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A two-scale convergence result for a nonlinear scalar
conservation law in one space variable

Stéphane JUNCA *

Abstract

We prove a general result of two-scale convergence for BV functions. We then use this
result to show the validity of nonlinear geometric optics for weak solutions to scalar conser-
vation laws when the small perturbation of the initial datum is only BV and periodic with
respect to the slow and the fast variable.

1 Introduction

At least in the one dimensional case, the justification of weakly nonlinear geometric optics
(WNLGO) for systems [7],[12], [16], ... , naturally leads to considering the scalar case

ou +0,f(u’) = 0 (1)
u(0,z) = u+eug (m,g) (2)

z
where u is a constant, ug is 1-periodic in § := — and € > 0 is a given small parameter. Without

€
loss of generality one may assume that u = 0. Thanks to the ¢ factor, the high frequency
oscillations propagate and the natural ansatz is ([12]) :

(1, 2) = £o (tmw) +oen (3)

93

where o(t,z,6) is 1-periodic in 6.

The following cases have already been studied in the literature, see [5] for the case where
uo(z,0) = ug(f) is a BV function, [3] for the case where ug(z,0) is smooth, and [15] when
ug(z,0) has a compact support in z and 6 and is Lipschitz in = with values in L}.

The goal of this paper is to rigorously justify (3) when ug is BV with respect to = and 6.
This is a first step towards the study of the interaction between high frequency oscillations and
strong shock waves for systems.

In this paper we treat the general case. We only assume f to be in C3(R,R). Then f is not
necessarily convex. Note that our main result ( Theorem 5) remains true when f”(0) = 0. Indeed,
in this degenerate case, we obtain that the linearization of (1) gives a good approximation up
to a time of order £ 1.

The outline of the paper is as follows. After recalling a few basic facts in Section 2, we give
a general result of two-scale convergence for BV functions in Section 3. Then in Section 4 we
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justify the asymptotic formula (3) with these very weak regularity assumptions, first for the case
of Burgers equation and then for the general case. As in [12], one gets Burgers equation for o
after formal substitution of (3) into (1) and retaining only the terms of order O(1) and O(e) for
e > 0.

2 Basic facts

2.1 BV-functions

We will use some properties of BV-functions. Let T be the unit circle, and H; ( defined below) be
the one-dimensional Hausdorff measure on R x T. Hy is the natural measure for one-dimensional
subsets of R x T ( see [13] ).

For computations, we identify T with [0, 1].
Moreover, for convenience, we denote also any function v(#) defined on T by v(#) the same
function defined on R, and one-periodic with respect to g, where 6 belongs to R.

1
Forany X = (z,6), Y = (y,n7) € RxT,we define | X — Y| = <|9: — y|> + min(| — 5],1— |6 — 77|)2) z,
For convenience we recall

Definition 1 (one-dimensional Hausdorff measure on R x T. )

For any subset S of R x T, define the diameter of S : diam(S) =sup{|X - Y| : X,Y € S}.
For any subset A of R x T, we define the one-dimensional Hausdorff measure H1(A) by the
following process. For & small, cover A by countably many sets S; with diam(S;) < 6, add up
all the diam(S;), and take the limit as 6 — 0.

Hi(4) = lim , éna s, zj:diam(Sj)
diam(S;) < 6

For example, we have H1({0} x T) =1 and H;(]0,1[xT) = 4o0. Then, if H;(A) = 0 the set is
“very small”: for any line D, DN A is a set of measure zero with respect to the one-dimensional
Lebesgue measure on the line D.

Here C2°(R x T,IR) denotes the space of C* functions ¢(z,0) on R x T, and
the subscript . denotes, in all this paper, a space of functions with compact support.

Let u be a function in L}, (R x T). We say that u is in BV (R x T) if there exists two constants
Cy and Cy such that for any ¢ € C2°(R x T,R) :

[ [ @ 0)up(a,6)dad| < Cullel, )
RxT

[ [ @005z, 0)dzdt] < Gl Q
J JRXT

We denote by g—u’ (respectively H % ) the smallest constant C, (respectively Cp).
Tl 1

Moreover we have for any u € BV (R x T)(see[20]) :

Ou

‘ ol = [ TVau(,0)d8 = TVl sy (6)

Tl JT
Ou
= /RTVgu(m, Jdz = | TVoull 11 ) (7)
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where TV, (respectively TVj) denotes the total variation on R (respectively one-period in ).
We will use the total variation of u, with X = (z,6) :

