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ON THE ASYMPTOTIC BEHAVIOR OF JACOBI POLYNOMIALS
WITH VARYING PARAMETERS

OLEG SZEHR AND RACHID ZAROUF

Abstract. We study the large n behavior of Jacobi polynomials with varying parameters
P

(an+α,β)
n (1− 2λ2) for a > −1 and λ ∈ (0, 1). This appears to be a well-studied topic in

the literature but some of the published results are unnecessarily complicated or incorrect.
The purpose of this paper is to provide a simple and clear discussion and to highlight
some flaws in the existing literature. Our approach is based on a new representation for
P

(an+α,β)
n (1−2λ2) in terms of two integrals. The integrals’ asymptotic behavior is studied

using standard tools of asymptotic analysis: one is a Laplace integral and the other is
treated via the method of stationary phase. In summary we prove that if a ∈ ( 2λ

1−λ ,∞)

then λanP
(an+α,β)
n (1 − 2λ2) shows exponential decay and we derive exponential upper

bounds in this region. If a ∈ (−2λ
1+λ ,

2λ
1−λ ) then the decay of λanP (an+α,β)

n (1 − 2λ2) is

O(n−1/2) and if a ∈ {−2λ
1+λ ,

2λ
1−λ} then λ

anP
(an+α,β)
n (1− 2λ2) decays as O(n−1/3). Lastly

we find that if a ∈ (−1, −2λ
1+λ ) then λ

anP
(an+α,β)
n (1− 2λ2) decays exponentially iff an+ α

is an integer and increases exponentially iff it is not.

1. Introduction and Summary

Jacobi polynomials P (α, β)
n constitute a class of orthogonal degree-n polynomials, which

depend on two parameters α, β ∈ R. An explicit representation is [GZ, (4.3.2) p. 68]

P (α, β)
n (x) =

n∑
µ=0

(
n+ α

n− µ

)(
n+ β

µ

)(
x− 1

2

)µ(
x+ 1

2

)n−µ
.

Historically Jacobi polynomials have experienced exhaustive research, see for example [WW,
GZ] for an overview of existing results. In this paper we are concerned with with the be-
havior of Jacobi polynomials for large n, which is a classical topic in asymptotic analysis.
To gain some background we state the probably most famous result: Darboux’s asymptotic
formula, which we cite in the formulation of Szegö [GZ, Theorem 8.21.8, p. 196].

Proposition 1. Let α, β ∈ R and let θ ∈ [ε, π− ε] then the Jacobi polynomials satisfy the
following asymptotic expansion

P (α,β)
n (cos(θ)) =

1√
nπ

k(θ) cos(Nθ + γ) +O
(

1

n3/2

)
,

where

k(θ) =
1√
π

(
sin

θ

2

)−α− 1
2
(

cos
θ

2

)−β− 1
2

,
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N = n+ (α + β + 1)/2,

γ = −(α +
1

2
)π/2, 0 < θ < π.

The main assertion of Darboux’s formula is that for fixed α, β Jacobi polynomials decay
for large n in first order like O(n−1/2). The asymptotic growth of Jacobi polynomials with
varying parameters,

λanP (α+an,β)
n (1− 2λ2)

where −1 < α, β, a, is studied in multiple articles, see e.g. [BG, CI, FFN, GS, SI, SV].
The behavior is non-trivial in that within the a-range (−1,∞) different types of asymp-
totic bounds occur. For instance, it is the main result of [BG, GS, CI, SI] that for
a ∈ (− 2λ

1+λ
, 2λ

1−λ) in first order a O(n−1/2) asymptotic behavior can be observed but the
explicit formulas are inconsistent. The main point of our article is to tidy up the incon-
sistent and partially incorrect findings in the literature and provide a simple access to the
topic. We begin by stating our main result and relating it to the existing literature.

Theorem 2. Let α, β > −1, a > −1 and λ ∈ (0, 1). We have the following asymptotic
expansion as n→∞:

(1) If a ∈ (− 2λ
1+λ

, 2λ
1−λ) then

P (α+an, β)
n (1− 2λ2) =

√
2

nπ

λ−α−an((1− λ2)(a+ 1))−
β
2

((1− λ2)((a+ 2)λ+ a)((a+ 2)λ− a))
1
4

· cos
(

(n+ 1)h(ϕ+) + (α− a)ϕ+ + (β − 1)ψ+
π

4

) (
1 +O(n−1)

)
.

The phases ϕ+, h(ϕ+), ψ ∈ [0, 2π] depend on a, λ and are given explicitly in Propo-
sition 4 below.

(2) If a = 2λ
1−λ then

P (an+α, β)
n (1− 2λ2) =

λ−an−α(1 + λ)−β

32/3Γ(2/3)n1/3λ1/3(1 + λ)1/3

(
1 +O(n−1/3)

)
.

If a = − 2λ
1+λ

then

P (an+α, β)
n (1− 2λ2) =

Γ(1/3)λ−α−an(1− λ)−β

32/3πn1/3λ1/3(1− λ)1/3

·
√

3

2

(
cos ((an+ α)π)−

√
3 sin ((an+ α)π)

) (
1 +O(n−1/3)

)
.

(3) If a ∈ (−1, −2λ
1+λ

) ∪ ( 2λ
1−λ ,∞) and an+ α is integer then the quantity

λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)

decays exponentially with n, see Proposition 7 for details.
(4) If a ∈ (−1,− 2λ

1+λ
) and an+ α is not integer then the quantity

λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)
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increases exponentially with n, see Proposition 7 for details. If a ∈ ( 2λ
1−λ ,∞) and

an+α is not an integer then the above quantity decays exponentially, see Proposi-
tion 7 for details.

