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Abstract

Let (Xn),cn be a sequence of i.i.d. random variables with values in Euclidean
space RV, N > 1. Assuming some regularity on the common density, we prove a
Berry-Esseen like theorem: the boundedness of moments higher than two improves
the rate of convergence to the related Gaussian in Sobolev norms. Our method is
noticeable simple and it applies also when studying convergence to stable laws.

1 Introduction

Consider a sequence of independent identically distributed random variables (Xy,),, .y with
values in Euclidean space RY, N > 1. We assume that the probability density f of X

satisfies
/ fdr =1, / zfdx =0, / 2|2 f dx < oo. (1)
RN RN RN

Denote by f, the probability density of the normalized partial sum

g _ Nt tX,

Let wgk be the normal law with zero mean and covariance operator K, whose coefficients
are

Kz-j:/ zix; f(x) dx for1<1i,57 <N.
RN



The classical central limit theorem asserts that f, converges to the Gaussian density

wr(2) = o : Qe (x) ¥ <_¥)

as n — oo, see (8] for instance. In a recent paper, [7], Lions and Toscani proved that, under
some additional regularity assumption on f (see condition (2) below), the convergence
fn — wk holds in any Sobolev space

HHRY) = (6 € SRY), [ (1+[6P) O de < oc)

where 5(5) = / e ¢ (x) dr stands for the Fourier transform of ¢. However, in [7] the
RN

rate of convergence has not been discussed. In view of the usual Berry-Esseen theorem [8],
such kind of information may be expected from extra moment assumptions on f. The aim
of this paper is to prove this quite intuitive result. Namely, we shall show the following

THEOREM 1 Let f satisfy (1). Moreover, assume there exists M > 0 and k > 0 such
that

[+ P Fle)M ds = Curs < o0 )
and
/ |z f(z) de = ps < 0o for some 2 < s < 3. (3)
RN

Then
1
| fn — willme < CW’
the constant C depending on K, ps, M and k.

REMARK 1 Clearly, (2) is fulfilled with M = 2 as f belongs to H*. Furthermore, accord-
ing to [7], it is worth pointing out that Theorem 1 holds in any H* if, instead of satisfying
hypothesis (2) the probability density f is such that, for some € >0

~

€5 1F(O] < C for €] > 1. (4)

Indeed, (4) yields (2) with M > (2k + N)/e. Notice also that \/f € H* ensures (4) with
e=1.



REMARK 2 The usual Berry-Esseen theorem gives the same decay for the uniform metric
between the associated distribution functions p(F,, Qk) = sup {|F,(z) — Qk(z)|;z € RV }.
This has also to be compared to results in [9] describying the rate of convergence evalu-
ated in terms of a certain minimal metric, implying weak convergence of the probabillity
density.

Berry-Esseen type estimates are of vital interest in statistics, where many results about
the asymptotic distribution of estimators and testors depend on the central limit theorem,
and the validity of the statistical method depends on how good the asymptotic distribution
approximates the real distribution (see [6] for further details). Classical estimates refer
to the uniform metric (see Remark 2) but the novelty here is the study of the decay in
Sobolev spaces H¥, in the spirit of [7].

On the other hand, it is worth emphasizing the simplicity of our arguments which take
advantage of the introduction of a suitable Fourier-based metric for probability distribu-
tions (see definition (5)). We shall describe this metric in Section 2. Interest and easiness
of use of this metric is illustrated with an amazing application to the heat equation. Next,
coming back to the behaviour of f,, a slow rate of decay in Sobolev spaces can be found
by means of the method developped by Carrillo and Toscani [2]. The simple proof of this
fact is also given in Section 2; combined to the results of Lions-Toscani [7], we obtain
convergence in any Sobolev space at a rate which is not sharp. Section 3 is devoted to
the proof of Theorem 1, with convergence in H* norm at the Berry-Esseen rate. Finally,
in Section 4, we extend the discussion to stable laws.

