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Unitary stable ranks and norm-one ranks

Introduction

Let C be a C * algebra with identity. Given a pair (a, b) of elements in C for which aC + bC = C, one can conclude from the work of Robertson [START_REF] Robertson | Stable range in C * -algebras[END_REF] that there exist two units u and v in C -1 with ua + vb = 1 if and only if A has dense invertible group. In that case there even exists a unitary element u ∈ C (that is an element satisfying uu * = u * u = 1) such that a + ub ∈ C -1 . In his groundbreaking paper [8, p. 307], Mark Rieffel posed the problem whether there is an analogue for C * -algebras C with tsr C = n. This question was re-asked in [START_REF] Badea | The stable rank of topological algebras and a problem of R.G. Swan[END_REF]. We shall give a positive answer to weaker versions of this question in context of the algebra C(X, K) of Kvalued continuous functions on a compact Hausdorff space X, where K = R or C. To this end we give several possible ways of extending the definition of the unit-1-stable rank (see [START_REF] Carmona | On the unit-1-stable rank of rings of analytic functions[END_REF]) from pairs (a, b) to (n + 1)-tuples. Some of them were briefly mentioned in [START_REF] Badea | The stable rank of topological algebras and a problem of R.G. Swan[END_REF]. Generally speaking, we replace "unitary" elements in C (which correspond to unimodular functions in C(X, K)) either by invertible elements (called units) or by norm-one elements. The original question by Rieffel remains unanswered, though.

Let R be a commutative unital ring. Then

U n (R) = {f = (f 1 , . . . , f n ) ∈ R n : n j=1 Rf j = R}
is the set of invertible n-tuples. If R carries a topology, then the topological stable rank, tsr R, of R is the smallest integer n for which U n (R) is dense in R n (or infinity if U n (R) is never dense). This concept was introduced by Rieffel [8]. It is well known that within the realm of commutative unital Banach algebras A one has bsr A ≤ tsr A, where bsr A is the Bass stable rank of A. Recall that this item is defined to be the smallest integer n for which any (f , g) ∈ U n+1 (R) is reducible in the sense that there exists

x ∈ R n such that f + x g ∈ U n (R).
Let us recall the following easy fact, which was one of the motivations for dubbing these items "stable ranks" (they satisfy certain stabilizing properties): Proposition 0.1. Let A be a commutative unital algebra. Suppose that bsr A = n, n < ∞, and let m ≥ n. Then every invertible (m + 1)-tuple (f , g) ∈ A m+1 is reducible.

As usual, a Q-algebra is a commutative unital topological algebra over K for which the set A -1 of units is open. If, additionally, inversion x → x -1 is a continuous operation on A -1 , then we call A a cQ-algebra. The following interesting characterization of the topological stable rank (see [1, p. 52]) is the key to our results.

Theorem 0.2. Let A = (A, |•|) be a normed cQ-algebra. For a = (a 1 , . . . , a n ) ∈ A n , let ||a|| = n
j=1 |a j | be a fixed norm on the product space. Then the following assertions are equivalent:

(1) tsr A ≤ n;

(2) For every (a, g)

∈ U n+1 (A) there is v ∈ U n (A) and y ∈ A n such that i) ||v -a|| < ε, ii) v = a + y g.

The unitary stable ranks

We begin with two possible extensions of the definition of the unit-1stable rank. Recall that a commutative unital ring has the unit-1-stable rank if for every invertible pair (a, b) ∈ U 2 (R) there exist u, v ∈ R -1 such that au + bv = 1. In that case one says that (a, b) is totally reducible. Definition 1.1. Let R be a commutative unital ring.

(1) The unitary M -stable rank 1 , usr R, of R is the smallest integer n such that for every (a, b)

∈ U n+1 (R) there is u ∈ U n (R) such that a + u b ∈ U n (R).
If there exists no such n, then we put usr R = ∞. (2) The all-units rank, aur R, of R is the smallest integer n such that for every (a, b) ∈ U n+1 (R) there are u j ∈ R -1 such that a+u b ∈ U n (R), where u = (u 1 , . . . , u n ). If there exists no such n, then we put aur R = ∞.

Note that bsr R ≤ usr R ≤ aur R is a trivial estimate. Thus, if aur R = 1, then bsr R = usr R = aur R = 1, and this holds if and only if R has the unit-1-stable rank.