2
TVu:= (' + ‘
1

Here we only consider functions u € BV N LY(R x T, R).
As in [19] ( with a slight modification) we can define Hj—almost everywhere the symmetric
average of an arbitrary function wu by:

ou

Oz

ou

1
2\ 2 1
— = sup — uw(X + H) —u(X)|dX. 8
e ) oy T g+ ) ) ®

1 HeRXT—{

) 1
u(@,0) := 71~1—I>I(1) 4r

2/ / u(z +y,0 +n)dydn, Hi a.e. (9)

Finally, as in BV N L*(R?,R) ( [6]), for any function u in BV N L}*(R x T, R), there exists a
sequence of functions ¢, in C°(R x T,R) such that

nlggo ln —ullzr =0, (10)
11_1}1’1 on(z,0) =u(z,0), Hy—a.e (11)
Opn, Ou
li =|=
Jm %) <)% (12)
liﬁm TV (on) =TV (u). (13)

Moreover if u € BV N L' N L*(R x T, R) then
VneN, |enllec < llflo- (14)

Of course, we recall that C° is not dense in BV for the BV topology, since L' is a closed
subspace of the space M; of bounded measures.

2.2 Kruzkov estimates for scalar conservation law

For global existence and uniqueness of the solution to the initial value problem for a scalar
conservation law we use the general result of S.N. Kruzkov ([9]), which only requires that the
flux is C! and the initial data is a bounded measurable function. We will often use the maximum
principle, the stability with respect to the initial data in L' norm and the decay of the total
variation if the initial data is a BV function. We recall this classical result, first for BV N L' N
L>*(R% R) and then for BV N L' N L>®(R x T,R).

We denote by D'(Rt x R% R) the space of distributions on Rt x R

Let f be € C1(R,R%), |.| is the Euclidean norm of R% or R, and R > 0. We write

Lip[f,R] := sup M
lu| < R lu — v|
lv| <R
u# v



Theorem 1 (Entropy Solution ([9])
Let £ € CY(R,R%), and ug,vo € L®(R%, R),

(;_u + div f(u) = 0, (15)
(O,Ji) = uO(m)a (16)
v(0,2) = wvo(z). (17)

If u is a weak solution of (15), (16) and, for all k € R,
%|u — k| + div ((sgn(u — k)(f(v) — f(k))) < 0 in D'(RT x R%,R), (18)
then u exists and is unique. u is called the entropy solution to (15), (16).

Let v be the entropy solution of (15), (17), and L = Lip[f, max(||uo|c, ||v0l|x)]. Furthermore,
we have

u € C'(RY, L, (R%, R)), (19)
if ug € LY(R%R) then u € CO(RT, LY (R, R)), (20)
and, YVt > 0 :
vaso, [ ult,2) ~vlt,2)lde < [ fuo(e) - wo(e)lde, (21)
|z|<A+L t |z|<

if up € 1R, R) then / \(ult, 2)|da < / \(uo(=)|da, (22)

R4 R4
if ug € BV (R4 R) then TV (u(t,.)) < TV (uo(.)), (23)
if ug € L (R, R) then llw(ts Moo < llwo()]loo- (24)

Remark 1 We can rewrite the KruZkov inequality in the two following ways:

1. For all k € R, for all $ € C* (R, RY), we have

¢
0 > /R+ /Rd <|u(t,a:) — k50 + (sgn(ut, ) — k) (F(ut,2)) - f(k).quS) dzdt
+ [ Juo(a) — H6(0,2)de. (25)

2. For all k € R, for all ¢ € CX (R, RY), we have for all t > 0:

£
0 > / / <|u(t,x) - k|‘g—f + (sgn(ult, z) — k) (F(ult,2)) f(k).VzQS) dadt
0 JR4
+ [ Juoe) = Mo(0,2)de = [ ju(t,z) — klg(t, 2)de. (26)
We will use the two following lemmas to recall some classical results on stability with respect
to the flux and the initial data.

