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Introduction and main results

A one-dimensional Lévy process is a stochastic process issued from the origin with stationary and independent increments and almost sure right continuous paths. We write ξ = (ξ t : t ≥ 0) for its trajectory and P for its law. As ξ is necessarily a strong Markov process, for each x ∈ R, we will need the probability P x to denote the law of ξ when issued from x with the understanding that P 0 = P. The law P of a Lévy process is characterized by its one-time transition probabilities. In particular there always exists a triple (µ, ρ, Π) where µ ∈ R, ρ ∈ R and Π is a measure on R\{0} satisfying the integrability condition R (1 ∧ x 2 )Π(dx) < ∞, such that, for all z ∈ R E[e izξt ] = e tψ(iz) , Date: May 6, 2016. C. S. thanks the Centro de Investigacion Mathematica, where part of this work was done. This work was partially funded by the Chair "Modélisation Mathématique et Biodiversité" of VEOLIA-Ecole Polytechnique-MNHN-F.X. and by the franco-mexican project PICS (CNRS) "Structures Markoviennes Auto-Similaires".

where the Laplace exponent ψ(z) is given by the Lévy-Khintchine formula

ψ(z) = 1 2 ρ 2 z 2 + µz + R (e zx -1 -zxh(x)) Π(dx).
Here h(x) is the cutoff function which is usually taken to be h(x) ≡ 1 {|x|<1} . Whenever the process ξ has finite mean, we will take h(x) ≡ 1.

In this paper, we are interested in studying the exponential functional of ξ which is defined as follows I t (ξ) := t 0 e -ξs ds, t ≥ 0.

In recent years there has been a general recognition that exponential functionals of Lévy processes play an important role in various domains of probability theory such as self-similar Markov processes (see e.g. [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Lévy processes[END_REF] and [START_REF] Bertoin | Exponential functionals of Lévy processes[END_REF]), generalized Ornstein-Uhlenbeck processes (see e.g. [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Lévy processes[END_REF]), random processes in random environment (see e.g. [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Lévy processes[END_REF] and [START_REF] Bertoin | Exponential functionals of Lévy processes[END_REF]), fragmentation processes, branching processes (see for instance [START_REF] Kyprianou | Continuous-state branching processes and self-similarity[END_REF]), mathematical finance, Brownian motion on hyperbolic spaces (see e.g. [START_REF] Bertoin | Exponential functionals of Lévy processes[END_REF]), insurance risk, queueing theory, to name but a few.

There is a vast literature about exponential functionals of Lévy processes drifting to +∞ or killed at an independent exponential time e q with parameter q ≥ 0, see for instance [START_REF] Bertoin | Exponential functionals of Lévy processes[END_REF]. For a Lévy process ξ satisfying one of these assumptions it is well known that I ∞ (ξ) and I eq (ξ) are finite almost surely with absolute continuous densities. Most of the known results on I ∞ (ξ) and I eq (ξ) are related to the knowledge of their densities or the behaviour of their tail distributions since they can be applied to many important problems in applied probability. According to Theorem 1 of Arista and Rivero [START_REF] Arista | Implicit renewal theory for exponential functionals of[END_REF], the density h of the r.v. I ∞ (ξ) is completely determined by the following integral equation

∞ t h(x)dx = R h(te -y )U (dy),
a.e. t on (0, ∞),

where U denotes the potential measure associated to ξ, i.e.

U (dy) =

∞ 0 P(ξ s ∈ dx)ds.

We refer to [START_REF] Arista | Implicit renewal theory for exponential functionals of[END_REF] and [START_REF] Bertoin | Exponential functionals of Lévy processes[END_REF], and the reference therein, for more details about these facts.

In this paper, we are interested in the cases when the Lévy process ξ does not satisfy such conditions, in other words when I t (ξ) does not converge almost surely to a finite random variable, as t goes to ∞. More precisely, one of our aims is to study the asymptotic behaviour of

E F I t (ξ) as t → ∞,
where F is a non-increasing function with polynomial decay at infinity and under some exponential moment conditions on ξ. In particular, we find five different regimes that depend on the shape of ψ(z), whenever it is well-defined. These results can be applied for some particular cases which are important for applications such as

F (x) = x -p , F (x 
) = 1 -e x -p or F (x) = e -x , for x ≥ 0.

Up to our knowledge, the case when the exponential functional of a Lévy process does not converge has only been studied in a few papers and not in it most general form, see for instance [START_REF] Boeinghoff | Branching diffusions in random environment[END_REF][START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF][START_REF] Palau | Continuous state branching processes in random environment: The Brownian case[END_REF]. In all these papers, the main motivation is application to random processes in random environment. More specifically to branching processes and diffusions in random environment, that we briefly describe below.

Branching processes in random environment (BPREs) were first introduced and studied by Smith and Wilkinson in [START_REF] Smith | On branching processes in random environments[END_REF] and have attracted considerable interest in the last decade, see for instance [START_REF] Afanasyev | Limit theorems for weakly subcritical branching processes in random environment[END_REF][START_REF] Afanasyev | Criticality for branching processes in random environment[END_REF][START_REF] Bansaye | Large deviations for branching processes in random environment[END_REF][START_REF] Böinghoff | Branching processes in random environment which extinct at a given moment[END_REF] and the reference therein. BPREs are more realistic models compared with classical branching processes and, from the mathematical point of view, they have new properties such as the phase transition in the subcritical regime. Scaling limits in the finite variance case were conjectured by Keiding [START_REF] Keiding | Extinction and exponential growth in random environments[END_REF] who introduced Feller diffusions in random environment. This conjecture was proved by Kurtz [START_REF] Kurtz | Diffusion approximations for branching processes[END_REF] and by Bansaye and Simatos [START_REF] Bansaye | On the scaling limits of galton-watson processes in varying environments[END_REF] in a more general setting.

There are new studies about its continuous analogue in time and state space. In all of them, the CB-process in random environment is defined as a strong solution of a particular stochastic differential equation. More precisely, the works of Boeinghoff and Hutzenthaler [START_REF] Boeinghoff | Branching diffusions in random environment[END_REF] and Bansaye et al. [START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF] are concerned with the extinction rates of branching diffusions in a Brownian environment and branching processes in a random environment driven by a Lévy process with bounded variations, respectively. Recently, motivated by these works, Palau and Pardo [START_REF] Palau | Continuous state branching processes in random environment: The Brownian case[END_REF] studied the long time behaviour (extinction, explosion, Q-process) of branching processes in a Brownian environment. In all these manuscripts, the authors proved the existence of such process and obtained the speed of extinction which is related to an exponential functional of a Lévy process associated to the random environment. Similarly to the case of BPREs, there is a phase transition in the subcritical regime.

Exponential functionals occur very naturally in the study of some models of diffusions in random environment, which we now describe informally. Associated with a stochastic process

V = (V (x), x ∈ R) such that V (0) = 0, a diffusion X V = (X V (t), t ≥ 0) in the random potential V is, loosely speaking, a solution to the stochastic differential equation dX V (t) = dβ t - 1 2 V ′ (X V (t))dt, X V (0) = 0,
where (β t , t ≥ 0) is a standard Brownian motion independent of V . More rigorously, the process X V should be considered as a diffusion whose conditional generator, given V , is:

1 2 exp(V (x)) d dx e -V (x) d dx .
It is now clear, from Feller's construction of such diffusions, that the potential V does not need to be differentiable. Kawazu and Tanaka [START_REF] Kawazu | On the maximum of a diffusion process in a drifted brownian environment[END_REF] studied the asymptotic behaviour of the tail of the distribution of the maximum of a diffusion in a drifted Brownian potential. Carmona et al. [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Lévy processes[END_REF] considered the case when the potential is a Lévy process whose discontinuous part is of bounded variation. Thus, from the form of the generator it is no surprise that the knowledge about the exponential functionals I x (-V (x)), for x ∈ R, plays an essential role in this domain. Now, we state our main results. Assume that

θ + = sup {λ > 0 : ψ(λ) < ∞} , (1) 
exists. In other words, the Laplace exponent of the Lévy process ξ can be defined on [0, θ + ), see for instance Lemma 26.4 in Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]. Besides, ψ satisfies

ψ(λ) = log E e λξ 1 , λ ∈ [0, θ + ).
From Theorem 25.3 in Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], the latter is equivalent to

{|x|>1} e λx Π(dx) < ∞, for λ ∈ [0, θ + ).
Moreover ψ belongs to C ∞ ([0, θ + )) with ψ(0) = 0 and ψ ′′ (λ) > 0, for λ ∈ [0, θ + ) (see Lemma 26.4 in Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]). Hence, the Laplace exponent ψ is a convex function on [0, θ + ) implying that either it is positive on (0, θ + ) or it may have another root on (0, θ + ). In the latter scenario, ψ has at most one global minimum on (0, θ + ). Whenever such a global minimum exists, we let τ ∈ (0, θ + ) be such that ψ ′ (τ ) = 0. As we will see below, this parameter is relevant in order to determine the asymptotic behaviour of E [I t (ξ) -p ].

