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Introduction

This is the first part of a study of base change for globally analytic representations of the pro-p-Iwahori subgroup of GL(2) over an unramified extension of Q p . This paper contains an extension to such fields, and to the pro-p-Iwahori, of the presentation given in [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF] of the Iwasawa algebra. We are led naturally ( §3.3) to a base change map; however, this map makes sense only for the algebras of global distributions on the rigid-analytic spaces; it is constructed in Chapter 4.

In the second part, we will follow the implications of this construction for certain p-adic representations of our groups. This Introduction concerns both papers.

1.1

We first recall some well-known facts about admissible complex representations of GL(n, F ) when F is a local field.

Assume first that F is p-adic. Let E/F be an unramified extension of degree r. There exists a base change map which to each admissible irreducible representation π of GL(n, F ) associates an admissible representation π E of GL(n, E) [1, §2.2] The local Langlands conjecture is known [START_REF] Harris | Richard The geometry and cohomology of some simple Shimura varieties[END_REF][START_REF] Henniart | Guy Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique[END_REF] and we know that π is associated to a representation r of degree n of the Weil-Deligne group W D F of F . (Here a systematic normalization of the correspondence must be specified, but this is inessential for us. For instance adopt the normalization of [START_REF] Harris | Richard The geometry and cohomology of some simple Shimura varieties[END_REF]Introduction]). We can restrict r to W D E , to r E , and it is known (indeed part of the proof) that r E is associated to π E .

There are two opposite kinds of representations. We can first consider the unramified principal series. Here π = ind G B (χ 1 , . . . , χ n ) (unitary induction) where G = GL(n, F ), B is a Borel subgroup, and the χ i are unramified characters of F × . Assume the χ i unitary, so the induced representation is irreducible. Then

π E = ind G E B E (η 1 , . . . η n )
where G E = GL(n, E), B E is its Borel subgroup, and

η i = χ i • N E/F .
In this case, base change is naturally associated to a homomorphism of Hecke algebras [START_REF] Langlands | Base change for GL(2)[END_REF]. Let H F , H E be the unramified Hecke algebras of compactly supported functions invariant by GL(n, O F ), GL(n, O E ). There is a homomorphism b : H E -→ H F and the action of ϕ ∈ H E on the spherical vector in π E is given by λ F • b, λ F : H F → C being the character associated to the spherical vector in π F . On the other hand, we can consider a supercuspidal representation π of GL(n, F ), associated to an irreducible representation r of W F (thus also of W D F .) In this case π has a minimal K-type -a type in the terminology of [START_REF] Bushnell | The admissible dual of GL(N) via compact open subgroups[END_REF], which defines a representation τ of GL(n, O F ) [START_REF] Paskunas | Vytautas Unicity of types for supercuspidal representations of GLN[END_REF]. This is uniquely associated to the inertial type of π, i.e., its equivalence class under twist by unramified characters of the determinant. This class corresponds bijectively to the restriction of r to the inertia I F ⊂ W F , an irreducible representation of I F . Thus we can see τ , a representation of GL(n, O F ), as being associated to r| I F .

The restriction of r to I E is not necessarily irreducible -of course, the cases of reducibility are easily understood. When it is, however, we see that the representation τ E occurring in π E is naturally associated to τ .

In this case, however, although the map π π E is compatible, via the base change "transfer" [1, §1.3], to a correspondence of functions ϕ f , there does not seem to exist, in general, a homomorphism of Hecke algebras realising this correspondence.

We end this introductory description with the case when F = R and E = C. In this case the local correspondence, with representations of degree n of W R (resp. W C ), has been proved by Langlands [START_REF] Langlands | On the classification of irreducible representations of real algebraic groups[END_REF] (completed by Speh [START_REF] Speh | Birgit Some Results on Principal Series of GL(n,R)[END_REF]). We can consider the restricted class of the finite-dimensional, algebraic, irreducible representations of GL(n, R).

If π is such a representation, on a complex vector space V , we can extend it holomorphically to GL(n, C), identifying the extension C of R with the complex field of coefficients : we still denote it by π. Let π be the complex conjugate. Then [START_REF] Clozel | Laurent Changement de base pour les représentations tempérées des groupes réductifs réels[END_REF]Prop. 3.2] π ⊗ π = π C is the representation of GL(n, C) associated by base change to π.

Finally, assume F is a finite field, E/F an extension of degree r, and fix an embedding of E into an algebraic closure F of F . Then Steinberg's theorem [START_REF] Steinberg | Robert Representations of algebraic groups[END_REF] tells us that any algebraic, irreducible representation π E of GL(n, E) (seen as an F -group) over F can be written

π E = π 1 ⊗ π ϕ 2 ⊗ • • • ⊗ π ϕ r-1 r
where π i is an irreducible algebraic representation of GL(n, F ), extended E-linearly to GL(n, E), and ϕ is the Frobenius automorphism acting in GL(n, E). If the π i are isomorphic to π, we can see π E as the base change of π. This is the construction that we will extend.