Lemma 1 ([17]) Let u,v be € BV NL*(R% R), o a smooth nonnegative function with support
included in {z, |z| < p}, and/ o(z) de =1, then
Rd

/Rd/Rd ) —v(y)lely — ) dedy — /|u ) — v(z)|de| < TV (v),
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ov
oz;

1
2\ 2
1)

L, ] @ = v@)lety = @) dady - [ Ju@) = v(a)|dz
R4 JR R

d
where TV (v) = (Z
i=1

Proof: Let I :=

, then
1= |, [ @) = o) = lu(e) = vle)ely - o) dad,
1< [ [ ) = v@lety - o) dady

We wish to use the classical inequality: / |v(z 4+ h) —v(z)|de < TV (v)|h|. If |h| < p then we
Rd

have

~
IA

Ad (/Rd vz + h) — v(w)ldm) o(h)dh
< [ BTV @eh)dn

TV (v) /R polk)dh = pTV (v).

IA

Lemma 2 ([17])
Let u,v be € BV N L' N L® (R4 R), h be € CH(R,RY), L := Lip[h, max(||u|c, ||v]|)], 0 @

smooth nonnegative function with support contained in {z, |z| < p}, and / o(z) de =1,
Rd

L, [ som(ute) = @) (a(u(e)) = b)) Fyple =) dedy| < LTV (20)
R JR

Proof: First, if u and v belong to C°(R%, R), we set

1o | [ Gsomtu(e) - v@)(u(e) - blow)-upte ~ ) dady]
1= | [, [ fsomute) - v@)pte )9, h0() dod]
< [ [ oe=u)IVbiow)l dedy= [ [ p(0)Vyho(y)] dhdy

[ 19wl dy =TV (b o) < LTV ().

Second, if u,v only belong to BV N L' N L>®(R?% R), we have the properties similar to (10),
(11),(13), (14) in BV N L' N L (R%,R) ( see [6]). Therefore, there exist (tn)nen, (Un)nen such



that

Vn € N, Up, Vp € CF (R, R) (28)
Vn €N, max([unllco, [[vnlloc) < max(]efloc, [|v]l) (29)
for almost all z € R?, nh_}rgloun(m) = u(x) (30)
for almost all y € RY, ILm v (y) = v(y) (31)
7}Lr1;0/]Rd|u,l(m) —u(z)|de =0 (32)
Jim [ ou(s) = o(w)ldy = 0 (33
nli_)ngoTV(vn) =TV (v). (34)
With this sequence we obtain

lim [ |h(un(z)) — h(u(z))|dz =0, (35)

n—00 Jpd
tim [ (o (y)) ~ Bo(y))ldy = 0. (36)

Combining these relations to inequality (27) for u,, and v,,, we now pass to the limit. We use the
following notations: C = | Vyplec, S(z,3) = sgn(u(z) — v(y)), Sn(2,y) = sgn(un(z) — vn(y)),
H(z,y) = h(u(z)) — h(v(y)), Ha(z,y) = h(un(z)) — h(va(y)). By (35), (36), we have

lim // |H(z,y) — Hp(z,y)|dedy = 0,
le—y[<p

n—oo

and by (30), (31),
for almost all (z,y) € R? x RY, ILm Sp(z,y) = S(z,y).
For the left hand side we have

LS eV =) dedy = [ [ ,e,) ol y)-Fyp(e = o) dodi
R JR R JR

IA

¢ |//|m_y|<,,(5(xvy>H(m,y> — Su(,y) Ha(z,y)) dzdy

= c|f [ (Sw) = Sl ) Hiz,y) + Sule,) (He,y) ~ Hale,y) dedy
lz—y|<p

< c//z_msplﬂ(m,y) — Hy(z,y)] d:cdy+0‘//|m_y|§p(5(x,y) — Su(z,9)) H(,y) dady

The last two terms vanish when n goes to +c0. Then, we can pass to the limit in inequality (27)
to obtain Lemma 2 in the general case. |

In Section 4, we will have to approximate the flux f(u) by its Taylor expansion, and we will
need the following stability result



Theorem 2 (Stability result with respect to the flux ([17]))
Let f,g € CY(R,R%), and ug,vg € BV N L N L® (R, R), u,v be the entropy solutions to

ou ‘ Ov ,
{ a+dw flu) = 0 { a+dw g(v) 0 '
u(0, z) = ug(z) v(0,z) = yy(z)

Then, with L := Lip[f — g, max(||uo/co, |[v0]|sc)] for everyt >0
/ lu(t,z) — v(t,z)|dz < / luo(z) — vo(@)| de + L t TV (vp)
Rd Rd

This result is based on the weak formulation of the entropy inequalities ([10]). For the sake of
convenience we recall the proof of Theorem 2 following [17].

