for G = SLd+1(R) and SUd,1 are therefore the
same, however the global pictures can be very different. Morgan-Shalen-Bestvina-Paulin’s
work [MS84, Bes88, Pau88] shows that the space of discrete and faithful representations of
Γ in SUd,1 is compact (if d ⩾ 2), but it can be false if G = SLd+1(R).
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10. Convex projective structure on 3-manifolds

10.1. Computing character varieties. In [CLT06], Cooper, Long and Thistlethwaite in-
vestigate the local structure of the variety χ(Γ,SL4(R)) at the hyperbolic point ρ ∶= ρgeo

when Γ is the fundamental group of one of the first 4500 closed hyperbolic 3-manifolds with
2-generator groups in the Hodgson-Weeks census:

http://www.math.uic.edu/t3m/SnapPy/censuses.html
We summarize their conclusions about the character variety χ(Γ,SL4(R)) around the

hyperbolic point:
● 4439 regular points, i.e. H1(Γ,SL4(R))ρ = 0.
● 9 singular points, i.e. H1(Γ,SL4(R))ρ ≠ 0 but no Zariski tangent vector is integrable.
● 43 regular curves.
● 7 regular surfaces.
● 1 singular surface such that H1(Γ,SL4(R))ρ is of dimension 3.
● 1 singular 3-variety, which has two 3-dimensional branches meeting in a curve.

First, we should mention that these computations are mostly done in floating-point mode,
hence this summary is a very good speculation but not a statement. Second, the authors
check rigorously their speculations on certain characters varieties of this list.

Remark 10.1. If Γ is the fundamental group of a closed hyperbolic 3-manifold, then the
first obstruction o2(u1) = 0, for every Zariski tangent vector at the hyperbolic point ρ (see
[CLT07]). Indeed, first, the infinitesimal rigidity of the closed hyperbolic 3-manifold in SO3,1

implies that u1 ∈ H1(Γ,o). Second, since [o,o] ⊂ so3,1, it follows that o2(u1) is not only an
element of H2(Γ, sl4) but also an element of H2(Γ, so3,1). Finally, we know from the Poincaré
duality that H2(Γ, so3,1) =H1(Γ, so3,1) = 0.

So, the singularities of some varieties are more than quadratic, since for example the
manifold “Vol3” is locally rigid even if its Zariski tangent space is one-dimensional. Compare
to the result of Goldman-Millson [GM88] that the singularity at a reductive representation
is at most quadratic if Γ is the fundamental group of a Kähler manifold.

10.2. Infinitesimal rigidity relative to the boundary. Heusener and Porti make use of
a relative version of the infinitesimal rigidity for finite volume hyperbolic 3-manifolds M in
order to obtain the infinitesimal rigidity for some Dehn fillings of M .

Let M be a 3-manifold with a boundary whose interior N carries a finite volume complete
hyperbolic metric, and let ρ ∶= ρgeo be the holonomy representation of N . We say that M
(or N) is infinitesimally rigid rel boundary if the map H1(M,G)ρ →H1(∂M,G)ρ is injective.
Roughly speaking, in the infinitesimal level, each deformation must change the geometry of
the cusp. The combination of the following two theorems shows in particular that infinitely
many closed hyperbolic 3-manifolds are locally rigid in G = SL4(R).

Theorem 10.2. [HP11, Theorem 1.4] Infinitely many Dehn fillings of a non-compact hyper-
bolic 3-manifold of finite volume which is infinitesimally rigid rel boundary are infinitesimally
rigid.

Theorem 10.3. [HP11] There exists non-compact hyperbolic 3-manifolds of finite volume
which are infinitesimally rigid rel boundary.
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Remark 10.4. The figure-eight knot complement and the Whitehead link complement, for
example, are infinitesimally rigid rel boundary. A finite volume non-compact hyperbolic
3-manifold which contains an embedded totally geodesic closed hypersurface is not infinites-
imally rigid rel boundary. This raises the following question: Can we find a (topological)
characterization of the finite volume hyperbolic 3-manifolds which are infinitesimally rigid
rel boundary? An answer even for knots or links would already be quite nice.

Surprisingly, the technique of Heusener and Porti, which is extended by Ballas, also pro-
duces deformations. A slope is a curve in the boundary, and a slope γ is rigid if the map
H1(M,o)ρ →H1(γ,o)ρ is non-trivial.

Theorem 10.5. [HP11, Bal14] Infinitely many (generalized) Dehn fillings of an amphicheiral
knot whose longitude is a rigid slope are deformable.
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