2 Fourier-based metrics

2.1 Definition

Denote by P;(RY), s > 0, the class of all probability distributions ' on R¥, N > 1, such
that

/ 2 dF () < oo
]RN

We introduce a metric on Ps(RY) by

ds(F,G) = sup {M}, (5)

£ERN\ {0} &



where f, g are the densities associated to F, G respectively. In the following, if X and Y
have distributions F' and G, or f and g are probability densities we will write dy(X,Y)
or ds(f,g) instead of d,(F, Q).

Connection to moment properties appear clearly with the following remark. Let us
write s = m + d, where m is an integer and 0 < § < 1. Then, an easy computation shows
that in order that d,(F,G) be finite, it suffices that F' and G have the same moments up
to order m.

The metric (5) has been introduced in [4] to investigate the trend to equilibrium of the
solutions to the Boltzmann equation for Maxwell molecules. There, the case s = 2 + ¢,
d > 0, was considered. Further applications of ds, with s = 4, were studied in [1], while the
case s = 2 has been considered in [10] in connection with the uniqueness of the solutions
to the Boltzmann equation for Maxwell molecules. There, the main properties and the
relationships with other classical metrics have been investigated. Here, we remark that,
for all s > 0, d; is a regular metric, i.e. for any distributions F', G and H

dy(F x H,G  H) < dy(F,G) (6)

where x denotes convolution of distributions. Moreover, for any constant ¢ > 0 and any
random variables X and Y,

ds(aX,aY) < a’ds(X,Y) (7)

Properties (6) and (7) characterize ideal metrics [11].

This type of metrics proved to be a very useful instrument in the estimate of the
convergence rate in the central limit theorem. It seems to us worth illustrating how this
tool can be used with the following very simple examples. The former deals with the heat
equation: by means of the metric (5) we shall find the rate of decay of the solution of the
heat equation to the fundamental one, showing that this rate is related to the number
of moments which are initially finite. The latter explains how we can use this metric to
prove Berry-Esseen like inequalities with an easy proof of convergence in Sobolev spaces
at a suboptimal rate.

2.2 A remark on the heat equation

It is well known that a solution of the heat equation

O — kAyu=0 inRY
{ u(0,) = f (), (8)



where f(z) is a probability density function satisfying (1), behaves asymptotically in time
as the fundamental solution of (8), which is given by wyy;, and the rate of convergence
in L? norm is governed by ¢t /2. The purpose of this section is to show that we can
improve this rate of convergence as soon as we have more information on the moments of
the initial data.

THEOREM 2 Let uy and ug be solutions of (8) with initial data f1 and fo respectively, and
let s be such that ds(f1, f2) is finite . Then, we have

(s — u2) (¢, ) IZ2@ry < (ds(f1, f2))? C =GN,
T(s + N/2)
[(N/2)

In particular, as s — 0, we recover the usual rate. Let s = m + 0, where m is
an integer and 0 < § < 1. Looking at the definition of the metric d;, practically Theorem
2 means that if the data f; and f, have the same moments up to m, and

/N o fils) < 00, i=1,2
R

then the rate of convergence becomes t~(5+1/2),
Proof. The proof is entirely explicit. Indeed, by Fourier transform, we get

Ot (t, &) = —k|E|* (2, €).

Solving the ordinary differential equation leads to

@1(,€) = Bo(t, €)* = exp(=2kt[€[*)| F1(€) — (€[
It follows that the L? norm is estimated by

[ o) —wofd = o [ (6 - aord

= (2m)™" f _exp(=2kt|¢P)| Fi(€) — Fa(€)I dg
R
< (d(fi, f2))* F(0)
by using the Parseval equality. The function of time F'(¢) is computed as follows
F(t) = (n)™ [ exp(-2kleP) e de
R o0
= (@2m) Y / exp(—2ktp?) p* p*~ dpdwi
sa-1 Jo -,
= (27)~N 27N/ T(N/2) / exp(—z)z BN =2)/2 dz

0 2.2kt (2kt)@stN-2)/2
= T(s+ N/2)/ (D(N/2)(2k)* N2 (47)N/2) ¢=(+8/2)

with C' = (47) =N/ (2k) ~(+N/2)

t—N/2
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Optimality of the obtained constant may be seen by considering Dirac mass as initial
data. This finishes the proof. O