Proof: Let (0,Y) € RT x R? fixed, ¢y € C*(RT x RT x R? x R4, RT).
P(s,0,X,Y) = wa(o —s)Qs(Y — X)

where w, (respectively {2g) is an even approximation of the Dirac measure when o (respectively
B ) approaches 0.

We write Kruzkov inequality (26) with k = v(o,Y’), and ¢(s, X) = ¢(s,0,X,Y). Then we have

%+%annde¢+Vy'(/}EO.
Os Oc

The Kruzkov inequality (26) for u reads:

[ lult,0) = vlo0) 0(t,0,2,9) do
< /Ot /Rd lu(s,z) — v(o, y)|‘?9—f dads
+ /Ot /Rd(sgn(u(saﬂf) —v(0,y)) (f(u(s,z)) — £(v(0,y)).Vay dads
[ o) = oo )10, 0,2,3) da.

We obtain a similar inequality for v where (s, X) is fixed. Integrating the first inequality with
respect to (0,Y), the second with respect to (s, X) and summing up we obtain

/Ot /@Ad lu(t,z) — v(o,y)[d(t,0,2,y) dedydo
+ /(;t/Rd/Rd u(s, @) — v(t,y) [ (t, 0,2, y) dedyds
/Ot/Rd/Ot/Rdwaj(saaaway)).vyﬂﬁ dedsdydo
* /()t/ﬂ;d/#dluo(@ —v(o,y)[¥(0,0,2,y) dedydo
* /Ot/Rd/Rﬂ“(W) —vo(y)¥(s,0,2,y) dydzds.

IA
I

where J(s,0,X,Y) := (sgn(u(s,X) —v(o,Y))(h(u(s, X)) — h(v(o,Y)).



Since u,v are in CY(R*, L1(R x T,R)), when a approaches 0, we get

2 [ [ lutta) = ot )l t,2,y) dody (37)
t
// J(s,8,2,y)).V,Qp dedyds (38)
0 JR2JRE

2 [ [ @) = w0(@Ib(0,0,2,) dedydo (39)

We use Lemma 2 to control the term on the second line:

t
J(s,8,2,y)).VyQp dedyds| < / |L TV (v)| < Lt Tv(v)
0

R4 JRY

Then, we use Lemma 1 when  approaches 0 to obtain the result of Theorem 3:

AA u(t,z) — vty (t,t,,y) dedy = 2/ /d|u(t,:c) —o(t,y)[Q(Y — X) dedy.

Moreover, by Lemma 1 when 3 approaches 0 we have:

lim/ / u(t,z) — v(t,y)|Qp(Y — X) dmdy—/ lu(t, 2) — v(t, 2)|da
R¢ JRI Rd

B—0

We conclude in the same way for the last term / / luo(z) —vo(y)|¥(0,0,z,y) dedydo.
Rd JRE

a
For another recent stability result with respect to the flux, see [2] with a slightly weaker as-
sumption on the flux.

In R x T we have the similar results. Before, we need the following Lemma.

Lemma 3
Let u be in L®(R x T,R)N LY(R x T,R), then for all C >0

lim

0)dzdd = 0)dzdo.
n=-+oo 2n /\/1-2+02<n+c u(e,6)de / u(a,0)de

RxT

1 ~ o~
—ﬁ u(z,0)dl. For fixed z, taking n
2n Jg2<(n+C)2—a2

sufficient large so that (n + C)2 — 22 > n, we have

wy () — % /_7; u(m,g)dé‘

Proof: For almost all z, define w,(z) =

wn(m)—/ﬂ_u(m,e)dG‘ =

1 (n+C)2—=2 - —n -

= — / u(z,6)dd + u(z,6)do
2n |Jn V (n+C)2—gz2
1 1

< — 2 _ 2 _ — _

< gl + 02— -m =0 (1),

since \/(n + C)2 — 2% — n = O(1). Therefore, for almost all
lim wy(z) = / u(z, 6)do.
T

n—-+oco



Let v(z) = / |u(z,8)|df. Then v belongs to L'(R,R) since u belongs to L*(R x T, R). Taking n
T

sufficient large so that n > C, we have for almost all

1 1 -~ -
wa(@)] < o [ u(e,0)la0 < o [ Ju(z,8)la8
2n Jg2<(n+C)2—a? 2n Jjg|<n+c

1 I
< |u(z,8)|dd = 2v(x).
2n Jigi<an

Therefore lim wy(z)de = / u(z, 0)dzdf, and this equality:
R RxT

n——+oo
1 - ~
— _ u(z,0)dzdd = / wyp(2)dx concludes the proof of the lemma. Il
n /\/ z2+62<n+C ( ) R ( ) P
Corollary 1 (entropy solution)

