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Relaxation
of the isothermal Euler-Poisson system
to the Drift-Diffusion Equations

S. Junca and M. Rascle.
Laboratoire de Mathématiques, U.R.A. C.N.R.S. 168
Université de Nice, Parc Valrose B.P. 71, F06108 Nice Cédex 2

Abstract : We consider the one dimensional Euler-Poisson system, in the isothermal
case , with a friction coefficient e 1. When ¢ — 0, we show that the sequence of entropy-
admissible weak solutions constructed in [PRV] converges to the solution to the drift-diffusion
equations. We use the scaling introduced in [MN2], who proved a quite similar result in the
isentropic case, using the theory of compensated compactness. On one hand this theory
cannot be used in our case; on the other hand, exploiting the linear pressure law, we can
give here a much simpler proof by only using the entropy inequality and de la Vallée-Poussin

criterion of weak compactness in L!.

1 Introduction

In this paper, we consider a classical fluid model of the transport of electric charges
in semi-conductors, namely the Euler-Poisson system, written here in the one-
dimensional case :

on 0
0 0 9 _ nu
a(nu) + o (nu +p(n)) = . +nkE. (1.2)

In this model, n is the density of electrons, u is the velocity, p is the pressure,
and E is the “negative” electric field. Moreover, 1/¢ is a positive friction term
which describes the collisions between the electrons and the atoms of the crystal.
Obviously, equation (1.1) describes the conservation of electrons, and equation (1.2)
is the momentum equation, in which the nE term describes the acceleration of the
electrons due to the electric field.

This electric field is assumed to be self-consistent:

OF

R _N
oz "

(1.3)
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where N is the constant density of a fixed background charge, that we assume to
be constant. For more details on the modeling, we refer e.g. to [MRS] and to the
references therein.

For a fixed positive friction coefficient 1/¢, Bo Zhang [Z] and Marcati-Natalini
[MN1] have considered the isentropic case :

1 5
pn)=-n", 1<y<-. (1.4)
0% 3

Using the theory of compensated compactness, they have proved the global existence
of a weak entropy-admissible solution, namely a weak solution such that

o [ u? 1 0 ud 1 n(u)?
_ _ Y _— _ —n7 N7 < 0.
8t<n2+7(7_1)n)+8$<n2+7nu>+ - nul <0

On the other hand, still for a fixed ¢ > 0, Poupaud-Rascle-Vila [PRV] have
considered the isothermal case

p(n) =n
and obtained the global existence of a weak entropy-admissible solution by using the

Glimm scheme [G] and the very particular properties of the underlying nonlinear
hyperbolic system, namely the so-called Nishida system [Ni]

on 0

e + s (nu) = 0,
E(nu) + E (nu + n) = 0,

written here in Eulerian coordinates.

We are interested here in studying the limit of the full system (1.1), (1.2), (1.3)
when € — 04. In the isentropic case, Marcati & Natalini, ([MN2]), have introduced
a “ parabolic scaling ” s := ¢t,  := x, and shown that in the new variables , the
solution converges to the solution of the drift-diffusion system.

In this paper, we are going to show the same convergence result in the isothermal
case 7 = 1. We use the same scaling as in [MN2], but our proof is totally different,
since the behavior of the Riemann invariants is entirely different near by the vacuum
n = 0. In particular, we cannot use the method of compensated compactness as in
[MNZ2]. In fact, our proof essentially uses two arguments. First, the pressure depends
linearly on the density n. Therefore, there is no problem here to pass to the limit in
this term ! The second crucial ingredient is the entropy inequality - with a suitable
modification of the classical term nlnn to take into account the behavior of n at
infinity - which classically implies the weak compactness in L', by the de la Vallée-
Poussin criterion. We also remark that, using energy estimates for higher order
derivatives, a similar result of strong convergence when (¢ — 0;) has been recently
obtained in [CJZ1] for the same problem, starting with small smooth initial data.
[ In fact, the result is stated with a pressure law p(n) = %n"’, ~4 > 1, but the same



method could probably cover the case ¥ = 1 ]. The same Authors have also obtained
in [CJZ2] a similar result for a more complete hydrodynamic model, which involves
an energy equation and a fized positive heat conductivity.

The outline of the paper is as follows. After this introduction, we briefly state
the problem in Section 2. Then in Section 3 we recall a few basic facts, before
studying the entropy inequality in Section 4 and finally proving the convergence to
the solution of the drift-diffusion system in Section 5.

