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Nonlinear acoustic propagation in bubbly liquids: multiple scattering,
softening and hardening phenomena

Jean-Baptiste Doc, Jean-Marc Conoir, Régis Marchiano and Daniel Fuster

Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7190, Institut Jean Le Rond d’Alembert,
F-75005 Paris, France

The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigate numerically.
A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset
equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime
by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights
two resonance frequencies: the Minnaert frequency and a multiple scattering resonance which strongly depends
on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only
for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering
resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening
effects that share some similarities with those observed for sandstones or cracked materials. These effects are
related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed
depending on the characteristic of the incident wave when increasing the excitation amplitude. We show that the
frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those
usually encountered for sandstones or cracked materials.

1 Introduction

The nonlinear propagation in bubbly liquids is an attractive
theoretical problem combining various mechanisms that can
make the system’s response nonlinear. On one hand, the
acoustic waves can by themselves lead to shock waves in a
liquid. On the other hand, bubbles are known to have a
highly nonlinear response that influences the propagation of
waves at large scales. From an application point of view, the
interaction between nonlinear acoustic waves and bubbles
finds application in various fields. In medical imaging, the
use of ultrasound contrast agents (UCAs) has significantly
increased the quality of imaging techniques [1, 2, 3, 4]. In non-
destructive evaluation, the nonlinear propagation of acoustic
waves has been proposed to determine histogram of bubble
population inside new generation of nuclear plants [5].
Bubbly liquids can be considered as acoustic metamaterials
where bubbles play the role of strong scatters that exhibit
bandgap arising from their low-frequency resonance [6].
Different phenomena can modify the scattered properties of
the medium. For instance, bubbles (or contrast agents) can
accumulate due to the presence of walls reinforcing multiple
scattering effects [7]. These interactions are relatively well
understood in the linear regime where they are generally well
described by the Foldy’s approximation [8, 9, 10], however,
for moderate forcings, the interaction between the multiple
scattering induced by the bubbles and the presence of
nonlinear effects is less intensively investigated.

Based on the amplitude of the incident acoustic wave
we identify three regimes of propagation. In the linear
regime, which applies for small amplitude perturbations,
the simulation of bubble clusters dates back to Foldy in
1945 [8] who presents a general multiple scattering theory
applied later to bubbles [9, 10]. When the amplitude of the
incident wave is large it is possible to identify another regime
where shock waves naturally develop in the system. In these
situations, one needs to resort to models as those proposed
by Zhang and Prosperetti [11] who derive averaged equations
for disperse two phase flows that are known as “ensemble
averaged equations”. More recently, Ando et al. [12] (see
references therein) have presented simulations of shock waves
in polydispersed bubbly flows. Finally, between the linear
regime and the shock wave propagation regime, it is possible
to define an intermediate regime where weakly nonlinear
propagation effects occur. A number of models for nonlinear

multiple scattering in liquids containing free bubbles have
been derived. In 1968, Van Wijngaarden [13] presented
a heuristic model that was later improved by Caflisch et
al. [14] and Commander and Prosperetti [10] to include
an effective equation of state for the gas. Other models
based on Van Wijngaarden-Cafisch treatment include the
works of [4, 15]. It is also worth mentioning the summary
of models included in Hamilton & Blackstock [16], where
the pioneering works of Zabolotskaya et al. are recalled.
Using a wave equation coupled with the Rayleigh-Plesset
equation, these models are capable to capture the influence
of bubbles on the nonlinear propagation properties of waves
through a coefficient of nonlinearity. The appearance of
harmonics due to the nonlinear dynamics of bubbles is the
main phenomenon observed.

In this manuscript we focus our attention on the numerical
analysis of the propagation of acoustical pulses with
moderate amplitudes in a bubbly liquid where the source
of non-linearity in the system can be only attributed to the
nonlinear response of the bubbles. Section II is devoted to
the derivation of the model equations. Then, the numerical
method used to solve the problem is presented in Section III.
To assess the ability of the numerical scheme to reproduce the
multiple scattering effects, we show a comparison between
numerical results and the linear theory in Section IV where
we also introduce multiple scattering analysis techniques to
better characterize the response of the system. Based on
these analyses, in Section V we investigate the interaction
between multiple scattering effects and nonlinear propagation
by increasing the amplitude of the incident wave. Finally,
the classical effects of harmonic generation is revisited by
using the results of the nonlinear multiple scattering.