Let f € CY(R,R%), and ug,v9 € BVNLNL>®(R x T,R), u be the entropy solution to (40), (41),
and v be the entropy solution to (40), (42):

ou ,

5 + div f(zi) = 0, i (40)
u(07m7€) = UO(:E7€)7 (41)
v(0,z,0) = wg(z,6). (42)

Then u,v are one periodic with respect to 6’~, and u,v € L®(RT x R x T, R).
Furthermore, we have for all k € R,

%m — k| + div ((sgn(u — k)(f(u) — f(k))) <0 in D'(RT x R x T,R), (43)

and,
u € CORY, LY (R x T,R)), (44)
AXT|u(t,m)|dm < AXT|uO(m)|dit >0, (45)

and, for allt >0 :

VA >0, /|u(t,m,9) o(t, z,0)|dedd < /|u0 2,0) — vo(,0)|ded6,  (46)
|lz|<A+L t |z|<A

V(u(t,)) <TV(w(.),  (47)
IIU(t, oo < fluo( o (48)

Proof: This Corollary is essentially a consequence of the fundamental Kruzkov Theorem,
namely Theorem 1.

e Proof of the periodicity: Theorem 1 implies that there exists a unique solution of (40),
(41) satisfying (18). But v defined by v(t,z,0) = u(t,z,0 + 1)also satisfies (40), (41),
(18). Then, by the uniqueness of the entropy solution, u(t,:c,g) = u(t,:c,5+ 1) and we
can consider that u belongs to L°(RT x R x T,R).



e Proof of (43): We proove that the entropy solution of (40), (41) satisfies (43).
Let n € N, ¢(t,z,0) € C®°(RT x R x T,R). We choose ¢,, € C>°(RT x R, R) such that :

~ 0 10 <
¢7l(t,$,0) — QS(t,m,e) . 1£|0| — n7
0 iflf]>n+l.
There exists C' < 0 such that |V, < Clld]lcc + |Vl oo-

If v(t, z, g) is bounded and one-periodic with respect to 5, we have:

L aqb"dtd de_/ va—¢dtdmd9+0 (1),
2n Jp+xr2 Oz R+xRxT O n

and similar estimates for other partial derivatives of ¢,,.

For ¢,, we write Kruzkov inequalities (25)

0< / |u—k|—d dédt
Rt xR2

aqs’ll

+ [ (sgn(u—K)(fiw) — (k) 5" deddds
JR*xR?

[, (son(u=k)(falw) - fz(k))— dadbdt
R+ xR?
+ / lug(z,0) — k|$(0,z,60) dadb.
R2
Dividing by 2n we obtain:
0< / lw— k|22 dpdzar
R+xRxT ot
¢
+ [ (sgnlu=k)(fi(w) ~ fi(k) 5 dOdadt
R+tXRxT
+ [ (san(u= ) (falu) - F2(k)) 22 dbdzd
R+XRxT
+ / luo(z, 0) — k[(0, z,6) dbdz
RxT
1
+ 0 (-) .
n
Passing to the limit when n — 400 we obtain (43).

Proof of (44): By (19) we have immediately (44).
Proof of (46): To have (46) we use (21):

/ /|u(t,m,9~)—v(t 6)|dzdd < /|ug(m,5)—v0(m,9~)|dmd5,
| X|<A+L tJT |X|<A

with X = (z,0), |X| = \/22+ 62, L = Lip[f, max(||uo||oc, |vollec)]- With A = n and
dividing by 2n we have:

L /| (t,2,0) — v(t, o, 0)|dedd < i/ / o (2, 8) — vo(z, 0)|dedd.
2n JixX|<n+L t JT |X|<n

— 2n

Using Lemma 3, with C = L t for the left hand side, and with C' = 0 for the right hand
side, we have (46).

10



e Proof of (45): We use (46) with vy = 0.
e Proof of (47): We use (46) with vo(X) = uo(X + H), then, dividing by |H]|:

1
|H| JrxT

We conclude by (8).

lu(t, 2,8) — v(t, 2, 0)|dedd < /

R X

|’U,0(:E,9) - Uo(.’E,e)ldib,Q
T

e Proof of (48): This is a consequence of (24).