Theorem 1.2. Let R be a commutative unital ring. Then

(1) The unitary M -stable rank has the stabilizing property; that is if usr R = n < ∞, and if m ≥ n then, for any (f , g)

∈ U m+1 (R) there is u ∈ U m (R) such that f + u g ∈ U m (R). (2) bsr R ≤ usr R ≤ bsr R + 1.
Both cases in (2) can occur.

• I don't know whether the all-units rank has the stabilizing property.

Proof. (1) We may assume that

m ≥ n + 1. Let (f 1 , . . . , f m , g) ∈ U m+1 (R). Then (f 1 , . . . , f n , f n+1 + g, . . . , f m + g, g) ∈ U m+1 (A), too. Hence, there is (a 1 , . . . , a m+1 ) ∈ R m+1 such that (1.1) n j=1 a j f j + m j=n+1 a j (f j + g) + a m+1 g = 1. Put h := m j=n+1 a j (f j + g) + a m+1 g. Then (f 1 , . . . , f n , h) ∈ U n+1 (R). Since bsr R ≤ usr R = n, there exists 2 (x 1 , . . . , x n ) ∈ A n such that (f 1 + x 1 h, . . . , f n + x n h) ∈ U n (A); that is n j=1 y j (f j + x j h) = 1 for some (y 1 , . . . , y n ) ∈ A n . We claim that (f 1 + x 1 a m+1 g, . . . , f n + x n a m+1 g, f n+1 + g, . . . , f m + g) ∈ U m (A).
To show this, note that h has the form h = r + a m+1 g, where r ∈ I A (f n+1 + g, . . . , f m + g). Hence

1 = n j=1 y j (f j + x j a m+1 g) + n j=1 y j x j r ∈ I A (f 1 + x 1 a m+1 g, . . . , f n + x n a m+1 g, f n+1 + g, . . . , f m + g).
If we put u j = x j a m+1 for j = 1, . . . , n and u j = 1 for j = n + 1, . . . , m, then we see that

f + c g ∈ U m (A), where c = (c 1 , . . . , c m ). Moreover, c ∈ U m (R), since at least one coordinate is 1.
(2) Since the first inequality bsr R ≤ usr R is obvious, it remains to show that usr R ≤ bsr R+1. But this follows from the proof of part (1) by putting m = n + 1, where n = bsr R.

Since tsr C([0, 1]), C) = 1, we may approximate the solution (x, y) to xa + yb = 1 by an invertible pair (u, v). Hence ua

+ vb is invertible again. So usr C([0, 1], C) = 1 = bsr C([0, 1], C). By [7], (z, f ) is not totally reducible for every f ∈ A(D) with f (0) = 0. Hence usr A(D) ≥ 2. But bsr A(D) = 1, ([5]). Hence usr A(D) = 2.
Here is a first relation of the unitary M -stable rank to the topological stable rank. Proposition 1.3. Let A be a Q-algebra. Then bsr A ≤ usr A ≤ tsr A.

• I don't know whether usr A ≤ aur A ≤ tsr A or usr A ≤ tsr A ≤ aur A always holds for normed Q-algebras.

Proof. The first inequality, bsr

A ≤ usr A is trivial. Now suppose that n := tsr A < ∞. Let (a, b) ∈ U n+1 (A). Then there is x ∈ A n and y ∈ A such that x • a + yb = 1. Since tsr A ≤ n, there is a net (u λ ) ∈ U n (A) converging to x.
Since A is a topological algebra, v λ := u λ • a + yb tends to 1. The openness of the set of units of A now implies that v λ ∈ A -1 whenever λ is large. We fix some of these λ. If u λ = (u 1 , . . . , u n ), then the ideal I A (u 1 , . . . , u n ) coincides with A. Hence there is y λ ∈ A n such that y = u λ • y λ . Thus

v λ = u λ • (a + y λ b) ∈ A -1 .
Since tsr A = n, we may approximate y λ by w λ ∈ U n (A). Hence u λ • (a + w λ b) ∈ A -1 whenever w λ is sufficiently close to y λ . We conclude that a + w λ b ∈ U n (A) and so usr A ≤ n.

The preceding result shows that in case of a Q-algebra A, tsr A = 1 is a sufficient condition for usr A = 1.

The small-norm and the norm-one ranks

The following two concepts are briefly mentioned in [START_REF] Badea | The stable rank of topological algebras and a problem of R.G. Swan[END_REF]. Definition 2.1. Let A = (A, || • ||) be a normed algebra.