1.2

This paper arose from the natural attempt at extending to a p-adic field L the presentation given in [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF] of the Iwasawa algebra of the level-1 subgroup

Γ 1 SL(2, O L ) = ker(SL(2, O L ) -→ SL(2, k L )) .
We extend this in two ways. First, following a suggestion of Gaëtan Chenevier (whom we heartfully thank) we consider instead the pro-p-Iwahori subgroup, denoted by I in this introduction :

I = {g ∈ GL(2, O L ) : ḡ ∈ N(k L )} where N = 1 * 0 1
. This is a maximal pro-p-subgroup of GL(2, L).

If L is unramified over Q p , we will give (for p > 5, see Chapter 2) a presentation of the Iwasawa algebra entirely similar to that given in [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF].

To be more specific in this Introduction, assume now that k r is an extension of degree r of F p and that L is the fraction field of O L = W (k r ), the ring of Witt vectors.

Let Λ 1 , Λ r be the Iwasawa algebras for the pro-p-Iwahori subgroups, respectively in GL(2, Q p ) and GL (2, L). Then it appears immediately in the presentation obtained for Λ 1 , Λ r that there is a formal homomorphism b : Λ r -→ Λ 1 , exactly similar to that existing, in the classical situation between unramified Hecke algebras.

Here "formal" is taken in the colloquial, or informal sense. To explain this, note that, just as in [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF], the algebra Λ 1 can be seen as a space of formal series

(1.1) f = n a n Y n 1 H n 2 W n 3 Z n 4
(n = (n 1 , n 2 , n 3 , n 4 ) ∈ N 4 ) with a n ∈ Z p . (See §2.) Similarly, an element ϕ ∈ Λ r can be seen as a formal series, with coefficients in Z p , in 4r variables.

(The variables, in each case, do not commute ! Their relations are given before Theorem 3.1.) Given ϕ we can naturally define an expansion (1.1) for a "distribution" f , but the coefficients a n do not belong to Z p , and are not even integral.

It is then natural to inquire for which spaces of distributions ϕ, f (subspaces of Λ r , Λ 1 ) this map is actually defined. It turns out that these spaces are the spaces D r , D 1 of global distributions on the pro-p-Iwahori subgroups I r , I 1 .

Recall that on a p-adic Lie group such as I r , we can consider the space D loc introduced by Schneider and Teitelbaum (who denote it by D) of distribution, dual to the space C an of locally analytic functions. Here, for p > 5, our pro-p-Iwahori subgroups have a richer structure : they are saturated pro-p-groups in the sense of Lazard, i.e., group objects in the category of rigid-analytic varieties, respectively over Q p and L. Cf. [START_REF] Lazard | Michel Groupes analytiques p-adiques[END_REF]III 1.3.4,III 3.3.2 ]. We can then consider the Q p -vector space A 1 of globally analytic functions on I 1 (• • • seen as a rigid-analytic space) and the Q p -vector space A r of globally analytic function on I r , seen by restriction of scalars as a rigid analytic space over Q p . The map which appeared formally in § 3.3 is then obtained naturally in § 4 as a map between the duals D r , D 1 of A r and A 1 . (Note that the spaces A and D are Banach spaces, unlike the topologically more complicated spaces of Schneider-Teitelbaum.) We must however, for this, extend scalars, so we obtain b : D r -→ D 1 ⊗ Qp L .

.

2 Iwasawa algebra : the case of Q p

2.1

Let L/Q p be a finite extension, and e its ramification index. We will assume, in this paragraph, that L is mildly ramified, i.e.

(2.1) 2e < p -1 .

In particular p ≥ 5. (Note that the condition (2.1) is adequate only because we are writing with GL(2). For GL(n) it would be ne < p -1, cf. [START_REF] Lazard | Michel Groupes analytiques p-adiques[END_REF]III.3.2.7.5]).

Let p, O denote the prime ideal, the integers of L. We denote by G the pro-p-Iwahori subgroup of GL(2, L), i.e.

G = g ∈ GL(2, O L ) : g ≡ 1 * 0 1 [p] .
Proposition 2.1 (Lazard).-G is a saturated p-valued pro-p-group.

We recall Lazard's proof. (Cf. also [START_REF] Schneider | Grundlehren der Mathematischen Wissenschaften[END_REF], p. 172.) Denote by v or v p the canonical p-valuation on any finite extension of Q p , i.e., v(p) = 1.

By (2.1) we can choose a rational number α such that

1 p -1 < α < 1 e - 1 p -1 .
Choose an extension L ′ of L containing an element a of (canonical) valuation

α. Let D ∈ GL(2, L ′ ) be the matrix 1 a ; let w be the natural valuation inf v(x ij ) on M 2 (L ′ ). We set, for g ∈ G, v G (g) = w(Dg D -1 -1) . For g = t x y u ∈ G, DgD -1 = t ax a -1 y u ).
This yields the formula

(2.2) v G (g) = inf(v(x) + α, v(y) -α, v(t -1), v(u -1) . Moreover, v(t -1) ≥ 1 e > 1 p-1 , v(u -1) ≥ 1 p-1 , v(x) + α ≥ α > 1 p -1 , v(y) -α ≥ 1 e -α > 1 p -1 . This implies [11, III 3.2] that g is sent into the subgroup of GL(2, L ′ ) where w(g -1) is a valuation. Moreover, it is saturated (if v G (g) > p p-1 , g is a p-th power) because this is true in GL(2, L ′ ) [11, III 3.2].