Theorem 3
Let £,g be € C1(R,R?), ug,vg € BVN L' NL®(R x T,R), u,v be the entropy solutions to

ou . Ov .
e +div f(u) = 0 5 +divgv) = 0
U(O,.’E,G) = UO(mae) U(0>$70) = v0($79)

then, for every t > 0, with L := Lip[f — g, ||uo||=],

/ lu(t, z,60) — v(t, z,0)|dedd < / luo(, 0) — vo(x,0)| dedd + L ¢ TV (ug).
RxT RxT

The proof of Theorem 3 is essentially the same proof as that of Theorem 2, upon replacing R¢
with R x T wich is possible by Corollary 1.

3 Two-scale convergence for BV functions

We are going to prove the following general result

Theorem 4
Let w € BV, N L™ (R x T,R), then for every e >0

Ou

/u(;Bf) dm—// u(w,@)dmd&‘ﬁ()’a -
R € RxT 0

T

(49)

1

where C is a constant independent of u and ¢.

This result has been obtained independently by two slightly different methods in [8] and in [18].
Here we give a third proof motivated by a remark of J. Rauch.
The main point here is the estimation of the convergence as in the C! case.

Proof: Let v(z,0) := u(z,0) — / u(z,6)df. The above function is defined almost everywhere.
T

It is easy to show that for every z the symmetric average 7 satisfies [;7(z,0)df = 0 for every
x, and

ov

ou
— 2
oz

< ’% (50)

1

11



We first prove Theorem 4 for v € C°(R x T,R). For every j € Z, we have:

(7+1)e 3
/ v(:r/,i)d:c = / v<j€+y7g>dy‘=
je € 0 €

1
= s/ [v(je +ez,2) —v(je, 2)]dz

1
v(je + ez, 2)dz

jetez 1 p(j+1)e
= / / 81} (z,2)dzedz| < s/ / a—v(m,z) dadz.
je 0 Jje Oz
Summing over j, we obtain
z (j+1)e z (G+1e | Gy
—)d = —|dz| < — dzd
/Rv<m,€) T Z/E (m,g) z| < (z,2)|dzd=
< (a: z)|dedz =¢ 8'0
oz
Then we have in the smooth case
z v
_ z <Y
/Rv(m,g)dm <¢l5, g (51)

since v = 7.

Now if v is arbitrary in BV N L', there exists a sequence of functions (p,) in C°(R x T, R)
which satisfies (10), (11), (12), as well as (51). Passing to the limit, when n — +o00, we show
that v satisfies (51). By the definition of v we also have

[ 2o = Ll (e3) - e = e 2)oe= ] | e

Then, using inequality (50), we obtain inequality (49) with C = 2, and therefore the proof of
Theorem 4 is complete. O

4 Aymptotics

We are going to examine the propagation of high frequency oscillations using Ansatz (3) ( see
also [7], [5], [3])

Let us state the main result of this paper

Theorem 5
Let f € C3(R,R), ug in BV, N L>®(R x T,R). We assume that uq satisfies

sup TV, <a: — €T ((E, f)) < oo. (52)
0<e<1 €

Let u® be the entropy solution to

Oput + Oy f (uf) = 0,
u®(0, ) = £y <m, g) . (53)

12



Let a = f'(0), b= f"(0) and o be the entropy solution to

o2
00+ a0, +b0g | —| = 0,
o + adyo 9 < 5 ) (54)
o(0,z,0) = g (z,0).
Then there exists a positive constant C > 0 such that
c _ T —at 9
/ ut(t,x) —eo | t,z, - de < Ce*(1+1t), foraec€]0,1], Vt>O0. (55)
R

Remark 2 If f(u) is a quadratic function and ug has compact support, we do not need assump-

tion (52).

Remark 3 The asymptotic expansion is valid for all € if ug ts sufficiently smooth.

Let D, := {(:c, z) , T E ]R}. If ug has a trace on every D, € €]0,£0] then equation (55) is valid
£

for all € €]0,e¢].

Remark 4 If f"(0) = 0, Theorem 5 asserts that the linearization of equation (1) gives an
approzimation of order O(t). In the generic case: f"(0) # 0, the linearization only gives an
approzimation of order O(et).

