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Abstract. Researches in psychology and neuroscience have identified
multiple decision systems in mammals, enabling control of behavior to
shift with training and familiarity of the environment from a goal-directed
system to a habitual system. The former relies on the explicit estimation
of future consequences of actions through planning towards a particular
goal, which makes decision time longer but produces rapid adaptation to
changes in the environment. The latter learns to associate values to par-
ticular stimulus-response associations, leading to quick reactive decision-
making but slow relearning in response to environmental changes. Com-
putational neuroscience models have formalized this as a coordination of
model-based and model-free reinforcement learning. From this inspira-
tion we hypothesize that it could enable robots to learn habits, detect
when these habits are appropriate and thus avoid long and costly com-
putations of the planning system. We illustrate this in a simple repetitive
cube-pushing task on a conveyor belt, where a speed-accuracy trade-off is
required. We show that the two systems have complementary advantages
in these tasks, which can be combined for performance improvement.

1 Keywords

Adaptive Behaviour • Habit Learning • Reinforcement Learning • Robotic Ar-
chitecture

2 Introduction

Researches in the field of instrumental conditioning in psychology have shown
that rodents learning to press a lever in order to get food progressively shift
from a goal-directed decision system to a habitual system [7,8]. After moderate
training, devaluation of the outcome (e.g. pairing it with illness) leads the animal
to quickly stop pressing the lever. In contrast, after extensive training the animal
perseveres with pressing the lever even after outcome devaluation - hence “habit”
[1,21]. This has been hypothesized to enable the animal to avoid slow and costly
decision-making through planning by shifting to reactive decision-making when
the stability of the environment makes habits reliable, a capacity which is shared
with humans and other mammals [2].



In contrast, current robots are still rarely equipped with efficient online learn-
ing abilities and mostly rely on a single planning decision-making system, thus
not providing alternative solutions to motion planning in situations where such
strategy is limited [17]. Indeed the planning strategy can be approximative when
coping with uncertainties, e.g. when there is perceptual aliasing [4], and can also
require high computational costs and long time to propagate possible trajecto-
ries through internal representations [10]. We have previously shown that taking
inspiration from the way rodents shift between different navigation strategies
– a capacity which has been shown to be analogous to the shifts between goal-
directed and habitual decision systems [14] – can be applied to a robotic platform
to enable to automatically exploit the advantages of each strategy [4,3]. How-
ever, these experiments only involved navigation behaviors from one location to
another. To our knowledge, no application has yet been made of the coordination
of goal-directed and habitual systems to robotic tasks.

In this work, we illustrate the application of a decision architecture combin-
ing a goal-directed expert with a habitual one to a simple task where a simulated
robot have to learn to repeat the less costly sequence of actions to push a series
of cubes arriving in front of him on a conveyor belt. We build our algorithm on
computational neuroscience models which have shown that combining model-
based and model-free reinforcement learning can accurately reproduce proper-
ties of the competition between goal-directed and habitual systems [5,13,9]. In
these models, the goal-directed system is modelled with model-based reinforce-
ment learning in the sense that the system plans sequences of actions towards
a particular goal by using the transition and reward functions. In parallel, the
model-free reinforcement learning progressively learns by trial-and-error the Q-
values associated to different state-action couples. The criterion for switching
from one system to the other is based on the measure of uncertainty in the
model-free system: the less variance there is in the Q-values, the more reliable
the model-free habitual system is considered and the more likely it will control
the behavior of the simulated agents.

In contrast to these previous computational neuroscience models, we do not
a priori give the transition and reward functions (i.e. the considered model of
the task) to the algorithm but rather make it learn it automatically by observ-
ing experienced transitions and rewards. Moreover, we arbitrate without bias
between systems, as the selection of each one is random and equiprobable. The
task that we simulate requiring a certain balance between speed and accuracy
so as not to skip some cubes coming on the conveyor belt, our simulations show
that the two systems have complementary advantages that can be combined for
a highest performance. In a first series of simulations where the systems are con-
trolling individually the agent, we characterize their performances in a constant
belt velocity and constant distance between cubes setup and when the belt ve-
locity is changed during the simulation. We show that each system is performing
differently to these conditions as the model-free is more efficient than the model-
based to exploit the stability in the environment, but the model-based adapts
quickly to condition changes in the environment. We then show how combining



the two systems and switching control among them, even with a basic rule, can
improve the robot policy and gives it the ability to perform well both in a stable
environment and during transitional phases to another stable setup, with the
same architecture.