2.2

The group G has a triangular decomposition

G = UT N , U = 1 y 1 : y ∈ p T = t v : t, v ∈ O, t, v ≡ 1[p] N = 1 x 1 : x ∈ O .
For g = uhn, we obtain the expression (2.3) t tx ty txy + v .

Since p ≥ 5, the torus T is the direct product of the centre Z = z z (z ≡ 1) and of the torus T S in SL(2) :

T S = t t -1 (t ≡ 1) .
The valuation v G restricts to a valuation v S on the group S = G∩SL(2, L). In this group we have the expression

g = t tx ty txy + t -1 . Lemma 2.2.-For g ∈ S, v S (g) = inf(v(x) + α, v(y) -α, v(t -1)) .
We first prove :

Lemma 2.3.-For x ∈ O, y ∈ p, v(xy) > inf(v(x) + α, v(y) -α) . Assume first v(y) -α ≤ v(x) + α. Since v(xy) = (v(x) + α) + (v(y) -α) it suffices to prove that v(x) + α > 0, which is clear; if v(x) + α ≤ v(y) -α , we must check that v(y) > α ; since y ∈ p, v(y) ≥ 1 e > α .
We can now prove Lemma 2.2. Write z = txy + t -1 . Since |t| = 1, we must check :

(2.4) inf(v(x) + α, v(y) -α, v(z -1)) = inf(v(x) + α, v(y) -α, v(t -1)) . Write v = v(t -1), v 1 = v(z -1) , X = inf(v(x) + α, v(y) -α) . Then (2.4) is equivalent to v 1 ≥ X if v ≥ X v 1 = v if v < X . If v = v(t -1 -1) ≥ X, v(xy) > X by the previous lemma, so v(z -1) ≥ X. If v < X < v(xy), v(z -1) = v,
which proves the Lemma.

2.3

From now on we assume L unramified over Q p . Let e 1 , . . . e r be a basis of

O L over Z p . If x = x i e i ∈ O L (x i ∈ Z p ), we then have (2.5) v(x) = inf v(x i ) .
The elements e i define generators

y i = 1 pe i 1
of U, and

x i = 1 e i 1
of N. We can write the torus T as T = ZT S , the product being direct since L contains no square root of 1. We have generators for T S :

t i = (t ′ i ) -1 (t ′ i ) , t ′ i = (1 + pe i ) 1/2
and for Z :

z i = 1 + pe i 1 + pe i .
From Lemma 2.2 and (2.5) we immediately deduce

(note that v G (y i ) = 1 -α): Proposition 2.4.-The elements y i , t i , z i , x i (1 ≤ i ≤ r) form

an ordered basis of G, in the sense of Lazard : any element of G can be written uniquely

g = y η i i • t τ i i • z ζ i i • x ξ i i for exponents η i , . . . , ξ i ∈ Z p . Moreover (2.6) v G (g) = inf(v(η i ) + 1 -α, v(τ i ), v(ζ i ), v(ξ i ) + α) .
Remark.-Assume L = Q p and G is replaced by the group of [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF] :

{g ∈ SL(2, Z p ) : g ≡ 1[p]}.
The same argument shows that the subgroups U, N, T S (with now x ∈ pZ p ) form an ordered basis ; furthermore, the formula (2.6) (omitting z) is true with α = 1. (This was omitted in [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF].)

2.4

We now consider first the case where L = Q p . Thus

g = y η t τ z ζ x ξ
with obvious notations. Let Λ G be the Iwasawa algebra of G (with coefficients in Z p ). For simplicity, we will consider the group S : this is harmless as G is a direct product. We set, δ denoting a Dirac measure :

Y = δ(y) -1, H = δ(t) -1, X = δ(x) -1 .
The (ordered) decomposition of S as a product :

g = uhn (g ∈ S)
then, as in [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF], implies that we can consider Y , H, X as distributions on S. Moreover, as a space Λ = Λ S is the completed tensor product

Λ U ⊗ Λ T ⊗ Λ N with basis over Z p the elements Y n 1 H n 2 X n 3 (n i ≥ 0). This is equal to the product Y n 1 • T n 2 • X n 3 in the Iwasawa algebra.
We determine the commutation relation between these elements. The computation is the same as in [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF] ; we have changed the generator t in order to simplify the formulas. We have, with q = 1 + p :

(a) (1 + X)(1 + H) = (1 + H)(1 + X) q (b) (1 + H)(1 + Y ) = (1 + Y ) q (1 + H) . Moreover xy = 1 1 1 1 p 1 = 1 + p 1 p 1 .
Given the expression

g = t tx ty txg + t -1 , we have t = 1 + p = ((1 + p) -1/2 ) -2 , tpy ′ = p so y ′ = t -1 = (1 + p) -1 and likewise x = (1 + p) -1 . Thus (c) (1 + X)(1 + Y ) = (1 + Y ) Q (1 + H) -2 (1 + X) Q (Q = (1 + p) -1 ) .
The elements X, H, Y therefore verify in Λ the relations (a,b,c). We now consider the universal non-commutative p-adic algebra A = Z p {{Y, H, X}} over Y , H, X (cf. [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF]), with maximal ideal M A generated by (p, Y, H, X) and a prime ideal P A generated by (Y, H, X). It contains the dense subalgebra A = Z p {Y, H, X} of non-commutative polynomials. Let R ⊂ A be the closed two-sided ideal generated by the relations (a, b, c); let Ā = F p {{X, Y, Z}} and R the image of R in Ā. As in [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF] we have:

Lemma 2.5.-R is the closed two-sided in Ā generated by the relations (a, b, c)
There is a natural map A → Λ.