Theorem 1. Assume that 0 < p < θ + and

E ξ + 1 e pξ 1 < ∞. (2) i) If ψ ′ (0+) > 0, then lim t→∞ E I t (ξ) -p = E I ∞ (ξ) -p .
ii) If ψ ′ (0+) = 0 and ψ ′′ (0+) < ∞, then there exists a positive constant c 1 such that

lim t→∞ √ tE I t (ξ) -p = c 1 .
iii) Assume that ψ ′ (0+) < 0 and a) if ψ ′ (p) < 0, then there exists a positive constant c 2 such that

lim t→∞ e -tψ(p) E I t (ξ) -p = c 2 .
b) if ψ ′ (p) = 0 and ψ ′′ (p) < ∞, then there exists a positive constant c 3 such that

lim t→∞ √ te -tψ(p) E I t (ξ) -p = c 3 . c) ψ ′ (p) > 0 and ψ ′′ (τ ) < ∞ then E I t (ξ) -p = o(t -1/2 e tψ(τ ) ), as t → ∞.
Moreover if also we assume that ξ is non-arithmetic (or no lattice) then

E I t (ξ) -p = O(t -3/2 e tψ(τ ) ), as t → ∞.
It is important to note that assumption (2) implies that ψ(p) is well defined and E [I t (ξ) -p ] is finite for t > 0. Indeed, we deduce from the fact that (e pξt-tψ(p) , t ≥ 0) is a positive martingale and L 1 -Doob's inequality (see [START_REF] Acciaio | A trajectorial interpretation of doob's martingale inequalities[END_REF]) the following series of inequalities, for t ≤ 1,

E I t (ξ) -p ≤ t -p E sup 0≤u≤1 e pξu ≤ t -p e ψ(p)∨0 E sup 0≤u≤1 e pξu-uψ(p) ≤ t -p e e -1 e ψ(p)∨0 1 + |ψ(p)| + pe -ψ(p)∧0 E ξ + 1 e pξ 1 < ∞. (3) 
We get the finiteness for t > 1, by using the fact that I t (ξ) is non-decreasing, i.e. for t > 1,

E I t (ξ) -p ≤ E I 1 (ξ) -p < ∞.
We are now interested in extending the above result to a class of non-increasing functions with polynomial decay at ∞. As we will see below such extension is not straightforward and need more conditions on the exponential moments of the Lévy process ξ.

For simplicity, we write

E F (t) := E [F (I t (ξ))] ,
where F belongs to a particular class of continuous functions on R + that we will introduce below. We assume that the Laplace exponent ψ of ξ is well defined on the interval (θ -, θ + ), where θ -:= inf{λ < 0 : ψ(λ) < ∞}, and θ + is defined as in [START_REF] Acciaio | A trajectorial interpretation of doob's martingale inequalities[END_REF]. Again from Theorem 25.3 and Lemma 2.6 in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], the latter is equivalent to {|x|>1} e λx Π(dx) < ∞, for λ ∈ (θ -, θ + ), ψ belongs to C ∞ ((θ -, θ + )) with ψ(0) = 0 and ψ ′′ (λ) > 0, for λ ∈ (θ -, θ + ). In other words, the Laplace exponent ψ is a convex function on (θ -, θ + ) implying that ψ ′ (0+) ≥ 0 and ψ(θ + -) > 0 or ψ ′ (0+) < 0 and ψ(θ -+) > 0.

In any case, ψ has at most one global minimum on (θ -, θ + ). Whenever such a global minimum exists, we let as previously τ ∈ (θ -, θ + ) be such that ψ ′ (τ ) = 0. Notice that τ ∈ (θ -, 0) when ψ ′ (0+) > 0, τ = 0 when ψ ′ (0+) = 0, and τ ∈ (0, θ + ) when ψ ′ (0+) < 0.

We will consider functions F satisfying one of the following conditions. Let ς ≥ 1 and A be a positive constant:

(A1) F is non increasing and satisfies

F (x) = A(x + 1) -p 1 + (1 + x) -ς h(x) , 0 < p ≤ τ,
where h is a Lipschitz function which is bounded. (A2) F is a non increasing Hölder function with index α > 0 and satisfies

F (x) ≤ A(x + 1) -p , p > τ.
Theorem 2. Assume that 0 < p < θ + and

E ξ + 1 e pξ 1 < ∞.
We have the following five regimes for the asymptotic behaviour of E F (t) for large t.

i) If ψ ′ (0+) > 0 and F is a positive and continuous function which is bounded, then

lim t→∞ E F (t) = E F (∞).
ii) If ψ ′ (0+) = 0, F satisfies (A2), and there exists η > 0 such that θ -< -η < η

+ p < θ + , E ξ - 1 e -ηξ 1 < ∞ and E ξ + 1 e (η+p)ξ 1 < ∞,
then there exists a positive constant c 1 such that

lim t→∞ √ tE F (t) = c 1 .
iii) Suppose that ψ ′ (0+) < 0: a) If F satisfies (A1) with p < θ + , ψ ′ (p) < 0 and there exists ε > 0 such that p(1+ε) < θ + and

E ξ + 1 e p(1+ε)ξ 1 < ∞. ( 4 
)
Then there exists a positive constant c 2 such that,

lim t→∞ e -tψ(p) E F (t) = lim t→∞ e -tψ(p) E A I t (ξ) p =c 2 . b) If F satisfies (A1), ψ ′ (p) = 0, ψ ′′ (p) < ∞, and there exists η, ϑ > 0 such that θ -< ϑ + η < ϑ + p + η < θ + , E ξ * 1 e (p-η)ξ 1 < ∞, and E ξ + 1 e (ϑ+η+p)ξ 1 < ∞,
where * = sign(p -η). Then there exists a positive constant c 3 such that

lim t→∞ √ te -tψ(p) E F (t) = lim t→∞ √ te -tψ(p) E A I t (ξ) p =c 3 .
c) If F satisfies (A2), ψ ′ (p) > 0, and there exists η > 0 such that θ -< τ + η < τ + p + η < θ + , E ξ * 1 e (τ -η)ξ 1 < ∞ and E ξ + 1 e (τ +η+p)ξ 1 < ∞, where * = sign(τ -η). Then there exists a positive constant c 4 such that

lim t→∞ t 3/2 e -tψ(τ ) E F (t) = c 4 .
The remainder of the paper is structured as follows. In Section 2, we apply our results to the following classes of processes in random environment: self-similar continuous state branching processes, a population model with competition and diffusions whose dynamics are perturbed by a random environment which is driven by a Lévy process. In particular, we study the asymptotic behaviour of the probability of extinction and explosion for some classes of selfsimilar continuous state branching processes in a Lévy random environment. For the population model with competition, we describe the asymptotic behaviour of its mean. For the diffusion in a Lévy random environment, we provide the asymptotic behavior of tail probability of its global maximum. Finally, Section 3 is devoted to the proofs of our main results.