The same topic was studied in earlier publications. Chen, Ismail and Izen [CI, SI]
derive asymptotic bounds as in Theorem 2 but their findings are inaccurate in the whole
parameter range of a. [GS, FFN] derive (among other things) the asymptotic behavior
in the range a ∈ (− 2λ

1+λ
, 2λ

1−λ) ∪ ( 2λ
1−λ ,∞) and in this range we recover their findings

using our new method. In the range a ∈ (−1, −2λ
1+λ

) [SI] claim exponential decay for
λanP

(α+an,β)
n (1 − 2λ2) but we find that this happens iff an + α is integer. In other words

exponential decay occurs along a subsequence of values n, where an+α is integer. If an+α

is not integer we prove that λanP (α+an,β)
n (1− 2λ2) is increasing exponentially. Finally we

derive the asymptotic behavior at the saddle points a ∈ {−2λ
1+λ

, 2λ
1−λ}, where the asymptotics

were not studied before.
Various methods are employed in the cited publications to access the problem. Gawronksi-

Shawyer [GS] as well as Saff-Varga [SV] rely on the method of steepest descent [BO, p.
147] [FO0, p. 136], while Chen-Ismail [CI] and Izen [SI] make use of Darboux’s asymptotic
method and generating functions [FO0, GZ]. In this article we derive a simple integral
representation for the Jacobi polynomials with varying parameters, see Lemma 3. The
lemma provides a representation of λanP (α+an,β)

n (1− 2λ2) as a sum of two integrals, which
can be treated using standard tools from asymptotic analysis:

(1) The first integral is a so-called generalized Fourier integral [AE], [BO, Chapter
6.5], which is of the form

ˆ b

a

g(t)einh(t)dt,

with continuous real functions g, h. To determine the leading order behavior
we employ the method of stationary phase, which is commonly used to study
asymptotic properties of oscillatory integrals, see Section 3.1. The method is similar
to Laplace’s method (see below) in that the leading order contribution comes from
a small neighborhood around the stationary points of h. Our analysis relies on the
well-known fact [AE, Theorem 4] [BO, Chapter 6.5] that if ξ is a stationary point
of h such that g(ξ) 6= 0 then
(a) the integral goes to 0 as n−1/2 if h′′(ξ) 6= 0,
(b) the integral goes to 0 as n−1/3 if h′′(c) = 0 but h(3)(c) 6= 0.

(2) The second integral contributes iff α+an is not an integer and is a so-called Laplace
type integral [FO0, Chapter 3], which is of the form

ˆ b

a

g(t)enh(t)dt,

with continuous, real functions g, h. We use Laplace’s method to determine the as-
ymptotic behavior, see Section 3.2. The idea is that if the real continuous function
h has a maximum at a point ξ ∈ [a, b] and if g(ξ) 6= 0 then as n grows only values in
an immediate neighborhood of ξ should contribute to the integral, see [BO, FO0].
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2. Integral representation for Jacobi Polynomials

The main point in our approach is to find a good integral representation for Jacobi
Polynomials. The emerging integrals are treated using standard methods from asymptotic
analysis [BO, FO0, AE]. Although simple, we regard the below lemma as the key technical
innovation of our work.

Lemma 3. [Integral representation for Jacobi polynomials] Let n be an integer, a > −1,
α, β > −1, λ ∈ (0, 1). For any x ∈ (λ, 1/λ) we have the following integral representation
for the Jacobi polynomials with varying parameters

λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)

=
1

π
<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=xeiϕ

dϕ

}

− sin (π(α + an))

π

ˆ x

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt,

where <(•) refers to the real part of a complex number.

This representation is particularly suited for asymptotic analysis. The first integral
is a generalized Fourier integral and its large n behavior is derived using the method of
stationary phase. The second one is a Laplace integral and can be studied using Laplace’s
asymptotic results. Curiously the second integral contributes iff an+ α is not an integer.
As a consequence it is necessary to consider two different types of subsequences of values
n in the study of the asymptotic behavior of λan+α(1 − λ2)βP

(an+α, β)
n (1 − 2λ2). For a

subsequence of n, where an + α is integer the second integral does not contribute but
if an + α is not an integer the second integral contributes and changes the asymptotic
behavior of λan+α(1 − λ2)βP

(an+α, β)
n (1 − 2λ2) “discontinuously”. A similar phenomenon

was observed in [KM] for a ∈ (−1, 0) and β = bn with b ∈ (−1, 0) and a + b < −1.
In particular it suggests that the limiting behavior of zeros of the corresponding Jacobi
polynomials [MMO] will be very sensitive to the proximity of an, bn, an + bn to integers
[KM].

Proof. We investigate the complex function

f : z 7→ z(a+1)n+α (1− λz)n+β

(z − λ)n+1
,

where powers are taken with respect to the principal branch. We integrate f along a closed
contour γ in the complex plane, see Figure 2.1. The contour is composed of four curves
γ = γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4 with x ∈ (λ, 1/λ) and

γ1 : ϕ 7→ xeiϕ, ϕ ∈ (−π, π]

γ2 : ϕ 7→ εe−iϕ, ϕ ∈ (−π, π]

γ3 : t 7→ t+ iε̃, t ∈ [−x, 0]

γ4 : t 7→ −t− iε̃, t ∈ [0, x].
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γ2

γ1

γ3

γ4

γ5

λ 1

Figure 2.1. Contours γ = γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4 and γ5 for x = 1

Due to holomorphy we have that

1

2πi

ˆ
γ1⊕γ2⊕γ3⊕γ4

f dz =
1

2πi

ˆ
γ5

f dz,

where γ5 denotes a small circle around the pole λ, see Figure 2.1,

γ5 : ϕ 7→ λ+ seiϕ, ϕ ∈ (−π, π].

The lemma is proved by computing each of the five integrals individually.

• We first prove that

1

2πi

ˆ
γ1

f dz =
1

2π

ˆ π

−π
z(a+1)n+α+1 (1− λz)n+β

(z − λ)n+1

∣∣∣∣∣
z=xeiϕ

dϕ

=
1

π
<

{ˆ π

0

z(a+1)n+α+1 (1− λz)n+β

(z − λ)n+1

∣∣∣∣∣
z=xeiϕ

dϕ

}
.

• The standard estimate for contour integrals shows that∣∣∣∣ 1

2πi

ˆ
γ2

f dz
∣∣∣∣ ≤ εmax

z∈γ2

∣∣∣∣z(a+1)n+α+1 (1− λz)n+β

(z − λ)n+1

∣∣∣∣
≤ εmax

z∈γ2

∣∣∣∣(1− λz)βzα+1

z − λ

∣∣∣∣ ε(a+1)n

(
1− ελ
λ− ε

)n
,

where we have used [JG, Formula (1.11)] for the second inequality. It is clear that
the last term goes to 0 as ε→ 0.
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• We use that zy = ey log(z) = ey|z|+iy arg(z) with the main branch of log and evaluate

ˆ
γ3

f dz =

ˆ 0

−x
z(a+1)n+α (1− λz)β

z − λ

(
1− λz
z − λ

)n ∣∣∣∣∣
z=t+iε̃

dt

ε̃→0−−→
ˆ 0

−x
|t|(a+1)n+αe((a+1)n+α)πi |1− λt|β

|t|eπi − λ

(
1− λ|t|eπi

|t|eπi − λ

)n
dt

= e((a+1)n+α)πi(−1)n+1

ˆ 0

−x
|t|(a+1)n+α |1− λt|β

|t|+ λ

(
1 + λ|t|
|t|+ λ

)n
dt

= e((a+1)n+α)πi(−1)n+1

ˆ x

0

t(a+1)n+α (1 + λt)β

t+ λ

(
1 + λt

t+ λ

)n
dt.