2.3 A non optimal rate of convergence in H* norm

The interest of Fourier-based metric for studying convergence properties of S, is best
understood when we realize that the Fourier transform of the density f, is given by

7 = (Fe/vm)". )

This shows that the main contribution comes from small values of &, for which f;(f) is
close to 1. Furthermore, provided s > 2 we obtain
1 5—2

di(F,, k) < | — ds(F, Q). 10

Fti) < (=) dlr (10

The rate of convergence in the metric d; is optimal. By means of (10) we can easily obtain
convergence in Sobolev spaces at a suboptimal rate. The proof is immediate. Indeed, we
wish to investigate the behaviour of the following (square of) H* norm

2

= [ e e - axie)| d
RN
as n goes to co. Let R > 0 and p > 0. Then, we split [,, as follows
~ 2
Lo< [ sy lhe -ae) d
|§I<R 1 )
2\k+p | F T
e O Ee e

< [ QeI ) dE 4 o e

E<R (11 + R?)
S CN(l + RQ)k—I—S—FN/?d?(fn,wK) + m“fn — wK||§{k+,,.
Optimizing over R we get
2k+2s+N
||fn - wK”Hk S C(N7 k7p7 S)an - wK||;IkI:f;+N+2p ds(fna wK) 2k+2§2fN+2p (11)

where

2k+2s4+N 2p %
2]3 2k+2s+N+2p + Qk -+ 25 + N 2k+2s+N+2p
2k+2s+ N 2p

A simple application of (10) and (11) shows the following

p
c¢(N,k,p,s) = Crrr>tv

6



THEOREM 3 Let f satisfy (1), (2) and (3). Then, if f, is uniformly bounded in H*, for
some k > 0, f, converges to wx in any H¥ with k' < k, and

1\ S
| fn — willgw < C(N, s, k, k) (ﬁ) '

Actually, we can improve the rate of convergence obtained in this simple and short way,
by using another (quite classical) n—dependent splitting of I,, as shown in the following
Section.

3 Proof of Theorem 1

Now, let us split [, into integrals on high and low frequencies as follows

In = Hn + Lna
H, =/ e, Ly :/ .. de
|| >nv/n || <nv/n

where 1 > 0 is a parameter to be determined. The regularity requirement (2) allows us
to control the decay of high frequencies H,, while extra-moment condition (3) gives both
estimates on the decay of low frequencies L,, and determines the rate of convergence.

3.1 High frequencies estimates

First of all, let us deal with the high frequencies integral which decreases with arbitrarily
fast rate as shown in the following claim.

LEMMA 1 Let f satisfy (1) and (2). Then, for any o > 0, n > M/2, one has
H, < C/n?, (12)
where C depends on Cary. If (2) is replaced by (4), then (12) holds in any H*, k > 0.

Note that Lemma 1 only needs the regularity assumption (2) but does not require extra
moment condition.



Proof. First, we simply evaluate

H, < 2 / (1+ €241 Fal€) [ de + 2 / (1+ €241 (€2 de
|€]>nv/m

[€]>nv/n
< 9 / (1+ IE[2)F 7/ v/m) 2 de + 2 / (1 + |EP)H G (/v/m) > deé
|€]>nv/ |€|>nv/n

where we used (9) and the trivial property |0k (£)|> = |0k (§/+/n)|*". Hence, it suffices to
deal with

Ba= [ qlepe v =n [ 1 nicPraQ de
[€1>nv/n

[<1>n

¢ verifying (1) and (2). We have

~ 2 k
iy = e [ (CERES) 0 RO O e
20

n(1+[¢?)
~ 2n—M
< 2R (18l qeism) Chrk-
Let o« > 0. We claim that
. a ~ 2n—M
Jim (1@l qmm) T =0, (13)

which will prove (12). Indeed, (13) follows from the following elementary result.