Applications

2.1. Self-similar continuous state branching processes in a Lévy random environment. A continuous state branching process (CB-process for short) is a non-negative strong Markov process (Y t , t ≥ 0) where 0 and ∞ are two absorbing states and with probabilities (P x , x ≥ 0) such that for x , y ≥ 0, P x+y is equal in law to the convolution of P x and P y . The law of Y is completely characterized by its Laplace transform

E x e -λYt = e -xut(λ) , ∀x > 0, t ≥ 0,
where u is a differentiable function in t satisfying

∂u t (λ) ∂t = -Ψ(u t (λ)), u 0 (λ) = λ.
The function Ψ is known as the branching mechanism of Y . It satisfies the celebrated Lévy-Khincthine formula

Ψ(λ) = -aλ + γ 2 λ 2 + (0,∞) e -λx -1 + λx1 {x<1} µ(dx), where a ∈ R, γ ≥ 0 and µ is a σ-finite measure such that (0,∞) 1 ∧ x 2 µ(dx) < ∞.
Here we are interested in the case where the branching mechanism is stable, that is to say

Ψ(λ) = -aλ + c β λ β+1 , λ ≥ 0, for some β ∈ (-1, 0) ∪ (0, 1], a ∈ R and c β is such that c β < 0 if β ∈ (-1, 0), c β > 0 if β ∈ (0, 1].
We call its associated CB-process a self-similar CB-process. Under this assumption, the process Y can also be defined as the unique non-negative strong solution of the following SDE (see for instance [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF])

Y t =Y 0 + a t 0 Y s ds + 1 {β=1} t 0 2c β Y s dB s + 1 {β =1} t 0 ∞ 0 Y s- 0 z N (ds, dz, du),
where B = (B t , t ≥ 0) is a standard Brownian motion, N is a Poisson random measure independent of B with intensity

c β β(β + 1) Γ(1 -β) 1 z 2+β dsdzdu,
N is its compensated version and

N (ds, dz, du) = N (ds, dz, du) if β ∈ (-1, 0), N (ds, dz, du) if β ∈ (0, 1).
According to Palau and Pardo [START_REF] Palau | Branching processes in a Lévy random environment[END_REF], we can define a self-similar branching process whose dynamics are affected by a Lévy random environment (SSBLRE) as the unique non-negative strong solution of the stochastic differential equation

Z t =Z 0 + a t 0 Z s ds + 1 {β=1} t 0 2c β Z s dB s + 1 {β =1} t 0 ∞ 0 Z s- 0 z N (ds, dz, du) + t 0 Z s-dS s , (5) 
where

S t = αt + σW t + t 0 (0,1) (e v -1) M (ds, dv) + t 0 (-∞,0)∪[1,∞) (e v -1)M (ds, dv), (6) 
is an independent process, α ∈ R, σ ≥ 0, W = (W t , t ≥ 0) is a standard Brownian motion, M is a Poisson random measure in R + × R independent of W with intensity dsπ(dy), M its compensated version and π is a σ-finite measure such that R (1 ∧ v 2 )π(dv) < ∞ and (-1,0) |e v -1|π(dv) < ∞.
The uniqueness implies the strong Markov property for Z.

For the sequel, we define the auxiliary process

K t = dt + σB (e) t + t 0 (0,1) v N (e) (ds, dv) + t 0 R\(0,1)
vN (e) (ds, dv),

where

d = α - σ 2 2 - (0,1) (e v -1 -v)π(dv).
Moreover, we can compute the Laplace transform of Z t e -Kt , for t ≥ 0, which may help us to get the probability of survival and non explosion of Z.

Proposition 1. Let (Z t , t ≥ 0) be a stable SSBLRE with index β ∈ (-1, 0) ∪ (0, 1].
Then for all z, λ > 0 and t ≥ 0, we have

E z exp -λZ t e -Kt K = exp -z (λe at ) -β + βc β t 0 e -β(Ku+au) du -1/β . Proof. We introduce Z t = Z t e -Kt and take F (s, x) = exp {-xv t (s, λ, K)}, where v t (s, λ, K) = e as (λe at ) -β + βc β t s e -β(Ku+au) du -1/β . From Itô's formula, we observe that (F (s, Z s ), s ≤ t) conditioned on K is a martingale since v t (s, λ, K) satisfies ∂ ∂s v t (s, λ, K) = -av t (s, λ, K) + c β v β+1 t (s, λ, K)e -βKs .
The above implies

E z exp -λ Z t K = E z exp -Z 0 v t (0, λ, K) K = exp {-zv t (0, λ, K)} ,
which completes the proof.

We are interested in two events which are of immediate concern for the process Z, explosion and extinction. The event of explosion at fixed time t, is given by {Z t = ∞}, and the event {∃ t > 0, Z t = 0} is referred as extinction.

Speed of explosion of SSBLRE.

Let us first study the event of explosion for self-similar branching processes in a Lévy random environment. This event has only been studied for branching processes in random environment in the case when the random environment is driven by a Brownian motion with drift, see [START_REF] Palau | Continuous state branching processes in random environment: The Brownian case[END_REF]. From Proposition 1 and letting λ go to 0, we deduce

P z Z t < ∞ K = 1 {β>0} + 1 {β<0} exp -z βc β t 0 e -β(Ku+au) du -1/β a.s. (8)
Let us focus on the most interesting case, β ∈ (-1, 0). We recall that when the environment is constant, a stable CB-process explodes with positive probability. In fact, when a = 0, we can compute explicitly the asymptotic behaviour of the probability of explosion. When a random environment affects the stable CB-process, the behaviour of the process is completely different. In fact, it also explodes with positive probability, since

P z Z t = ∞ K = 1 -exp -z βc β t 0 e -β(Ku+au) du -1/β > 0,
but three different regimes appears for the asymptotic behaviour of the non-explosion probability that depend on the parameters of the random environment. We call these regimes subcriticalexplosion, critical-explosion or supercritical-explosion depending on whether this probability stays positive, converges to zero polynomially fast or converges to zero exponentially fast. Before stating this result, let us introduce the Laplace transform of the Lévy process K by

e κ(θ) = E[e θξ 1 ], (9) 
when it exists (see discussion on page 3). We assume that the Laplace exponent κ of K is well defined on the interval (θ - K , θ + K ), where θ - K := inf{λ < 0 : κ(λ) < ∞} and θ + K := sup{λ > 0 : κ(λ) < ∞}. As we will see in Proposition 2, the asymptotic behaviour of the probability of explosion depends on the sign of m = a + κ ′ (0+).

Proposition 2. Let (Z t , t ≥ 0) be the SSBLRE with index β ∈ (-1, 0) defined by the SDE [START_REF] Bansaye | Surviving particles for subcritical branching processes in random environment[END_REF] with Z 0 = z > 0, and recall the definition of the random environment K in [START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF]. Assume that 0 < θ + K and that there exists a positive ε such that

E K + 1 e εK 1 < ∞. i) Subcritical-explosion. If m > 0, then lim t→∞ P z Z t < ∞ = E exp -z βc β ∞ 0 e -β(Ku+au) du -1/β > 0.
ii) Critical-explosion. If m = 0, and there exists η > 0 such that θ

- K < -η < η + ε < θ + , E K - 1 e -ηK 1 < ∞ and E K + 1 e (η+ε)K 1 < ∞,
then for every z > 0 there exists c 2 (z) > 0 such that

lim t→∞ √ tP z Z t < ∞ = c 2 (z).
iii) Supercritical-explosion. If m < 0 and there exists η > 0 such that θ - K < τ +η < τ +ε+η < θ + K , and that

E K * 1 e (τ -η)K 1 < ∞ and E K + 1 e (τ +η+ε)K 1 < ∞,
where * = sign(τ -η) and τ is the root of κ ′ + a on (0, θ + K ) such that κ(τ ) + aτ = min s∈(0,1) {κ(s) + as}.

Then for every z > 0 there exists c 3 (z) > 0 such that

lim t→∞ t 3 2 e -t(κ(τ )+aτ ) P z Z t < ∞ = c 3 (z).
Proof. Observe that the function

F : x ∈ R + → exp -x -1/β
is non-increasing, continuous, bounded, and satisfies Assumption (A2) for every positive p. Hence Proposition 2 is a direct application of Theorem 2 points i), ii) and iii) c).

Speed of extinction of SSBLRE.

Let us now focus on the survival probability. Throughout this section, we assume that β ∈ (0, 1]. Applying Proposition 1 and letting λ go to ∞, we get

P z Z t > 0 K = 1 -exp -z βc β t 0 e -β(Ku+au) du -1/β a.s.
As we will see, similarly as for the probability of explosion, the asymptotic behaviour of the probability of extinction depends on the sign of

m = a + κ ′ (0+).
But unlike the explosion probability, five regimes appear, and a second parameter to take into account is the sign of a + κ ′ (1).