2 Hydrodynamic model

Many physical phenomena can play a role on bubble dynamic
response and the propagation of waves through bubbly liquids:
heat and mass transfer effects [17], direct bubble-bubble inter-
actions, fragmentation, or polydispersity are some examples
of complex processes that should be correctly modeled for
real applications [18, 19, 20]. Here, in order to investigate
the influence of weakly nonlinear bubble oscillations on the
propagation of waves, we choose the simplest model able
to reproduce these effects. In particular this work is based
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on a classical hydrodynamic model equivalent to that of
Zabolotskaya et al [16]. This model, used for instance in [15],
is a simplification of the general formulation presented by
Zhang and Prosperetti [11] and already captures the essential
mechanisms that we want to investigate in this manuscript.
Just to summarize, the acoustic behavior of bubble sus-
pension in the ambient fluid is described by homogeneous
and averaged two-phase fluid equations. The use of an
homogeneous model implies that the acoustic wavelenght
is much larger than the bubble radius. Bubbles are assumed
to be randomly and homogeneously distributed in the mixture.
Hydrodynamic forces, responsible of the translational motion,
exerted by the ambient-fluid on the bubbles (Faxen forces)
are neglected The ambient fluid is assumed to be compressible
with specific mass ρ, pressure p and sound speed c. All the
nonlinear terms present in the large scale wave equations are
neglected except the source term capturing the influence of the
bubble oscillation at large scales. For all quantities, index 0 is
used to designate their value at static equilibrium. Similarly
to Hamilton [16] and references therein, the propagation in
bubbly medium is described by the following coupled set of
equations:


(1− Φ0)

[
1

c02

∂p

∂t
+ ρ0

∂v

∂x

]
= ρ0n0

∂Vb
∂t

, (1a)

(1− Φ0) ρ0
∂v

∂t
+
∂p

∂x
= 0, (1b)

where Vb is the bubble volume and Φ0 is the volume fraction
of the bubble within the total suspension volume. The
bubble cloud is assumed to be monodisperse.

In the following the bubble dynamic response is governed
by the Rayleigh-Plesset Noltingk Neppiras and Poritsky
(RPNNP) equation [21]. Because we are going to investi-
gate high frequency effects appearing above the Minnaert
frequency, we decide to neglect thermal effects. Bubbles
are assumed to contain an inmiscible gas, hence no mass
exchange occurs between the bubble and the ambient fluid.
The influence of the bubble dynamics on the wave propagation
is described by the right term of Eq. (1a), where the motion
of an incompressible spherical bubble is described by the
classical RPNNP equation:

ρ0

(
RR̈+

3

2
Ṙ2

)
= Pge

(
R0

R

)3κ

− 2σ

R
−4µ

Ṙ

R
−(P0+p), (2)

where σ denotes the surface tension, P0 and R0 are the
static pressure and the equilibrium bubble radius at rest
respectively and Pge = P0 + 2σ/R0 is the initial pressure
inside the bubble. Note that the bubble internal pressure is
assumed uniform and given by the polytropic law. Although
the fluid viscosity, µ is neglected at the large scales, viscous
effects are retained in Rayleigh-Plesset equation to model
the bubble dynamic response.

The values of the mechanical parameters used with the model
are presented in table 1.

ρ0 1000 kg.m-3

c0 1500 m.s-1

σ 0.075 N.m-1

µ 10-3 Pa.s

κ 1

P0 1 atm

Table 1: Values of the mechanical parameters used for all
numerical results for the liquid and bubbly phases.

3 Numerical method

The system of equations (1) is solved numerically by a finite-
difference scheme. To ensure stability of the numerical
resolution, a variable transformation is used to normalize
the mean velocity and pressure fields. By posing the relations
P = p/P0 and Q = vρ0c0/P0, Eq. (1) can be rewritten as
follows:


∂P

∂t
= −c0

∂Q

∂x
+

c20
(1− Φ0)P0

(
ρ0n0

∂Vb
∂t

)
, (3a)

∂Q

∂t
= − c0

(1− Φ0)

∂P

∂x
, (3b)

where n0 = Φ0
4/3πR0

3 according to the monodisperse

approximation of the bubbles into the suspension.

