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On the asymptotic behavior of Jacobi polynomials with varying parameters

ON THE ASYMPTOTIC BEHAVIOR OF JACOBI POLYNOMIALS WITH VARYING PARAMETERS

OLEG SZEHR AND RACHID ZAROUF

Abstract. We study the large n behavior of Jacobi polynomials with varying parameters P (an+α,β) n

(1 -2λ 2 ) for a > -1 and λ ∈ (0, 1). This appears to be a well-studied topic in the literature but some of the published results are unnecessarily complicated or incorrect. The purpose of this paper is to provide a simple and clear discussion and to highlight some flaws in the existing literature. Our approach is based on a new representation for P (an+α,β) n

(1-2λ 2 ) in terms of two integrals. The integrals' asymptotic behavior is studied using standard tools of asymptotic analysis: one is a Laplace integral and the other is treated via the method of stationary phase. In summary we prove that if a ∈ ( 2λ 1-λ , ∞) then λ an P (an+α,β) n

(1 -2λ 2 ) shows exponential decay and we derive exponential upper bounds in this region. If a ∈ ( -2λ 1+λ , 2λ 1-λ ) then the decay of λ an P (an+α,β) n

(1 -2λ 2 ) is O(n -1/2
) and if a ∈ { -2λ 1+λ , 2λ 1-λ } then λ an P (an+α,β) n

(1 -2λ 2 ) decays as O(n -1/3 ). Lastly we find that if a ∈ (-1, -2λ 1+λ ) then λ an P

Introduction and Summary

Jacobi polynomials P (α, β) n constitute a class of orthogonal degree-n polynomials, which depend on two parameters α, β ∈ R. An explicit representation is [START_REF] Szegö | Orthogonal polynomials[END_REF](4.3.2) p. 68]

P (α, β) n (x) = n µ=0 n + α n -µ n + β µ x -1 2 µ x + 1 2 n-µ
.

Historically Jacobi polynomials have experienced exhaustive research, see for example [WW, GZ] for an overview of existing results. In this paper we are concerned with with the behavior of Jacobi polynomials for large n, which is a classical topic in asymptotic analysis.

To gain some background we state the probably most famous result: Darboux's asymptotic formula, which we cite in the formulation of Szegö [START_REF] Szegö | Orthogonal polynomials[END_REF]Theorem 8.21.8,p. 196].

Proposition 1. Let α, β ∈ R and let θ ∈ [ , π -] then the Jacobi polynomials satisfy the following asymptotic expansion

P (α,β) n (cos(θ)) = 1 √ nπ k(θ) cos(N θ + γ) + O 1 n 3/2 , N = n + (α + β + 1)/2, γ = -(α + 1 2 )π/2, 0 < θ < π.
The main assertion of Darboux's formula is that for fixed α, β Jacobi polynomials decay for large n in first order like O(n -1/2 ). The asymptotic growth of Jacobi polynomials with varying parameters, λ an P (α+an,β) n

(1 -2λ 2 ) where -1 < α, β, a, is studied in multiple articles, see e.g. [BG, CI, FFN, GS, SI, SV]. The behavior is non-trivial in that within the a-range (-1, ∞) different types of asymptotic bounds occur. For instance, it is the main result of [BG, GS, CI, SI] that for a ∈ (-2λ 1+λ , 2λ 1-λ ) in first order a O(n -1/2 ) asymptotic behavior can be observed but the explicit formulas are inconsistent. The main point of our article is to tidy up the inconsistent and partially incorrect findings in the literature and provide a simple access to the topic. We begin by stating our main result and relating it to the existing literature.

Theorem 2. Let α, β > -1, a > -1 and λ ∈ (0, 1). We have the following asymptotic expansion as n → ∞:

(1) If a ∈ (-2λ 1+λ , 2λ 1-λ ) then

P (α+an, β) n (1 -2λ 2 ) = 2 nπ λ -α-an ((1 -λ 2 )(a + 1)) -β 2 ((1 -λ 2 )((a + 2)λ + a)((a + 2)λ -a))
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• cos (n + 1)h(ϕ

+ ) + (α -a)ϕ + + (β -1)ψ+ π 4 1 + O(n -1
) .

The phases ϕ + , h(ϕ + ), ψ ∈ [0, 2π] depend on a, λ and are given explicitly in Proposition 4 below.

(2) If a = 2λ 1-λ then

P (an+α, β) n (1 -2λ 2 ) = λ -an-α (1 + λ) -β 3 2/3 Γ(2/3)n 1/3 λ 1/3 (1 + λ) 1/3 1 + O(n -1/3 ) . If a = -2λ 1+λ then P (an+α, β) n (1 -2λ 2 ) = Γ(1/3)λ -α-an (1 -λ) -β 3 2/3 πn 1/3 λ 1/3 (1 -λ) 1/3 • √ 3 2 cos ((an + α)π) - √ 3 sin ((an + α)π) 1 + O(n -1/3 ) . (3) If a ∈ (-1, -2λ 1+λ ) ∪ ( 2λ 1-λ , ∞) and an + α is integer then the quantity λ an+α (1 -λ 2 ) β P (an+α, β) n (1 -2λ 2 )
decays exponentially with n, see Proposition 7 for details. (4) If a ∈ (-1, -2λ 1+λ ) and an + α is not integer then the quantity

λ an+α (1 -λ 2 ) β P (an+α, β) n (1 -2λ 2 )
increases exponentially with n, see Proposition 7 for details. If a ∈ ( 2λ 1-λ , ∞) and an + α is not an integer then the above quantity decays exponentially, see Proposition 7 for details.

The same topic was studied in earlier publications. Chen, Ismail and Izen [CI, SI] derive asymptotic bounds as in Theorem 2 but their findings are inaccurate in the whole parameter range of a. [GS, FFN] derive (among other things) the asymptotic behavior in the range a ∈ (-2λ 1+λ , 2λ 1-λ ) ∪ ( 2λ 1-λ , ∞) and in this range we recover their findings using our new method. In the range a ∈ (-1, -2λ

1+λ ) [SI] claim exponential decay for λ an P (α+an,β) n

(1 -2λ 2 ) but we find that this happens iff an + α is integer. In other words exponential decay occurs along a subsequence of values n, where an+α is integer. If an+α is not integer we prove that λ an P (α+an,β) n

(1 -2λ 2 ) is increasing exponentially. Finally we derive the asymptotic behavior at the saddle points a ∈ { -2λ 1+λ , 2λ 1-λ }, where the asymptotics were not studied before.