Lemma 2.6.-This extends to a continuous map A → Λ.

It suffices to show that if a sequence in A converges to 0 in the topology of A, the image converges to 0 in Λ.

The topology of A is given by the valuation v A ; write

F = n λ i x i ,
n ≥ a, i ranging over the applications maps {1, . . . , n} → {1, 2, 3}, and

(2.7)

x i = x i 1 x i 2 • • • x in ; we set x 1 = Y , x 2 = H, x 3 = X. For F = 0, v A (F ) = inf n,i (v p (λ i ) + n) .
Lazard [START_REF] Lazard | Michel Groupes analytiques p-adiques[END_REF]III 2.3] shows that Λ has an additive valuation (v(λµ

) = v(λ) + v(µ)) given by v(λ) = v p (λ)(λ ∈ Z p ), v(Y ) = 1 -α, v(H) = 1, v(X) = α. For F ∈ A, with image µ ∈ Λ, we have v(µ) = v n λ i x i ) ≥ inf n,i (v p (λ i ) + (1 -α)n(1) + n(2) + αn(3))
where n(1) is the number of elements in [1 . . . n] with image 1, etc. . .

≥ inf(α, 1 -α) v A (F ) .
This proves the continuity, whence the existence of the map A → Λ G . Note that this is sujective, since the ordered monomials Y n 1 H n 2 Z n 3 are obtained. The previous proof shows that it extends naturally to a map Ā → Ω, whose kernel contains R. We will show:

Theorem 2.8.-The map Ā → Ω gives an isomorphism B = Ā/ R ∼ -→ Ω.
Note that Ā has again an natural valuation, given on F = 0 by inf n n, the infimum being taken on the integers n such that there exists a non-zero monomial of degree n in the expression of F .

Exactly as in [START_REF] Clozel | Laurent Presentation of an Iwasawa algebra: the case of Γ 1 SL(2, Z p )[END_REF], Theorem 2.7 follows from Theorem 2.8. We now begin the proof of this last result. Note that

1 p -1 < 1 2 < p -2 p -1 since p > 3.
We can therefore take α = 1/2. Then

v(Y ) = v(X) = 1 2 , v(H) = 1 .
The Iwasawa algebra Λ is filtered by 1 2 N. As an F p -vector space, gr ν Λ is generated by the independent elements

p ℓ Y n 1 H n 2 X n 3 , ℓ + 1 2 n 1 + n 2 + 1 2 n 3 = ν .
(Cf. [14, p. 199].) The filtration of Λ defines a filtration of Ω by F il ν Ω = F il ν Λ ⊗ F p ; we see that gr ν Ω is then generated by the elements

Y n 1 H n 2 X n 3 , 1 2 n 1 + n 2 + 1 2 n 3 = ν ,
and these elements are linearly independent. We do not change the filtration by replacing ν ∈ 1 2 N by n = 2ν ∈ N, the valuations of (Y, H, X) being now (1,2,1).

In particular we now have (for n ∈ N) Lemma 2.9.-The dimension of gr n Ω (n ≥ 0) over F p is equal to the dimension of the space of homogeneous symmetric polynomials of degree n in (Y, H, X), the variables having degrees (1, 2, 1).

Note that this dimension is equal to (µ + 1)

(n + 1 -µ) where µ = [ n 2 ]
. We denote it by d n .

We must now consider on Ā the filtration of Ā obtained by assigning degrees (1,2,1) to the (formal) variables Y , H, X. Then gr n Ā is isomorphic to the space of non-commutative polynomials of degree n. We endow B = Ā/ R with the induced filtration, so

gr n B = F il n Ā/F il n+1 Ā + (F il n Ā ∩ R) .
The map gr n B → gr n Ω is surjective by construction. We now have:

Lemma 2.10.-dim gr n B ≤ d n (n ≥ 0).
The Lemma is obvious for n = 0, 1. We also note that the generators of R given by the relations (a, b, c) belong to F il 2 Ā. This is obvious for (a, b) since q ≡ 1 [p]; for (c) we obtain modulo terms of ordinary degree 2 in Y , H, X:

(1 + X)(1 + Y ) -(1 + Y )(1 + H) -2 (1 + X) = 2H
and H ∈ F il 2 Ā. Consider now gr 2 B, a quotient of the space

F il 2 Ā/F il 3 Ā with basis XY , Y X, H, X 2 , Y 2 . Since Q ≡ 1 [p], Q -1 ≡ 0 [p] and H is of degree 2, the relation (c) yields 1 + X + Y + XY = 1 + Y + X + Y X -2H modulo terms of degree ≥ 3. Thus dim gr 2 B ≤ d 2 = 4.
In order to prove the general case, we state the necessary relations in B:

Lemma 2.11.- (i) XY -Y X + 2H = 0 ( mod F il 3 ) (ii) XY -HX = 0 ( mod F il 4 ) (iii) HY -Y H = 0 ( mod F il 4 )
Part (i) has just been proven. For (ii) consider the identity (b). We have

(1 + X) q = 1 + qX + q(q -1) 2 X 2 + q(q -1)(q -2) 6 X 3 + • • • = 1 + X ( mod X 4 ) since q = 1 + p, p > 3. Thus (1 + X)(1 + H) = (1 + H)(1 + X) mod F il 4
since the filtration is multiplicative on Ā. Whence (ii), and similarly (iii).