Similarly we find that

ˆ
γ4

f dz = −
ˆ x

0

z(a+1)n+α (1− λz)β

z − λ

(
1− λz
z − λ

)n ∣∣∣∣∣
z=−t−iε̃

dt

ε̃→0−−→ −
ˆ x

0

|t|(a+1)n+αe−((a+1)n+α)πi |1 + λt|β

|t|e−πi − λ

(
1− λ|t|e−πi

|t|e−πi − λ

)n
dt

= −e−((a+1)n+α)πi(−1)n+1

ˆ x

0

t(a+1)n+α (1 + λt)β

t+ λ

(
1 + λt

t+ λ

)n
dt.

Summing the two terms we find that

1

2πi

ˆ
γ3⊕γ4

f dz

ε̃→0−−→(−1)n+1 sin ((a+ 1)n+ α)π

π

ˆ x

0

t(a+1)n+α (1 + λt)β

t+ λ

(
1 + λt

t+ λ

)n
dt.

• To evaluate the integral over γ5 we note that f is holomorphic in a dotted neigh-
borhood around λ. We compute

1

2πi

ˆ
γ5

f dz =
s−n

2π

ˆ π

−π
(λ+ seiφ)(a+1)n+α(1− λ2 − sλeiϕ)n+βe−inϕdϕ.

For s ∈ (0, λ)

(λ+ seiφ)α+(a+1)n =
∞∑
µ=0

(
α + (a+ 1)n

µ

)
λα+(a+1)n−µ(seiφ)µ,

and for s ∈ (0, 1−λ2
λ

)

(1− λ2 − sλeiφ)n+β =
∞∑
ν=0

(
n+ β

ν

)
(1− λ2)n+β−ν(−λseiφ)ν ,
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and we find that
1

2πi

ˆ
γ5

f dz =

s−n

2π

∞∑
µ=0

∞∑
ν=0

(
α + (a+ 1)n

µ

)(
n+ β

ν

)
λα+(a+1)n−µ(−λ)νsµ(1− λ2)n+β−νsν

·
ˆ π

−π
e−i(ν+µ−n)φdφ

2π
.

The last integral is 0 unless ν + µ− n = 0 so that we set ν = n− µ and find
1

2πi

ˆ
γ5

f dz

=
n∑
µ=0

(
α + (a+ 1)n

µ

)(
n+ β

n− µ

)
λα+(a+1)n−µ(−λ)n−µ(1− λ2)β+µ

= λα+an(1− λ2)β
n∑
µ=0

(
α + (a+ 1)n

µ

)(
n+ β

n− µ

)
(−λ2)n−µ(1− λ2)µ

= λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2).

�

3. Asymptotic analysis of integral representation

3.1. Generalized Fourier integral via the method of stationary phase. This sec-
tion is devoted to the study of the large n behavior of the integral

ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=eiϕ

dϕ

when a ∈ [− 2λ
1+λ

, 2λ
1+λ

]. This is achieved using standard methods from the theory of gener-
alized Fourier integrals. The latter are integrals of the formˆ b

a

g(t)einh(t)dt,

with g and h are continuous real functions. The integral is perfectly suited for an ap-
plication of the method of stationary phase. As

∣∣za+1 1−λz
z−λ

∣∣ = 1 for any z = eiϕ we can
write

za+1 1− λz
z − λ

= exp (ih(ϕ))

with a real function h, which for z = eiϕ is defined as

h(ϕ) = −i log

(
za+1(1− λz)

z − λ

)
= Arg

(
za+1(1− λz)

z − λ

)
.

In this paper log always means the principal branch of the complex logarithm.
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Proposition 4. Let λ ∈ (0, 1), a ∈ [− 2λ
1+λ

, 2λ
1−λ ] and α, β ∈ R. We have the following

asymptotic expansion as n→∞:
(1) If a ∈ (− 2λ

1+λ
, 2λ

1−λ) then

1

π
<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=eiϕ

dϕ

}

=

√
2

nπ

(1− λ2)
β
2

(a+ 1)
β
2

cos
(
(n+ 1)h(ϕ+) + (α− a)ϕ+ + (β − 1)ψ+π

4

)
[(1− λ2)((a+ 2)λ+ a)((a+ 2)λ− a)]

1
4

+
sin ((an+ α)π)

nπ

(1 + λ)β

a(1 + λ) + 2λ
+O(n−3/2)

where the parameters ϕ+, ψ ∈ [0, π] are defined via the relations

eiϕ+ =
a+ aλ2 + 2λ2

2λ(a+ 1)
+ i

√
1−

(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

and √
1− λ2

a+ 1
eiψ = 1− λz+.

(2) If a = 2λ
1−λ then

1

π
<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=eiϕ

dϕ

}

=
(1− λ)β

32/3Γ(2/3)n1/3λ1/3(1 + λ)1/3

(
1 +O(n−1/3)

)
,

and if a = − 2λ
1+λ

then

1

π
<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=eiϕ

dϕ

}

=
1

π
cos

((
an+ α +

1

6

)
π

)
Γ(1/3)(1 + λ)β

32/3

(
1

nλ(1− λ)

)1/3 (
1 +O(n−1/3)

)
.

Proof. We apply the method of stationary phase [AE] [BO, Chapter 6.5] to the generalized
Fourier integralˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=eiϕ

dϕ =

ˆ π

0

g(ϕ)einh(ϕ)dϕ,

where for z = eiϕ we define the functions

ϕ 7→ g(ϕ) = zα+1 (1− λz)β

z − λ
,

ϕ 7→ h(ϕ) = −i log

(
za+1(1− λz)

z − λ

)
= Arg

(
za+1(1− λz)

z − λ

)
.
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Computing derivatives (in the sense of the chain rule) leads to

i
dh

dz
= − 1

z − λ
+
a+ 1

z
− λ

1− λz
,

i
d

dz

(
dh

dz

)
=

1

(z − λ)2
− a+ 1

z2
− λ2

(1− λz)2
,

i
d3h

dz3
= − 2

(z − λ)3
+

2(a+ 1)

z3
− 2λ3

(1− λz)3
.