Various methods are employed in the cited publications to access the problem. Gawronksi-Shawyer [GS] as well as Saff-Varga [SV] rely on the method of steepest descent [START_REF] Bender | Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory[END_REF]p. 147] [FO0,p. 136], while Chen-Ismail [CI] and Izen [SI] make use of Darboux's asymptotic method and generating functions [START_REF] Olver | Asymptotics and Special Functions[END_REF][START_REF] Szegö | Orthogonal polynomials[END_REF]. In this article we derive a simple integral representation for the Jacobi polynomials with varying parameters, see Lemma 3. The lemma provides a representation of λ an P (α+an,β) n

(1 -2λ 2 ) as a sum of two integrals, which can be treated using standard tools from asymptotic analysis:

(1) The first integral is a so-called generalized Fourier integral [AE], [START_REF] Bender | Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory[END_REF]Chapter 6.5], which is of the form ˆb a g(t)e inh(t) dt, with continuous real functions g, h. To determine the leading order behavior we employ the method of stationary phase, which is commonly used to study asymptotic properties of oscillatory integrals, see Section 3.1. The method is similar to Laplace's method (see below) in that the leading order contribution comes from a small neighborhood around the stationary points of h. Our analysis relies on the well-known fact [START_REF] Erdélyi | Asymptotic representations of Fourier integrals and the method of stationary phase[END_REF]Theorem 4] [BO, Chapter 6.5] that if ξ is a stationary point of h such that g(ξ) = 0 then (a) the integral goes to 0 as

n -1/2 if h (ξ) = 0, (b) the integral goes to 0 as n -1/3 if h (c) = 0 but h (3) (c) = 0.
(2) The second integral contributes iff α+an is not an integer and is a so-called Laplace type integral [START_REF] Olver | Asymptotics and Special Functions[END_REF]Chapter 3], which is of the form ˆb a g(t)e nh(t) dt, with continuous, real functions g, h. We use Laplace's method to determine the asymptotic behavior, see Section 3.2. The idea is that if the real continuous function h has a maximum at a point ξ ∈ [a, b] and if g(ξ) = 0 then as n grows only values in an immediate neighborhood of ξ should contribute to the integral, see [START_REF] Bender | Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory[END_REF][START_REF] Olver | Asymptotics and Special Functions[END_REF].

Integral representation for Jacobi Polynomials

The main point in our approach is to find a good integral representation for Jacobi Polynomials. The emerging integrals are treated using standard methods from asymptotic analysis [START_REF] Bender | Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory[END_REF][START_REF] Olver | Asymptotics and Special Functions[END_REF][START_REF] Erdélyi | Asymptotic representations of Fourier integrals and the method of stationary phase[END_REF]. Although simple, we regard the below lemma as the key technical innovation of our work.

Lemma 3. [Integral representation for Jacobi polynomials] Let n be an integer, a > -1, α, β > -1, λ ∈ (0, 1). For any x ∈ (λ, 1/λ) we have the following integral representation for the Jacobi polynomials with varying parameters

λ an+α (1 -λ 2 ) β P (an+α, β) n (1 -2λ 2 ) = 1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=xe iϕ dϕ - sin (π(α + an)) π ˆx 0 (1 + λt) β t α t + λ t (a+1) 1 + λt t + λ n dt,
where (•) refers to the real part of a complex number.

This representation is particularly suited for asymptotic analysis. The first integral is a generalized Fourier integral and its large n behavior is derived using the method of stationary phase. The second one is a Laplace integral and can be studied using Laplace's asymptotic results. Curiously the second integral contributes iff an + α is not an integer. As a consequence it is necessary to consider two different types of subsequences of values n in the study of the asymptotic behavior of λ an+α (1 -λ 2 ) β P (an+α, β) n

(1 -2λ 2 ). For a subsequence of n, where an + α is integer the second integral does not contribute but if an + α is not an integer the second integral contributes and changes the asymptotic behavior of λ an+α (1 -λ 2 ) β P (an+α, β) n

(1 -2λ 2 ) "discontinuously". A similar phenomenon was observed in [KM] for a ∈ (-1, 0) and β = bn with b ∈ (-1, 0) and a + b < -1.

In particular it suggests that the limiting behavior of zeros of the corresponding Jacobi polynomials [MMO] will be very sensitive to the proximity of an, bn, an + bn to integers [KM].

Proof. We investigate the complex function

f : z → z (a+1)n+α (1 -λz) n+β (z -λ) n+1
, where powers are taken with respect to the principal branch. We integrate f along a closed contour γ in the complex plane, see Figure 2

.1. The contour is composed of four curves γ = γ 1 ⊕ γ 2 ⊕ γ 3 ⊕ γ 4 with x ∈ (λ, 1/λ) and γ 1 : ϕ → xe iϕ , ϕ ∈ (-π, π] γ 2 : ϕ → e -iϕ , ϕ ∈ (-π, π] γ 3 : t → t + i˜ , t ∈ [-x, 0] γ 4 : t → -t -i˜ , t ∈ [0, x]. γ 2 γ 1 γ 3 γ 4 γ 5 λ 1 Figure 2.1. Contours γ = γ 1 ⊕ γ 2 ⊕ γ 3 ⊕ γ 4 and γ 5 for x = 1
Due to holomorphy we have that

1 2πi ˆγ1 ⊕γ 2 ⊕γ 3 ⊕γ 4 f dz = 1 2πi ˆγ5 f dz,
where γ 5 denotes a small circle around the pole λ, see Figure 2.1,

γ 5 : ϕ → λ + se iϕ , ϕ ∈ (-π, π].
The lemma is proved by computing each of the five integrals individually.

• We first prove that

1 2πi ˆγ1 f dz = 1 2π ˆπ -π z (a+1)n+α+1 (1 -λz) n+β (z -λ) n+1 z=xe iϕ dϕ = 1 π ˆπ 0 z (a+1)n+α+1 (1 -λz) n+β (z -λ) n+1 z=xe iϕ
dϕ .

• The standard estimate for contour integrals shows that

1 2πi ˆγ2 f dz ≤ ε max z∈γ 2 z (a+1)n+α+1 (1 -λz) n+β (z -λ) n+1 ≤ ε max z∈γ 2 (1 -λz) β z α+1 z -λ ε (a+1)n 1 -ελ λ -ε n ,
where we have used [START_REF] Garnett | Bounded Analytic Functions[END_REF]Formula (1.11)] for the second inequality. It is clear that the last term goes to 0 as ε → 0.