We can now prove Lemma 2.10. Consider a non-commutative monomial -cf. (2.7):

(2.8)

x i = x i 1 x i 2 • • • x it .
Assume the homogeneous degree of x i is equal to n (H being of course of degree 2). As in [5, Lemma 3.2] we can change x i into a well-ordered monomial (α → i α increasing) by a sequence of transpositions. Consider a move (α, α + 1) → (α + 1, α) and assume i α > i α+1 . Write

x i = x j x α x α+1 x k write deg(i) = n, deg(j) = r, deg(k) = s.
There are three possibilities (2.9) (x α , x α+1 ) = (X, H)

Note that the degree of HX is 3. By Lemma 1.11 (ii), XH = HX mod F il 4 . Multiplying by x j and x k , we obtain x j HXx k (mod F il r+4+5 = F il n+1 ).

(2.10)

The case (H, Y ) is similar.

(2.11) (x α , x α+1 ) = (X, Y ). Now XY = Y X + 2H (mod F il 3 ), all elements being of degree 2. The first term yields again (mod F il n+1 ) a monomial with fewer inversions.

The second term yields a monomial with the same homogeneous degree, but with trivial degree -the number t in (2.8) -lowered by 1. We have to show that we have decreased the number of inversions in the monomial. For

x i , it was inv = β<γ i β >iγ 1 + γ>α+1 iα=3>iγ 1 + β<α i β >i α+1 =1 1 + 1
where the indices β, γ are different from α, α + 1. After contraction of XH into (2 times) H, we obtain

inv ′ = β<γ i β >iγ 1 + γ>α+1 iα=2>iγ 1 + β<α i β >2
1 Clearly inv ′ < inv. By performing the induction on the number of inversions (independently of the trivial degree), the proof of Lemma 1.10 is now completed.

Since gr n B → gr n Ω was surjective, the proof of Theorem 1.8 is complete.

Corollary 2.12.-The Iwasawa algebra Λ G is a quotient A/R, with A = Z p {{Z, Y, H, X}} and R defined by the relations (a, b, c) and (Comm) Z commutes with Y , H, X.

3 Iwasawa algebras in the unramified case

3.1

We return to the unramified extension L of Q p , of degree r; notations are as in § 2.3. In particular, the Lazard basis of G is given by Proposition 2.4. This depends on the choice of a basis (e i ) of W over Z p 1

As in §2.4, we will in fact compute the Iwasawa algebra Λ S (with Z pcoefficients) of S = G ∩ SL(2, L), since G is a direct product. Associated to the (ordered) decomposition g = uhn, we have a decomposition Λ S = Λ U ⊗Λ T ⊗Λ N (completed tensor product.) Each factor is a commutative Iwasawa algebra in r variables, respectively Y i , H i and X i , defined as in § 2.4. In particular Λ = Λ S has a topological basis.

(3.1) Y ℓ H m X n with ℓ = (ℓ 1 , . . . ℓ r ), Y ℓ = Y ℓ 1 1 • • • Y ℓn r , etc. As recalled, the elements Y ℓ (resp. H m , X n ) commute.
We want to write the other commutation relations. We have

h i y j h -1 i = 1 p(1 + pe i )e j 1 . Write (3.2) (1 + pe i )e j = k q ijk e k (q ijk ∈ Z p ). Then (3.3) q ijj ≡ 1 [p] q ijk ≡ 0 [p] (k = j).
The commutation relation implies

(A) (1 + X i )(1 + H i ) = (1 + H i ) r k=1 (1 + X k ) q ijk (B) (1 + H i )(1 + Y j ) = r k=1 (1 + Y k ) q ijk (1 + H i )
with the same exponents. We must now compute the "triangular" relation, the analogue of (c) in § 2.4. We have

x i y j = 1 e i 1 1 pe j 1 = 1 + pe i e j e i pe j 1 .
From the expression of the triangular decomposition (before Lemma 2.2):

g = t tx ty txy + t -1 we see that t = 1 + pe i e j = k (1 + pe k ) -1/2P ijk , e j = t k Q ijk e k e i = t k Q jik e k .
The exponents P ijk ∈ Z p are defined by

log(1 + pe i e j ) = - 1 2 k P ijk log(1 + pe k ).
Such an expression exists since exp and log(1 + X) are inverse diffeomorphisms between pW and 1 + pW . Furthermore we see that (3.4) e i e j ≡ -

1 2 k P ijk e k [p]
as p > 2. Moreover

(1 + pe i e j ) -1 e j = k Q ijk e k (3.5) (1 + pe i e j ) -1 e i = k Q jik e k
and the coefficients verify

Q ijj ≡ 1[p] (3.6) Q ijk ≡ 0[p] (k = j)
We now have the relation:

(C) (1 + X i )(1 + Y j ) = α,β,γ (1 + Y α ) Q ijα (1 + H β ) P ijβ (1 + X γ ) Q jiγ .
Now, as in §2.4, we consider in the non-commutative algebra A = Z p {{Y i , H j , X k }} the ideal R generated by the relations (A, B, C) and (Comm 0 ). T he variables Y i , H j , X k (separately) commute. If we consider, as in § 2.4, Ā and Ω, we have likewise:

We have again

Theorem 3.2.-The natural homomorphism Ā/ R -→ Ω is an isomorphism.
proof of Lemma 1.10 shows that the dimension of gr n B is smaller than the dimension of the space of symmetric polynomials of degree n in the Y i H i , X k (with the correct degrees.) This proves Theorem 3.2, and Theorem 3.1 follows.

