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VANISHING PRESSURE
IN GAS DYNAMICS EQUATIONS
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Abstract. This work is devoted to the analysis of the behaviour of solu-
tions of gas dynamics equations as the pressure goes to 0 in the context of
regular solutions. We obtain in this way a first justification of the connec-
tion to pressureless gases model.
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1. INTRODUCTION

This work is a first attempt to deal with vanishing pressure in the

following system of gas dynamics equations

Oip + 0z (pu) = 0 in R} x IR, (1)
Oi(pu) + 0-(pu?/2 + €%p(p)) = 0 in R} x IR,.

In (1), the pressure law p : IRt — IR™ is required to satisfy

p'(p) >0 for p>0, (2)
p"(p) 2 0, (3)
2p'(p) = pp” (p)- (4)

In the sequel, we will denote by P(p) a function verifying

P'(p) = \/P'(p)/p-

Notice in particular that the power laws p(p) = p7, with v > 1 as
well as the isothermal law p(p) = p fulfill (2-3), but (4) restricts to
1 <y < 3. We obtain in these cases P(p) = 2,/7/(y — 1) p"~ /2 for
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v > 1 and P(p) = In(p) for v = 1. The problem is supplemented by
prescribying Cauchy data for the density p(0,z) = po(z) > 0 and the
velocity u(0,z) = up(x). Formally, as ¢ vanishes, we are led to the
following pressureless gases equations
Oyp + 0x(pu) =0 in R} X IR,
{ B(pu) + 0(pu2/2) = 0 in IRF x IR,. (5)
The system (5) was introduced as a simplified model of the dynamics
of galaxies by Zeldovich, see [9] and a first mathematical analysis is
due to Bouchut in [1]. Existence of solutions and connection to scalar
conservation laws are studied by Grenier [5], Brenier-Grenier [4] and,
also by Bouchut-James who used in [3] the notion of duality solutions
of [2] (see also Poupaud-Rascle [8] where an equivalent formulation is
proposed). Regular solutions, even in the multidimensional context,
are investigated by Poupaud [7].
In this work, we restrict to the case of regular solutions: crucial
bounds are obtained by considering the Riemann invariants associated
to (1), and, then we pass to the limit as € goes to 0. In this way, we

obtain the following

Theorem 1 Let pf, u§ be a sequence of initial data for (1) satisfying

ph = d: >0,  Ox(uf £eP(pf)) = 0,
Py — poweakly * in Lis (IR), (6)
ug — g in Wi* (IR).

where d, is a sequence of positive reals, possibly tending to 0. Then the

associated solutions of (1) satisfy

o — pweakly x in L2 (IRT x IR),

loc

u® = uinC) (IR* x IR),

loc

where (p,u) is the unique solution to (5) with initial data (po, ug)-
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Remark 1 Note that (6) implies that Oyug > €|0,(P(pf))|, thus Oyug
s mon-negative, and, passing to the limit, O,uqg is too. Moreover, in
terms of p§, this yields |0,(pf)| < 1/e pﬁ/\/m Oy u§ which essentially
means that 0,p§ may blow up as (6\/@)_1.

In Section 2, we perform some computations on the Riemann in-
variants u & € P(p) associated to solutions of (1), following essentially
ideas of P. D. Lax [6]. This allows us to discuss crucial bounds on the

solutions in Section 3 and we conclude in Section 4.

2. Riemann Invariants

Let ¢ = 4/p'(p). We set w = u + eP(p) and z = u — eP(p), where
(p, u) satisfies (1). Then, assuming that p are u are regular enough,

some elementary computations leads to

Ow + (u + ec)O,w = 0, (7)
0z + (u — )0,z = 0.
Following P. D. Lax, [6], possible loss of regularity of the solutions can
be observed by considering the equations satisfied by the first derivative

of w and z. Let W = 0,w, Z = 0,z and set a = ,02p,((p)) =d'(p)/P'(p).
' (p

By deriving (7) we get

OW + (u+ec)0:W +(1+a)/2W?+ (1 —a)/2ZW =0, 8
07+ (u—ec)uZ+(1+a)222+(1—a)22W =0, &

since Oyu = ax(wT”) =1/2(W + Z) and 0,(¢P(p)) = 1/2(W — 2).