The function h(ϕ) has a stationary point if and only if dh/dz = 0, i.e. iff

a =
λ

z − λ
+

λz

1− λz
.

Solving the latter for z gives

z+,− =
a+ aλ2 + 2λ2

2λ(a+ 1)
± i

√
1−

(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

∈ ∂D

and we write z+,− = eiϕ+,− with ϕ+ ∈ [0, π] and ϕ− ∈ (−π, 0]. Only z+ is interesting
because we integrate over [0, π]. For the second derivative we have that

h′′(ϕ) =
d

dϕ

(
dh

dz

dz

dϕ

)
=
d2h

dz2

(
dz

dϕ

)2

+
dh

dz

d2z

(dϕ)2
.

We distinguish the two cases 1) a ∈ (− 2λ
1+λ

, 2λ
1−λ) and 2) a ∈

{
− 2λ

1+λ
, 2λ

1−λ

}
, which are

characterized by the presence of a stationary point of order one (h′(ϕ+) = 0 but h′′(ϕ+) 6=
0) in Case 1) and of order two (h′(ϕ+) = h′′(ϕ+) = 0 but h′′′(ϕ+) 6= 0) in Case 2).

Case 1) If a ∈ (− 2λ
1+λ

, 2λ
1−λ) then the zeros z+ = eiϕ+ and z− = eiϕ− of h′ are distinct

points located on ∂D with ϕ+ ∈ [0, π] and ϕ− ∈ (−π, 0]. Plugging in we see that

i
d2h

dz2

∣∣∣∣∣
z=z+

=
(1− λ2)(1− z2

+)λ

z+(z+ − λ)2(1− λz+)2

so that h′′(ϕ+) > 0. To find the asymptotics we apply a standard result by A. Erdélyi [AE,
Theorem 4] (see also F. Olver [FO1, Theorem 1] for a more explicit form), which however
requires that the stationary point is an endpoint of the interval of integration. Hence we
begin by splitting

ˆ π

0

g(ϕ)einh(ϕ)dϕ =

ˆ ϕ+

0

g(ϕ)einh(ϕ)dϕ+

ˆ π

ϕ+

g(ϕ)einh(ϕ)dϕ.

9



For the second integral [AE, Theorem 4] (see also [FO1, Theorem 1]) givesˆ π

ϕ+

g(ϕ)einh(ϕ)dϕ

=
1

2
Γ(1/2)k(0)ei

π
4 n−1/2einh(ϕ+)

+
1

2
Γ(1)k′(0)ei

π
2 n−1einh(ϕ+)

− i

n
einh(π) g(π)

h′(π)
+O

(
n3/2

)
,

with
k(0) = 21/2g(ϕ+) (h′′(ϕ+))

−1/2

and

k′(0) =
2

h′′(ϕ+)
g′(ϕ+)− 2

h′′(ϕ+)

h(3)(ϕ+)

3h′′(ϕ+)
g(ϕ+).

For the first integral
´ ϕ+

0
g(ϕ)einh(ϕ)dϕ we change the variable of integration ϕ 7→ −ϕ as

suggested in [AE, page 23]. We getˆ ϕ+

0

g(ϕ)einh(ϕ)dϕ =

ˆ 0

−ϕ+

g(−ϕ)einh(−ϕ)dϕ.

Applying [AE, Theorem 4] (see also [FO1, Theorem 1]) givesˆ 0

−ϕ+

g(−ϕ)einh(−ϕ)dϕ

=
1

2
Γ(1/2)k(0)ei

π
4 n−1/2einh(ϕ+)

+
1

2
Γ(1)k′(0)ei

π
2 n−1einh(ϕ+)

− i

n
einh(0) g(0)

h′(0)
+O

(
n3/2

)
with

k(0) = 21/2g(ϕ+) (h′′(ϕ+))
−1/2

and

k′(0) = − 2

h′′(ϕ+)
g′(ϕ+) +

2

h′′(ϕ+)

h(3)(ϕ+)

3h′′(ϕ+)
g(ϕ+).

Observing that h(0) = 0 while h(π) = aπ, g(0) = (1−λ)β−1 while g(π) = ei(α+1)π(1+λ)β−1,

and h′(0) = a(1−λ)−2λ
1−λ while h′(π) = −a(1+λ)+2λ

1+λ
we get

− i
n
einh(π) g(π)

h′(π)
=
i

n
ei(an+α)π (1 + λ)β

a(1 + λ) + 2λ

while

− i
n
einh(0) g(0)

h′(0)
= − i

n

(1− λ)β

a(1− λ)− 2λ

10



and we conclude thatˆ π

0

g(ϕ)einh(ϕ)dϕ

= Γ(1/2)
(

21/2g(ϕ+) (h′′(ϕ+))
−1/2

)
ei
π
4 n−1/2einh(ϕ+)

+
i

n
ei(an+α)π (1 + λ)β

a(1 + λ) + 2λ
− i

n

(1− λ)β

a(1− λ)− 2λ
+O

(
n−3/2

)
= einh(ϕ+)+iπ

4 zα+1
+

(1− λz+)β

z+ − λ

(
2|z+ − λ|4

nλ(1− λ2)|1− z2
+|

)1/2

Γ(1/2)

+
1

n
ei((an+α)π+π

2 ) (1 + λ)β

a(1 + λ) + 2λ
− i

n

(1− λ)β

a(1− λ)− 2λ
+O

(
n−3/2

)
.

We set ψ = arg (1− λz+) and get

einh(ϕ+)+iπ
4 zα+1

+

(1− λz+)β

z+ − λ

(
2|z+ − λ|4

nλ(1− λ2)|1− z2
+|

)1/2

Γ(1/2)

=

√
2π|1− λz+|β−1+2√
nλ(1− λ2)|1− z2

+|
ei(nh(ϕ+)+π

4
+(α−a)ϕ++(β−1)ψ+h(ϕ+))(1 +O(n−1)

)
=

√
2π

n

(1− λ2)
β
2
− 1

4

(a+ 1)
β
2

ei((n+1)h(ϕ+)+(α−a)ϕ++(β−1)ψ+π
4 )

(((a+ 2)λ+ a)((a+ 2)λ− a))
1
4

(
1 +O(n−1)

)
,

where we made use of

|1− λz+| = |z+ − λ| =
√

1− λ2

a+ 1
and

|z2
+ − 1| = 2

√
1−

(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

=

√
(1− λ2)((a+ 2)λ+ a)((a+ 2)λ− a)

λ(a+ 1)
.