In the case of CB-processes in a constant environment, the asymptotic behaviour in the subcritical regime is always given by E[Y t ], and the critical case differs from the case in random environment, since the asymptotic behavior is given by 1/t and not by 1/ √ t (as in the case ii) of the following proposition). Proposition 3. Let (Z t , t ≥ 0) be a SSBLRE with index β ∈ (0, 1] defined by the SDE [START_REF] Bansaye | Surviving particles for subcritical branching processes in random environment[END_REF] with Z 0 = z > 0, and recall the definition of the random environment K in [START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF]. Assume that 1 < θ

+ K and E K + 1 e K 1 < ∞. i) Supercritical case. If m > 0, then lim t→∞ P z Z t > 0 = E 1 -exp -z βc β ∞ 0 e -β(Ku+au) du -1/β > 0.
ii) Critical case. If m = 0 and there exists η > 0 such that θ

- K < -η < η + 1 < θ + K , E K - 1 e -ηK 1 < ∞ and E K + 1 e (η+1)K 1 < ∞,
then for every z > 0, there exists c 1 (z) > 0 such that

lim t→∞ √ tP z (Z t > 0) = c 1 (z).
iii) Subcritical case. Assume that m < 0 and θ + K > 1, then a) If a + κ ′ (1) < 0 (Strongly subcritical regime), and there exists ε > 0 such that 1 + ε < θ + and

E K + 1 e (1+ε)K 1 < ∞, then there exists c 2 > 0 such that for every x 0 > 0, lim t→∞ e -t(κ(1)+a) P z (Z t > 0) = c 2 z, b) If a + κ ′ (1) = 0 (Intermediate subcritical regime), and there exists η, ϑ > 0 such that θ - K < ϑ + η < ϑ + 1 + η < θ + K , E K * 1 e (1-η)K 1 < ∞, and 
E K + 1 e (ϑ+η+1)K 1 < ∞,
where * = sign(1 -η), then there exists c 3 > 0 such that for every z > 0,

lim t→∞ √ te -t(κ(1)+a) P z (Z t > 0) = c 3 z, c) If a + κ ′ (1) > 0 (Weakly subcritical regime) and there exists η > 0 such that θ - K < τ + η < τ + 1 + η < θ + K , E K * 1 e (τ -η)K 1 < ∞ and E K + 1 e (τ +η+1)K 1 < ∞,
where * = sign(τ -η) and τ is the root of κ ′ + a on (0, θ + K ) such that κ(τ ) + aτ = min s∈(0,1) {κ(s) + as}.

Then, for every z > 0, there exists c 4 (z) > 0 such that

lim t→∞ t 3/2 e -t(κ(τ )+aτ ) P z (Z t > 0) = c 4 (z).
Proof. This is a direct application of Theorem 2, with (ξ t , t ≥ 0) = (β(K t + at), t ≥ 0) and

F (x) = 1 -exp(-z(βc β x) -1/β ).
In the strongly and intermediate subcritical cases a) and b), E[Z t ] provides the exponential decay factor of the survival probability which is given by κ(1) + a, and the probability of nonextinction is proportional to the initial state z of the population. In the weakly subcritical case c), the survival probability decays exponentially with rate κ(τ ) + aτ , which is strictly smaller than κ(1) + a, and c 4 may not be proportional to z (it is also the case for c 1 ). We refer to [START_REF] Bansaye | Surviving particles for subcritical branching processes in random environment[END_REF] for a result in this vein for discrete branching processes in random environment.

More generally, the results stated above can be compared to the results which appear in the literature of discrete (time and space) branching processes in random environment, see e.g. [START_REF] Guivarc | Propriétés asymptotiques des processus de branchement en environnement aléatoire[END_REF][START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF][START_REF] Afanasyev | Criticality for branching processes in random environment[END_REF]. In the continuous framework, such results have been established in [START_REF] Boeinghoff | Branching diffusions in random environment[END_REF] for the Feller diffusion case (i.e. β = 1) in a Brownian environment, in [START_REF] Palau | Continuous state branching processes in random environment: The Brownian case[END_REF] for a general CB process in a Brownian environment, and in [START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF] for stable CB process (β ∈ (0, 1]) subject to random catastrophes killing a fraction of the population.

2.2.

Population model with competition in a Lévy random environment. We now study an extension of the competition model given in Evans et al. [START_REF] Evans | Protected polymorphisms and evolutionary stability of patchselection strategies in stochastic environments[END_REF] and studied by Palau and Pardo [START_REF] Palau | Branching processes in a Lévy random environment[END_REF]. Following Palau and Pardo [START_REF] Palau | Branching processes in a Lévy random environment[END_REF], we define a branching process with competition in a Lévy random environment, (Z t , t ≥ 0), as the unique strong solution of the SDE

Z t = Z 0 + t 0 Z s (µ -kZ s )ds + t 0 Z s-dS s
where µ > 0 is the drift, k > 0 is the competition, and the environment is given by the Lévy process defined in [START_REF] Bansaye | Large deviations for branching processes in random environment[END_REF]. Moreover, the process Z satisfies the Markov property and we have

Z t = Z 0 e Kt 1 + kZ 0 t 0 e Ks ds , t ≥ 0,
where K is the Lévy process defined in [START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF].

The following result studies the asymptotic behaviour of E z [Z t ], where P z denotes the law of Z starting from z. Before stating our result, let us recall the definition of the Laplace transform κ of K in [START_REF] Bertoin | Lévy processes[END_REF] and make the same assumptions on κ as for Proposition 2.

In order to establish our result, we need the following exponential change of measure known as the Esscher transform. According to Theorem 3.9 in Kyprianou [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF], and under our assumption that ψ is well defined for β ∈ (θ -, θ + ), we can perform the following change of measure

dP (β) dP Ft = e βKt-κ(β)t for β ∈ (θ - K , θ + K ), (10) 
where (F t ) t≥0 is the natural filtration generated by K which is naturally completed.

Proposition 4. Assume that 1 < θ + K and E K + 1 e K 1 < ∞. We have the following five regimes for the asymptotic behaviour of

E z [Z t ]. i) If κ ′ (0+) > 0, then lim t→∞ E z [Z t ] = 1 k E 1 I ∞ (-K) . ii) If κ ′ (0+) = 0 and κ ′′ (0+) < ∞, then lim t→∞ E z [Z t ] = O(t -1/2 ).
iii) Suppose that κ ′ (0+) < 0: a) If κ ′ (1) < 0 and there exists ε > 0 such that 1 + ε < θ + K and

E K + 1 e (1+ε)K 1 < ∞. Then, lim t→∞ e -tκ(1) E z [Z t ] = E (1) z 1 + zkI ∞ (K) . b) If κ ′ (1) = 0, κ ′′ (1) < ∞ and there exist η, ϑ > 0 such that θ - K < ϑ + η < ϑ + 1 + η < θ + K , E K * 1 e (1-η)K 1 < ∞, and E K + e (ϑ+η+1)K 1 < ∞,
where * = sign(1 -η), then there exists a positive constant c(z, k) that depends on z and k such that

lim t→∞ √ te -tκ(1) E z [Z t ] = c(z, k).
c) If κ ′ (1) > 0, and there exists η > 0 such that θ

- K < τ + η < τ + 1 + η < θ + K , E K * 1 e (τ -η)K 1 < ∞ and E K + 1 e (τ +η+1)K 1 < ∞,
where τ is the root of κ ′ on (0, θ + K ) such that κ(τ ) = min s∈(0,1) κ(s), and * = sign(τ -η). Then there exists a positive constant c 1 (z, k) that depends on z and k such that

lim t→∞ t 3/2 e -tκ(τ ) E z [Z t ] = c 1 (z, k).
Proof. We first recall from Lemma II.2 in [START_REF] Bertoin | Lévy processes[END_REF] that the time reversal process (K t -K (t-s) -, 0 ≤ s ≤ t) has the same law as (K s , 0 ≤ s ≤ t). Then

e -Kt I t (-K) = e -Kt t 0 e K t-s ds = t 0 e -(Kt-K t-s ) ds (d) = t 0 e -Ks ds = I t (K),
and (e -Kt , e -Kt I t (-K))

(d)
= (e -Kt , I t (K)).

The above implies that

E z [Z t ] = zE e -Kt + kze -Kt t 0 e Ks ds -1 = zE e -Kt + kzI t (K) -1 . (11) 
Now, we prove part i). Assume that κ ′ (0+) > 0. Since the process K has some finite exponential moments, we have

{x>1} xπ(dx) < ∞.
From Theorem 25.3 in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], the latter is equivalent to

E[K + 1 ] < ∞. Thus, since κ ′ (0+) > 0, E[K 1
] is defined and valued on (0, ∞]. We now apply Erickson's criteria (see for instance Theorem 7.2 in [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF]) to deduce that the process K drifts to ∞.

Since K drifts to ∞, it is known that I t (K) converges a.s. to a non-negative and finite limit as t goes to ∞ (see for instance Theorem 1 in [START_REF] Bertoin | Exponential functionals of Lévy processes[END_REF]) and e -Kt converge to 0 a.s., as t goes to ∞. We denote such limit by I ∞ (K) and observe that the result follows from identity [START_REF] Boeinghoff | Branching diffusions in random environment[END_REF] and the monotone convergence Theorem.