Remark 5 One gets (54) using Anzats (3) and only retaining ( after the substitution of (3)
into (1), (2) ) the O(1) and O(g) terms as e — 0.

Proof: Using Theorem 2 and assumption (52), we are first going to show that u® is well
approximated by v®, the solution to a suitable Burgers equation. Next, using Theorem 4 and
Theorem 2, we are going to justify (3) for this function v°.

More precisely, let u® be the entropy solution to

Ouf + 0,[Q(uf) + R(uf)] = 0,
x 56
uf(0,z) = £U (:r, E) , (56)

where Q(v) :=av + %bvz, and R(v) := f(v) — Q(v) = O(v®) for v — 0.

Neglecting the remainder, we define v® as the entropy solution to

Ot 4+ 9,Q(v°) = 0

&

#(0,2) = em ( ;> (57)

v

v— S8 2 " "
( ) f (s)ds then R'(v) = / (v—s)f (s)ds. We have
0

2
LF = Lip[R, |leug|lc] < sup Ifm(S)I/0 (v—s)ds< sup |f"(s)|

Is|<[leuolo s|<[luolloe

We can rewrite R(v) = /
0

lleuollZ
2

= 0(g?).

By Theorem 2 we have

/ |uf(t,x) — v¥(t,z)|de < LF t TV (v°(0,.)) < De’t
R
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where D := sup |fm(8)| sup TV,v%(0,.) is finite, in view of (52). Therefore
|3‘S”u0||oc 0<ES1

luf (¢, ) = v°(t, )|l < De’t (58)

Now we are going to show that v° satisfies (55). First, we introduce, as in [15], the interme-
diate profile of, namely the entropy solution to

£\2 £)2
Oyof + adyof + by <(02) ) = —¢eblo, <(J ) )

2 (59)
of(0,z,0) = ug (z,0) .
Observe that o = 0°|,_. It is more convenient to introduce a new variable: z := & — at — €0,

and to define .
zT—at—=z
we(t,z,z) :=¢eo (t,m, _

) =¢eo(t,z,0).

w* is ¢ periodic with respect to z. Define T the circle of length ¢ identify to [0,c[. We compute

3

5 £ e e 3 e 2 (0'5)2 (06)2
w® + 0,Q(w) = €0;0° — abyo’ + €ad,0° + adyo® + be*0, — + bedy )= 0.
Then w® is the solution to
Ot + 0,Q(wf) = 0
_ 60
we(0,z, 2) = Uy <:b, u) (60)
€

The change of variables has been performed in order to obtain only one space derivative.

At this level, we can view w® either as the entropy solution to the two-dimensional Burgers
equation (60), or as the entropy solution w® to a family of one-dimensional Burgers equations
(60) parameterized by z. We have the following result:

Lemma 4
For every € > 0, for every t,for almost every z, z, w®(t,z,z) = w(t,z, z).

Proof: Let € be fixed. First, we prove that w* is a entropy solution of (57). Let k € R,
P € C(RT x R x eT,RT). For all 2, 9(.,.,2) € C(RT x R,RT), and w(.,.,z) is the entropy
solution of the one-dimensional Burgers equations (60). Then, by the Kruzkov inequality we
have

0
< we (t — k|=v(t dedt
o< [ 1@ (e, z) - kigute,) do
- - 0

+ [ [ (son(@ (t2,2) = Q@ (t,2,2)) = Q) 5 (t,,2) dadt
R+ JR Oz

+ / lug(z,2) — k|(0,z, z) dz.
R

Integrating with respect to z, we deduce that w® is entropy solution of the two-dimensional

Burgers equation (60). Then w® is equal to w® almost everywhere on RT x R x T.
In fact w® € CO(RT, L} (R x £T,R) ( see (44)),we are able to prove the same regularity for

w® and conclude this lemma. Let I(s,t,2z) = [ |[0°(s,z,2) — w(t, 2, z)|dz.
R
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For all z, w®(.,.,z) € CY'(R*, L}(R,R) (see (20)), then liir% I(s,t,z)=0.