Taking the real part of
´ π

0
g(ϕ)einh(ϕ)dϕ completes the proof of Theorem 4, point 1) since

the real part of 1
n
ei((an+α)π+π

2 ) (1+λ)β

a(1+λ)+2λ
is equal to

sin ((an+ α)π)

n

(1 + λ)β

a(1 + λ) + 2λ
.

Case 2) If a ∈ {− 2λ
1+λ

, 2λ
1−λ} then h

′ has a unique zero. If a = 2λ
1−λ then z+ = 1 and

h(0) = h′(0) = h′′(0) = 0,

while
h(3)(0) =

2λ(1 + λ)

(1− λ)3
.

Applying [AE, Theorem 4] at the second order in this case yields the asymptotic behavior
ˆ π

0

g(ϕ)einh(ϕ)dϕ = g(ϕ+)einh(ϕ+)+iπ
6

(
6

n|h(3)(ϕ+)|

)1/3
Γ(1/3)

3

(
1 +O(n−1/3)

)
.

11



Direct computation shows that
ˆ π

0

g(ϕ)einh(ϕ)dϕ = zα+1
+

(1− λz+)β

z+ − λ
ei
π
6

(
za+1

+ (1− λz+)

z+ − λ

)n(
3(1− λ)3

nλ(1 + λ)

)1/3
Γ(1/3)

3

(
1 +O(n−1/3)

)
= ei

π
6 (1− λ)β

(
3

nλ(1 + λ)

)1/3
Γ(1/3)

3

(
1 +O(n−1/3)

)
,

and we conclude that

1

π
<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=eiϕ

dϕ

}
=

(1− λ)β

32/3Γ(2/3)

(
1

nλ(1 + λ)

)1/3 (
1 +O(n−1/3)

)
.

If a = − 2λ
1+λ

then z+ = −1 Observe first that
ˆ 0

−π
g(ϕ)einh(ϕ)dϕ =

ˆ π

0

g(ϕ)einh(ϕ)dϕ

so that the saddle point ϕ+ = −π is the left endpoint in the interval of integration; indeed
we have

h′(−π) = h′′(−π) = 0, h(3)(−π) = −2λ(1− λ)

(1 + λ)3
.

Applying again [AE, Theorem 4] in this case yields the asymptotic behavior
ˆ 0

−π
g(ϕ)einh(ϕ)dϕ = g(−π)einh(−π)−iπ

6

(
6

n|h(3)(−π)|

)1/3
Γ(1/3)

3

(
1 +O(n−1/3)

)
.

Now

g(−π) = e−iπ(α+1) (1 + λ)β

−(1 + λ)
= (1 + λ)β−1e−iαπ

h(−π) = Arg
(
e−iπ(a+1)(1 + λ)

−(1 + λ)

)
= −iaπ.

This gives
ˆ 0

−π
g(ϕ)einh(ϕ)dϕ = (1 + λ)β−1e−iαπe−inaπ−i

π
6

(
3(1 + λ)3

nλ(1− λ)

)1/3
Γ(1/3)

3

(
1 +O(n−1/3)

)
and we conclude that

1

π
<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=eiϕ

dϕ

}

=
1

π
cos

((
an+ α +

1

6

)
π

)
Γ(1/3)(1 + λ)β

32/3

(
1

nλ(1− λ)

)1/3 (
1 +O(n−1/3)

)
.

�
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3.2. The Laplace type integral via Laplace’s method. This section is devoted to
the study of the large n behavior of the integralˆ 1

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt,

which contributes to the asymptotics of Jacobi polynomials with varying parameters iff
α + an is not an integer. This is achieved using standard methods [BO, FO0] from the
theory of Laplace-type integrals. The latter are integrals of the formˆ 1

0

f(t)enh(t)dt,

where f and h are real continuous functions. In essence the idea is that if the real con-
tinuous function h has a maximum at a point ξ ∈ [0, 1] and if f(ξ) 6= 0 then as n grows
large only values in an immediate neighborhood of ξ should contribute to the integral,
see [BO, FO0]. To apply the method we introduce for α, β ∈ R, a > −1 and λ ∈ (0, 1)
(overwriting previous notation) the real functions

t 7→ f(t) =
(1 + λt)βtα

t+ λ
, t ∈ [0, 1]

t 7→ g(t) = ta+1 1 + λt

λ+ t
, t ∈ [0, 1]

t 7→ h(t) = ln (g(t)), t ∈ (0, 1].

With this notation we can write out the integral in Laplace formˆ 1

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt =

ˆ 1

0

f(t) (g(t))n ds =

ˆ 1

0

f(t)enh(t)dt.

The first step is to gain a picture about the behavior of h on (0, 1]. Computing derivatives
we find

h′(t) =
a+ 1

t
− 1

t+ λ
+

λ

1 + λt
,

h′′(t) = −a+ 1

t2
+

1

(t+ λ)2
− λ2

(1 + λt)2
,

h′′′(t) =
2a+ 2

t3
− 2

(t+ λ)3
+

2λ3

(1 + λt)3
.

We note that h′(t) = 0 holds iff

a =
t

λ+ t
− λt

1 + λt
− 1.

For t this yields two solutions

t+,− = −a+ aλ2 + 2λ2

2λ(a+ 1)
±

√(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

− 1,

which are real if and only if (a ≥ 2λ
1−λ or a ≤ −2λ

1+λ
).
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Lemma 5. Let h(t) = ln
(
ta+1 1+tλ

t+λ

)
, t ∈ (0, 1], λ ∈ (0, 1) and let a > −1. For h we have

that limt→0+ h(t) = −∞ and h(1) = 0 and the following properties
(1) If a > −2λ

1+λ
then h(t) ≤ 0 and h′(t) > 0 for t ∈ (0, 1].

(2) If a = −2λ
1+λ

then t+,− = 1 and h(t) < 0 and h′(t) > 0 for t ∈ (0, 1). Further
h′(1) = h′′(1) = 0 and h(3)(1) = 2λ(1−λ)

(1+λ)3
.

(3) If a ∈ (−1, −2λ
1+λ

) then h has a unique maximum at t− ∈ (0, 1) with

h(t−) > 0,

h′(t−) = 0,

h′′(t−) =
λ

t−

(
− 1

(λ+ t−)2
+

1

(1 + λt−)2

)
< 0.