3 Materials and Methods

3.1 Global Architecture
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Fig. 1: Robotic organisation of modules and Habitual Expert structure

Our Decision Layer [10] consists of two Experts that learn a policy and a
Meta-Controller that supervises the Experts’ performance (Fig. 1a). The Flexible
Expert is a Model-Based Reinforcement Learning agent and the Habitual Expert
is a Model Free reinforcement learning agent [19].

These modules receive the current State S ∈ S from a Perception Module and
choose their actions in a set A. Each Expert decides, from the current State and
their knowledge, which action to take. In parallel, the Meta-Controller decides
which Expert is the most efficient in the current State and allows it to send its
action choice to be executed.

3.2 Habitual Expert

The Habitual Expert (MF) is implemented as a 1-layer neural network. It learns
directly the relevant state-action policy without an internal representation of
transitions between states of the world (hence the term Model Free). Propagating
the values from input S (and bias b) to action output A is computationally cheap,
but learning the whole policy is long: only the experienced state-action value is
updated. Learning a new policy to adapt to a new environment configuration is
longer than just learning the first policy so this expert is reluctant to changes.

At(i) = Wt · St + bt(i) . (1)



The connection weights Wt that learn the State-Action association are up-
dated according to a Qlearning rule [20]: the connection between input neurons
encoding the previous State St−1 and the output neuron of the action done is
modified with an amount depending on the reward R obtained.

δ = Rt(st−1, at−1) + γMF ·maxa (Wt−1(a) · St)− (Wt−1(at−1) · St−1) . (2)

Wt(at−1) = Wt−1(at−1) + αMF · δ . (3)

αMF : learning rate, γMF : decay factor.
Each action activity is interpreted as the probability P (A(i)) of taking ac-

tion A(i), using a Softmax rule (4). The decision is taken stochastically in the
resulting distribution (τMF : temperature.).

Pt(At(i)) =
exp

(
At(i)
τMF

)
∑
j exp

(
At(j)
τMF

) . (4)

3.3 Flexible Expert

The Flexible Expert (MB) is a Model Based Reinforcement Learning agent. It
learns a model of the Transition and Reward functions of the task. The former is
a cyclic graph of States connected by Actions, the latter a table of (State, Action)
and Reward association. Decisions are taken based on these representations of
the world. As the problem topology is modeled, a change experienced in the
environment (ie. a transition leads to a new state) can quickly be handled by
updating the model, allowing the next decision to be adapted to the changes.

The Reward function is learned from the experienced transition and is di-
rectly the instant reward obtained Rt(S,A) = Rt. The Transition function is
progressively learned according to (5). The probability T of experienced transi-

tion S
A−→ S′ is updated at learning rate αMB .

Tt(S,A, S
′) = Tt−1(S,A, S′) + αMB · (1− Tt−1(S,A, S′)) . (5)

Planning with the models consists in computing the Quality Q(S,A) of per-
forming action A in the given state S. It is done iteratively by propagating the
known rewards and refining the estimated Quality value according to the Tran-
sition function until convergence (γMB : decay factor):

Qt(s, a) = max

(
Rt(s, a), (γMB ·

∑
s′

Tt−1(s, a, s′) ·max
a′

Qt(s
′, a′))

)
. (6)

The Decision is also taken with the softmax rule (cf. Eq. (4)).
The drawback of such a method comes from the increasing size of the transi-

tion model. Planning becomes more and more time consuming and the Expert is



less and less reactive. As the environment evolves, even in a predictable way, the
action decided from the perceived State at St−1 may be irrelevant when acting
in State St. To improve the Flexible Expert performance and keep a manageable
model while dimensionality increases, the following features are implemented :

1. Planning in the graph is bounded in time : if planning is longer than a
certain time chosen in agreement with the task dynamics, the computation
of Quality is stopped and the approximated values are used for decision, as
it is more important to be reactive enough than having accurate values in
this task.