(1) A is said to have the norm-one rank n (denoted by nor A) if n is the smallest integer (or infinity) such that for every (f , g)

∈ U n+1 (A) there is c = (c 1 , . . . , c n ) ∈ A n such that ||c j || = 1 and f + c g ∈ U n (A).
(2) A is said to have the small-norm rank n (denoted by snr A) if n is the smallest integer (or infinity) such that for every ε > 0 and every

(f , g) ∈ U n+1 (A) there is a = (a 1 , . . . , a n ) ∈ A n such that ||a j || < ε and f + a g ∈ U n (A).
• I don't know whether these ranks have the stabilizing property.

Let S A = {a ∈ A : ||a|| = 1} be the unit sphere in A. The following relations now hold between the different ranks. The striking point is that the norm-one rank is bigger than the topological stable rank. This result is due to Badea [START_REF] Badea | The stable rank of topological algebras and a problem of R.G. Swan[END_REF]. We re-present here for the reader's convenience the simple proof. Proof. The first two inequalities are dealt with in Proposition 1.3. To show tsr A ≤ snr A ≤ nor A, we will use Theorem 0.2. So suppose that n := nor A < ∞. Let (a, a n+1 ) ∈ U n+1 (A). Then, for every k ∈ N * , (a, (1/k)a n+1 ) ∈ U n+1 (A). By hypothesis, there is

d k ∈ A n ∩ (S A ) n (de- pending on k), such that a + d k a n+1 k ∈ U n (A). Now given ε > 0, choose k = k(ε) so big that max 1 ε , a n+1 ε n < k(ε). Let x := d k(ε) /k(ε). Then x j ≤ ε for j = 1, . . . , n and 
v := a + x a n+1 ∈ U n (A).
Thus snr A ≤ n. Moreover, since ||v -a|| < ε, we conclude from Theorem 0.2, that tsr A ≤ snr A.

Proposition 2.3. Let A be normed cQ-algebra.

Then bsr A ≤ usr A ≤ aur A ≤ snr A ≤ nor A.
Proof. In view of Theorem 2.2 it only remains to show that aur A ≤ snr A.

Since A -1 is open, we may chose δ > 0 so that for all a ∈ A, ||a -

1|| < δ implies a ∈ A -1 . Suppose now that n := snsr A < ∞. Let (f , g) ∈ U n+1 (A)
and put e := (1, . . . , 1). Then (fe g, g) ∈ U n+1 (A). Given 0 < ε < δ, there is, by assumption, x = (x 1 , . . . , x n ) ∈ A n with ||x j || ≤ ε, such that (fe g) + x g ∈ U n (A).

Hence f + (xe) g ∈ U n (A). But a j := 1x j ∈ A -1 , because ||a j -1|| = ||x j || < ε < δ. Hence aur A ≤ n.

Our main goal in this subsection is to determine the norm-one rank of C(X, K). To this end, we need a refinement of Theorem 0.2 (in case of the algebra A = C(X, K)). This refinement will say that in the equation f +yg ∈ U n (C(X, K)), n = tsr C(X, K), we can actually choose y = (y 1 , . . . , y n ) in such a way that all its components y j have norm as small as we wish (in Badea's result we had ||y j g|| ∞ < ε). Proposition 2.4. Let X be a compact Hausdorff space. Then snr C(X, K) = tsr C(X, K).

Proof. In view of Proposition 2.2, it remains to show that snr C(X, K) ≤ tsr C(X, K). So let n := tsr C(X, K) < ∞ and fix (f , g) ∈ U n+1 (C(X, K)).

Case 1 Z(g) = ∅. Then g is invertible and (g -1 f , 1) ∈ U n+1 (C(X, K)). By Theorem 0.2, for every ε > 0, there is y = (y 1 , . . . , y

n ) ∈ C(X, K n ), ||y j • 1|| ∞ ≤ ε, such that g -1 f + y • 1 ∈ U n (C(X, K)). Hence f + y g ∈ U n (C(X, K)). Case 2 Z(g) = ∅. Choose an open neighborhood U of Z(g) such that f = 0 on U . Let V, W be two open sets satisfying Z(g) ⊆ W ⊆ W ⊆ V ⊆ V ⊆ U . Since X is normal, there is φ ∈ C(X, [0, 1]) which φ ≡ 0 on V and φ = 1 on X \ U .
Then V ⊆ Z(φ) ⊆ U . We deduce that (f , φ) ∈ U n+1 (C(X, K)). Let ε > 0 and δ := min{|g(x)| : x ∈ X \ W }. Note that δ > 0. Since, by assumption, tsr C(X, K) = n, we may use Theorem 0.2 to get a function h