For illustration Figure 3.1 depicts the three cases of the lemma.

(a) (b) (c)

Figure 3.1. This figure depicts the situation described in Lemma 5. In
all plots λ = 0.3 is chosen. A) corresponds to point (1) in the lemma and
graph shows, a = 0.9 > −6/13. B) corresponds to point (2) in the lemma
and graphs show a = −6/13. C) corresponds to point (3) in the lemma and
graphs show a = −0.9 < −6/13.

Proof. The proof follows from the formulas for the derivatives of h.
(1) We have already seen that h′(t) = 0 holds iff

a =
t

λ+ t
− λt

1 + λt
− 1.

The function t
λ+t
− λt

1+λt
−1 is increasing on [0, 1] and achieves the maximum − 2λ

1+λ

at t = 1. Hence, if a > −2λ
1+λ

then the above equation has no solution t∗ ∈ (0, 1]. In
other words h′ has no zeros on the interval (0, 1] i.e. h′ is either positive or negative
on the whole interval. Since h(0) = −∞ and h(1) = 0 it follows that h is strictly
increasing on [0, 1) and subsequently we also have that h(t) ≤ 0 on (0, 1].
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(2) Plugging a = −2λ
1+λ

into above formulas shows that t+,− = 1 and that h′(1) = h′′(1) =

0 and h′′′(1) = 2λ(1−λ)
(1+λ)3

. As in (1) we can conclude that t = 1 is the only zero of h′

in (0, 1] so that h′ is strictly positive. Furthermore it holds that h(t) ≤ 0 on (0, 1].
(3) If a ∈ (−1, −2λ

1+λ
) then t− ∈ (0, 1) and t+ > 1 so that h′ has a unique zero t− ∈ (0, 1)

with

a =
t−

λ+ t−
− λt−

1 + λt−
− 1.

Plugging this into our formula for h′′(t) we find that

h′′(t−) =
λ

t−

(
− 1

(λ+ t−)2
+

1

(1 + λt−)2

)
< 0.

We conclude that t− is a local maximum of h and that h is decreasing in a neigh-
borhood of t−. Since limt→0+ h(t) = −∞ and h(1) = 0 and there are no other
critical points of h we conclude that h(t−) is a global maximum of h and therefore
it is positive.

�

Proposition 6. Let λ ∈ (0, 1), a > −1 and let α, β > −1. We have the following
asymptotic behavior as n→∞:

(1) If a > −2λ
1+λ

then
ˆ 1

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt =

1

n

(1 + λ)β

λ(a+ 2) + a

(
1 +O(n−1)

)
.

(2) If a = −2λ
1+λ

then
ˆ 1

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt =

1

n1/3

Γ(1/3)

32/3

(1 + λ)β

(λ(1− λ))1/3

(
1 +O(n−1/3)

)
.

(3) If a ∈ (−1, −2λ
1+λ

) then g(t−) > 1 and
ˆ 1

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt

∼ (1 + λt−)β+1tα− (g(t−))n

√
2πt−

nλ ((1 + λt−)2 − (λ+ t−)2)
.

Proof. For properties of h we refer to the respective points of Lemma 5. We employ
standard Laplace methods to study the asymptotic behaviorˆ 1

0

(1 + λt)β(−t)α

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt

=

ˆ 0

−1

(1− λt)βtα

λ− t

(
(−t)(a+1) 1− λt

t− λ

)n
dt

=

ˆ 0

−1

f̃(t)e−nh̃(t)dt,
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where

f̃(t) = f(−t) =
(1− λt)β(−t)α

λ− t
,

h̃(t) = −h(−t) = − ln

(
(−t)a+1 1− λt

λ− t

)
.

(1) If a > −2λ
1+λ

then h̃(−1) = 0, limt→0+ h̃(t) = +∞ and for t ∈ [−1, 0) that h̃(t) ≥ 0

and h̃′(t) > 0. Applying a result by A. Erdélyi (1956) [FO0, Theorem 7.1 page 81]
we get

ˆ 0

−1

f̃(t)e−nh̃(t)dt

=
f̃(−1)

nh̃′(−1)
enh̃(−1)

(
1 +O(n−1)

)
=

1

n

(1 + λ)β

λ(a+ 2) + a

(
1 +O(n−1)

)
which completes the proof.

(2) If a = − 2λ
1+λ

then h̃ is positive and strictly increasing on [−1, 0) with h̃(−1) = 0,
limt→0− h̃(t) = ∞. Moreover h̃′(−1) = h̃′′(−1) = 0 while h̃(3)(−1) = h(3)(1) =
2λ(1−λ)
(1+λ)3

> 0. Applying again A. Erdélyi’s result [FO0, Theorem 7.1 page 81] we get

ˆ 0

−1

f̃(t)e−nh̃(t)dt = f̃(−1)e−nh̃(−1) Γ(1/3)

3

(
3!

nh̃(3)(−1)

)1/3 (
1 +O(n−1/3)

)
=

(1 + λ)β−1

n1/3

Γ(1/3)

32/3

1 + λ

(λ(1− λ))1/3

(
1 +O(n−1/3)

)
=

1

n1/3

Γ(1/3)

32/3

(1 + λ)β

(λ(1− λ))1/3

(
1 +O(n−1/3)

)
.

(3) If a ∈ (−1, −2λ
1+λ

) then t− is the unique maximum of h on (0, 1) with g(t−) = eh(t−) >
1. Applying standard results about Laplace integrals [BO, formula (6.4.19c) page
267] we obtain
ˆ 1

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt ∼

(1 + λt−)βtα−
t− + λ

√
2π

−nh′′(t−)
(g(t−))n ,

as n→ +∞. Moreover√
2π

−nh′′(t−)
= (λ+ t−)(1 + λt−)

√
2πt−

nλ ((1 + λt−)2 − (λ+ t−)2)

and the result follows.
�
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4. Simple exponential upper estimates

In Lemma 3 we chose to not specify the parameter x ∈ (λ, 1/λ). This allows us to
tune the parameter to find simple exponential bounds for Jacobi polynomials for a ∈
(−1,− 2λ

1+λ
) ∪ ( 2λ

1−λ ,∞).

Proposition 7. Let α, β > −1, a > −1, λ ∈ (0, 1) and n be a positive integer.
(1) We assume that α + an is an integer.