2. As the best policy is learnt, fewer and fewer states are visited, producing a
peaked distribution VS of states visits. The allocated computation time being
limited, planning should only consider the most visited states. These states
are hypothetized to be the most interesting for the Expert, as the policy
focuses on a subset of all experienced states. A subgraph of the N most
visited states is extracted to have their Q-values computed as a priority. To
have a relevant value for N , we compute the entropy of the VS distribution,
getting a measure of the model organisation :

H(VS) = −
∑
i∈S

P (i) · log2 (P (i)) with P (i) =
Card(VSi

)

Card(VS)
. (7)

We compare this measure to the maximal entropy of the model, deducing a
ratio Rc of the compressibility of the State distribution representation :

Rc =
H(VS)

Hmax(VS)
with Hmax(VS) = log2|S| . (8)

This method guides the planification to the most visited states. The draw-
back is that it may erroneously limit the use of the model during early states
of learning where the number of states is small but the distribution already
presents a contrasted shape. In this case, planning in the full graph is still
possible at reasonable cost. To avoid this behaviour, Rc is transformed into
a Ratio Rn - depending on the known number of nodes - given the following
function (9).

Rn = (1− ω) + ω ·Rc with weight ω =
1

1 + e−σ|S|
. (9)

The final number of states to plan on is a proportion of the number of known
states |S| :

N = Rn · |S| . (10)

3.4 Meta-Controller

The Meta-Controller gives the control to one of the Experts given a criterion.
It allows only one of the Experts to send its decision to the Execution Layer. It
also sends back the decision to both Experts, such that they can update their



knowledge about its relevance in the current state according to the feedback,
and cooperate in learning the best policy. The criterion considered in this work
is an equiprobable random selection of each Expert, as a proof of concept of the
interest of combining the two.

4 Results

4.1 Experiment Description

Blocks direction
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Robot
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Robot
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Fig. 2: The experimental setup : a discrete conveyor belt is carrying blocks in front of
the robot. The robot’s camera points at space Cc and its arm can reach the space in
Ca. Blocks are going from left to right such that a block can be first seen and then
touched.

We evaluated our Architecture performance in the simulation of a simple task
of block pushing. The system has been implemented using the ROS middleware
[18]. Our simulated robot is facing a conveyor belt on which are placed blocks.
These blocks are characterized by their velocity (BS) and the distance between
two blocks (inter-block distance, or IBD). These simulation parameters may be
constant or evolve during the experiment, leading to four different cases. In this
work, we focused on :

1. Regular case : inter-block distance is constant, speed of blocks is constant.
2. Speed Shift case : IBD is constant, BS changes during experiment.

In our setup, acting is required to update the perception (see Sect. 4.2 for
Perception Module description). The robot has three available actions :

1. Do nothing (DN) : this action doesn’t modify the environment nor bring
perceptual information. It is a waiting action with no cost (Rt = 0) when
executed.

2. Look Cam (LC) : this action doesn’t modify the environment but updates
the view modality about the presence of a block in Cc. It has a cost of
Rt = −0.03.

3. Push Arm (PA) : this action can modify the environment : if a block is
in Ca and PA is done, it is removed from the belt. The contact modality is
updated about the perceived block. The action costs Rt = −0.03 but brings
a positive reward when a block is pushed for a final reward of Rt = 0.97).

4.2 Perception Module

The Perception Module (Fig. 3) transforms Perceptions into States. Our simu-
lated robot is equipped with a visual block detector simulated camera (signal



pbs) and a tactile binary sensor on its arm (signal pbt). When the corresponding
action is selected (LookCam for pbs and PushArm for (pbt), these informations
update memories where each element is one step further in the past. Each modal-
ity has its own memory where older block perceptions are recorded. Memories
(M bs,M bt) have a finite length (8 elements) such that the system only considers
closest perceptions. Each configuration of both memories defines a unique State,
used by the Experts.
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Fig. 3: Perception module for our task. The X corresponds to a memorized block. The
system visually perceives a block and updates the corresponding memory. bs and bt
stand for block seen and block touched

The perceptive input are binary and their perceptions are determined ac-
cording to (11).

pbt = Ca · PushArm, pbs = Cc · LookCam . (11)

Memories can evolve in two ways : if enough time has elapsed (State Max
Duration = 0.1s here) or when a new perception brings information. In both
cases, all elements from the memory are shifted to the next timestep. Information
that exceeds memory length is forgotten. The first memory element is populated
with the relevant perceptive data.mbs,bt

t (i) = mbs,bt
t−1 (i− 1) ∀i ∈ |M | .

mbs,bt
t (0) = pbs,bt .