• We use that z y = e y log(z) = e y|z|+iy arg(z) with the main branch of log and evaluate

ˆγ3 f dz = ˆ0 -x z (a+1)n+α (1 -λz) β z -λ 1 -λz z -λ n z=t+iε dt ε→0 --→ ˆ0 -x |t| (a+1)n+α e ((a+1)n+α)πi |1 -λt| β |t|e πi -λ 1 -λ|t|e πi |t|e πi -λ n dt = e ((a+1)n+α)πi (-1) n+1 ˆ0 -x |t| (a+1)n+α |1 -λt| β |t| + λ 1 + λ|t| |t| + λ n dt = e ((a+1)n+α)πi (-1) n+1 ˆx 0 t (a+1)n+α (1 + λt) β t + λ 1 + λt t + λ n dt.
Similarly we find that

ˆγ4 f dz = - ˆx 0 z (a+1)n+α (1 -λz) β z -λ 1 -λz z -λ n z=-t-iε dt ε→0 --→ - ˆx 0 |t| (a+1)n+α e -((a+1)n+α)πi |1 + λt| β |t|e -πi -λ 1 -λ|t|e -πi |t|e -πi -λ n dt = -e -((a+1)n+α)πi (-1) n+1 ˆx 0 t (a+1)n+α (1 + λt) β t + λ 1 + λt t + λ n dt.
Summing the two terms we find that

1 2πi ˆγ3 ⊕γ 4 f dz ε→0 --→(-1) n+1 sin ((a + 1)n + α)π π ˆx 0 t (a+1)n+α (1 + λt) β t + λ 1 + λt t + λ n dt.
• To evaluate the integral over γ 5 we note that f is holomorphic in a dotted neighborhood around λ. We compute

1 2πi ˆγ5 f dz = s -n 2π ˆπ -π (λ + se iφ ) (a+1)n+α (1 -λ 2 -sλe iϕ ) n+β e -inϕ dϕ.
For s ∈ (0, λ)

(λ + se iφ ) α+(a+1)n = ∞ µ=0 α + (a + 1)n µ λ α+(a+1)n-µ (se iφ ) µ ,
and for s ∈ (0,

1-λ 2 λ ) (1 -λ 2 -sλe iφ ) n+β = ∞ ν=0 n + β ν (1 -λ 2 ) n+β-ν (-λse iφ ) ν ,
and we find that

1 2πi ˆγ5 f dz = s -n 2π ∞ µ=0 ∞ ν=0 α + (a + 1)n µ n + β ν λ α+(a+1)n-µ (-λ) ν s µ (1 -λ 2 ) n+β-ν s ν • ˆπ -π e -i(ν+µ-n)φ dφ 2π .
The last integral is 0 unless ν + µ -n = 0 so that we set ν = n -µ and find

1 2πi ˆγ5 f dz = n µ=0 α + (a + 1)n µ n + β n -µ λ α+(a+1)n-µ (-λ) n-µ (1 -λ 2 ) β+µ = λ α+an (1 -λ 2 ) β n µ=0 α + (a + 1)n µ n + β n -µ (-λ 2 ) n-µ (1 -λ 2 ) µ = λ an+α (1 -λ 2 ) β P (an+α, β) n (1 -2λ 2 ).

Asymptotic analysis of integral representation

3.1. Generalized Fourier integral via the method of stationary phase. This section is devoted to the study of the large n behavior of the integral

ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=e iϕ dϕ when a ∈ [-2λ 1+λ , 2λ 1+λ 
]. This is achieved using standard methods from the theory of generalized Fourier integrals. The latter are integrals of the form ˆb a g(t)e inh(t) dt, with g and h are continuous real functions. The integral is perfectly suited for an application of the method of stationary phase. As z a+1 1-λz z-λ = 1 for any z = e iϕ we can write

z a+1 1 -λz z -λ = exp (ih(ϕ))
with a real function h, which for z = e iϕ is defined as

h(ϕ) = -i log z a+1 (1 -λz) z -λ = Arg z a+1 (1 -λz) z -λ .
In this paper log always means the principal branch of the complex logarithm.

Proposition 4. Let λ ∈ (0, 1), a ∈ [-2λ 1+λ , 2λ 1-λ ] and α, β ∈ R. We have the following asymptotic expansion as n → ∞:

(1)

If a ∈ (-2λ 1+λ , 2λ 1-λ ) then 1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=e iϕ dϕ = 2 nπ (1 -λ 2 ) β 2 (a + 1) β 2 cos (n + 1)h(ϕ + ) + (α -a)ϕ + + (β -1)ψ+ π 4 [(1 -λ 2 )((a + 2)λ + a)((a + 2)λ -a)] 1 4 + sin ((an + α)π) nπ (1 + λ) β a(1 + λ) + 2λ + O(n -3/2 )
where the parameters ϕ + , ψ ∈ [0, π] are defined via the relations

e iϕ + = a + aλ 2 + 2λ 2 2λ(a + 1) + i 1 - a + aλ 2 + 2λ 2 2λ(a + 1) 2 and 1 -λ 2 a + 1 e iψ = 1 -λz + .
(

) If a = 2λ 1-λ then 1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=e iϕ dϕ = (1 -λ) β 3 2/3 Γ(2/3)n 1/3 λ 1/3 (1 + λ) 1/3 1 + O(n -1/3 ) , and if a = -2λ 1+λ then 1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=e iϕ dϕ = 1 π cos an + α + 1 6 π Γ(1/3)(1 + λ) β 3 2/3 1 nλ(1 -λ) 1/3 1 + O(n -1/3 ) . 2 
Proof. We apply the method of stationary phase [AE] [BO, Chapter 6.5] to the generalized Fourier integral

ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=e iϕ dϕ = ˆπ 0 g(ϕ)e inh(ϕ) dϕ,
where for z = e iϕ we define the functions