Part ii) follows form the inequality

E z [Z t ] = zE e -Kt + kzI t (K) -1 ≤ E (kI t (K)) -1 ,
and Theorem 1 part (ii). Finally, we prove part iii). Observe by applying the Esscher transform [START_REF] Bertoin | Exponential functionals of Lévy processes[END_REF] with β = 1 that

E z [Z t ] = ze κ(1)t E (1) 1 + kz t 0 e Ks ds -1
.

Part iii)-a) follows by observing that under the probability measure P (1) , the process ξ is still a Lévy process with mean E (1) [K 1 ] = κ ′ (1) which is defined and valued on [-∞, 0). We then conclude as in the proof of part i) by showing that

E (1) [(1 + kzI t (-K)) -1 ],
converges to E (1) [(1 + kzI ∞ (-K)) -1 ], as t increases.

Finally parts iii)-b) and c) follows form a direct application of Theorem (2) parts iii)-b) and c), respectively, with the function

F : x ∈ R + → z(1 + kzx) -1 .
2.3. Diffusions in a Lévy random environment. Let (V (x), x ∈ R) be a stochastic process defined on R such that V (0) = 0. A diffusion process X = (X(t), t ≥ 0) in a random potential V is an informal solution to the stochastic differential equation

dX(t) = dβ(t) - 1 2 V ′ (X(t))dt, X(0) = 0,
where (β(t), t ≥ 0) is a Brownian motion independent of V . Rigorously speaking, we should consider X as a diffusion whose conditional generator given V is

1 2 e V (x) d dx e -V (x) d dx .
It is clear now that the potential V does not need to be differentiable. It is well known that X may be constructed from a Brownian motion through suitable changes of scale and time. Kawazu and Tanaka [START_REF] Kawazu | On the maximum of a diffusion process in a drifted brownian environment[END_REF] studied the asymptotic behaviour of the tail of the distribution of the maximum of a diffusion in a drifted Brownian potential. Carmona et al. [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Lévy processes[END_REF] considered the case when the potential is a Lévy process whose discontinuous part is of bounded variation. The problem is the following: How fast does P(max t≥0 X(t) > x) decay as x → ∞? From these works, we know that

P max t≥0 X(t) > x = E A A + B x where A = 0 -∞ e V (t) dt and B x =
x 0 e V (t) dt are independent. In order to make our analysis more tractable, we consider (ξ t , t ≥ 0) and (η t , t ≥ 0) two independent Lévy processes, and we define

V (x) = -ξ x if x ≥ 0 -η -x if x ≤ 0.
We want to determine the asymptotic behaviour of

P max t≥0 X(s) > t = E I ∞ (η) I ∞ (η) + I t (ξ)
.

We assume that η drifts to ∞, and recall the notations of Section 1 for the Laplace exponent ψ of ξ, and for θ -and θ + .

Proposition 5. Assume that 1 < θ + and

E ξ + 1 e ξ 1 < ∞.
We have the following five regimes for the asymptotic behaviour of P(max s≥0 X(s) > t).

i) If ψ ′ (0+) > 0, then lim t→∞ P max s≥0 X(s) > t = E I ∞ (η) I ∞ (η) + I ∞ (ξ)
.

ii) If ψ ′ (0+) = 0, and there exists η > 0 such that η + 1 < θ + , E ξ - 1 e -ηξ 1 < ∞ and E ξ + 1 e (η+1)ξ 1 < ∞, then there exists a positive constant C 1 that depends on the law of I ∞ (η) such that

lim t→∞ √ tP max s≥0 X(s) > t = C 1 .
iii) Suppose that ψ ′ (0+) < 0: a) If ψ ′ (1) < 0 and there exists ε > 0 such that 1 + ε < θ + and

E ξ + 1 e (1+ε)ξ 1 < ∞.
Then there exists a positive constant C 2 that depends on the law of I ∞ (η) such that, andE ξ + 1 e (ϑ+η+1)ξ 1 < ∞, where * = sign(1 -η), then there exists a positive constant C 3 that depends on the law of I ∞ (η) such that

lim t→∞ e -tψ(1) P max s≥0 X(s) > t = C 2 . b) If ψ ′ (1) = 0, ψ ′′ (1) < ∞, and there exist η, ϑ > 0 such that θ -< ϑ + η < ϑ + 1 + η < θ + , E ξ * 1 e (1-η)ξ 1 < ∞,
lim t→∞ √ te -tψ(1) P max s≥0 X(s) > t = C 3 . c) If F ψ ′ (1) > 0, and there exists η > 0 such that θ -< τ + η < τ + 1 + η < θ + , E ξ * 1 e (τ -η)ξ 1 < ∞ and E ξ + 1 e (τ +η+1)ξ 1 < ∞, where * = sign(τ -η), then lim t→∞ P max s≥0 X(s) > t = o(t -1/2 e -tψ(τ ) ).
Moreover if the process ξ is non arithmetic then there exists a positive constant C 4 that depends on the law of I ∞ (η) such that

lim t→∞ t 3/2 e -tψ(τ ) P max s≥0 X(s) > t = C 4 .
Moreover, if there exists a positive ε such that

E[I ∞ (η) 1+ε ] < ∞, then C i = c i E[I ∞ (η)], i ∈ {2, 3}
, where (c i i ∈ {2, 3}) does not depend on the law of I ∞ (η).

Proof. Since η and ξ are independent, we have

P max s≥0 X(s) > t = E [I ∞ (η)f (I ∞ (η), t)]
where f (a, t) = E (a + I t (ξ)) -1 . The results follows from an application of Theorems 1 and 2 with the function

F : x ∈ R + → z(a + x) -1 .
We only prove case ii), as the others are analogous. By Theorem 2 there exists c 1 (a) > 0 such that lim

t→∞ t 1/2 f (a, t) = c 1 (a).
On the other hand, by Theorem 1, there exists c 1 such that

lim t→∞ t 1/2 f (0, t) = c 1 .
Let us define G t (a) = at 1/2 f (a, t), and G 0 t (a) = at 1/2 f (0, t). Observe that G t (a) ≤ G 0 t (a), for all t, a ≥ 0 and lim

t→∞ E G 0 t (I ∞ (η)) = c 1 E [I ∞ (η)]
. Then, by the Dominated Convergence Theorem (see for instance [START_REF] Dudley | Real analysis and probability[END_REF] problem 12 p. 145),

lim t→∞ √ tP max s≥0 X(s) > t = lim t→∞ E [G t (I ∞ (η))] = E [I ∞ (η)c 1 (I ∞ (η))] .
We complete the proof for the existence of the limits by observing that

0 < C 1 = E [I ∞ (η)c 1 (I ∞ (η))] ≤ c 1 E [I ∞ (η)] < ∞.
The last part of the proof consists in justifying the form of the constants C 2 and C 3 . For every 0 ≤ ε ≤ 1, we have

I ∞ (η) I t (ξ) - I ∞ (η) I ∞ (η) + I t (ξ) = I ∞ (η) I t (ξ) I ∞ (η) I ∞ (η) + I t (ξ) ≤ I ∞ (η) I t (ξ) I ∞ (η) I ∞ (η) + I t (ξ) ε ≤ I ∞ (η) I t (ξ) 1+ε Hence 0 ≤ E I ∞ (η) I t (ξ) - I ∞ (η) I ∞ (η) + I t (ξ) ≤ E[(I ∞ (η)) 1+ε ]E 1 (I t (ξ)) 1+ε .
But from point iii)-c) of Theorem 1 and Equation [START_REF] Keiding | Extinction and exponential growth in random environments[END_REF] in the proof of Theorem 2, we know that in the cases iii)-a) and iii)-b),

E 1 (I t (ξ)) 1+ε = o E 1 I t (ξ)
.

This ends the proof.

Proof of Theorems 1 and 2.

This section is dedicated to the proofs of the main results of the paper. We first prove Theorem 1. The proof of part ii) is based on the following approximation technique.

Let (N (q) t , t ≥ 0) be a Poisson process with intensity q > 0, which is independent of the Lévy process ξ, and denote by (τ q n ) n≥0 its sequence of jump times with the convention that τ q 0 = 0. For simplicity, we also introduce for n ≥ 0,

ξ (n) t = ξ τ q n +t -ξ τ q n , t ≥ 0.
For n ≥ 0, we define the following random variables

S (q) n := ξ τ q n , M (q) 
n := sup τ q n ≤t<τ q n+1 ξ t and I (q) n := inf

τ q n ≤t<τ q n+1 ξ t .
Observe that (S

n , n ≥ 0) is a random walk with step distribution given by ξ τ q 1 and that τ q 1 is an exponential r.v. with parameter q which is independent of ξ.