(12)

4.3 Parameters search

In the following, we consider : BS = 8 spaces/s (optimal policy : DN-DN-DN-
DN-PA), IBD = 4 spaces/block.

We first searched for the best parametrization for both Experts control-
ling individually the robot, in the Regular case. An Expert is performant if
it maximises the obtained Cumulative Reward (CR) and minimizes the stan-
dard deviation of CR over runs. We tested for each Expert the combination of
3 to 5 values (for MB and MF : αMB,MF ∈ {0.01, 0.05, 0.1, 0.5, 0.9}, γMB,MF ∈
{0.5, 0.98, 0.9999}, τMB,MF ∈ {0.05, 0.1, 0.5, 0.9} plus τMB = 0.01).



For the best solutions, we favor the most rewarding in mean and then the less
varying. We choose αMB = 0.5, γMB = 0.5, τMB = 0.1 and αMF = 0.1, γMF =
0.9999, τMF = 0.05.

4.4 Individual experts performances
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Fig. 4: Policy evaluations. (4a) histogram of approximated slopes. Solid lines are means
of CR slope for each Expert, dashed lines the standard deviation (4b) Mean CR slope
over time. The slope is approximated every 70 decisions.

Each Expert is tested individually in the Regular and Speed Shift cases
(simulation parameters : see Sect. 4.3 ; in Speed Shift case, we change BS to
13.2 spaces/s at 1250 decisions, which correspond to an optimal DN-DN-PA pol-
icy). The Cumulative Reward is linearly approximated from its 15% last values
to evaluate the discovered policy. For the Speed shift case, we also approximate
CR before the speed shift (on the same duration) and compare it to the first
approximation to evaluate the sensitivity of the policy to speed shift. The slope
of these approximations measures the quality of the policy as it depends on the
obtained rewards. From figure 4a, we observe that the MF discovers and follows
better policies in mean but tends to be more exploring than the MB with a
larger deviation in slopes values. In the Regular case, the MF is more relevant
than the MB to obtain the best performance as possible. This is due to the low
cost and high precision of the Q-values acquired by the MF. In contrast, the MB
learns a model of the task whose number of states rapidly grows, making the
planning process slow, costly and relying on approximations of action values.



In the Speed Shift case, we observe a break in Cumulative reward for the
MF. Figure 4b shows that in mean, the MB performance is less sensitive to the
change than the MF : the environmental change induces a loss that is more than
twice higher in the MF than in the MB. After the shift and until the end of
simulation, both MB and MF are performing similarly. This behavior can be
explained by the long time required by the MF to relearn the Q-values of a new
efficient action sequence, what doesn’t happen in the given time. In contrast, a
single exposure of the MB to the new sequence of events imposed by the speed
shift enables it to change its model of the task and thus to plan a new sequence
of actions, but it still suffer from the approximation of action values to find a
better policy.

Both Experts exhibit a complementary role : while the MF is best suited
to optimize the policy in stable conditions, the MB can better handle transient
phases following environmental changes.

4.5 Combination of Experts
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Fig. 5: Mean Cumulative Reward obtained from individual Experts and their Combi-
nation (solid line).

The whole architecture (MB+MF, supervised by Meta-Controller) is then
tested on both cases, with the same setup. In the Regular case, figure 5a shows
that the strategy of selecting stochastically each Expert improves the mean per-
formance of the robot compared to using only the MB. On the other hand, as the
Experts are chosen randomly, the robot is not relying only on the MF, which is
the most efficient strategy in the Regular case. This explains that the MB+MF



performance is still worse than the MF only. In the Speed Shift case, figure 5b
shows that the change in the environment doesn’t affect significantly the robot’s
performance, as it benefits from the MB ability to quickly replan an adapted
policy. The Combination of Experts robustness to changes compensates for the
advantage gained by the MF before the shift. At the end of the simulation, the
MF hasn’t found a policy that is at least as good as before the shift (though the
task allows a higher rate of reward, as there are more blocks to push on).