2 Statement of the problem

As we said in the Introduction, we consider the isothermal one-dimensional Euler-
Poisson system, that we rewrite here

0 0 9 . nu
a(nu) + 9z (nu +p(n)) = . +nkE, (2.2)
with p(n) = n and
OF
_— = — N 2.
8 a-w, (23

where N is a given non-negative constant. Moreover, we add the initial data
n(0,z) = no(z),u(0,z) = up(x), z € IR. (2.4)

These initial data, as well as the function N, are not necessary small, and can be
discontinuous. However, in order to use the results of [PRV], we assume that

ug and Inng € BV (IR), (2.5)

where BV (IR) is the space of functions with bounded variation:

k
TV (f) := sup ke N z_:l |f (i) = f(zi1)] < oo.
o<1 < < Tk =
Moreover we make the following assumption:
BE(t,—o0) = VL (1), t>0, (2.6)
where E°_(s) := V. (s/¢) satisfies
ES.  is bounded in L*®(R}Y) N W, (RY), (2.7)
Ef,  converges to Fi. 2.8)

For example, we can take ES_ constant, as in [MIN2].



We assume also that there exists a Ly > 0 such that,
for |z| > Lo, wup(z) = us(0), no(z) = N = N, (2.9)

and
/R(no(a:) — N)dz = 0. (2.10)

As we will see in Lemma 3.1, these assumptions imply that for any fixed positive
€ and t the electric field and the velocity are compactly supported in x.

Let us now compare our assumptions with these considered in [MN2] and [PRV].
Here, as in [PRV], the density is assumed to be constant at infinity. The main reason
for this assumption is that the existence result in [PRV] uses the Glimm scheme for
the Nishida system (1.5). Now the special Glimm functional for this system involves
Inn, and therefore the density cannot be compactly supported, contrarily to the
assumptions of [MN2]. On the other hand, we assume here that the background
charge N is constant and we consider here the slightly restrictive case where the
limits of E(s,.) at 0o are the same. However this assumption is natural in view of
(2.10), which expresses a global neutrality.

Let (nf,u®, Ef) be a solution to (2.1),(2.2),(2.3), (2.4),(2.6),(2.9). We first recall
formal arguments which lead to the “parabolic” scaling introduced in [MN2]. If the
problem is well posed, then in equation (2.2) - at least in regions where u® is smooth

€,,€
- all the terms are of order 1, except the damping term _nd
Therefore , we expect that
&
n* = =0(1), (2.11)
€

uE
and in fact that — = O(1).
€

Therefore, in order to balance the term 8, (n‘u®) = 9,(0(¢)) in equation (2.1),
we need to introduce a slow time
s = gt,

so that (2.1) can be rewritten as

on® 0 [ uf\ _

In variables s and «, the isothermal Euler-Poisson system reads

ont 0 [nfu®
i = 0 2.12
Os + 833( € > ’ (2.12)
0 £, € 0 E£(,E\2 £ _ nu’ 5
Eg(nu)—l—a—x(n(u) +n)) = +n°E, (2.13)
£
ad = nf—N. (2.14)
oz

Let us now assume that, say in the distribution sense,

n® — n,

Ef — E.



Then

a g, €
sas(nu) — 0,

9 €(,,€)\2

. (n (u®) ) - 0,
since u* — 0. If we can pass to the limit in the product n®E® in (2.13), then the
limit current satisfies

€,,€
lim 2% =~ 97
e—0 € Oz
In view of (2.12), we obtain the drift-diffusion equations
on 0 on
—F+—(nE—-——) = 0 2.15
Os + Oz (n 8:):) ’ ( )
OE
— = - N 2.1
8$ n ? ( 6)
together with the initial data
n(0,z) =ngp(z), z€ R, (2.17)
E(s,—c0) = E.(s), s€ R". (2.18)

As in [MN2], the aim of this paper is to give a rigorous justification of the
above asymptotic analysis. However, as in [PRV], we consider here the isothermal
case. As we said in the Introduction, the compensated compactness method used in
[MN2] does not work in our case, in particular since the Riemann invariants of the
hyperbolic system (2.1), (2.2) are now

uztlnn

and therefore are unbounded in a neighborhood of the vacuum n = 0. Our main
result is

Theorem 2.1

We assume that (2.5),(2.6),(2.7),(2.8),(2.9), (2.10) are satisfied. In particular the

initial data are constant out of a compact set. For any positive € let (n®,u®, E¢) be

an entropy-admissible solution to (2.1),(2.2),(2.3), (2.4), constructed in [PRV], an

let (n, E) be the unique solution to (2.15), (2.16), (2.17), (2.18). Then the whole
£

u . .
sequence ne,nE—,Ee) converges in the following way :
€

(i) n®—No — n—Ns in L} (RfxIR,) weak,

loc
(12) E¢ — E in LY (R} x IR,) strong, 1 < p < oo,
€,,€ 8
(417) n — nkE — a—z in M} (R} x R,) weak-star.