The two coupled transport equations (3) are discretized by
a Leap-Frog scheme. The variation of the bubble volume
can be expressed: ∂Vb/∂t = 4πṘR2. The Rayleigh-Plesset
equation (2) is solved locally by an explicit Runge-Kutta
method of order 4 on each time step. An adaptive step size
is used in order to correctly describe the fast variation of
bubble radius. Then, the following marching algorithm is
obtained:

P t+∆t
x = P t−∆t

x − c0
∆t

∆x

(
Qtx+∆x −Qtx−∆x

)
+ 2∆tM t

x, (4)

Qt+∆t
x = Qt−∆t

x − c0
(1− φ0)

∆t

∆x

(
P tx+∆x − P tx−∆x

)
, (5)

with

M t
x =

3ρ0c0
2

R0
3P0

Φ0

(1− Φ0)
ṘtxR

t
x

2
. (6)

The time and space steps are represented by ∆t and ∆x
respectively. The CFL condition is defined in reference to
the sound speed in the fluid phase as CFL = c0∆t/∆x. The
indexes t and x indicate the position in time and space in
the marching scheme. A Lax-Wendroff scheme is used to
initialize the numerical resolution of the hydrodynamical
model.

To study the wave dispersion in bubbly liquids, a Gaussian
pulse (see Fig. 1) is imposed for the initial pressure distur-
bance as follows:

P (x) = Ae−x
2/h2 at t = 0, (7)

where A and h respectively represent the amplitude and
the standard deviation of the Gaussian function. Thus, the
equivalent wavelength used for the sizing of the numerical
domain is defined as the full width at half maximum of the
Gaussian peak, according to λ0 = 2h

√
2 ln 2. The initial

mean velocity field of the fluid is set to zero. The initial
bubble radius is then obtained from Laplace’s equation, so
that bubbles are in equilibrium with the initial pressure. The
initial bubble velocity is set to zero.

Perfectly Matched Layers [22] are used to bound the
numerical domain (see Fig. 1). Bubbles are considered in the
PML layers to avoid the generation of reflection waves at the
interface between physical and absorbent mediums. From
upstream to downstream to the PML layers, the viscous
coefficient µ is progressively increasing to locally limit the
acoustical contribution by bubbles.
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Fig. 1: Schematic of the numerical domain with representation of
the initial pressure disturbance.

4 Linear wave propagation in bubbly

liquids

4.1 Comparison with the ECAH theory

In this section we start validating the numerical model by
comparing the phase velocity and attenuation computed
from the model presented above with the ECAH multiple
scattering theory [23]. ECAH theory is based on the Foldy
approximation [8] for dilute suspension and it can also
be derived from the quasi-crystalline approximation [23].
More details on the analogy between EACH theory and the
hydrodynamic model used in this study is given in [24].

Because the ECAH theory is only applicable for linear wave
propagation, we simulate the response of an initial pressure
disturbance with an initial Gaussian shape with amplitude
equal to A = 10−4P0 and standard deviation h = 10R0. The
numerical simulations contained in this section are carried
out for bubbles of static radius R0 = 10−5m. The spatial
step size is set to ∆x = λ0/50 and the CFL condition is
equal to 0.01. The numerical domain is sized by L = 30λ0

and LPML = 85λ0 (see Fig. 1).

Fig. 2 shows how the Gaussian pressure pulse is dispersed
after propagating through the bubbly liquid. As expected,
high-frequency waves propagate more quickly than low-
frequency waves. This is a well-known behaviour already
observed numerically and experimentally [12, 20, 25].
By comparing two different time steps, one can observe
low frequency oscillations due to the local effect of the
bubble dynamics (typically on the interval x = [0, 2]mm).
High-frequency waves propagate approximately at the sonic
speed of water alone.

0 2 4 6 8 10 12

x (mm)

−0.3

−0.2
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at t = 6.10−6s at t = 8.10−6s

Fig. 2: Spatial evolution of the averaged acoustic pressure at two
different time step.(A = 10−4P0, Φ0 = 1%, R0 = 10−5 and h = R0)
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Fig. 3: Comparison between simulation and ECAH theory on the
phase velocity (a) and attenuation (b) for several values of the

volume fraction Φ0.