5 Discussion

This work presented the decision layer of a robotic control architecture able
to learn habits, taking inspiration from computational neuroscience models [13]
and multiple reinforcement learning systems applied to navigation [9,4]. The
model has two different Experts, or strategies, one habitual – that learns State-
Action association, and make quick decisions, but slowly adapts its policy when
the environment changes – and one flexible – that maintains a representation
of the environment and the task, can adapt quickly but is slow in deciding
as it evaluates action outcomes. These strategies are selected depending on an
arbitration criterion by a Meta-Controller. The criterion used in this work is an
random equiprobable selection of Experts, as a proof-of-concept of the interest
of combining the two.

We first highlighted each Expert properties in a Regular and a Speed Shift
cases. We showed that, as expected, the Habitual Expert learns better policies
than the Flexible Expert when the environment is stable, but a transient phase
like a shift in belt speed, making the policy less appropriate, will result in a long
lower performance period. The learnt Flexible Expert policies are less performant
in mean as the computation time constraint and the focused planning lead to
less precise Q-values when the number of states grows, and a sub-optimal policy.
On the other hand, updating its model allows the Flexible Expert to be less
affected by the speed shift. We then showed that a random selection of each
Experts is able to benefit from the shift robustness of the Flexible Expert while
the rewarding policies from the Habitual Expert improve the global performance
of the robot.

These results show that the multiple reinforcement learning systems approach
is relevant to handle complex environments that can evolve during the robot op-
erating period. The combination at same level of MB and MF can improve the
robot autonomy provided that the MB is designed to be reactive to the environ-
ment dynamics. It has to be able to decide in parallel with the MF in order to
remain useful for control. Indeed, a classical task in neuroscience is usually mod-
elled by a Markov Decision Process with few states and actions (e.g. intrumental
task of pressing a lever and entering a magazine to get food [6,13,16]) but the
dimensionality is much higher when reinforcement learning is applied to robotics
[12], as states are discretized from robot’s perceptions. In our not so simple task,
we end up with several hundreds of states and we need to bound the computa-
tion time and focus planning on the hypothesized most interesting states. This



is a well-known issue of applying Reinforcement Learning to robotics [15] and
justifies the need for a mechanism that manages the known states within the
MB system, a proposition which has recently been applied to Computational
Neuroscience models [11]. In this work, we first tested an exponential forgetting
mechanism on the transition model to remove unvisited paths. As this mech-
anism doesn’t strongly affect performance and planning time is still increasing
with the growth of states, we switched to the time constraint and focused plan-
ning mechanism (described in Sect. 3.3). The increase in performance suggests
that planning with a complex model requires a budgeted approach that only
considers the relevant sub-model, instead of pruning parts of the model related
to irrelevant old experiences. Our Experts’ parametrization has been optimized
for the regular case. In a first approach, we choose the parameters to be constant
but in this task, the MB should be exploring enough such that the agent gets
out of the initial attractor state and then exploit its model to quickly adapt to
environmental changes. Here, both the Experts have an exploiting temperature,
and the lower adaptability of the MF comes from the way it learns (updating
only the experienced actions).

This work also generalizes the concepts from [4] for the control of robots. The
multiple reinforcement learning systems approach can be applied not only for
navigation but also on a wider variety of tasks, provided that the robot is able
to perform the relevant actions. As our system can rely on the Habitual Expert,
our architecture can benefit from its properties of being quick to decide the
next action when the task is stationary. On the other hand, our Flexible Expert
can be compared to the robotic decision-making systems, that are based mostly
on planning algorithms that use a representation of the world [17]. The latter
usually rely on a provided representation whereas our Flexible Expert learns
its model and updates it according to changes in the task. This enhances the
behavioral adaptability of the robot in non-stationary environments. We need to
further investigate the arbitration criterion between Experts to get the optimal
alternations and benefit from the whole architecture.
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