LEMMA 2 i) Let o € L*(RY,C) satisfy / () dx
RN
0 € (0,27) such that ¥(z) = e ®[)(x)| a.e.
i1) Let o € L*(RY) satisfy p > 0 and/ o(x)dz = 1. Then, for allp > 0, one has

RN
sup |p(§)] < 1.
[€1>n

:/ |(x)| dx. Then there exists
]RN

Lemma 2 is very standard and we omit the proof. We only mention that i) is a
consequence of i). Applying Lemma 2 i) to ¢ = f or wg gives ||@||e(¢/>p < 1 for all
n > 0, which in turn leads easily to (13). O

REMARK 3 Note that it is crucial to assume that the common density f lies in L*(RY);
if f is a measure, Lemma 2 breaks down in general (recall for instance the case of the
Dirac mass 6y which gives §o = 1).



3.2 Low frequencies estimates

In order to deal with the low frequencies integral, we are going to use the following claim
where the distance introduced in [4] appears.

LEMMA 3 Let s > 2. If there exists n > 0 and o > 0 such that, for |£] <n,

~ o

Flol < exp{-Fler}, (14)
then, for allm > 2, one has

oy O -3k ( 1 )<s—2>
- = ds I .
|§\S§unlz/ﬁ exp { g €] } G < Jn (f,wk)

Assume temporarily that the previous lemma holds true, and let us check that f
satisfies the requirement (14). Indeed, the matrix K is clearly positive definite; we thus
have 0 < oI < K, o being the smallest eigenvalue of K. Obviously,

Gx() + glé < exp {-Tef?} (15)

holds for |£] < ¢, € > 0 being sufficiently small. On the other hand, since f and wx have
the same moments up to the order two, by expanding f, we get

F(&) = @x(&) + o€
Combining this to (15), we deduce that there exists 0 < 7 < e such that

F©) < exp {-21¢P}

holds for || < 7.

Now, we can take advantage of the bound in Lemma 3 to estimate the decay of the low
frequency integral and we obtain the announced rate of convergence. Indeed, by applying
Lemma 3, one has

Lo= [ o+l |he©-awe)| d
l€1<nv/n
1 2(s—2) o
— d2 2k axp 4 — 2 (€2 25 4
< (7)) dUeo [ awiere {-Fir} e
C
S ’I’LS*2 d?(fa wK)



with C := / €125 (1 + |€]?)" exp {—%|§\2} d¢. Thus we proved
RN

LEMMA 4 Let f satisfy (1) and (3). Then, one has

where C depends on K, M and k.
To achieve the proof of Theorem 1, it remains to prove Lemma 3.

Proof of Lemma 3. We write

Fale) - 3% (0) s |Fie/vmm - G (/v

€[* B (%) . \5/@5
- (o) P B |

By hypothesis, if || < ny/n, we can estimate

-1

Z F(&/v/n)kax (&) /n)n 1"

k=0

< 3 |ervaraievar|

k=0

n—1
{exp (—%25) exp (—%m?” = ’“)}
nexp (——W 1)

1
> 3 if n > 2, we get for |£] < ny/n,

IN

IA

) n
Since
n

~

RO-O| 11\ (o [TV - SRV
e <() 5

which implies the result. O

10



REMARK 4 The evaluation of the optimal constant in the estimate of Theorem 1, remains
open. On the other hand, let us give an example showing optimality of the obtained rate
in the case N =1 and d = 1. We set

fla) = dla) = 5= [ eote) de

$(&) = e (1 +ia® + ag?)

where 0 < a << 1. Obuviously, moments of f up to order 2 are those of e/ gnd f(z)
takes value in Rt (since f behaves as Coe™""/4z* as || is large, see [5] p. 382 and p.
1093, and, then, we choose « small enough). Clearly, discussion on optimality of the
obtained decay relies on the study of the low frequencies integral L, (since the other term
decay faster). Therefore, optimality of the asserted rate of convergence follows from the
following property

lim I';, = lim (n/
n— o0 n— o0 0

& (. § .
I = + ==
ndeed, set u ozn Jn ) Jn and write

1/6

¢"(&/v/n) — eI

’ dg) —C >0 (16)

1

¢n(§/\/ﬁ) — el = 6_|§|2((1 +u)"—1) = e 167 nu / (1+ Su)n—l ds.