Similarly for the process ξ (n) , we also introduce m (q) n := sup

t<τ q n+1 -τ q n ξ (n) t and i (q) n := inf t<τ q n+1 -τ q n ξ (n) t .
Lemma 1. Using the above notation we have,

M (q) n = S (+,q) n + m (q) 0 , I (q) n = S (-,q) n + i (q) 0
where each of the processes S (+,q) = (S (+,q) n , n ≥ 0) and S (-,q) = (S (-,q) n , n ≥ 0) are random walks with the same distribution as S (q) . Moreover S (+,q) and m (q) 0 are independent, as are S (-,q) and i (q) 0 . The proof of this Lemma follows from the same arguments as those used to prove Theorem IV.13 in [START_REF] Doney | Fluctuation Theory for Levy Processes: Ecole D'Eté de Probabilités de Saint-Flour XXXV-2005[END_REF], which considers the case when the exponential random variables are jump times of the process ξ restricted to R \ [-η, η], for η > 0. In particular, its proof uses the Wiener-Hopf factorisation (see Equations 4.3.3 and 4.3.4 in [START_REF] Doney | Fluctuation Theory for Levy Processes: Ecole D'Eté de Probabilités de Saint-Flour XXXV-2005[END_REF]). We refer the reader to [START_REF] Doney | Fluctuation Theory for Levy Processes: Ecole D'Eté de Probabilités de Saint-Flour XXXV-2005[END_REF] for its proof.

Recall that τ q 1 goes to 0, in probability, as q increases and that ξ has càdlàg paths. Hence, there exists an increasing sequence (q n ) n≥0 such that q n → ∞ and

e λi (qn) 0 -→ n→∞ 1, a.s. ( 12 
)
We also recall the following form of the Wiener-Hopf factorisation, for q > ψ(λ) q q -ψ(λ)

= E e λi (q) 0 E e λm (q) 0 .

From the Dominated Convergence Theorem and identity [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Lévy processes[END_REF], it follows that for ε ∈ (0, 1), there exists N ∈ N such that for all n ≥ N

1 -ε ≤ E e λi (qn ) 0 ≤ E e λm (qn ) 0 ≤ 1 + ε. (14) 
Next, we introduce the compound Poisson process

Y (q) t := S (q) N (q) t , t ≥ 0,
whose Laplace exponent satisfies

ψ (q) (λ) := log E e λY (q) 1 = qψ(λ) q -ψ(λ) ,
which is well defined for λ such that q > ψ(λ). Similarly, we define

I (q) t = I (q) N (q) t , M (q) 
t = M (q) N (q) t , Y (+,q) t = S (+,q) N (q) t , and 
Y (-,q) t = S (-,q) N (q) t .
We observe from the definitions of M (q) and I (q) , and Lemma 1, that for all t ≥ 0, the following inequality is satisfied

e -m (q) 0 t 0 e -Y (+,q) s ds ≤ t 0 e -ξs ds ≤ e -i (q) 0 t 0 e -Y (-,q) s ds. (15) 
Another important result that we will use in our proofs is the exponential change of measure known as the Esscher transform that we introduce in Section 2.2. Recall from Theorem 3.9 in Kyprianou [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF], and under our assumption that ψ is well defined for β ∈ (θ -, θ + ), we can perform the following change of measure dP (β) dP Ft = e βξt-ψ(β)t for β ∈ (θ -, θ + ), [START_REF] Evans | Protected polymorphisms and evolutionary stability of patchselection strategies in stochastic environments[END_REF] where (F t ) t≥0 is the natural filtration generated by ξ which is naturally completed. Moreover, under P (β) , the process ξ is still a Lévy process with Laplace exponent

ψ β (λ) = ψ(λ + β) -ψ(β) for λ ∈ (θ --β, θ + -β).
We have now all the tools needed to prove Theorem 1.

Proof of Theorem 1. i) Assume that ψ ′ (0+) > 0. Since the process ξ has some finite exponential moments, we have

{x>1} xΠ(dx) < ∞.
From Theorem 25.3 in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], the latter is equivalent to

E[ξ + 1 ] < ∞. Thus, since ψ ′ (0+) > 0, E[ξ 1
] is defined and valued on (0, ∞]. We now apply Erickson's criteria (see for instance Theorem 7.2 in [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF]) to deduce that the process ξ drifts to ∞.

Since ξ drifts to ∞, it is known that I t (ξ) converges a.s. to a non-negative and finite limit as t goes to ∞ (see for instance Theorem 1 in [START_REF] Bertoin | Exponential functionals of Lévy processes[END_REF]). We denote such limit by I ∞ (ξ) and observe that the result follows from the Monotone Convergence Theorem.

We now prove part ii). In order to do so, we use the approximation that we introduce at the beginning of this section. For simplicity, we also use the same notation.

Let (q n ) n≥1 be a sequence defined as in [START_REF] Böinghoff | Branching processes in random environment which extinct at a given moment[END_REF] and observe that for n ≥ 1, we have ψ (qn) (0) = 0, ψ ′(qn) (0+) = 0 and ψ ′′(qn) (0+) < ∞. We also observe that the processes Y (+,qn) and Y (-,qn) have bounded variation paths.

We take ℓ ≥ N and 0 < ε < 1. Hence from Lemmas 13 and 14 in Bansaye et al. [START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF], we observe that there exists a positive constant c 1 (ℓ) such that

(1 -ε)c 1 (ℓ)t -1/2 ≤ E t 0 e -Y (±,q ℓ ) s ds -p ≤ (1 + ε)c 1 (ℓ)t -1/2 , as t → ∞.
Therefore using [START_REF] Doney | Fluctuation Theory for Levy Processes: Ecole D'Eté de Probabilités de Saint-Flour XXXV-2005[END_REF] and [START_REF] Dudley | Real analysis and probability[END_REF] in the previous inequality, we obtain

(1 -ε) 2 c 1 (ℓ)t -1/2 ≤ E[I t (ξ) -p ] ≤ (1 + ε) 2 c 1 (ℓ)t -1/2 , as t → ∞. (17) 
Next, we take n, m ≥ N and observe that the previous inequalities imply

1 -ε 1 + ε 2 c 1 (n) ≤ c 1 (m) ≤ 1 + ε 1 -ε 2 c 1 (n),
thus, we deduce that (c 1 (n)) n≥1 is a Cauchy sequence. Let us denote c 1 its limit which is positive. Let k ≥ N such that

(1 -ε)c 1 ≤ c 1 (k) ≤ (1 + ε)c 1 ,
using this inequality and ( 17), we observe

(1 -ε) 3 c 1 t -1/2 ≤ E[I t (ξ) -p ] ≤ (1 + ε) 3 c 1 t -1/2 , as t → ∞.
This completes the proof of part ii). Now, we prove part iii)-a). Recall from Lemma II.2 in [START_REF] Bertoin | Lévy processes[END_REF] that the time reversal process (ξ t -ξ (t-s) -, 0 ≤ s ≤ t) has the same law as (ξ s , 0 ≤ s ≤ t). Then (
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Hence using the Esscher transform [START_REF] Evans | Protected polymorphisms and evolutionary stability of patchselection strategies in stochastic environments[END_REF], with β = p, we have

E I t (ξ) -p = E e pξt I t (-ξ) -p = e tψ(p) E (p) I t (-ξ) -p . ( 19 
)
The above identity implies that the decreasing function t → E (p) [I t (-ξ) -p ] is finite for all t > 0 (recall (3)). We also observe that under the probability measure P (p) , the process ξ is still a Lévy process with mean E (p) [ξ 1 ] = ψ ′ (p) which is defined and valued on [-∞, 0). We then conclude as in the proof of part i) by showing that E (p) [I t (-ξ) -p ] converges to E (p) [I ∞ (-ξ) -p ], as t increases, which is non-negative and finite.