ϕ → g(ϕ) = z α+1 (1 -λz) β z -λ , ϕ → h(ϕ) = -i log z a+1 (1 -λz) z -λ = Arg z a+1 (1 -λz) z -λ .
Computing derivatives (in the sense of the chain rule) leads to

i dh dz = - 1 z -λ + a + 1 z - λ 1 -λz , i d dz dh dz = 1 (z -λ) 2 - a + 1 z 2 - λ 2 (1 -λz) 2 , i d 3 h dz 3 = - 2 (z -λ) 3 + 2(a + 1) z 3 - 2λ 3 (1 -λz) 3 .
The function h(ϕ) has a stationary point if and only if dh/dz = 0, i.e. iff

a = λ z -λ + λz 1 -λz .
Solving the latter for z gives

z +,-= a + aλ 2 + 2λ 2 2λ(a + 1) ± i 1 - a + aλ 2 + 2λ 2 2λ(a + 1) 2 ∈ ∂D
and we write z +,-= e iϕ +,-with ϕ + ∈ [0, π] and ϕ -∈ (-π, 0]. Only z + is interesting because we integrate over [0, π]. For the second derivative we have that

h (ϕ) = d dϕ dh dz dz dϕ = d 2 h dz 2 dz dϕ 2 + dh dz d 2 z (dϕ) 2 .
We distinguish the two cases 1) a ∈ (-2λ 1+λ , 2λ 1-λ ) and 2) a ∈ -2λ 1+λ , 2λ 1-λ , which are characterized by the presence of a stationary point of order one (h (ϕ + ) = 0 but h (ϕ + ) = 0) in Case 1) and of order two (h

(ϕ + ) = h (ϕ + ) = 0 but h (ϕ + ) = 0) in Case 2).
Case 1) If a ∈ (-2λ 1+λ , 2λ 1-λ ) then the zeros z + = e iϕ + and z -= e iϕ -of h are distinct points located on ∂D with ϕ + ∈ [0, π] and ϕ -∈ (-π, 0]. Plugging in we see that

i d 2 h dz 2 z=z + = (1 -λ 2 )(1 -z 2 + )λ z + (z + -λ) 2 (1 -λz + ) 2 so that h (ϕ + ) > 0.
To find the asymptotics we apply a standard result by A. Erdélyi [START_REF] Erdélyi | Asymptotic representations of Fourier integrals and the method of stationary phase[END_REF]Theorem 4] (see also F. Olver [START_REF] Olver | Error bounds for stationary phase approximations[END_REF]Theorem 1] for a more explicit form), which however requires that the stationary point is an endpoint of the interval of integration. Hence we begin by splitting ˆπ 0 g(ϕ)e inh(ϕ) dϕ = ˆϕ+ 0 g(ϕ)e inh(ϕ) dϕ + ˆπ ϕ + g(ϕ)e inh(ϕ) dϕ.

For the second integral [START_REF] Erdélyi | Asymptotic representations of Fourier integrals and the method of stationary phase[END_REF]Theorem 4] (see also [START_REF] Olver | Error bounds for stationary phase approximations[END_REF] Theorem 1]) gives

ˆπ ϕ + g(ϕ)e inh(ϕ) dϕ = 1 2 Γ(1/2)k(0)e i π 4 n -1/2 e inh(ϕ + ) + 1 2 Γ(1)k (0)e i π 2 n -1 e inh(ϕ + ) - i n e inh(π) g(π) h (π) + O n 3/2 , with k(0) = 2 1/2 g(ϕ + ) (h (ϕ + )) -1/2 and k (0) = 2 h (ϕ + ) g (ϕ + ) - 2 h (ϕ + ) h (3) (ϕ + ) 3h (ϕ + ) g(ϕ + ).
For the first integral ´ϕ+ 0 g(ϕ)e inh(ϕ) dϕ we change the variable of integration ϕ → -ϕ as suggested in [START_REF] Erdélyi | Asymptotic representations of Fourier integrals and the method of stationary phase[END_REF]page 23]. We get

ˆϕ+ 0 g(ϕ)e inh(ϕ) dϕ = ˆ0 -ϕ + g(-ϕ)e inh(-ϕ) dϕ.
Applying [START_REF] Erdélyi | Asymptotic representations of Fourier integrals and the method of stationary phase[END_REF]Theorem 4] (see also [START_REF] Olver | Error bounds for stationary phase approximations[END_REF] Theorem 1]) gives

ˆ0 -ϕ + g(-ϕ)e inh(-ϕ) dϕ = 1 2 Γ(1/2)k(0)e i π 4 n -1/2 e inh(ϕ + ) + 1 2 Γ(1)k (0)e i π 2 n -1 e inh(ϕ + ) - i n e inh(0) g(0) h (0) + O n 3/2 with k(0) = 2 1/2 g(ϕ + ) (h (ϕ + )) -1/2 and k (0) = - 2 h (ϕ + ) g (ϕ + ) + 2 h (ϕ + ) h (3) (ϕ + ) 3h (ϕ + ) g(ϕ + ).
Observing that h(0) = 0 while h(π) = aπ, g(0) = (1-λ) β-1 while g(π) = e i(α+1)π (1+λ) β-1 , and h (0

) = a(1-λ)-2λ 1-λ while h (π) = -a(1+λ)+2λ 1+λ we get - i n e inh(π) g(π) h (π) = i n e i(an+α)π (1 + λ) β a(1 + λ) + 2λ while - i n e inh(0) g(0) h (0) = - i n (1 -λ) β a(1 -λ) -2λ
and we conclude that ˆπ 0 g(ϕ)e inh(ϕ) dϕ

= Γ(1/2) 2 1/2 g(ϕ + ) (h (ϕ + )) -1/2 e i π 4 n -1/2 e inh(ϕ + ) + i n e i(an+α)π (1 + λ) β a(1 + λ) + 2λ - i n (1 -λ) β a(1 -λ) -2λ + O n -3/2 = e inh(ϕ + )+i π 4 z α+1 + (1 -λz + ) β z + -λ 2|z + -λ| 4 nλ(1 -λ 2 )|1 -z 2 + | 1/2 Γ(1/2) + 1 n e i((an+α)π+ π 2 ) (1 + λ) β a(1 + λ) + 2λ - i n (1 -λ) β a(1 -λ) -2λ + O n -3/2 .
We set ψ = arg (1 -λz + ) and get

e inh(ϕ + )+i π 4 z α+1 + (1 -λz + ) β z + -λ 2|z + -λ| 4 nλ(1 -λ 2 )|1 -z 2 + | 1/2 Γ(1/2) = √ 2π|1 -λz + | β-1+2 nλ(1 -λ 2 )|1 -z 2 + | e i(nh(ϕ + )+ π 4 +(α-a)ϕ + +(β-1)ψ+h(ϕ + )) 1 + O(n -1 ) = 2π n (1 -λ 2 ) β 2 -1 4 (a + 1) β 2 e i((n+1)h(ϕ + )+(α-a)ϕ + +(β-1)ψ+ π 4 ) (((a + 2)λ + a)((a + 2)λ -a)) 1 4 1 + O(n -1 ) ,
where we made use of