Changing notations, we now have:

Corollary 3.5.-The Iwasawa algebra Λ G of G is the quotient of A = Z p {{Y i , H i , X i , Z i }}
by the ideal R generated by relations (A), (B), (C), (Comm 0 ) and (Comm 1 ) The variables Z i commute, and commute with Y i , H i , X i .

3.3

We now show that, at least formally (in the colloquial sense) there exists a map Λ Gr → Λ G 1 where G r is the group associated to L and G 1 the group associated to Q p . Denote by A r the algebra of non-commutative series in 4r variables of Corollary 3.5, and A the algebra of non-commutative series in 4 variables. We would like to define a map b: A r → A sending the ideal R r of relations to R. We work with the Iwasawa algebras Λ r , Λ of the group S.

Recall the relations defining A:

(a) (1 + X)(1 + H) = (1 + H)(1 + X) q (b) (1 + H)(1 + Y ) = (1 + Y ) q (1 + H) (c) (1 + X)(1 + Y ) = (1 + Y ) Q (1 + H) -2 (1 + X) Q where q = 1 + p, Q = (1 + p) -1
and A r :

(A) (1 + X j )(1 + H i ) = (1 + H i ) r k=1 (1 + X k ) q ijk (B) (1 + H i )(1 + Y j ) = r k=1 (1 + Y k ) q ijk (1 + H i ) (C) (1 + X i )(1 + Y j ) = α,β,γ (1 + Y α ) Q ijα (1 + H β ) p i β (1 + X γ ) Q jiγ ) where (1 + pe i )e j = k q ijk e k , ( 1 
+ pe i e j ) -1 e j = k Q ijk e k , log(1 + pe i e j ) = -1 2 k P ijk log(1 + pe k ).
The map b is defined if we give the images of 1 + X i , 1 + H i , 1 + Y i . We first try to satisfy the relations (a, b).

The set A × q of elements of the form 1 + F , where F belongs to the prime ideal (Y, H, X) of A, is a multiplicative subgroup of A × ; it is a compact pro-p-group. In particular g x is well-defined if x ∈ Z p and g belongs to A × 1 . It is natural to consider a map b given by

1 + H i → (1 + H) α i 1 + X j → (1 + X) β i 1 + Y j → (1 + Y ) β j . If h = 1 + H, x = 1 + X, the relation (a) can be written h -1 xh = x q which implies, for α, β ∈ Z p : (3.7) h -α x β h α = x βq α .
Note that q α is well-defined since q = 1 + p.

The relation (a) will follow from (A) if

(1 + X) β j (1 + H) α i = (1 + H) α i (1 + X) k q i,k β k which is true, according to (3.7), if (3.8) 
β j q α i = k q ijk β k .
Comparing with the expression of the exponents in relations (A, B, C), we see that this will be verified if (3.9) β j = e j , q α i = 1 + pe i , or equivalently (3.10)

β j = e j , α i = log(1 + pe i ) log(1 + p) .
Furthermore, it can be checked that there is no other solution to the equations (3.8) for α i , β j ∈ O L . In particular, there is no solution with exponents in Z p . This implies that the images of our generators 1 + H i , etc. will have coefficients in L. However, even if we extend coefficients, their images are not in Λ ⊗ L.

The reductions ēj of e j in k L form a basis of k L over F p . We may assume that ē1 = 1, and then |e j -r| = 1 (j > 1) for any r ∈ Z. The formal series (3.11) (1 + X)

e j = α m=0 e i m X m = a m X m
then verifies, for the canonical valuation on O L :

v p (a m ) = -v p (m!) = - 1 p -1 (m -Schiff m) (Lazard's notation, [11, III.1.1.2.5]
) where Schiff m is the sum of the digits of m in base p. In particular the coefficients tend to infinity (in absolute value). We will return to the growth of the images at the end of this section. We neglect this for now, and (computing formally) consider the other relations. By the usual symmetry , (b) is automatically satisfied. We must consider relation (c). Applying our map to (C), we must investigate in A the relation

(3.12) (1 + X) β i (1 + Y ) β j = (1 + Y ) Σβ k Q ijk (1 + H) Σα k P i,k • (1 + X) Σβ k Q jik ,
where β i , α i are given by (3.10). This is to be compared with (c).

Unlike the two previous cases, then is no formal fashion to deduce (3.12) from (c). We must return to the way (c) was obtained. It was equivalent to the relation (in S):

xy = 1 1 1 1 p 1 = 1 Qp 1 (1 + p) -1/2 (1 + p) -1/2 -2 1 Q 1 .
In the additive groups U and N, it is natural to assume that x β i = x e i = 1 e i 1 , and y e j = 1 pe j 1 (elements now of the L-points of the groups.)