In the above Theorem, LlloC and M, lloc respectively denote the space of locally inte-
grable functions and the space of (locally bounded) measures on IR} x IR,.

Let us point out that there is no natural L([0, S] x IR,) estimate of (n® — Nu.).
Therefore the above convergence results can only be local. However, we can show
that the electric field (E¢).~¢ is uniformly bounded in L*° (R} x IR,).

If we don’t use the assumption(2.8), we have only this Theorem for a subse-
quence.



3 Basic facts

In this Section, ¢ is a fixed positive number. We consider an entropy-admissible so-
lution to (2.12), (2.13), (2.14), (2.4) constructed in [PRV]. This solution (n®,u®, E¢)
is constructed with a splitting, via the Glimm scheme applied to the hyperbolic
system (1.5) which is nothing but the well-known Nishida system, see [Ni]. We
will essentially use the following properties of this solution, that for convenience we
rewrite here in the new variables (s, z) :

Proposition 3.1 ( [PRV])

For any fized positive €, we have
i)
(n®, %, B%)(s,2) € Li.(RY, L (R,)) N C° (R, Lj,o(Ry)), (3.1)
i1) the z-derivative of the solution is compactly supported in x : 3 L(s,¢),
L(0,¢) := Ly, where L(.,€) is an decreasing function, and for s > 0 and |z| > L(s,¢)
0
%(ne,uE:EE)(s:m) = (07070), (3'2)

111) the solution is entropy-admissible :

O () o,
$<nT+nlnn

108 £)3 e\ 2 €
+-— nE—(u ) +nfuflnn® +nfuf | +nf <u_) _ el <0.
€0z 2 € €

(3.3)

In view of the above assumptions on the data, we have

Lemma 3.1
From assumption (2.10), for alle > 0 and s > 0, n® — N, u® — us_, B¢ — E5_ are
compactly supported in x, with

u_(s) = 1/08 exp (—S;T) EE (7)dr + s (0) exp (-52) .

3

Proof : For any S > 0, let us introduce W = W+ U W~ where
W+ = {(s,z)/ s €[0,S] and £z > L(s/e,e)}. By (2.12), (2.13) we clearly have

8 £
a” =0; n°(0,z)=Nu, |z| > Lo, (3.4)
s
Out ut® K
s = _82 + ;; uE(O,m) = uoo(O)a |$| > Ly, (35)
OFE¢
3 =n—N; E°(s,—o0)=FE(s), s>0. (3.6)
z

From (3.4), we have n® = N on W, therefore £ = E5 on W~. Now, by (2.10)
and (2.12),

[0 (5,2 = Nyda = [ (nale) = N)de =0,

6



which implies E¢ = ES, on W™ and therefore

8 15 £ EE
8—“82—3—2+ =, o] > L(s/z,6) and u'(0,2) = ux(0), [e| > Lo. (3.7)

In the next Section, we are going to establish the entropy inequality, which will
be the crucial argument to show the convergence when ¢ — 0.

4 An entropy inequality

Obviously, the natural entropy

w2
ny = n;—i—nlnn, (4.1)

used in [PRV] is not a non-negative function! Moreover, the functions involved are
not integrable on IR, due to the behavior of the data when |z| — +oo. Therefore, in
order to overcome this classical difficulty, we first modify 7g into

2

U
no= nE + ¢(n— Nu), (4.2)

where the nlnn term in (4.1) is now contained in the first term in the right-hand

side of (4.2):
e(y) = Y+ Noo)In(y+ Noo) = [NecIn Noo + (1 +In Noo)y] > 0. (4.3)

Clearly ¢ :] — Noo, +0o[— IR is convex and super-linear at infinity:

im £W o, (4.4)
y—+too Yy
Moreover, it is easy to check that
Vy > —Noo , ¢(|y]) < o(y)- (4.5)

Using the entropy inequality (3.3), adding and subtracting the linear part of ¢,
and using (2.12), we have
om  Oq