It is well-known that for small enough concentrations
coherent waves appear in the effective medium. These waves
correspond to the average, over all possible locations of
the bubbles, of the multiply-scattered field in the actual
host medium. The coherent wave propagation is governed
by a complex effective wave number K(ω), which is a
frequency-dependent function. The real part of the wave
number is related to the phase velocity, and the imaginary
part represents the attenuation. The effective wavenumber
describing the sound propagation in a bubbly liquid is given
by Waterman et al [26]. Details of the method used to
calculate phase velocity and attenuation from numerical
computations are given in Appendix A. It is possible to
use the imaginary part to define the elastic mean free path:
le = 1/2Im [K], which can be interpreted as the propagation
distance on which the wave remains coherent [27]. Based on
this consideration, the signal is sampled at x = 2λ0, in order
to respect the condition x < le.

Fig. 3 compares the computed phase velocity and attenuation
to the theoretical prediction for several values of the volume
fraction Φ0. The agreement between the ECAH theory
and the simulation is quantitative good in a wide range of
frequencies and volume fractions. The significant variations
of the phase velocity and attenuation are correctly described
by the model. The choice of the numerical methods used to
solve the hydrodynamical model (Eq. (3)) has been shown to
be highly relevant. This result validates the present model
as well as the numerical resolution method associated.

As in previous studies, below the resonant frequency of
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Fig. 4: Spectra of the total pressure signals simulated at x = 2λ0

for two values of volume fraction Φ0. fR represents the Minnaert
frequency for a bubble radius R0 = 10−5m. f ′MS and f ′′MS

correspond to the cut off frequency of the bubbly medium for
respectively Φ0 = 0.1% and Φ0 = 0.01%.

bubbles (log10(k0R0) < −1.9), the increase of the volume
fraction strongly slows down the phase velocity. Beyond
the Minnaert frequency (log10(k0R0) > −1.9), an area of
strong dispersion and attenuation is localized. This zone is
enlarged as the fraction volume increases. As the wavelength
approaches the bubble radius, the phase velocity tends
towards the wave celerity in the fluid phase.

Fig. 4 depicts the spectra of the total pressure signals
recorded. These results are obtained by centering the
Gaussian pulse in a Hanning window by zero padding. Note
that due to the high characteristic pulse frequency, the
Fourier transform of the initial pressure disturbance is a
Gaussian that can be approximated by constant energy
source in the Fourier space for the range of frequencies of
interest. Thus, the spectral signal amplitude depicted in
Fig. 4 can be seen as the frequency response function of the
bubbly medium. If we refer to Fig. 3, we can verify that the
maximum attenuation range is bounded by two frequencies
which correspond to the minimum observed on spectra of the
total pressure signals in Fig. 4. The identification of these
two frequencies is discussed in the following section.

4.2 Resonance spectrum

When investigating multiple scattering systems it is accepted
that the coherent wave only appears after ensemble averaging.
The coherent wave is distinguished from the ballistic wave,
defined as the first well-defined pulse that crosses the
bubbly medium. The ballistic wave can be measured on
every realization of disorder and it corresponds to the
very beginning of the signal (see Fig. 1). Similar to the
incoming/incident wave, it is followed by a random signal
commonly called “coda” [27]. The coda waves can be seen as
a speckle pattern in time which is highly sensitive to changes
in the medium.

In this section we follow the classical experimental protocols
used for the investigation of multiple scattering systems where
the temporal signal is treated before analysing it by Fourier
transform. Following these protocols, the data signal is
filtered in order to remove the ballistic wave, so that the
Fourier transform is applied only to the coda in order to
obtain the so-called resonance spectrum [28]. Fig. 5 shows the
modulus and phase of spectra for the resonance signals. For
the two concentrations of bubbles tested here, one can observe
that the pressure signal is composed of two predominant
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Fig. 5: Spectra (modulus and unwrapped phase) of the scattered
signals simulated at x = 2λ0 for two values of volume fraction Φ0.

fR represents the Minnaert frequency for a bubble radius
R0 = 10−5m. f ′MS and f ′′MS correspond to the cut off frequency of

the bubbly medium for respectively Φ0 = 0.1% and Φ0 = 0.01%.

frequencies (represented as dashed lines calculated according
to the parameters used in the model). The first one, denoted
fR, corresponds to the Minnaert frequency, which obeys the
classical expression [21]:

fR =
1

2π

√
3κPge

ρR0
2 −

2σ

ρ0R0
3 . (8)

The second frequency, denoted in the following as fMS ,
corresponds to a cut off frequency that appears to be highly
dependent on the volume fraction of bubbles. In general,
the value of fMS increases with the concentration Φ0. This
observation holds irrespective of the sampling position in the
medium. We note that at both, fR and fMS , we observe a
phase jump that reveals that both frequencies are related to
a resonance mechanism (Fig. 5).