Part iii)-b) follows from part ii) and the Esscher transform [START_REF] Evans | Protected polymorphisms and evolutionary stability of patchselection strategies in stochastic environments[END_REF]. More precisely, we apply the Esscher transform with β = p and observe that under the probability measure P (p) , the process ξ is still a Lévy process satisfying ψ ′ p (0+) = ψ ′ (p) = 0 and ψ ′′ p (0+) = ψ ′′ (p) < ∞. Therefore recalling identity [START_REF] Guivarc | Propriétés asymptotiques des processus de branchement en environnement aléatoire[END_REF] and applying part ii), we observe that there exists a constant c 3 > 0 such that E I t (ξ) -p = e tψ(p) E (p) [I t (-ξ) -p ] ∼ c 3 t -1/2 e tφ(p) . Finally we prove part iii)-c). Again from the Esscher transform with β = τ , we see

E I t (ξ) -p = e tψ(τ ) E (τ ) [e (p-τ )ξt I t (-ξ) -p ].
On the one hand, we have

E (τ ) [e (p-τ )ξt I t (-ξ) -p ] = E (τ ) e (p-τ )(ξt-ξ t/2 ) (e -ξ t/2 I t/2 (-ξ) + t t/2 e ξu-ξ t/2 du) -(p-τ ) (I t/2 (-ξ) + e ξ t/2 t t/2 e ξu-ξ t/2 du) τ ≤ E (τ ) e (p-τ )(ξt-ξ t/2 ) ( t/2 0 e ξ s+t/2 -ξ t/2 ds) -(p-τ ) I t/2 (-ξ) τ = E (τ ) e (p-τ )(ξ t/2 ) I t/2 (-ξ) -(p-τ ) E (τ ) I t/2 (-ξ) -τ ,
where we have use in the last identity the fact that (ξ u+t/2 -ξ t/2 , u ≥ 0) is independent of (ξ u , 0 ≤ u ≤ t/2) and with the same law as ξ.

On the other hand, from [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF] we deduce

E (τ ) e (p-τ )(ξ t/2 ) I t/2 (-ξ) -(p-τ ) = E (τ ) I t/2 (ξ) -(p-τ ) .
Putting all the pieces together, we get

E (τ ) [e (p-τ )ξt I t (-ξ) -p ] ≤ E (τ ) I t/2 (ξ) -(p-τ ) E (τ ) I t/2 (-ξ) -τ , implying E I t (ξ) -p ≤ e tψ(τ ) E (τ ) I t/2 (ξ) -(p-τ ) E (τ ) I t/2 (-ξ) -τ .
Again since condition ( 2) is satisfied, it is clear

{x>1} xe τ x Π(dx) < {x>1} xe px Π(dx) < ∞.
From Theorem 25.3 in Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF] and the Esscher transform, the latter is equivalent to E (τ ) [ξ + 1 ] < ∞. Thus, since ψ ′ (τ ) = 0, we have E (τ ) [ξ 1 ] = 0. We now apply Erickson's criteria to deduce that the process ξ oscillates under P (τ ) . Moreover since ψ ′′ (τ ) < ∞, we deduce that ψ ′′ τ (0+) < ∞. The latter condition implies from part ii) that there exists a constant c 1 > 0 such that

E (τ ) [I t (ξ) -(p-τ ) ] ∼ c 1 t -1/2
as t → ∞.

Since the process ξ oscillates under P (τ ) , the dual -ξ also oscillates. This implies that I t (-ξ) goes to ∞ and therefore E (τ ) [I t (-ξ) -(p-τ ) ] goes to 0, as t increases. In other words, we have

E I t (ξ) -p = o(t -1/2 e tψ(τ ) ), as t → ∞,
as expected.

We now assume that ξ is non-arithmetic, our arguments are similar to those used in [START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF]. We will prove lim sup t→∞ t 3/2 e -tψ(τ ) E I t (ξ) -p < ∞.

In order to prove it, we take t > 0 and observe

I ⌊t⌋ (ξ) = ⌊t⌋-1 k=0 e -ξ k 1 0 e -(ξ k+u -ξ k ) du.
Therefore

E I ⌊t⌋ (ξ) -p ≤ E min k≤⌊t⌋-1 e pξ k 1 0 e -(ξ k+u -ξ k ) du -p
.

Conditioning on the value when the minimum is attained, let say k ′ , and observing that e pξ k ′ is independent of

1 0 e -(ξ k ′ +u -ξ k ′ ) du -p
and the latter has the same law as

1 0 e -ξu du -p
, we deduce

E I ⌊t⌋ (ξ) -p ≤ E min k≤⌊t⌋-1 e pξ k E 1 0 e -ξu du -p .
Finally, by Lemma 7 in [START_REF] Hirano | Determination of the limiting coefficient for exponential functionals of random walks with positive drift[END_REF], there exists a C > 0 such that

E min k≤⌊t⌋-1 e pξ k ∼ C⌊t⌋ -3/2 e ⌊t⌋ψ(τ ) ,
for t large.

The claim follows from monotonicity of E I ⌊t⌋ (ξ) -p and the fact that t ∈ (⌊t⌋, ⌊t⌋ + 1).

The idea of the proof of Theorem 2 is to study the asymptotic behaviour of E F (n/q) for q fixed and large n, and then use the monotonicity of F to deduce the asymptotic behaviour of E F (t) when t goes to infinity. In order to do so, we use a key result due to Guivarc'h and Liu (see Theorem 2.1 in [START_REF] Guivarc | Propriétés asymptotiques des processus de branchement en environnement aléatoire[END_REF]) that we state here for the sake of completeness.

Theorem 3 (Giuvarc'h, Liu 01). Let (a n , b n ) n≥0 be a R 2 + -valued sequence of i.i.d. random variables such that E[ln a 0 ] = 0. Assume that b 0 /(1 -a 0 ) is not constant a.s. and define

A 0 := 1, A n := n-1 k=0 a k and B n := n-1 k=0 A k b k , for n ≥ 1.
Let η, κ, ϑ be three positive numbers such that κ < ϑ, and φ and ψ be two positive continuous functions on R + such that they do not vanish and for a constant C > 0 and for every a > 0, b ≥ 0, b ′ ≥ 0, we have

φ(a) ≤ Ca κ , ψ(b) ≤ C (1 + b) ϑ , and | ψ(b) -ψ(b ′ )| ≤ C|b -b ′ | η .
Moreover, assume that

E a κ 0 < ∞, E a -η 0 < ∞, E b η 0 < ∞ and E a -η 0 b -ϑ 0 < ∞.
Then there exist two positive constants c( φ, ψ) and c( ψ) such that

lim n→∞ n 3/2 E φ(A n ) ψ(B n ) = c( φ, ψ) and lim n→∞ n 1/2 E ψ(B n ) = c( ψ).
Let q > 0 and define the sequence q n = n/q, for n ≥ 0. For k ≥ 0, we also define

ξ (k) u = ξ q k +u -ξ q k , for u ≥ 0, and 
a k = e -ξ (k) q k+1 -q k and b k = q k+1 -q k 0 e -ξ (k) u du. (20) 
Hence, (a k , b k ) is a R 2 + -valued sequence of i.i.d. random variables. Also observe that

a 0 = e -ξ 1 q and b 0 1 -a 0 = I 1 q (ξ) 1 -e -ξ 1 q ,
which are not constant a.s. as required by Theorem 3. Moreover, we have

q i+1 q i e -ξu du = e -ξq i b i = i-1 k=0 a k b i = A i b i ,
where A k is defined as in Theorem 3. The latter identity implies

I qn (ξ) = n-1 i=0 q i+1 q i e -ξu du = n-1 i=0 A i b i := B n .
In other words, we have all the objects required to apply Theorem 3.