£l (a:, T Z) ‘ de = g(2)
£

Furthermore 0 < I(s,t,z) < / |w® (s, z, z)|dx +/ |w® (t,x, z)|de < 2/
R R R
by (22). Since g € L!(R,R) we are able to pass to the limit:

liH% |w€ (s,2,2) — @ (t,z,z)|dedz = 0 Then w® € CO(RT, L}(RxeT,R)) like w®, and there-
s=t JRxeT
fore, w¢(t,.,.) is equal to w(t,.,.) for all t in L*(R x T, R).
O
In fact, in order to use Theorem 4, we should have
we(t7$>0) = ’Ue(t,m) in CO((07+OO)7L1(R))' (61)

By construction, we have w¢(t,«,0) = v°(t,z) in C°((0,+oc0), L*(R)). Unfortunately, (61) is
false in general, since Burgers equation does not propagate symmetric averages, i.e. w*(t,.,0) #
we(t,.,0). The following example illustrates this phenomenon: let h be the entropy solution of

Oih + 8, (R%/2) = 0
{ +1 if +zz>0, (62)

70,2, 2) ~ Y0 if z=o.

and let h be the entropy solution to a family of one-dimensional Burgers equations parametrized
by z. Solving (62) we have:

if 2=0then h(t,z,0)= 0

€T

~ — <t
if z>0then h(t,xz,z)= t for |e] < is a rarefaction wave at z fixed,
1 for xa >t
if 2<0then h(t,z,z)= Flif £z>0 is a shock wave at z fixed.

Then, an easy computation yields :

T
(;—1) for0<z<t,

ht,,0) = (E+1> for —t<z <0,

t
for |z| > t.

O N N =

Therefore, h(t,,0) # h(t,z,0) for 0 < |z| < t.

However the traces are propagated: if w®(0,.,.) has a trace at {z =0} then
we(t,.,0) = w(t,.,0), Vt > 0.
Indeed, we have the following result

Lemma 5
For almost every ¢ €]0,1], for every t, we have we(t,z,0) = w®(t,z,0) for almost every x.

Proof: Let D, := {(m, E) , T € R} , and for any BV-function g(z,0) let E(g) be the subset
€

of € in ]0,1] such that g has a trace on D,. The measure of (]0,1] — E(uq)) is zero, since ug is a
BV functions, (this is essentially a consequence of Fubini’s Theorem and of the one-dimensional

measure of the singularities of ugy (see [20])).
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Thanks to the L' stability of solutions for one-dimensional scalar conservation laws with
respect to the initial data ( see Theorem 3), we have:

/ |w®(t, z, z) — w(t,z,0)|de < 5/ U <:E, - Z) — <m, E) ‘ dex.
R R € £

1
Let r be any positive number. We integrate with respect to z on [—r, ], multiply by % and take
r

the limit when 7 goes to 0. We see that if ¢ € E(ug), the right hand side tends to 0. Therefore
E(ug) is a subset of E(w*(t,.,0)) for every t, which completes the proof of the lemma. O

Before finishing the proof of Theorem 5, we now prove the following estimate
// 0% (t, 2,0) — o (t, z,0)|dedd = O(ct). (63)
RxT

Indeed by (59), (48) and (47), we have for every ¢ > 0, ||0¢||z < ||ug|/z~ and TV (¢¢) < TV (uy).
Using Theorem 2 with d = 2 and the uniform estimate of ¢ in L> N BV, we obtain (63). We
also have

TV|o5(t,.,.) = o(t,.,.)| < TV (o5(t,.,.) — o(t,.,.) < TV(s°(t,.,.)) + TV (o(t,.,.)) < 2TVuq.

We can now complete the proof of Theorem 5. Using Theorem 3, we have for any ¢ in E(ug)

/Rve(t,:ﬁ)—55<t,a},x;at) de = /R (tmO)—so(t m,a:—at)
:/R twO—sa(t,m,m_at)

A e R |

/Rm((tm,gE >dm

g// 0% (t, ,0) — o (t, 2, 0)|dedd + 4s>TV (ug)
RxT

= O(e%t) + 4e°TV (wg) = O(e%(t + 1)).

dz

dz

IN

|

Theorem 5 justifies the Anzatz (3) for time of order e~1. This is sufficient, since it is strictly
better than the linearization: therefore adding the third nonlinear term in (54) has improved
the accuracy of the approximation. In [5], with one scale (9,ug = 0), the asymptotic is uniform
in t > 0. To obtain a uniform estimate we need to have a sufficient decay of the total variation
of u® and o¢. In fact, for example, it suffices to have estimates similar to the following:

€ 1 1 £ 1
TV, (t,) =0 (1) TV(o(t,,)) =0 (&), V(e (t.,)=0 )
To our knowledge, such a decay result has not yet been proved under the assumptions considered
here.
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