We introduce the characteristics associated to the velocities u + ec,

namely
dix(t, r) = u(t, X(t,z)) +ec(t, X (t, 7)),
Y (t.2) = u(t, Y (t,2)) — ec(t, Y (t,2)),

and X(0,2z) = ¢ = Y(0,z). For ¢ a real-valued function depending
on time and position, we set ¢f(t,z) = ¢(t, X(t,x)) and ¢"(t,z) =
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o(t,Y(t,x)). Now, we can rewrite (8) as the following ode

%SJFAS? + BS =0, (9)

where S stands for W# and A = (1 + of)/2, B = (1 — o*)/2Z" or
S=2"A=(1+a")/2, B=(1-0a")/2W’, respectively. In (9), the
function B can be viewed as the time derivative of another function.
We introduce h and k as functions of the two variables (w, z) verifying
0:h(w, z) = (1—a(p))/(22¢(p)) = Ouwk(w, z) with p = P~ ((w —2)/2¢),

P~ being the inverse of P. Indeed, we remark that

SHE) = (), #(0,2)

a — Byt 2) et (1 X (1, 7)) (10)
= (1-wZ2)*=+2B
by (7). Similarly, we get

d

%(k") = (0pk)’(—2ec(0,w) (L, Y (t,z)) = —((1 — @)W)’ = —2B. (11)

Combining (10) and (11) to (9) leads to

d d
- AS?2 4+ (— = 12
dtS+ S +(dtC)S 0 (12)

with C' = h*/2 or —k”/2. This Ricatti-like equations can be integrated

easily; we obtain

S(t,z) = (1/5(0,3:) exp((C(t,x) — C(0,x))
. -1 (13)
+/0 A(r,z) exp(C(t, z) — C(1,2)) dT) )

Since A = (1+«)/2 > 1/2 > 0 by (2-3), for S(0,z) > 0 the solution of

(13) exists globally in time which in turn leads to global existence for

1).
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3. Estimates

The computations made in the previous Section allow us to derive

some estimates on the solution of (1). We have

Proposition 1 Let p§,uf be the initial data of (1) satisfying the re-
quirements of Theorem 1. Then there exists a global reqular solu-
tion (p°,u®) of (1) and the sequences (ue,eP(p%)).s, are bounded in
L®(IR*Y; W, (R)) while (pe).oq is bounded in LS, (IR* x IR).

We turn to the Riemann invariant. Assumption (6) means that
W (0, z) and Z(0, ) are non-negative. By (13), one deduces that W and
Z remain non-negative and are defined for all time. In turn, this implies
that ¢ — h¥(¢,z) is non-decreasing by (10) and ¢ — k°(t, ) is non-
increasing by (11), since (4) means that 1 — «a > 0. Thus t — C(t, )

is non-decreasing and it follows that
-1
0< S(tz) < (1/S(O,m)+t/2> : (14)

Therefore W = d,w® and Z = 0,2° are bounded in L*®(IR* X IR,.)
while integrating (7) along the characteristics provides a L®(IR" X IR;.)
bound on w®, z¢. Thus, u® = 1/2(w® + 2°) and eP(p*) = 1/2(w*® — 2°)
are bounded in L*®(IR; W"*(—R,+R)) for all 0 < R < oo. Finally,
coming back to (1) we get

8t,05+u5 mp6+p58mU€:0

which can be integrated along the characteristic curves associated to the
velocity u® and provides the estimate on p® in L*°((0,7) x (—R,+R))
forall 0 < T, R < oc.

Remark 2 One needs assumption (4) to obtain a uniform bound on

0,uf and Oy (eP(p°)). Indeed, for € > 0 given, by (18) W, Z belongs to
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L*®(IR x Ry,.), but this estimate is not uniform wrt. . For instance,

considering power law with v > 3, W, Z blow up as e'/.

4. Passage to the limit

We are ready to end the proof of Theorem 1. Since u® satisfies

Opuf + ufdpus + 2/ p°0,(p(p°)) = 0

— 0 + w0 + e/ (F)Du(eP(5F)) = O (15)

by (1), we deduce from Proposition 1 that d;u® lies in a bounded set
of LY. (IR™ x IR). Indeed, p° is bounded in L (IRT x IR) and by (2),

loc loc

p' is non decreasing, thus p'(p°) is bounded in LS. (IRT x IR). There-
fore, Proposition 1 implies that the last term in (15) is bounded (and
actually tends to 0!). One deduces that u® belongs to a bounded set in

Wi (IR x IR) and by Ascoli’s theorem, we can assume

u® — uin C°((0,T) x (=R, +R)), 0< T, R < o0, (16)

at least for a subsequence. Furthermore, we can also suppose, say,
p° =, pin L=((0,T) x (—R,+R)). These convergence properties per-
mit us to pass to the limit in the D’ sense in (1) and we are led to (5)
as € goes to 0. We check easily that the initial data for (p,u) are the
limits (po, uo) of (p§,u§). Since py has no atomic part, uniqueness for
(5) follows, see [3], which ensures that the whole sequence converges
and achieves the proof of Theorem 1. Note that we can also pass to
the limit in (15) which shows that v is a regular solution of the Burgers

equation.
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