0
Fnzn/
0

_ /0 exp(—2n1/3C2/3) n? a? (C/n)? |i+(§/n)l/3|2
1 - 2 nl/6

/0 (1 +sa(¢/n) [i+(¢/n)*])" " ds
- /0 F(Q)g2(Q) dc

Then, we get
1/6

1 2
e_|§|2nu/ (14 su)"ds| d¢
0

d¢

3<2/3

by using the change of variable ¢ = &3 /\/n and the notation

fa(€) = (af/?)) /% exp(—2n'/3¢23) (43 i + (¢/n)'3|,
gn(C) = /0 (14 sa(¢/n) [i+ (¢/n)*])"" ds.

11



Then, we can check easily that
FulQ) = Coim, C=a? [ e g
0
1
gn(¢) — / eds = g(¢) uniformly
0

as n goes to infinity. It follows that
which ends the proof of (16).

4 Stable laws

It is possible to extend our formalism and results to the case of stable laws. Let us consider
the stricly stable random variable 6, associated to the characteristic function

0) =e M =F.(6), 0<p<2, O<o

For p = 2, one recovers the Gaussian law, for p = 1, the Cauchy law... The normal
domain of attraction (NDA) is the set of densities f such that, when dealing with the
iidrv. X; distributed folowing f, the normalized sum X1+7/+X” converges to . The NDA
is characterized by requiring that (see [3]), for all £ € ]RIG

Tim n(F(¢/n'?) - 1) = ~oléP.

Then, we search for information on the rate of convergence for some metric, possibly, of
course, at the cost of restricting to a part of the NDA, in the spirit of [9]. According to
the previous section, one still consider the Fourier-based metric

_ up T 7€)
dp(f,g)—ssig &

This quantity is finite when f and g belong to the set

— (f P, (€)= 1 — ol€P + 4(€), with ﬁg—ﬁ@ e I*RY)}.

Introduction of such a set is best understood when one realizes that fqg the normal case
(p = 2) the keypoint of the previous developments was an expansion f(§) =1 — o|£]? +

12



¥;(€) with a favorable control on the remainder t;: it has to decay faster than ||
Notice also that

- foo belongs to D, , (and actually the remainder goes to 0 faster than |£[?),

-if g € D, and d,(f,g) < oo then f € D,,.
Indeed, the second claim follws from the following observation

~

f(&) —9()
- [€lP
dp(f, g) + ¢g(§),

g6 — 1+l
1P

F(€) =1+ ole]?
€[

i\

IN

where 9, (¢) € L®(RY).
We naturally introduce the following restriction of D, ,, that we call the Fourier domain
of attraction (FDA)

v 0}.

0 _
Da',p - {f € Da,p7 |§‘p £-0

We first compare convergence in Dg’p for the d, metric to the usual convergence and FDA
to NDA.

LeMMA 5 If f,, is a sequence in Dg,p such that

oy [02(6)

dp(fn, f) — 0 for some f € P.

Then, f, — f and f € Dg,p.

Proof. By definition, one has |f,(€) — f(€)| < dy(fn, f) |€]P. This implies that f,(¢)

~

converges to f(&) for £ # 0 when n — oc. On the other hand, since f, and f belong to

P, one has f,(0) =1 = f(0). One deduces that f, — f.
Next, let £ > 0, |£| = 1 and ¢ > 0. Then, the quantity

~

fat€) = F(t)| |1 — ot?|€P + 9 (t€) — F(£)|

wEr g
L— ot | = f(t6) | valtE)
TAEE tr [¢]P
< dp(fn, f)

13



is < € provided n > N(e) is large enough. Therefore, it follows that

F(t6) — (L= at[€P)] |y (te)] _ | F(tE) = Falte) + (k)|

gl wgp e

S%%ﬁ%y%@k%

holds by choosing n > N(e) and then [t| < 7n(e) to control the second term. This proves
that f € D],

It is worth remarking that we cannot remove the uniform control on the remain-
der, otherwise, the limit f does not belong to Dg,p. Indeed, assume that there exist
e > 0, a sequence &, that tends to 0, and a subsequence, still labelled by n, such that
|V (&)|/|€n]P > 2¢. Then, we are led to

|f(§n) — (1 — 0|§n|p)| — |f(§n) — fn(fn) + wn(gn)|
&P L
| &l [€nlP
> 2 — dp(fna f)

that remains > ¢ for large enough n's. O

LEMMA 6 If f € D), then, f € NDA. If N =1, one actually has D}, = NDA.