|1 -λz + | = |z + -λ| = 1 -λ 2 a + 1 and |z 2 + -1| = 2 1 - a + aλ 2 + 2λ 2 2λ(a + 1) 2 = (1 -λ 2 )((a + 2)λ + a)((a + 2)λ -a) λ(a + 1) .
Taking the real part of ´π 0 g(ϕ)e inh(ϕ) dϕ completes the proof of Theorem 4, point 1) since the real part of 1 n e i((an+α)π+ π 2 ) (1+λ) β a(1+λ)+2λ is equal to sin ((an + α)π) n [START_REF] Erdélyi | Asymptotic representations of Fourier integrals and the method of stationary phase[END_REF]Theorem 4] at the second order in this case yields the asymptotic behavior ˆπ 0 g(ϕ)e inh(ϕ) dϕ = g(ϕ + )e inh(ϕ

(1 + λ) β a(1 + λ) + 2λ . Case 2) If a ∈ {-2λ 1+λ , 2λ 1-λ } then h has a unique zero. If a = 2λ 1-λ then z + = 1 and h(0) = h (0) = h (0) = 0, while h (3) (0) = 2λ(1 + λ) (1 -λ) 3 . Applying [
+ )+i π 6 6 n|h (3) (ϕ + )| 1/3 Γ(1/3) 3 1 + O(n -1/3 ) .
Direct computation shows that ˆπ 0 g(ϕ)e inh(ϕ) dϕ = z α+1

+ (1 -λz + ) β z + -λ e i π 6 z a+1 + (1 -λz + ) z + -λ n 3(1 -λ) 3 nλ(1 + λ) 1/3 Γ(1/3) 3 1 + O(n -1/3 ) = e i π 6 (1 -λ) β 3 nλ(1 + λ) 1/3 Γ(1/3) 3 1 + O(n -1/3 ) ,
and we conclude that ϕ) dϕ so that the saddle point ϕ + = -π is the left endpoint in the interval of integration; indeed we have

1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=e iϕ dϕ = (1 -λ) β 3 2/3 Γ(2/3) 1 nλ(1 + λ) 1/3 1 + O(n -1/3 ) . If a = -2λ 1+λ then z + = -1 Observe first that ˆ0 -π g(ϕ)e inh(ϕ) dϕ = ˆπ 0 g(ϕ)e inh(
h (-π) = h (-π) = 0, h (3) (-π) = - 2λ(1 -λ) (1 + λ) 3 .
Applying again [START_REF] Erdélyi | Asymptotic representations of Fourier integrals and the method of stationary phase[END_REF]Theorem 4] in this case yields the asymptotic behavior ˆ0 -π g(ϕ)e inh(ϕ) dϕ = g(-π)e inh(-π)-i π

6 6 n|h (3) (-π)| 1/3 Γ(1/3) 3 1 + O(n -1/3 ) . Now g(-π) = e -iπ(α+1) (1 + λ) β -(1 + λ) = (1 + λ) β-1 e -iαπ h(-π) = Arg e -iπ(a+1) (1 + λ) -(1 + λ) = -iaπ.
This gives

ˆ0 -π g(ϕ)e inh(ϕ) dϕ = (1 + λ) β-1 e -iαπ e -inaπ-i π 6 3(1 + λ) 3 nλ(1 -λ) 1/3 Γ(1/3) 3 1 + O(n -1/3 )
and we conclude that

1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=e iϕ dϕ = 1 π cos an + α + 1 6 π Γ(1/3)(1 + λ) β 3 2/3 1 nλ(1 -λ) 1/3 1 + O(n -1/3 ) .
3.2. The Laplace type integral via Laplace's method. This section is devoted to the study of the large n behavior of the integral

ˆ1 0 (1 + λt) β t α t + λ t (a+1) 1 + λt t + λ n dt,
which contributes to the asymptotics of Jacobi polynomials with varying parameters iff α + an is not an integer. This is achieved using standard methods [START_REF] Bender | Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory[END_REF][START_REF] Olver | Asymptotics and Special Functions[END_REF] from the theory of Laplace-type integrals. The latter are integrals of the form

ˆ1 0 f (t)e nh(t) dt,
where f and h are real continuous functions. In essence the idea is that if the real continuous function h has a maximum at a point ξ ∈ [0, 1] and if f (ξ) = 0 then as n grows large only values in an immediate neighborhood of ξ should contribute to the integral, see [START_REF] Bender | Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory[END_REF][START_REF] Olver | Asymptotics and Special Functions[END_REF]. To apply the method we introduce for α, β ∈ R, a > -1 and λ ∈ (0, 1) (overwriting previous notation) the real functions

t → f (t) = (1 + λt) β t α t + λ , t ∈ [0, 1] t → g(t) = t a+1 1 + λt λ + t , t ∈ [0, 1] t → h(t) = ln (g(t)), t ∈ (0, 1].
With this notation we can write out the integral in Laplace form

ˆ1 0 (1 + λt) β t α t + λ t (a+1) 1 + λt t + λ n dt = ˆ1 0 f (t) (g(t)) n ds = ˆ1 0 f (t)e nh(t) dt.
The first step is to gain a picture about the behavior of h on (0, 1]. Computing derivatives we find

h (t) = a + 1 t - 1 t + λ + λ 1 + λt , h (t) = - a + 1 t 2 + 1 (t + λ) 2 - λ 2 (1 + λt) 2 , h (t) = 2a + 2 t 3 - 2 (t + λ) 3 + 2λ 3 (1 + λt) 3 .
We note that h (t) = 0 holds iff

a = t λ + t - λt 1 + λt -1.
For t this yields two solutions

t +,-= - a + aλ 2 + 2λ 2 2λ(a + 1) ± a + aλ 2 + 2λ 2 2λ(a + 1) 2 -1,
which are real if and only if (a ≥ 2λ 1-λ or a ≤ -2λ 1+λ ).

Lemma 5. Let h(t) = ln t a+1 1+tλ t+λ , t ∈ (0, 1], λ ∈ (0, 1) and let a > -1. For h we have that lim t→0 + h(t) = -∞ and h(1) = 0 and the following properties

(1) If a > -2λ
1+λ then h(t) ≤ 0 and h (t) > 0 for t ∈ (0, 1].