(a) If a > 2λ
1−λ then there is x∗ ∈ (λ, 1) such that

|λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)| ≤ (x∗)α−a ψβ(λx∗)

(
(x∗)a+1 1− λx∗

x∗ − λ

)n+1

and (x∗)a+1 1−λx∗
x∗−λ < 1 where ψβ(u) =

{
(1 + u)β−1 if β ≥ 1

(1− u)β−1, if β < 1
.

x∗ is computed explicitly below in (4.2).
(b) If a < − 2λ

1+λ
then for any x ∈ (1, 1/λ)

|λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)| ≤ xα−aψβ(λx)

(
xa+1 1− λx

x− λ

)n+1

and xa+1 1−λx
x−λ < 1.

(2) We assume that α + an is not an integer.
(a) If a > 2λ

1−λ then there is x∗ ∈ (0, 1) such that

|λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)|

≤ (x∗)α−a ψβ(λx∗)

(
(x∗)a+1 1− λx∗

x∗ − λ

)n+1

+

(ˆ 1

0

(1 + λt)βtα

t+ λ
dt

)(
(x∗)a+1 1 + λx∗

x∗ + λ

)n
.

and (x∗)a+1 1−λx∗
x∗−λ < 1, (x∗)a+1 1+λx∗

x∗+λ
< 1.

(b) If a < − 2λ
1+λ

λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)

∼ (1 + λt−)β+1tα− (g(t−))n

√
2πt−

nλ ((1 + λt−)2 − (λ+ t−)2)

where t− ∈ (0, 1) is computed explicitly below in (3.2) and g(t−) = ta+1
−

1+λt−
λ+t−

>
1.

To start with we find upper estimates for∣∣∣∣∣ 1π<
{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=xeiϕ

dϕ

}∣∣∣∣∣ .
Lemma 8. We have the following exponential upper bounds.
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(1) If a > 2λ
1−λ then there is x∗ ∈ (λ, 1) such that (x∗)a+1 1−λx∗

x∗−λ ∈ (0, 1) and∣∣∣∣∣ 1π<
{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=x∗eiϕ

dϕ

}∣∣∣∣∣
≤ (x∗)α−a ψβ(λx∗)

(
(x∗)a+1 1− λx∗

x∗ − λ

)n+1

where ψβ(u) =

{
(1 + u)β−1 if β ≥ 1

(1− u)β−1, if β < 1
. x∗ is computed explicitly below in (4.2).

(2) If −1 < a < −2λ
1+λ

then for any x ∈ (1, 1/λ) we have xa+1 1−λx
x−λ ∈ (0, 1) and∣∣∣∣∣ 1π<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=xeiϕ

dϕ

}∣∣∣∣∣
≤ xα−aψβ(λx)

(
xa+1 1− λx

x− λ

)n+1

.

Proof. Clearly ∣∣∣∣∣ 1π<
{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=xeiϕ

dϕ

}∣∣∣∣∣
≤ max
|z|=x

∣∣∣∣zα+1 (1− λz)β

z − λ

∣∣∣∣ (max
|z|=x
|za+1 1− λz

z − λ
|
)n

.

For z = xeiϕ we have

max
|z|=x

∣∣∣∣za+1 1− λz
z − λ

∣∣∣∣ = xa+1 max
−π≤ϕ≤π

∣∣∣∣1− λxeiϕxeiϕ − λ

∣∣∣∣ .
Direct computation shows that

∂

∂ϕ
|1− λxe

iϕ

xeiϕ − λ
|2 = −2(1− x2)(1− λ2)λx sinϕ

|xeiϕ − λ|2
,

so the corresponding max is attained either at ϕ = 0 or at ϕ = ±π. Thus max−π≤ϕ≤π |1−λxe
iϕ

xeiϕ−λ |
is either equal to |1−λx

x−λ | or to
1+λx
x+λ

. Since x ∈ (λ, 1/λ) we have |1−λx
x−λ | =

1−λx
x−λ and

1− λx
x− λ

− 1 + λx

x+ λ
=

2λ(1− x2)

x2 − λ2
> 0.

This gives max−π≤ϕ≤π |1−λxe
iϕ

xeiϕ−λ | =
1−λx
x−λ and thus

max
|z|=x
|za+1 1− λz

z − λ
| = xa+1 1− λx

x− λ
,
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but also

max
|z|=x
|zα+1 (1− λz)β

z − λ
| = xα+1 max

|z|=x
|(1− λz)β

z − λ
|

≤ xα+1ψβ(λx) max
|z|=x
|1− λz
z − λ

|

= xα+1ψβ(λx)
1− λx
x− λ

,

and as a consequence∣∣∣∣∣ 1π<
{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=xeiϕ

dϕ

}∣∣∣∣∣
≤ xα+1ψβ(λx)

1− λx
x− λ

(
xa+1 1− λx

x− λ

)n
≤ xα−aψβ(λx)

(
xa+1 1− λx

x− λ

)n+1

.

We put g(x) = xa+1 1−λx
x−λ . The derivative of g with respect to x is zero if and only if the

variables λ, a, x satisfy

a =
λ

x− λ
+

λx

1− λx
.

Solving the latter for x gives:

x+,− =
a+ aλ2 + 2λ2

2λ(a+ 1)
±

√(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

− 1,

which is real if and only if (a ≥ 2λ
1−λ or a ≤ −2λ

1+λ
). Moreover direct computation shows that

(4.1) g′′(x+,−) = xa+1
+,−

λ(1− x2
+,−)(1− λ2)

x+,−(x+,− − λ)3(1− λx+,−)

and the fact that x+,− is a max or min will depend on its position with respect to 1, λ
and 1/λ.

1) We first prove that if a > 2λ
1−λ then x+ ∈ (1, 1/λ) while x− ∈ (λ, 1) and

(4.2) x∗ = x− =
a+ aλ2 + 2λ2

2λ(a+ 1)
−

√(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

− 1

satisfies
g(x∗) < 1.

We note that x+,−(a = 2λ
1−λ) = 1, x+,−(a = −2λ

1+λ
) = −1 while x+(a → ∞) → 1

λ
and

x−(a→∞)→ λ. The function a 7→ y(a) = a+aλ2+2λ2

2λ(a+1)
is monotonically increasing on R for

λ ∈ (0, 1) and the function f+(y) = y +
√
y2 − 1 is increasing for y > 1. This shows that

x+(a) is increasing for a > 2λ
1−λ so that x+ ∈ (1, 1/λ). Similarly x− ∈ (λ, 1) and x−(a) is
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decreasing for a > 2λ
1−λ since the function f−(y) = y−

√
y2 − 1 is decreasing for y > 1. For

illustration Figure 4.1 depicts graphs of f+(y) = y +
√
y2 − 1 and f−(y) = y −

√
y2 − 1.