The physical meaning of the resonance effect is obvious for
the Minnaert frequency (Eq. 8). In order to interpret fMS we
use the equivalent wavenumber of the bubbly medium, which
is determined by harmonic balance following the procedure
proposed by Hamilton and Blackstock [16]. In the linear
regime, only the generation of the first harmonic is considered
(denoted by the index 1). The acoustic dimensionless pressure,
the normalized mean velocity and the bubble radius can be
approximated in harmonic regime as follows:

P (x, t) = P1(x)ejωt, (9)

Q(x, t) = Q1(x)ejωt, (10)

R(x, t) = R1(x)ejωt. (11)

Substitution of Eqs. (9), (10) and (11) into Eqs. (3) and (2)
gives the following wave equation:(

∇2 +K2)P1 = 0 (12)

where the effective wavenumber is given by

K2 =
ω2

c02
(1− Φ0) +

3Φ0

R2
0

(
ω2

ωR2 − ω2 + jδω2

)
(13)

with ωR = 2πfR and δ = 4µ/(ρ0ωR
2
0).
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If the effect of viscosity is neglected, the equivalent wavenum-
ber of the bubbly medium tends to zero for the particular
frequency

fMS =
1

2π

(√
ωR2 +

3Φ0

R0
2

c02

(1− Φ0)

)
. (14)

One can clearly observe in Figs. 4 and 5 that this frequency
predicts well the cut-off frequency beyond which the wave
propagation is not altered by the bubbly medium in the
linear regime.

Fig. 6 shows the evolution of the second frequency fMS as
a function of the volume fraction Φ0. For highly diluted
bubbly liquids, fMS tends to recover the Minnaert frequency.
When increasing the void fraction Φ0, the difference between
these two frequencies increases exponentially. Note that the
concentration Φ0 can be derived from Eq. (14) as soon as we
know the Minnaert frequency and the cut-off frequency fMS .
The dependency of the second frequency with the volume
fraction invites us to think that fMS can be interpreted as a
multiple scattering effect in the bubbly medium.

To sum up the main conclusions from the analysis of the
numerical results in the linear regime, the Minnaert frequency
fR and the cutoff frequency fMS appear naturally when
performing the Fourier transform of the full pressure wave
signal propagating in bubbly liquids. In order to observe
them, the propagation distance of the pulse should be smaller
than the elastic mean free path, which can be interpreted as
the distance over which the coherent wave propagates [27].
The characteristic resonance frequency depends on the
concentration and therefore can be interpreted as the result
from the overall constructive interferences between the waves
scattered in the medium. Making an analogy with periodic
media, fMS can be regarded as a Bragg-type resonance
associated to Bloch waves [26] given that it is a phenomenon
resulting from the collective response of all the individual
scatterers included in the medium. The physical meaning of
fR is different. The Minnaert frequency fR does not depend
on the concentration, it is a pole of the scattering coefficient
of the bubble corresponding to the mode of vibration n = 0.
This is identified with a local resonance of Fano-type [26].
This observation is important for the analyses in the weakly
nonlinear regime, as one can expect to observe different
nonlinear behavior for fR and fMS when the excitation
amplitude increases.
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Fig. 7: Temporal evolution of the diffuse acoustic field produced by
the bubbly medium. Comparison for different values of the initial
pulse amplitude A. The dimensionless pressure P (t) is normalized

by A. (a) A = 10−5, (b) A = 0.9 and (c) A = −0.9.

5 Hardening and softening effects in bubbly

liquids

In order to study wave propagation for nonlinear bubbles
dynamics, the numerical experiment presented in Section IV
is carried out for different initial pulse amplitudes A (see
Eq. (7)). Two different type of excitations are tested.
Compression tests (A > 0) and tension test (A < 0).