(2) If a = -2λ 1+λ then t +,-= 1 and h(t) < 0 and h (t) > 0 for t ∈ (0, 1). Further h (1) = h (1) = 0 and h

(3) (1) = 2λ(1-λ) (1+λ) 3 . (3) If a ∈ (-1, -2λ
1+λ ) then h has a unique maximum at t -∈ (0, 1) with h(t -) > 0,

h (t -) = 0, h (t -) = λ t - - 1 (λ + t -) 2 + 1 (1 + λt -) 2 < 0.
For illustration Figure 3.1 depicts the three cases of the lemma. Proof. The proof follows from the formulas for the derivatives of h.

(1) We have already seen that h (t) = 0 holds iff

a = t λ + t - λt 1 + λt -1.
The function t λ+t -λt 1+λt -1 is increasing on [0, 1] and achieves the maximum -2λ 1+λ at t = 1. Hence, if a > -2λ 1+λ then the above equation has no solution t * ∈ (0, 1]. In other words h has no zeros on the interval (0, 1] i.e. h is either positive or negative on the whole interval. Since h(0) = -∞ and h(1) = 0 it follows that h is strictly increasing on [0, 1) and subsequently we also have that h(t) ≤ 0 on (0, 1].

(2) Plugging a = -2λ 1+λ into above formulas shows that t +,-= 1 and that h (1) = h (1) = 0 and h (1) = 2λ(1-λ) (1+λ) 3 . As in (1) we can conclude that t = 1 is the only zero of h in (0, 1] so that h is strictly positive. Furthermore it holds that h(t) ≤ 0 on (0, 1].

(3) If a ∈ (-1, -2λ 1+λ ) then t -∈ (0, 1) and t + > 1 so that h has a unique zero t -∈ (0, 1) with

a = t - λ + t - - λt - 1 + λt - -1.
Plugging this into our formula for h (t) we find that

h (t -) = λ t - - 1 (λ + t -) 2 + 1 (1 + λt -) 2 < 0.
We conclude that t -is a local maximum of h and that h is decreasing in a neighborhood of t -. Since lim t→0+ h(t) = -∞ and h(1) = 0 and there are no other critical points of h we conclude that h(t -) is a global maximum of h and therefore it is positive. Proposition 6. Let λ ∈ (0, 1), a > -1 and let α, β > -1. We have the following asymptotic behavior as n → ∞:

(1)

If a > -2λ 1+λ then ˆ1 0 (1 + λt) β t α t + λ t (a+1) 1 + λt t + λ n dt = 1 n (1 + λ) β λ(a + 2) + a 1 + O(n -1 ) .
(

) If a = -2λ 1+λ then ˆ1 0 (1 + λt) β t α t + λ t (a+1) 1 + λt t + λ n dt = 1 n 1/3 Γ(1/3) 3 2/3 (1 + λ) β (λ(1 -λ)) 1/3 1 + O(n -1/3 ) . (3) If a ∈ (-1, -2λ 1+λ ) then g(t -) > 1 and ˆ1 0 (1 + λt) β t α t + λ t (a+1) 1 + λt t + λ n dt ∼ (1 + λt -) β+1 t α -(g(t -)) n 2πt - nλ ((1 + λt -) 2 -(λ + t -) 2 ) . 2 
Proof. For properties of h we refer to the respective points of Lemma 5. We employ standard Laplace methods to study the asymptotic behavior

ˆ1 0 (1 + λt) β (-t) α t + λ t (a+1) 1 + λt t + λ n dt = ˆ0 -1 (1 -λt) β t α λ -t (-t) (a+1) 1 -λt t -λ n dt = ˆ0 -1 f (t)e -n h(t) dt,
where

f (t) = f (-t) = (1 -λt) β (-t) α λ -t , h(t) = -h(-t) = -ln (-t) a+1 1 -λt λ -t .
(1) If a > -2λ 1+λ then h(-1) = 0, lim t→0 + h(t) = +∞ and for t ∈ [-1, 0) that h(t) ≥ 0 and h (t) > 0. Applying a result by A. Erdélyi (1956) [START_REF] Olver | Asymptotics and Special Functions[END_REF]Theorem 7.1 page 81] we get

ˆ0 -1 f (t)e -n h(t) dt = f (-1) n h (-1) e n h(-1) 1 + O(n -1 ) = 1 n (1 + λ) β λ(a + 2) + a 1 + O(n -1 ) which completes the proof. (2) If a = -2λ
1+λ then h is positive and strictly increasing on

[-1, 0) with h(-1) = 0, lim t→0 -h(t) = ∞. Moreover h (-1) = h (-1) = 0 while h(3) (-1) = h (3) (1) = 2λ(1-λ) (1+λ) 3 > 0. Applying again A. Erdélyi's result [FO0, Theorem 7.1 page 81] we get ˆ0 -1 f (t)e -n h(t) dt = f (-1)e -n h(-1) Γ(1/3) 3 3! n h(3) (-1) 1/3 1 + O(n -1/3 ) = (1 + λ) β-1 n 1/3 Γ(1/3) 3 2/3 1 + λ (λ(1 -λ)) 1/3 1 + O(n -1/3 ) = 1 n 1/3 Γ(1/3) 3 2/3 (1 + λ) β (λ(1 -λ)) 1/3 1 + O(n -1/3 ) .
(3) If a ∈ (-1, -2λ 1+λ ) then t -is the unique maximum of h on (0, 1) with g(t -) = e h(t -) > 1. Applying standard results about Laplace integrals [START_REF] Bender | Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory[END_REF]formula (6.4.19c) page 267] we obtain ˆ1 0

(1 + λt)

β t α t + λ t (a+1) 1 + λt t + λ n dt ∼ (1 + λt -) β t α - t -+ λ 2π -nh (t -) (g(t -)) n , as n → +∞. Moreover 2π -nh (t -) = (λ + t -)(1 + λt -) 2πt - nλ ((1 + λt -) 2 -(λ + t -) 2 )
and the result follows.

Simple exponential upper estimates

In Lemma 3 we chose to not specify the parameter x ∈ (λ, 1/λ). This allows us to tune the parameter to find simple exponential bounds for Jacobi polynomials for a ∈ (-1, -2λ 1+λ ) ∪ ( 2λ 1-λ , ∞). Proposition 7. Let α, β > -1, a > -1, λ ∈ (0, 1) and n be a positive integer.

(1) We assume that α + an is an integer.