Figure 4.1. Plot of functions f+(y) = y +
√
y2 − 1 (red) and f−(y) =

y −
√
y2 − 1 (blue).

In particular x 7→ g′(x) vanishes on (λ, 1] if and only if x = x−. Moreover the fact that
x− ∈ (λ, 1) taken together with formula (4.1) gives g′′(x−) < 0 and x− is a min for g on
(λ, 1). Taking into account limx→λ+ g(x) = +∞ and g(1) = 1, g is strictly decreasing on
(λ, x−], strictly increasing on [x−, 1] and admits a unique minimum x∗ = x− on (λ, 1]
which satisfies g(x∗) < 1.

2) We prove that if a < − 2λ
1−λ then x+,− < 0 and for any x ∈ (1, 1/λ) we have

g(x) < 1.

Indeed we observe first that

−1 < a < − 2λ

1− λ
< − 2λ2

1 + λ2

because 2λ
1+λ
− 2λ2

1+λ2
= 2λ(1−λ)

(1+λ)(1+λ2)
> 0. In particular

a+ aλ2 + 2λ2

2λ(a+ 1)
< 0

and thus x− < 0. Moreover√(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

− 1 < |a+ aλ2 + 2λ2

2λ(a+ 1)
|
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so that

a+ aλ2 + 2λ2

2λ(a+ 1)
+

√(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

− 1 < 0.

In particular g′ does not vanish on (λ, 1/λ] with limx→λ+ g(x) = +∞, g(1) = 1 and
g(1/λ) = 0: as a consequence g is strictly decreasing on (1, 1/λ) and satisfies

0 < g(x) < 1

for any x ∈ (1, 1/λ). �

We conclude by proving Proposition 7.

Proof of Proposition 7. Since (1) is clear from Lemma 8 we prove (2).
(2) If a > 2λ

1−λ we apply Lemma 8 point (1) and choose x = x∗ ∈ (λ, 1) such that
(x∗)a+1 1−λx∗

x∗−λ ∈ (0, 1). We have∣∣∣∣∣ 1π<
{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=x∗eiϕ

dϕ

}∣∣∣∣∣
≤ (x∗)α−a ψβ(λx∗)

(
(x∗)a+1 1− λx∗

x∗ − λ

)n+1

where ψβ(u) =

{
(1 + u)β−1 if β ≥ 1

(1− u)β−1, if β < 1
. Moreover according to Lemma 5 point (1) g :

t 7→ t(a+1) 1+λt
t+λ

is strictly increasing on [0, 1] so
ˆ x∗

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt

≤
(

(x∗)a+1 1 + λx∗

x∗ + λ

)n ˆ x∗

0

(1 + λt)βtα

t+ λ
dt

with (x∗)a+1 1+λx∗

x∗+λ
< 1. Thus

|λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)|

≤ (x∗)α−a ψβ(λx∗)

(
(x∗)a+1 1− λx∗

x∗ − λ

)n+1

+

(ˆ 1

0

(1 + λt)βtα

t+ λ
dt

)(
(x∗)a+1 1 + λx∗

x∗ + λ

)n
.

If a < − 2λ
1+λ

we apply Lemma 8 point (2). For any x ∈ (1, 1/λ) we have xa+1 1−λx
x−λ ∈ (0, 1)

and

| 1
π
<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=xeiϕ

dϕ

}
|

≤ xα−aψβ(λx)

(
xa+1 1− λx

x− λ

)n+1

.
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We choose any x such that x ∈ (1, min(1/λ, t+)) where

t+ = −a+ aλ2 + 2λ2

2λ(a+ 1)
+

√(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

− 1

and observe that the second critical point t+ for g (the first one being t− ∈ (λ, 1) see
Lemma 5 point (3)) satisfies t+ > 1. Indeed

t+ − 1 =

√(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

− 1− (1 + λ)(a(1 + λ) + 2λ)

2λ(a+ 1)
> 0

since a(1 + λ) + 2λ < 0. Then we writeˆ x

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt

=

ˆ 1

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt+

ˆ x

1

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt

and the asymptotic (exponential) behavior of the first integral is given in Lemma 5 point
(2) while the second one is O(n−1) because x has been chosen so that g′ does not vanish
on [1, x]. Thus

λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)

∼
ˆ 1

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt

∼ (1 + λt−)β+1tα− (g(t−))n

√
2πt−

nλ ((1 + λt−)2 − (λ+ t−)2)
,

where

t− = −a+ aλ2 + 2λ2

2λ(a+ 1)
−

√(
a+ aλ2 + 2λ2

2λ(a+ 1)

)2

− 1

and g(t−) > 1.
�

5. Proof of Theorem 2

We add this section for completeness. We collect our results on the two integrals and
write up a proof of the main theorem. Recall that according to Lemma 3 we have

λan+α(1− λ2)βP (an+α, β)
n (1− 2λ2)

=
1

π
<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=xeiϕ

dϕ

}

− sin (π(α + an))

π

ˆ x

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt.
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Proof of Theorem 2. (1) If a ∈ (− 2λ
1+λ

, 2λ
1−λ) we choose x = 1 and conclude by combining

Proposition 6 point (1) and Proposition 4 point (1).
(2) If a = 2λ

1−λ we choose again x = 1 and conclude by combining Proposition 6 point
(2) and Proposition 4 point (2). If a = − 2λ

1+λ
we choose x = 1. According to Proposition 6

point (2) we have

sin (π(α + an))

π

ˆ 1

0

(1 + λt)βtα

t+ λ

(
t(a+1) 1 + λt

t+ λ

)n
dt

=
C(λ, β)

n1/3
sin ((an+ α)π) +O

(
n−2/3

)
where C(λ, β) = Γ(1/3)

32/3π

(1+λ)β

(λ(1−λ))1/3
. Proposition 4 point (2) gives

1

π
<

{ˆ π

0

zα+1 (1− λz)β

z − λ

(
za+1 1− λz

z − λ

)n∣∣∣∣∣
z=eiϕ

dϕ

}

=
C(λ, β)

n1/3
cos

((
an+ α +

1

6

)
π

)
+O

(
n−2/3

)
.

The result follows by subtracting the two above equalities. (3) and (4) are direct conse-
quences of Proposition 7. �
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