Fig. 7 shows the temporal evolution of the acoustic pressure
P (t) normalized by the amplitude of the initial pressure
disturbance. One can clearly observe that the bubbly
medium produces different acoustical responses according to
the amplitude A and its sign. When the pressure disturbance
compresses the bubbles, A > 0, the pulse amplitude alter the
frequency content of the coda without affecting significantly
their relative amplitude (see Figs. 7(a) and 7(b)). When the
pulse amplitude has a negative amplitude, A < 0, Fig. 7(c)
shows that the nonlinear bubble response induces an intense
acoustic field producing a complex and harmonically rich
acoustic field. The difference observed between Figs. 7(b)
and 7(c) can be explained by the highly non-symetric
response predicted by the Rayleigh-Plesset equation when
bubbles expand with respect to situations when bubbles are
compressed.

The amplitude-dependent effects are analyzed using the
spectra of the total acoustic pressure as a function of
the amplitude of the initial Gaussian pulse for positive
compression pulses (Fig. 8) and negative pulses (Fig. 9).
We define the frequency of the attenuation peak, f±, as the
frequency for which we obtain the minimum modulus of
the spectrum. This frequency corresponds to the value of
fMS for low pulse amplitudes. When increasing the forcing
amplitude we observe that this frequency is shifted.

When compression occurs, one observes a downward
resonance frequency shift on fMS and a decrease of the
quality factor when increasing the excitation amplitude.
To the best of our knowledge, this phenomenon previously
identified in sandstones or cracked materials [30, 31], has
not been described in bubbly liquids yet. There are still
some differences between the response of these systems.
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Indeed, because the resonance curve is nonsymmetric, the
amplitude-dependent quality factor cannot be estimated
precisely by measuring the width of the resonance curve at
half amplitude (or -3 dB). The downward frequency shift
can be interpreted as an amplitude-dependent modification
of the acoustic wave velocity or an average softening of the
medium [32]. In the case of granular media, when softening
is observed, it has been shown that frictional nonlinearities
are caused by the mechanical behavior of the contacts
between elastic beads lead to higher levels of friction than
those encountered in homogeneous bulk media [33]. In our
case, there is no direct contact between bubbles but they
interact through the influence of the bubbles in the averaged
pressure field. This effect makes nonlinear response of the
mode associated to fMS different from the classical scenario
discussed in granular media.

The response of the system in the weakly nonlinear regime
turns out to be different depending on the sign of the initial
Gaussian pulse. Thus, when a negative amplitude is imposed
(see Fig. 9), we observe that resonance frequencies shift
to high frequencies when increasing the amplitude. This
particular behavior, usually referred to as “hardening of the
medium” in granular systems [34, 35, 36], shows that in a
bubbly liquid it suffices to reverse the sign of the amplitude
to shift from hardening to softening. The nonlinear dynamics
of bubbles together with the multiple scattering effects may
be behind this particular nonlinear response.

Fig. 10 represents the shift between the theoretical value
of fMS (Eq. (14)) and the frequency f± at which the at-
tenuation is maximal as a function of the amplitude of
the initial pulse. The relative resonance frequency shift
∆f/fMS = (f± − fMS)/fMS scales with the amplitude of
the initial pulse according to a law to be determined. As the
softening/hardening of the medium results in an amplitude-
dependent modification of the acoustic wave velocity, we try
the simplest correction proposed for resonances in a nonlinear
system that propose to modify the sound speed with an
expression of the form [37]

c±(A) = c0 (1± |A|m/b) , (15)

where m and b are adjustable parameters. To do this, we
insert Eq. (15) into Eq. (14) to obtain

f±(A) =
1

2π

√
ωR2 +

3Φ0

R0
2 (1− Φ0)

c±(A)2. (16)

This frequency can be now be fitted with the simulated
data (dot) using the least squares minimization method as
shown in Fig. 10. The good fitting between the model and
numerical simulations seems to confirm the choice of the law
introduced for the equivalent sound velocity in Eq. (15) for
moderate amplitudes.

In order to gain further insight into the similarities of the
response of bubbly liquids with respect to other media we
assume now that |A| is small enough. In this situation we
know that an amplitude dependence close to ∆f/fMS ∝
A2 is typical of Hertzian contacts (frictional nonlinearities)
while an amplitude dependence close to ∆f/fMS ∝ A rather
characterizes hysteretic quadratic nonlinearities [32, 33]. In
our case, it follows directly from Eq. (16) and Eq. (15) that

∆f

fMS
= ± 3Φ0

1− Φ0

c0
2

bR0
2ωMS

|A|m. (17)

This result shows that the relative resonance frequency
shift ∆f/fMS during compression (m = 1) seems to be
characteristic of hysteretic quadratic nonlinearities [32] which
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also establish some similarities to the studies of acoustic
hardening and optic softening of phonons [37].