(a) If a > 2λ 1-λ then there is x * ∈ (λ, 1) such that

|λ an+α (1 -λ 2 ) β P (an+α, β) n (1 -2λ 2 )| ≤ (x * ) α-a ψ β (λx * ) (x * ) a+1 1 -λx * x * -λ n+1 and (x * ) a+1 1-λx * x * -λ < 1 where ψ β (u) = (1 + u) β-1 if β ≥ 1 (1 -u) β-1 , if β < 1 .
x * is computed explicitly below in (4.2). (b) If a < -2λ 1+λ then for any x ∈ (1, 1/λ)

|λ an+α (1 -λ 2 ) β P (an+α, β) n (1 -2λ 2 )| ≤ x α-a ψ β (λx) x a+1 1 -λx x -λ n+1 and x a+1 1-λx x-λ < 1.
(2) We assume that α + an is not an integer.

(a) If a > 2λ 1-λ then there is x * ∈ (0, 1) such that |λ an+α (1 -λ 2 ) β P (an+α, β) n

(1 -2λ 2 )| ≤ (x * ) α-a ψ β (λx * ) (x * ) a+1 1 -λx * x * -λ n+1 + ˆ1 0 (1 + λt) β t α t + λ dt (x * ) a+1 1 + λx * x * + λ n . and (x * ) a+1 1-λx * x * -λ < 1, (x * ) a+1 1+λx * x * +λ < 1. (b) If a < -2λ 1+λ λ an+α (1 -λ 2 ) β P (an+α, β) n (1 -2λ 2 ) ∼ (1 + λt -) β+1 t α -(g(t -)) n 2πt - nλ ((1 + λt -) 2 -(λ + t -) 2 )
where t -∈ (0, 1) is computed explicitly below in (3.2) and g(t

-) = t a+1 - 1+λt - λ+t -> 1.
To start with we find upper estimates for

1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=xe iϕ dϕ .
Lemma 8. We have the following exponential upper bounds.

(1) If a > 2λ 1-λ then there is x * ∈ (λ, 1) such that (x * ) a+1 1-λx * x * -λ ∈ (0, 1) and

1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=x * e iϕ dϕ ≤ (x * ) α-a ψ β (λx * ) (x * ) a+1 1 -λx * x * -λ n+1 where ψ β (u) = (1 + u) β-1 if β ≥ 1 (1 -u) β-1 , if β < 1 . x * is computed explicitly below in (4.2).
(2) If -1 < a < -2λ 1+λ then for any x ∈ (1, 1/λ) we have x a+1 1-λx x-λ ∈ (0, 1) and

1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=xe iϕ dϕ ≤ x α-a ψ β (λx) x a+1 1 -λx x -λ n+1 .
Proof. Clearly

1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=xe iϕ dϕ ≤ max |z|=x z α+1 (1 -λz) β z -λ max |z|=x |z a+1 1 -λz z -λ | n .
For z = xe iϕ we have

max |z|=x z a+1 1 -λz z -λ = x a+1 max -π≤ϕ≤π 1 -λxe iϕ xe iϕ -λ .
Direct computation shows that

∂ ∂ϕ | 1 -λxe iϕ xe iϕ -λ | 2 = - 2(1 -x 2 )(1 -λ 2 )λx sin ϕ |xe iϕ -λ| 2 ,
so the corresponding max is attained either at ϕ = 0 or at ϕ = ±π. Thus max

-π≤ϕ≤π | 1-λxe iϕ xe iϕ -λ | is either equal to | 1-λx x-λ | or to 1+λx x+λ . Since x ∈ (λ, 1/λ) we have | 1-λx x-λ | = 1-λx x-λ and 1 -λx x -λ - 1 + λx x + λ = 2λ(1 -x 2 ) x 2 -λ 2 > 0. This gives max -π≤ϕ≤π | 1-λxe iϕ xe iϕ -λ | = 1-λx x-λ and thus max |z|=x |z a+1 1 -λz z -λ | = x a+1 1 -λx x -λ , but also max |z|=x |z α+1 (1 -λz) β z -λ | = x α+1 max |z|=x | (1 -λz) β z -λ | ≤ x α+1 ψ β (λx) max |z|=x | 1 -λz z -λ | = x α+1 ψ β (λx) 1 -λx x -λ ,
and as a consequence

1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=xe iϕ dϕ ≤ x α+1 ψ β (λx) 1 -λx x -λ x a+1 1 -λx x -λ n ≤ x α-a ψ β (λx) x a+1 1 -λx x -λ n+1 .
We put g(x) = x a+1 1-λx x-λ . The derivative of g with respect to x is zero if and only if the variables λ, a, x satisfy

a = λ x -λ + λx 1 -λx .
Solving the latter for x gives:

x +,-= a + aλ 2 + 2λ 2 2λ(a + 1) ± a + aλ 2 + 2λ 2 2λ(a + 1) 2 -1,
which is real if and only if (a ≥ 2λ 1-λ or a ≤ -2λ 1+λ ). Moreover direct computation shows that (4.1)

g (x +,-) = x a+1 +,- λ(1 -x 2 +,-)(1 -λ 2 ) x +,-(x +,--λ) 3 (1 -λx +,-)
and the fact that x +,-is a max or min will depend on its position with respect to 1, λ and 1/λ.

1) We first prove that if a > 2λ 1-λ then x + ∈ (1, 1/λ) while x -∈ (λ, 1) and

(4.2) x * = x -= a + aλ 2 + 2λ 2 2λ(a + 1) - a + aλ 2 + 2λ 2 2λ(a + 1) 2 -1 satisfies g(x * ) < 1. We note that x +,-(a = 2λ 1-λ ) = 1, x +,-(a = -2λ 1+λ ) = -1 while x + (a → ∞) → 1 λ and x -(a → ∞) → λ. The function a → y(a) = a+aλ 2 +2λ 2
2λ(a+1) is monotonically increasing on R for λ ∈ (0, 1) and the function f + (y) = y + y 2 -1 is increasing for y > 1. This shows that x + (a) is increasing for a > 2λ 1-λ so that x + ∈ (1, 1/λ). In particular x → g (x) vanishes on (λ, 1] if and only if x = x -. Moreover the fact that x -∈ (λ, 1) taken together with formula (4.1) gives g (x -) < 0 and x -is a min for g on (λ, 1). Taking into account lim x→λ + g(x) = +∞ and g(1) = 1, g is strictly decreasing on (λ, x -], strictly increasing on [x -, 1] and admits a unique minimum x * = x -on (λ, 1] which satisfies g(x * ) < 1.