Now

x e i y e i = 1 e i 1 1 pe j 1 = 1 + pe i e j e i pe j 1 .
We are reduced to the computation of § 3.1, and this yields relation (C) which, after applying the map b, implies (3.12).

This argument is admittedly formal, even more than the previous ones. It shows, however, that we will have to use the extension of scalars to make sense of the map b between (some algebras replacing) Λ r and Λ.

3.4

We end this section by noting that the apparent problem posed by the growth of the series (3.11) naturally presents its own solution. Consider simply the additive group N (over Z p ). Clearly the series (3.11) does not belong to the Iwasawa algebra, dual to the continuous functions.

However we see that its coefficients a m always satisfy

v p (a m ) ≥ - 1 p -1 (m -Schiff m) = -v p (m!).
On the other hand, an analytic function on Z p (seen as a rigid-analytic space, or, in Lazard's terminology, a saturated pro-p group) admits a Mahler expansion In this section we will make sense of the "formal" base change map of § 3.3 by restricting it to the algebra of global distributions. We will in fact work rationally; in the previous sections this would amount to replacing an Iwasawa algebra Λ by Λ ⊗ Q p . We first check that our groups S, S r are naturally group objects in the category of (affinoid) rigid-analytic spaces (in fact, all isomorphic to B N , B being the closed ball of radius 1.)

f (x) = m c m x m with v(c m ) -v(m!) → ∞.
Consider for simplicity the group S of Z p -points. It is in bijection with Z 3

p by the variables y, x and -2 log(t) log(1+p) . We will denote this last variable by z in the next computations. Let, as before Lemma 2.2, g = t tx tpy tpxy + t -1 and let γ = τ τ ξ τ pη τ pξη + τ -1 .

Then their product tτ + ptτ xη tτ ξ + tτ pxξη + tτ -1 x tτ py + tτ p2 xyη + τ t -1 pη * has parameters given by

T = tτ (1 + pxη) T Y = tτ (y + pxyη + t -2 η) T X = tτ (ξ + pxξη + τ -2 x).
With parameters z, x, y, we see that the coordinates of the product are then in the Tate algebra in the six variables. Note that t = exp(-1 2 z log(1 + p)) is, an a function of z, in the Tate algebra in one variable, and is invertible. Then T an invertible element in the Tate algebra T 6 (Q p ) of the product. A similar argument applies to the map g → g -1 . Thus we can see S as a rigid analytic group, isomorphic as a space to the closed 3-ball B 3 . (This was already proved by Lazard, cf. [START_REF] Lazard | Michel Groupes analytiques p-adiques[END_REF]III.3.3.2].)

The same formulas, and the same argument, apply to S r ∼ = B 3 (L), a rigid analytic space of dimension 3 over L.

4.2

Now let A 1 ∼ = T 3 (Q p ) be the space of globally defined analytic functions on S. 2 We assume that the coefficients are in L. If f ∈ A 1 , f defines naturally a function in T 3 (L) (with the same coefficients). We denote it by b * 0 (f ). There is a comultiplication m

* : A 1 → A 1 ⊗A 1 , f (g) → f (g 1 g 2 ).
It is obviously compatible with the map b * 0 : A 1 → A ′ r = T 3 (L) which we have defined. (E.g., use that Z p is dense in O L for the canonical topology.)

A function in A 1 can be paired with an element of the Iwasawa algebra of S (but we obtain a small space of the space of test functions). Similarly, a function in A ′ 1 can be integrated against a distribution in the Iwasawa algebra of S r . Now the Iwahori subgroup S r , a rigid-analytic space of dimension 3 over L, defines by restriction of scalars a rigid-analytic space Res(S r ) of dimension 3r over Q p , but it then has a larger space A r of analytic functions. See [START_REF] Bosch | Michel Néron models[END_REF] for the restriction of scalars in the formal case; by the results in [START_REF] Raynaud | Michel Géométrie analytique rigide d'après Tate[END_REF] this gives the restriction of scalars in the rigid-analytic case. All that we will need is that for functions the corresponding map A ′ 1 → A r is given by the explicit formula (4.1) below. Thus we get a map b * : A 1 → A r ; the image is comprised of the functions (in A r ) which are "L-holomorphic"; again, this is compatible with the comultiplication. Note that all these spaces are Banach spaces, with natural norms.

The construction of Res(S r ) yields the following formula for functions. (Cf. [START_REF] Bosch | Michel Néron models[END_REF]). 3 

Let O L = W = Z p e i , so v = v i e i (v ∈ O L , v i ∈ Z p .
). We can apply this to the variables x, y, z.

If f = a(m, n, q)x m z n y q ∈ A 1 , the corresponding function on Res(S r ) is (4.1) F = a(m, n, q)( x i e i ) m ( z i e i ) n ( y i e i ) q = m i ,n i ,q i x m i i z n i i y q i i a( m i , n i , q i ) m m i n n i q q i e m e n e q
where e m = e m i i , etc., obviously in the Tate algebra in the 3r variables. The map f → F is continuous if the Tate algebras are provided with the sup norm; it is compatible with the comultiplication.