Proof. Let f € D) . Then, one has

alel +n(f(€/an) —1) = Olflp—na(lfl/an) (z/nw)(f/an)
= olep(1- )+(|5\/ A

for any ¢ € RV\{0} and any sequence a, ~ n'/?. Therefore f € NDA.

Conversely, for f € NDA, we set ¢(§) = f(ﬁ) — 1+ ol¢lP, so that ny(£/n'/?) =

P2
to deduce from lim,_, g(s/n) = 0 for any s > 0 that lim;_,q¢(s) = 0. Of course this

is false in general, but here one knows that ¢ is continuous on R** since it is obtained
from the Fourier transform of a probability measure. Suppose that g(s) does not tend to
0 when s vanishes: there exist ¢ > 0 and a sequence s, such that lim,_,ys, = 0 while
lg(sn)| > €. Since g is continuous in s; > 0, there exists 71 > 0 such that |g(z)| > £/2

tends to 0, for any & # 0 when n — oo. Therefore, the problem reduces

14



for any =z € [s1;81 + 7] = Fi. Set ny = 1 = ky, so that for all x € F; we have
lg(x/n1)| > €/2. Next, by using lim, , S, = 0, we can find some s, €]0, min(sg,,7)|-
One has |g(sg,)| > € and, by continuity, there exists some 5 > 0 such that |g(x)| > €/2
for any x € [sg,; sk, + 72]- Furthermore, R being archimedian, there exists an integer
Ny = [k, / Sk, verifying sg, < nosk, < sp, + sk, < sk, +71. Hence, we can choose 7, > 0
small enough to garantee that sy, < ngsg, < no(sk, + 72) < Sk, + 71 Then, we set
Fy = Fy N [ngsg,; na(sk, + 72)]. Notice that the interior of F, is non empty and for any
x € Fy, one has |g(z/n2)| > /2. Repeating this reasoning, one constructs

- a decreasing subsequence (Skl)eeN* which tends to 0 as £ — oo,

- a sequence of positive reals 7,

- a sequence of closed intervals F; having non empty interiors and verifying Fy ., C Fy,

- and a sequence of integers n, (given by [’I’Lg_181w71 /s,w}) that increases to +oo as
{— o0,
such that for all £ € N*, all z € Fy, |g(z/ng)| > €/2. However F' = (), F, is a non
empty interval. Thus, for € F, one has |g(x/n,)| > €/2 that contradicts the assumption
lim, 0 g(z/n) =0. O

Rate of convergence will be discussed by introducing the set, for § > 0,
D;, ={f € Dy, [W(&)|/IEP < €}
REMARK 5 fo\o(f) =e kP ¢ Dg,p if and only if 0 < § <p

REMARK 6 If 0 > 0 and f, is a sequence bounded in Dg,p,
such that dy(fn, f) —— 0  for some f € P. Then, f, = f and f € Dgp.
n—00 b

One naturally asks for a easy-to-check criterion ensuring that a given density f lies
in Dg,p. A simple criterion relies on finiteness of some pseudo-moment. For the normal
case p = 2, fo has all moments finite, in turn integrability of 2%(f — fx) is equivalent to
integrability for z* f. This does not apply when p < 2. Note also that, for p = 2, the set
considered in the previous section satisfies

{f € 'P,/(l,x,x@m)f(:r) dr = /(1,x,x®x)wK(x) dz, /|x|2+5f(:v) dxr < oo} C Dg,Q

with a strict inclusion. Let us discuss in the following lemmata some connections between
moments and distance dp4, in the general case.