— 4+ = <0 4.6
Os + Oz trsh (4.6)
with
1 £\3 €
@o= <ng% + nfufln (;oo>>>
£)2 £
ry = neg—neu—Ee.
€ €

£

u
Now, the above term —n®—FE*® is dissipative. Indeed
€



Lemma 4.1
For alle >0, E° € Wllocl(lR;" x IR;), and in particular

O(E® — EY) u

— . (4.7)

€
u
= —nf— 4 Npo—22
g €

Therefore, by the chain rule formula

E 0 (B = B)” EQ)Z) : (4.8)

u® u
N ) =2
( " € + € )( ) Os < 2
Proof : Differentiating (2.14) with respect to s, and using (2.12), we obtain

9sdx ot Oz

O*E®  onf 5, ( . uE)
= n .
9

Differentiating with respect to s the boundary condition E¢(s,—o0) = E5(s), we
obtain O(EF — B i .
7( — Bs) :—neu——i—Noou—oo.

Os € €
Combining this last result with (2.14) and Proposition 3.1, we obtain the
VVllo’cl(IRj x IR;) regularity for the electric field E°. [J
We can now obtain a more useful entropy inequality. By (2.13), (2.14) and (3.7) we
have

1 nfu® E* us, E%
as(ngusurio) = (_gaz (nE(UE)Z + ne) - -2 + ’I’LE?> 'U«io + nfu® <_&'_2 + . ) )
and, by (2.12) and (3.7),

w)?) 1 ) u, | BL

83 <n6%> = —gaw(ngug)% +TLE’UJZO (—5—2 =+ c > .
(ug.)?
Subtracting and adding 95 | nuful, — ne% in inequality (4.6) we have
Ona  Oqs
- = <0 4.9
9s " og 2= (4.9)
with
u® —ul, 2
o= T e - ),
1 1 £ \2
92 = @ (ne(u‘e)2 + ne) ul, — gneue ((ur_;) ),
E,,E E'E £ Eg
ry = r1+ (_n g +n° oo) u, +nf(u® —ul) <—u#;° + °°>.
€ € g2 €



We can rewrite r9 in the form

£\2 £ £ \2
ro = ng—(u; —2n5u5u—°9°+n6—(u°‘23)
€ g2
£ c £ £ EOO 15 Eue 15 EuEOO £
—n"—E " 4+n"—FE" +n"—E,_—n"—FE_
€ € € €
5 (ue - 'U'Eoo)2
= n
2
€
ut ut ut
+ (—ne? + Noo?”) (E° = ES.) + (nf — Noo)?oo(EE - E%).

Using (4.8), (2.14), and the chain rule formula (4.8) we obtain

ry — ne(ue—uio)2+8 (E° — EE,)? Y (EE—E&)QE
g2 s 2 “ 2 e )

We therefore obtain the final entropy:

£ _ € 2 F¢ — EE 2
,',]E = pf (u uoo) +QD(TZ6 _Noo) + ( oo) ,
2 2
which corresponds to
1 €\3 €
qg = - (ne—(u; + nfufln (]:;OO)
E¢ — EE¢ 2 €
+ ( oo) +n5u5u;oo_n6(u6)2_n5 u.(sx ,
2 2
e . e (U'E B U'Eoo)z
r* = n 2
Proposition 4.1 (Entropy inequality)
1) With the above notation, for all € > 0, we have:
on®  Oq¢°
az + 8% +rf <. (4.10)

1) Therefore, there exists a constant C, independent of ¢, such that for all S > 0

/]R (new + o(|nf — Nuo|) + w> (S, z)dz

2 2

(4.11)
S e _ ., \2
+/ / ngw(s,m)d:ﬂds <C.
0o JIR e”
i111) Consequently, we have

nf(uf —us)? = 0(?) in LY(RF x R,), (4.12)
Ef—E, =0(1) inL®(RS I[*(R,)), (4.13)
p(n* = Nol) = O(1) in L= (IR}, L}(IR,)). (4.19)



Proof : We have already proved (4.10). Let L := L(S/e,¢), integrating (4.10) on
I

{s} x [-L, L], with 0 < s < S, we have / 9.q° (s, z)dx = [¢°]F; = 0. Therefore,
—L

integrating (4.10) on [0, S] x [-L, L], and using (4.5) we obtain (4.11). O

We are now ready to justify the convergence to the drift-diffusion equations when
€ —0.