Consider now the spaces of (global) distributions D, D r on the rigidanalytic spaces S and Res(S r ) (with coefficients in L.) These are simply the dual spaces of A 1 and A r .

By duality we obtain a map b : D r -→ D .

Since the convolution can be defined by means of the coproduct on the spaces A, we see that b is a homomorphism of algebras for the convolution.

In fact we can say more. Return to the formulas in § 4.1 giving the product map in coordinates, with t = exp(- This obviously applies, with the same proof, to Res(S r ). Since the restriction of scalars preserves integral functions, we finally have the following result. We write D(L), D r (L) to emphasise the fact that the coefficients are in L. By adding the center ( a direct factor for p ≥ 3), Theorem 4.1 obviously extends to the full Iwahori subgroups G, G r .

4.3

It is now easy that the map b : D r → D is the map that we had formally defined in § 3.4. Consider for instance the effect of b on 1 + X i :

1 + X i → (1 + X) e i .

The distribution 1 + X i belongs to D r , and is simply the evaluation of F at the point (x i = 1, 0, . . . , 0) of the ball Z 3r

p . If we compose with the map f → F (cf. (4.1)), we obtain the map f → f (e i , 0, 0) where f is seen as an analytic function on the L-adic group. This distribution does not belong to the Iwasawa algebra: it has no meaning on the continuous functions. However, (1 + X) v is the map f → f (v, 0, 0) if v ∈ Z p ; for v ∈ O L , the power (1 + X) e i which appeared in the computations of § 3.4 is then naturally identified with f → f (e i , 0, 0). The same argument applies to the other variables.

Theorem 2 . 7 .

 27 -The map A → Λ gives, by passing to the quotient, an isomorphism B = A/R ∼ -→ Λ As in our previous paper, we will use for the proof the corresponding algebras with finite coefficients. Thus let Ω = Λ Zp F p be the algebra of distributions with values in F p . We now have a natural map Ā = A⊗F p → Ω.

Theorem 3 . 1 .

 31 -The natural homomorphism A/R -→ Λ is an isomorphism.

  (Amice's theorem, cf[START_REF] Lazard | Michel Groupes analytiques p-adiques[END_REF] III.1.3.8].) This implies that the Iwasawa series(3.11) is convergent on such functions. Thus we are naturally led to replace the Iwasawa algebra by the dual of the space of globally analytic functions (possibly with coefficients in L.)[START_REF] Bushnell | The admissible dual of GL(N) via compact open subgroups[END_REF] The holomorphic base change map 4.1

  where π = log(1 + p).The local parameter Z associated to T is then, with obvious notation,z + ζ -2 1 log(1 + p) log(1 + pxη),a convergent series in (z, ζ, x, η) with integral coefficients. Furthermore, (1 + pxη) -1 is such a series, as is t -2 :t -2 = exp(zπ) = a n z n with v(a n ) = p -2 p -1 n + Schiff(n) > 0for n ≥ 1.Therefore the coordinates Z, X, Y of the product belong to the Tate algebra in the six variables with integral coefficients.4 Let δ : A = A S → A S ⊗A S be the comultiplication. Then convolution in D is defined by < S * T, f >=< S ⊗ T, δ(f ) > while the norm in D is given byT = Sup f ∈A 0 < T, f > .where A 0 is the unit ball in A. For f ∈ A 0 , the previous computation show that δ(f ) is a series with integral coefficients. By [2, §2.1, Prop.1], we then have | < S ⊗ T, δ(f ) > | ≤ 1 if S ≤ 1 and T ≤ 1. Thus S * T ≤ S . T .

Theorem 4 .

 4 1.-(i) The map b defines a morphism of convolution algebras D r (L) → D(L). (ii) D(L), D r (L) are Banach algebras for convolution, the product verifying in fact S * T ≤ S . T . (iii) b(f ) ≤ f (f ∈ D r (L).

We do not see how to obtain a natural basis of W . In particular, the structure constants q ijk , Q ijk of Λ G do not seem to have a natural expression.

We apologise for the conflict of notations with the previous paragraphs. The spaces of non-commutative polynomials will no longer occur in this section.

We will review the restriction of scalars more precisely in part II of this paper.

Note that in this rigid-analytic computation we do not have to assume that p > 3. We did not check which of the other arguments apply.

3.2

We sketch the proof, which is very similar to that given for Q p . We choose the coefficient α of § 2.1 equal to 1 2 . Again, Λ is filtered by 1 2 N, gr ν Λ having a basis given by the independent elements

give a basis of gr ν Ω. The foregoing argument shows that the natural maps A → Λ, Ā → Ω are well-defined. We give weights (1,2,1) to the elements Y i , H j , X 1 and replace in Ω the filtration by 1 2 N by the filtration by n = 2ν ∈ N. We have the analogue of Lemma 2.11; first we have

The same relations are verified by the Y k .

(ii) Same relations, with q ijk replaced by Q ijk . 

Part (i) follows from (A) and (i) of the previous Lemma; similarly (ii) follows from (B) and (i). Now from (C) we have, using (ii) of that Lemma:

By Lemma 3.4, we see first that dim gr 1 B = 2r (linear terms in the X i , Y i ), then that dim gr 2 B = 2r(2r+1) 2 + r (symmetric polynomials of degree 2 in the X i , Y j and linear forms in the H k ). Finally, the argument given for the