15



LEMMA 7 Let 0 <p <1 and 0 < <min(p,1 —p). Then, the following embedding holds

{f € ’P,/ [P | f(2) — foo(@)| dz < 00} C DY

Let 1<p<2and 0<0<2—p. Then

(1 €P, [aP71$@) - fula)ldo <00, [ 2 (fa) ~ fulw)) do = 0} € DS,
Proof. The lemma follows from the following claim

Let g € L'(RY) and 0 < y < 1 such that |z|"g € L'(R"), then
§(6) =900) +5(8),  %e(/IEl" 5 0. (17)

If v =1, then g is C* with bounded gradient, and we can write a similar expansion, but

the remainder only satisfies 1,(£)/|¢| bounded. Indeed, applying the property (17) with

Yy=p+96, 9= f— feo gives the first embedding. The second one follows from the same

reasoning, with an expansion at an higher order since now we deal with C* functions.
Proof of (17) relies on the following simple remark

N —iz-§ _
PG - e it

< 9@ Jal” L o + [ ap L,
-~ Vpaligsr fWH§V| jalle>R (=] €))7
e s — 1 2
< [ @i e 2 o) e e
2| <R/[€] (|| €])7 RY Jgw

Let ¢ > 0. Choose R = R(¢e) so that the second term becomes < £. Then, by using the
Lebesgue theorem, one sees that there exists h(e) > 0 so that for || < n(e), the first term
is also < e. In turn, one gets

9(6) —9(0)
&

‘325

provided [£| < n(e). O

LEMMA 8 Ifdyis5(f, foo) < 00 with p+ 3§ > 1, then f has a vanishing first moment in the
weak sense that

lim zf(z) e %% dz = 0.

e—0 RN
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Proof. By a parity argument, the integral of z fo,(z) e¢*°/2 vanishes. Therefore, we will

show the result for ¢ = f — f that fulfills [g(¢)| < C[£]° for s = p+ § > 1. Of course,
this gives g(0) = 0 = [ g(z) dz but we also have

9(§) — 3(0)] 51

which says that g is derivable in 0 with Vg(0) = 0. Then, we use the relation Zv? = V(f)
which holds in &' with the mollifiers o, (£) = (2me)~N/2 e7¢/(2) as test functions. One
gets

(inf, ) = /RN izf(x) Po(x) do = /RN ief(z) (2m) N2 e/ gy
= (f,Vp.) = /RN F1&) (2me)™N/? €129 (—¢/e) dg
= | FWVEQ @m) e € (¢ VR d

that can be estimated by

C \/gp-l-(sfl /

K—‘p—}-&—f—l (27T)_N/2 e—§2/2 dC — Cst 6(5—1)/2’
RN

with s > 1. O

Let us now prove the corresponding convergence result. The stable law satisfies

—~

foo(g) — e—U\f\p =1—= 0_|§|p + ¢oo(§)a ¢oo(§)/|§|p a) 0.

Then, for |£] < e small enough, one has fo\o(f) + oléP/8 = 1 — T0|€|P/8 + (&) <

1—ole[r/4 < e=?EP/% Let f € DY,. One gets f(€) = 1= ol€]” + 15(€) = faol&) + 74(€)
where 7;(£)/|€[P ﬁ 0. Then, we can choose 0 < n < ¢ sufficiently small to ensure that
%

~ o
F©) < exp {-ZeP}
holds for any |£]| < n. Lemma 3 generalizes readily to

Ful) — Fol€ 1
Fn ‘)ﬂm O yalf ) exp {~Zlel?}
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forn>2, £ < nn'/P. One deduces the estimate on the low frequencies integral

Lo= [ aigpt R - Tao) d
€| <nnt/»
—1 g
< n26/p d;—k(f(fa foo) /|§<nn1/p(1 + |§|2)k exp {—Z|€|P} |§|2(p+5) d¢

C
< ROy ([, foo)

with C := / €[2PH) (1 4 €%k exp {—%\{\p} d€. Since the estimates on the high fre-
RN

quencies apply mutadis mutandis, we are led to the following statement.

THEOREM 4 Let f € DY satisfy (2), for some 6 €]0,p]. Then ||fn — foollar < C n=0/.

REMARK 7 With above assumptions we get easily the same rate of convergence for the
fourier based disance: dyy5(fn, foo) < D n7/P,
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