2) We prove that if a < -2λ 1-λ then x +,-< 0 and for any x ∈ (1, 1/λ) we have g(x) < 1.

Indeed we observe first that

-1 < a < - 2λ 1 -λ < - 2λ 2 1 + λ 2 because 2λ 1+λ -2λ 2 1+λ 2 = 2λ(1-λ) (1+λ)(1+λ 2 ) > 0.
In particular a + aλ 2 + 2λ 2 2λ(a + 1) < 0 and thus x -< 0. Moreover

a + aλ 2 + 2λ 2 2λ(a + 1) 2 -1 < | a + aλ 2 + 2λ 2 2λ(a + 1) | so that a + aλ 2 + 2λ 2 2λ(a + 1) + a + aλ 2 + 2λ 2 2λ(a + 1) 2 -1 < 0.
In particular g does not vanish on (λ, 1/λ] with lim x→λ + g(x) = +∞, g(1) = 1 and g(1/λ) = 0: as a consequence g is strictly decreasing on (1, 1/λ) and satisfies 0 < g(x) < 1 for any x ∈ (1, 1/λ).

We conclude by proving Proposition 7.

Proof of Proposition 7. Since (1) is clear from Lemma 8 we prove (2).

(2) If a > 2λ 1-λ we apply Lemma 8 point (1) and choose x = x * ∈ (λ, 1) such that (x * ) a+1 1-λx *

x * -λ ∈ (0, 1). We have and g(t -) > 1.

1 π ˆπ 0 z α+1 (1 -λz) β z -λ z a+1 1 -λz z -λ n z=x * e iϕ dϕ ≤ (x * ) α-a ψ β (λx * ) (x * ) a+1 1 -λx * x * -λ n+1 where ψ β (u) = (1 + u) β-1 if β ≥ 1 (1 -u)

Proof of Theorem 2

We add this section for completeness. We collect our results on the two integrals and write up a proof of the main theorem. Recall that according to Lemma 3 we have λ an+α (1 -λ 2 ) β P (an+α, β) n 

(1 -2λ 2 ) = 1 π ˆπ 0 z α+1 (1 -λz) β z -λ

Figure 3 . 1 .

 31 Figure3.1. This figure depicts the situation described in Lemma 5. In all plots λ = 0.3 is chosen. A) corresponds to point (1) in the lemma and graph shows, a = 0.9 > -6/13. B) corresponds to point (2) in the lemma and graphs show a = -6/13. C) corresponds to point (3) in the lemma and graphs show a = -0.9 < -6/13.

  Similarly x -∈ (λ, 1) and x -(a) is decreasing for a > 2λ 1-λ since the function f -(y) = y -y 2 -1 is decreasing for y > 1. For illustration Figure 4.1 depicts graphs of f + (y) = y + y 2 -1 and f -(y) = y -y 2 -1.

Figure 4 . 1 .

 41 Figure 4.1. Plot of functions f + (y) = y + y 2 -1 (red) and f -(y) = y -y 2 -1 (blue).

  We choose any x such that x ∈ (1, min(1/λ, t + )) where and observe that the second critical point t + for g (the first one being t -∈ (λ, 1) see Lemma 5 point (3)) satisfies t + > 1. Indeed nλ ((1 + λt -) 2 -(λ + t -) 2 ) ,

		t + = -	a + aλ 2 + 2λ 2 2λ(a + 1)	+	a + aλ 2 + 2λ 2 2λ(a + 1)
	t + -1 =	a + aλ 2 + 2λ 2 2λ(a + 1)		2	-1 -	(1 + λ)(a(1 + λ) + 2λ) 2λ(a + 1)	> 0
	since a(1 + λ) + 2λ < 0. Then we write			
	ˆx 0 = ˆ1 0 (1 + λt) β t α t + λ (1 + λt) β t α t (a+1) 1 + λt t + λ t + λ t (a+1) 1 + λt n t + λ	dt n	dt +	ˆx 1	(1 + λt) β t α t + λ	t (a+1) 1 + λt t + λ
	t+λ is strictly increasing on [0, 1] so t → t (a+1) 1+λt ∼ ˆ1 0 (1 + λt) β t α t + λ t (a+1) 1 + λt t + λ
	where		ˆx * 0	(1 + λt) β t α t + λ			t (a+1) 1 + λt t + λ
		t -= -	a + aλ 2 + 2λ 2 2λ(a + 1)	-	a + aλ 2 + 2λ 2 2λ(a + 1)
	n+1 (x If a < -2λ + ˆ1 0 (1 + λt) β t α t + λ dt 1+λ we apply Lemma 8 point (2). For any x ∈ (1, 1/λ) we have x a+1 1-λx x-λ ∈ (0, 1)
	and							
	|	1 π	ˆπ 0	z α+1 (1 -λz) β z -λ	z a+1 1 -λz z -λ	n	z=xe iϕ	dϕ |

β-1 , if β < 1 . Moreover according to Lemma 5 point (1) g :

n dt ≤ (x * ) a+1 1 + λx * x * + λ n ˆx * 0 (1 + λt) β t α t + λ dt with (x * ) a+1 1+λx * x * +λ < 1. Thus |λ an+α (1 -λ 2 ) β P (an+α, β) n (1 -2λ 2 )| ≤ (x * ) α-a ψ β (λx * ) (x * ) a+1 1 -λx * x * -λ * ) a+1 1 + λx * x * + λ n . ≤ x α-a ψ β (λx) x a+1 1 -λx x -λ n+1 . 2 -1 n dt

and the asymptotic (exponential) behavior of the first integral is given in Lemma 5 point (2) while the second one is O(n -1 ) because x has been chosen so that g does not vanish on

[1, x]. Thus λ an+α (1 -λ 2 ) β P (an+α, β) n (1 -2λ 2 ) n dt ∼ (1 + λt -) β+1 t α -(g(t -)) n 2πt - 2 -1
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Proof of Theorem 2. (1) If a ∈ (-2λ 1+λ , 2λ 1-λ ) we choose x = 1 and conclude by combining Proposition 6 point (1) and Proposition 4 point (1).

(2) If a = 2λ 1-λ we choose again x = 1 and conclude by combining Proposition 6 point (2) andProposition 4 point (2). If a = -2λ 1+λ we choose x = 1. According to Proposition 6 point (2) we have

where C(λ, β) = Γ(1/3)

The result follows by subtracting the two above equalities. ( 3) and ( 4) are direct consequences of Proposition 7.