It is worthy mentioning that although in this study we have
decided to correct the effective sound velocity to keep the
analogy with the hardening/softening effect in solids. It is
also possible to fit the numerical results by using an effective
concentration Φ±(A) that allows us to define f±(A) as

f±(A) =
1

2π

√
ω2
R + 3

c20
R2

0

Φ±(A)

1− Φ±(A)
. (18)

This correction has the same effect on the frequency shift
than the correction of the sound speed if the dependence of
the effective void fraction with the excitation amplitude has
the following form

Φ±(A) = Φ0 (1∓ |A|m/B) . (19)

Assuming that |A| is small enough we exactly recover Eq. (17)
when B = −b/2. Thus, we can also interpret the softening
and hardening effects as net change on the effective void
fraction. When compression occurs, the nonlinear response
of the bubbles make the bubble compression more important
than the bubble expansion, reducing the effective void fraction
and inducing an apparent decrease on the effective sound
velocity. The opposite situation occurs when the pressure
wave induce tension: the bubble expansion is privileged
increasing the effective void fraction of the medium which
at the same time can be seen as an apparent increase of the
sound velocity.

6 Acoustic harmonic generation in bubbly

liquids

In this section we focus our attention in the appearance of
harmonics in the resonance spectrum [28], which is obtained
for several positive amplitudes of the initial Gaussian pulse
(Fig. 11). For low amplitudes (dashed line) the resonance
spectrum of the scattered field contains two predominant
frequencies, as observed previously for linear regime in Fig. 5.
When the amplitude grows up (solid lines), the harmonics of
the Minnaert frequency progressively appear. Figs. 8 and 9
already showed a relatively weak Minnaert harmonic on the
full spectrum of the pressure signal. However, the intensity
of these harmonics is significantly increased in the resonance
spectrum (Fig. 11). This effect, directly related to the removal
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of the ballistic signal from the total pressure, is interpreted by
the fact that the Minnaert harmonics result from a cumulative
effect well known in non linear acoustics [16].
The appearance of softening-hardening effects in the full
and resonance spectrum is significantly different. In this
case, softening-hardening effects are less clearly seen in the
resonance spectrum. This can be explained by the great
part of the coherent wave energy contained in the ballistic
wave. Removing the ballistic part of the wave weaken the
contribution of the coherent multiple scattering reducing also
the softening-hardening phenomenon related to the coherent
waves. Conversely, when the ballistic wave is removed the
information contained in the coda is highlighted. As the time
duration of the coda is much longer than that of the ballistic
wave, it becomes easy to detect harmonics due to cumulative
effects (Fig. 11). Based on these results we conclude that the
ballistic wave basically contains all the information related
to softening-hardening effects, whereas the coda include most
of the nonlinear harmonic content of the signal.

Another interesting remark derived from the analysis of
the resonance spectrum is that for amplitudes of the same
order of magnitude to the static pressure (A ' 1) we observe
that Minnaert harmonics and the cut off frequency fMS

are mixed. This is yet another example of the combination
between nonlinearity of bubble dynamics with the multiple
scattering phenomenon. One can also notice that harmonics
related to fMS are not detected. This is not surprising.
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As previously discussed we refer here to the analogy with
Bragg-type resonances, fMS seems to be a consequence of the
multiple scattering phenomena that take place throughout
the bubbly medium, thereby excluding the possibility of
cumulative effects closely linked to a characteristic distance
of propagation in the medium.

In order to characterize harmonic generations, Fig. 12 shows
the amplitude evolution of harmonics according to the am-
plitude of the initial pulse A. One can observe that the
amplitude of the Minnaert harmonics appear for negative
pulses (dashed lines) at lower amplitudes than in the case
of positive pulses (solid lines). Close to the static pressure
(A ' 1), the harmonics level is clearly greater for negative
pulses than for positive pulses. This amplitude evolution of
harmonic components is typical to nonlinear mechanisms.
Fig. 12 also represents the amplitude evolution of the multiple
scattering frequency fMS . The amplitude of this frequency
can equally vary according to the amplitude of the initial
pressure disturbance. Compared to the harmonics of Min-
naert frequency, the amplitude of fMS increases for stronger
initial pulses around to A > 5.10−2. Note that, the softening
effects appear from such amplitudes. Nonlinear multiple-
scattering effects seem to be produced when the bubbles
have a rich-harmonically motion (when the 3rd harmonic is
generated.).