5 Proof of Theorem 1

We start with the estimate (4.14). Unfortunately, since we have no control on the size
of the support of n® — N, and since the function ¢(y) is quadratic in a neighborhood
of y = 0, (4.14) only implies a control in L} of (n — Nu).
For all X > 0, 3 C1(X) such that :
| oo < Ci(X). 5.1
9l e e, 21—, x0)) S CLY) (5.1

From now on, let S be a positive number, and let us first consider the bounded
domain

Qx =0, S[x(-X, X).

Lemma 5.1
There exists a constant Co = C3(S, X) independent of €, such that:

// E' |dsdm+// — °°|dsd:c<Cg
X X

Proof : For the first term we use the lemma 3.1 and (5.1). By the Cauchy-Schwarz
inequality,

//Xn6|ue_u‘;o|dwds = // \/n n®)|uf — v, |deds
<//Xn5d:nds)2 <//Xne(u6 —uio)2d:nds)§,

and we conclude by (4.12) and (5.1). O

IN

Lemma 5.2
The sequence (E) is bounded in the space

WP Qx) N L¥(RS,WH((=X,X))) N L¥(R] x R,).

Proof : By (4.13) and the Cauchy-Schwarz inequality, we obtain the
OE
L>®(R},L'((—X,X))) estimates. Now, using (2.14) and (5.1), we see that

Ox
bounded in L® (IR}, L'((—=X, X))). Therefore (E?) is bounded in
L>(RS,WY((-=X,X))). Then, by lemma 4.1 and lemma 5.1 it follows that (E¢)
is bounded in Wh1(Qx).

£
is

10



Finally, we remark that these bounds only depend on the measure of the domain
Qx. Now, since

SqueZ”EEHLOO(R:-, Wil (]k, k+ 1[)) < oo,
we obtain the L>° (IR} x IR,) bound . O
We can now justify the formal calculations of section 2 :

Proposition 5.1
At least for a subsequence, we have

; 0 ‘
() & (n@)?) = 0 in D'(Qx),
(7) sa(neue) - 0 in D'(Qx),
(iii)) n°—Np — n—Nyp in LYQx) weak,
(iv) E¢ — E in LP(Qx) strong, 1 < p < oo,
(v) nEEEEE — nEa in D'(Qx),
(vi) nd — nE+ a_n in MY Qx) weak-star

€ T

where (n, E) is a solution to (2.15), (2.16), (2.17), (2.18), on Qx, and D'(Qx) is
the space of distributions on Qx.

Proof : Writing n®(uf)? = n®(uf —uf, )2 +n (u, )% —2n° (u® —us_)us,, we first obtain
(7) as a consequence of (4.12) and Lemma 5.1. We have (¢%) in view of Lemma 5.1.
Now Qx is bounded and ¢ is super-linear at infinity. Therefore by (4.14) and the de
la Vallée-Poussin criterion, the sequence (nf — N, ) is weakly compact in L'(Qx),
which implies (ii7), at least for a subsequence, which is still denoted by (n® — N).

Now, Wh(Qx) is compactly embedded in L'(Qx). By Lemma 5.2, we can
extract a new subsequence (E°) which satisfies (iv).

Passing to the limit in (2.13) we obtain

OF
Therefore, E € L> (RS, W ((—X, X))). Now
nfE° = (nf — N)E° + NE-.

By (iv), Lemma 5.2, (2.14) and the chain rule formula (4.8), we obtain

& ([ (Ee)? o [E?
o NEf =~ (= |+ NE
" 8:1:( 2 )+ 8:1:(2 +
_ Z—EE+NE:(n—N)E+NE:nE.
&

11



Combining the above results with Lemma 5.1 and Lemma 5.2, we can now pass
to the limit in (2.13) to obtain (vi).

Finally, using this last relation and passing to the limit in (2.12) and (2.14), we
obtain the system of drift-diffusion equations on @ x, for all S and X. OJ

By the diagonal process, it is easy to show that for all S, (n, E) is a solution of
(2.15), (2.16) , (2.17) , (2.18), on the whole strip Q = (0,.S) x IR. The boundary
condition (2.18) is a consequence of assumption (2.8).

Let be E# := E — E,, the Drift-Diffusion equations are equivalent to :

OE#

# #)2 2 gt
BH0.2) = [ (no(y) = N)dy. (5.4

Since the solution of (5.3) and (5.4) is unique, we conclude that the pair of sequences
(n®, E¢) converges. Obviously, this convergence is only local. Therefore the formal
calculations of section 2 have been rigorously justified.
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