Proof of Theorem 2. i) The proof follows from similar arguments as those used in the proof of Theorem 1-i).

ii) We now assume that ψ ′ (0+) = 0. We define the sequence (a k , b k ) k≥0 as in [START_REF] Hirano | Determination of the limiting coefficient for exponential functionals of random walks with positive drift[END_REF] and follow the same notation as in Theorem 3. Let η satisfy the assumptions of point ii) in Theorem 2 and d p > 1 such that -θ -/d p < p, and take

(η, κ, ϑ) = η, -θ - d p , p .
Next, we verify the moment conditions of Theorem 3 for the couple (a 0 , b 0 ). From the definition of (a 0 , b 0 ), it is clear κ)/q and E a -η 0 = e ψ(η)/q , which are well defined. Similarly as in (3), our assumptions imply

E [ln a 0 ] = ψ ′ (0+) q = 0, E [a κ 0 ] = e ψ(-
E [b η 0 ] ≤ q -η E sup 0≤u≤1/q e -ηξu ≤ e e -1 q -η e ψ(-η) q 1 + ψ(-η) + η sup 0≤u≤1/q E e -ηξu ξ - u < ∞,
where we used that ψ(-η) ≥ 0 as ψ ′ (0+) = 0 and ψ is a convex function. Again, with arguments similar as those used in (3) and our assumptions, we deduce

E a -η 0 b -ϑ 0 ≤ q ϑ E e ηξ 1 q sup 0≤u≤1/q e ϑξu ≤ q ϑ E sup 0≤u≤1/q e (η+ϑ)ξu < ∞.
Therefore the asymptotic behaviour of E F (q n ) for large n, follows from a direct application of Theorem 3. In other words, there exists a positive constant c(q) such that

√ nE F (q n ) ∼ c(q), as n → ∞.
In order to get our result, we take t to be a positive real number. Since the mapping s → E F (s) is non increasing, we get

√ tE F (t) ≤ √ tE F (⌊qt⌋/q) = t ⌊qt⌋ ⌊qt⌋E F (⌊qt⌋/q). Similarly √ tE F (t) ≥ √ tE F ((⌊qt⌋ + 1)/q) = t ⌊qt⌋ + 1 ⌊qt⌋ + 1E F ((⌊qt⌋ + 1)/q). Therefore √ tE F (t)∼ c(q) √ q , as t → ∞.
Moreover, we deduce that c(q)/ √ q is a positive constant that we denote by c 1 . This concludes the proof of point ii).

iii) For the rest of the proof, we assume that ψ ′ (0) < 0. We first prove part a). Since ψ ′ (p) < 0, from Theorem 1 part iii)-a) we have that there exists a positive constant c 2 such that E I t (ξ) -p ∼ c 2 e tψ(p) , as t → ∞.

Hence the asymptotic behaviour is proven if we show that there exists a positive constant A such that E F (t) ∼ AE I t (ξ) -p , as t → ∞.

In order to do so, we use Lemma 2 (see the Appendix). Since θ + > p, ψ ′ (p) < 0 and assumption (4), we assure that there is ε > 0 such that p(1+ε) < θ + , < ψ(p) and ψ ′ ((1+ε)p) < 0. Moreover from Lemma 2, we deduce that there is a constant M such that

F (I t (ξ)) -AI t (ξ) -p ≤ M I t (ξ) -(1+ε)p . (21) 
In other words, it is enough to show E I t (ξ) -(1+ε)p = o(e tψ(p) ), as t → ∞.

Similar arguments as those used in (3) show E I t (ξ) -(1+ε)p < ∞ for t ≥ 0. Again, from the Esscher transform ( 16) with λ = (1 + ε)p, we deduce E I t (ξ) -(1+ε)p = E e p(1+ε)ξs I t (-ξ) -(1+ε)p = e tψ(p) e tψp(εp) E ((1+ε)p) I t (-ξ) -(1+ε)p .

The above identity implies that the non-increasing function t → E ((1+ε)p) [I t (-ξ) -(1+ε)p ] is finite for all t > 0. Similarly as in the proof of Theorem 1 iii)-a), we can deduce that E ((1+ε)p) [I t (-ξ) -(1+ε)p ] has a finite limit, as t goes to ∞. We conclude by observing that ψ p (εp) is negative implying that [START_REF] Keiding | Extinction and exponential growth in random environments[END_REF] holds. We complete the proof of point iii)-a) by observing that from ( 21) and ( 22), we get that E[F (I t (ξ))] ∼ E[AI t (ξ) -p ], t → ∞.

We now prove part b). Since ψ ′ (p) = 0 and ψ ′′ (p) < ∞, from Theorem 1 part iii)-b) we have that there exists a positive constant c 3 such that E I t (ξ) -p ∼ c 3 t -1/2 e tψ(p) , as t → ∞.

Similarly as in the proof of part a), the asymptotic behaviour is proven if we show that there exists a positive constant A such that E F (t) ∼ AE I t (ξ) -p , as t → ∞.

In order to do so, we use again Lemma 2 (see the Appendix). Since θ + > p, ψ ′ (p) = 0 and assumption (4), we assure that there is ε > 0 such that p(1 + ε) < θ + , ψ(p(1 + ε)) > ψ(p) and ψ ′ ((1 + ε)p) > 0. Moreover from Lemma 2, we deduce that there is a constant M such that F (I t (ξ)) -AI t (ξ) -p ≤ M I t (ξ) -(1+ε)p .

In other words, it is enough to show E I t (ξ) -(1+ε)p = o(t -1/2 e tψ(p) ), as t → ∞.

The latter follows from of Theorem 1 iii)-c).

Finally, we prove part c). Similarly as in the proof of part ii), we define the sequence (a k , b k ) k≥0 as in [START_REF] Hirano | Determination of the limiting coefficient for exponential functionals of random walks with positive drift[END_REF] and follow the same notation as in Theorem 3. Let (η, κ, ϑ) = (η, τ, p) .

Next, we apply the Esscher transform [START_REF] Evans | Protected polymorphisms and evolutionary stability of patchselection strategies in stochastic environments[END_REF] with λ = τ and observe E[F (I(q n ))]e -qnψ(τ ) = E (τ ) [e -τ ξq n F (I(

q n ))] = E (τ ) [A τ n F (B n )]. ( 23 
)
Hence in order to apply Theorem 3, we need the moment conditions on (a 0 , b 0 ) to be satisfied under the probability measure P (τ ) . We first observe, ) [ln a 0 ] = E (τ ) [ξ 1/q ] = e -ψ(τ )/q E[ξ 1/q e τ ξ 1/q ] = ψ ′ (τ ) q = 0.

E (τ
Similarly, we get τ ) [e -κξ 1/q ] = e -ψ(τ )/q and E (τ ) a -η 0 = E (τ ) [e ηξ 1/q ] = e ψτ (η)/q , where ψ τ (λ) = ψ(τ + λ) -ψ(τ ). From our assumptions both expectations are finite. Again, we use similar arguments as those used in (3) to deduce

E (τ ) [a κ 0 ] = E (
E (τ ) [b η 0 ] ≤ q -η E (τ ) sup 0≤u≤1/q
e -ηξu ≤ q -η e -ψ(τ )/q E sup 0≤u≤1 e (τ -η)ξu < ∞, and E (τ ) a -η 0 b -p 0 ≤ q p E (τ ) e ηξ 1 q sup 0≤u≤1/q e pξu ≤ q p e -ψ(τ )/q E sup 0≤u≤1 e (τ +η+p)ξu < ∞.

Therefore the asymptotic behaviour of E (τ ) [A τ n F (B n )] follows from a direct application of Theorem 3 with the functions ψ(x) = F (x) and φ(x) = x τ . In other words, we conclude that there exists a positive constant c(q) such that

n 3/2 E (τ ) [A τ n F (B n )] ∼ c(q), n → ∞.
In particular from (23), we deduce E F (q n ) ∼ c(q)e -nψ(τ )/q n -3/2 , n → ∞.

Then using the monotonicity of F as in the proof of part ii), we get that for n large enough, c(q) q 3/2 e -ψ(τ )/q ≤ n 3/2 e nψ(τ ) E F (n) ≤ c(q) q 3/2 . (

A direct application of Lemma 3 then yields the existence of a nonnegative constant c 4 such that lim q→∞ c(q) q 3/2 = c 4 .

Moreover, [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF] yields that c 4 is positive. This ends the proof.

I t (ξ) = t 0 e 0 e

 00 -ξ t-s ds = e -ξt t 0 e ξt-ξ t-s ds (d) = e -ξt t ξs ds = e -ξt I t (-ξ).

Appendix

We recall in this section two technical Lemmas stated in [START_REF] Bansaye | On the extinction of continuous state branching processes with catastrophes[END_REF]: Lemma 2. Assume that F satisfies one of the Assumptions (A1) or (A2). Then there exist two positive finite constants η and M such that for all (x, y) in R 2 + and ε in [0, η],

Lemma 3. Assume that the non-negative sequences (a n,q ) (n,q)∈N 2 , (a ′ n,q ) (n,q)∈N 2 and (b n ) n∈N satisfy for every (n, q) ∈ N 2 :

a n,q ≤ b n ≤ a ′ n,q , and that there exist three sequences (a(q)) q∈N , (c -(q)) q∈N and (c + (q) q∈N such that lim n→∞ a n,q = c -(q)a(q), lim n→∞ a ′ n,q = c + (q)a(q), and

Then there exists a non-negative constant a such that lim q→∞ a(q) = lim n→∞ b n = a.