7 Conclusion

The linear and weakly nonlinear propagation of acoustic
waves in monodisperse bubbly liquids is numerically
investigated using a hydrodynamic model based on the
averaged two-phase fluid equations coupled to the RPNNP
equation to model the bubble dynamic response. The
numerical method used to solve the problem is based on a
finite difference approach coupled with an ODE solver for the
RPNNP equation. To study the wave dispersion in bubbly
liquids, a Gaussian pulse is imposed for the initial pressure
disturbance. The present model is validated in the linear
regime by comparing the phase velocity and attenuation of
the coherent wave computed by the model with the results
obtained by the ECAH multiple scattering theory.

In the linear regime, the analysis of the pressure signals
reveals the appearance of two resonance frequencies. In
addition to the Minnaert frequency fR, another resonance
frequency fMS is identified which is sensitive to the bubble
concentration. This frequency, associated to multiple
scattering effects, is clearly observed when the propagation
distance of the pulse is smaller than the elastic mean free
path, defined as the distance over which the coherent wave
propagates. In practice, this distance corresponds to a few
wavelengths. If one tries to make an analogy with periodic
media, the Minnaert frequency fR corresponds to the
resonance frequency of an Helmoltz-type resonator whereas
the multiple scattering resonance fMS to a Bragg-type
resonance. The first is a local resonance of Fano-type
while the second is a frequency due to overall constructive
interferences between the waves scattered in the medium.

When the amplitude of the initial pressure disturbance
becomes of the order of the static pressure various
nonlinear effects become clear. The generation of higher
harmonics is observed for fR whereas we do not observe
any harmonics related to fMS . Instead we observe linear
combinations between the Minnaert harmonics and fMS

in the following form mfR + fMS , with m a positive
integer. This can be interpreted as an example of interaction
between nonlinear effects and multiple scattering phenomena.

In any case, the most notorious effect is certainly the
identification of softening-hardening phenomena related to
the multiple scattering resonance fMS . Interestingly, the
resonance frequency fMS shifts to lower frequencies when
increasing the positive excitation amplitudes (cf. Fig. 8)
while fMS shifts to high frequencies when increasing the
negative excitation amplitude (cf. Fig. 9). In both cases, a
decrease of the quality factor is observed when increasing
the excitation amplitude. To the best of our knowledge this
phenomenon, frequent in sandstones or cracked materials,
has not been observed in bubbly liquids yet. We show that
the frequency shift can be explained assuming that the
acoustic wave velocity depends on the excitation amplitude
according to a law given in Eq. (15). At the same time, we
show that the relative resonance frequency shift obey a law
which is more complex than those usually encountered for
sandstones or cracked materials (cf. Eq. (17)).

In perspective to this work, it would be interesting to study
whether other bubbly media, like those containing UCAs,
may influence the emergence of the nonlinear effects analyzed
in this article.
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A Computation of phase velocity and atten-

uation

Phase velocity and attenuation are computed following
Ando et al. [12]. Consider a plane wave formed as ej(2πft−Kx),
where j is the imaginary unit and K the complex wave number
of the equivalent medium. The real and imaginary parts
of K can be determined based on the time history of the
acoustical pressure sampled at two different locations, de-
noted as p(x1, f) and p(x2, f). Its discrete Fourier transform
coefficients can be written as

p̂(x, f) = p̂0e
−jkr(f)xe−ki(f)x, (20)

where kr and ki are respectively the real and the complex part
of the complex wave number. Given the complex ratio P1/2 =
p̂(x1, f)/p̂(x2, f), the complex wave number is computed as

kr =
1

∆x1/2

cos−1
(

Re
[
P1/2

]
e− ln |P1/2|

)
, (21)

ki =
1

∆x1/2

ln |P1/2|, (22)

with ∆x1/2 = x2 − x1.
Thereby, the phase velocity cPH and attenuation α are

defined [10] as:

cPH =
ω

kr
, (23)

α = log (ki) . (24)
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