= (h 1 , . . . , h n ) ∈ C(X, K n ) with u := f + hφ ∈ U n (C(X, K)) and ||h j φ|| ∞ ≤ εδ.
Now we define a function a = (a 1 , . . . , a n ) by

a j =    1 g (u j -f j ) on X \ W 0 on V Since u = f on V ⊇ W ,
we conclude that a is well-defined and hence continuous. Moreover,

|a j | ≤ 1 δ εδ = ε on X \ W 0 on V . Thus ||a j || ∞ ≤ ε. Finally f + a g = f + (u -f ) = u on X \ W f + 0 = u on V .
In other words, f + a g = u ∈ U n (C(X, K)).

Theorem 2.5. Let X be a compact Hausdorff space. Then bsr C(X, K) = tsr C(X, K) = nor C(X, K).

Proof. By Vasershtein's result [10], we already have bsr C(X, K) = tsr C(X, K).

In view of Proposition 2.2, it suffices to show that nor C(X, K) ≤ tsr C(X, K). Let A = C(X, K) and n := tsr A.

Case 1 n = 1. Let (f, g) ∈ U 2 (A). First suppose that Z(g) = ∅. Since tsr A = 1, there is u ∈ A -1 such that ||g -1 f -u|| ∞ ≤ 1/2. Now g -1 f + u |u| = 0 on X, because g -1 f + u |u| = g -1 f -u + u 1 + 1 |u| = g -1 f -u + u |u| (1 + |u|),
and the second summand has modulus strictly bigger than 1. Hence

f + u |u| g ∈ U 1 (A).
If Z(g) = ∅, we use Proposition 2.4 to conclude that there is a ∈ A with u := f + ag ∈ U 1 (A) and ||a|| ∞ < 1/2. Approximating a by an invertible function we may assume that a already is invertible. Since f = 0 on Z(g), say |f | > δ > 0 on Z(g), we may choose two open sets U and V such that

Z(g) ⊆ U ⊆ U ⊆ V ⊆ V ⊆ {x ∈ X : |g| < δ/2} ∩ {x ∈ X : |f (x)| > δ}.
Let x 0 ∈ U . We will construct a function φ ∈ A such that |(aφ)(x 0 )| = 1 and ||aφ|| ∞ ≤ 1 and f + (aφ)g = 0 on X. To this end, let ψ ∈ C(X, [0, 1]) satisfy ψ ≡ 0 on X \ V and ψ = 1 on U and let φ be defined by

φ = 1 a ψ + (1 -ψ).
Then φ does the job. In fact,

• (aφ)(x 0 ) = ψ(x 0 ) + a(x 0 ) • 0 = 1; • |aφ| ≤ ψ + |a|(1 -ψ) ≤ ψ + (1 -ψ) = 1; • |f + (aφ)g| = |f + ag| = |u| > 0 on X \ V and • |f + (aφ)g| ≥ |f | -|aφ| |g| ≥ δ -1 • |g| ≥ δ/2 > 0 on V .
We conclude that nor A = 1. So the case n = 1 is settled completely.

Case 2 tsr A = n < ∞. For f = (f 1 , . . . , f n ) ∈ A n , set ||f || = n j=1 ||f j || 2 ∞ and |f | := n j=1 |f j | 2 . Note that |f | ≤ ||f ||.
Let (f , g) ∈ U n+1 (A). We first assume that Z(g) = ∅. By Theorem 2.4, there is y = (y 1 , . . . , y n ) ∈ A n with u := f + yg ∈ U n (A) and |y j | ≤ 1/2. Since f = 0 on Z(g), say |f | > δ > 0 on Z(g), we may choose two open sets U and V such that

Z(g) ⊆ U ⊆ U ⊆ V ⊆ V ⊆ {x ∈ X : |g| < δ/(2 √ n)} ∩ {x ∈ X : |f (x)| > δ}.
Fix x 0 ∈ Z(g). As above, let ψ ∈ C(X, [0, 1]) satisfy ψ ≡ 0 on X \ V and ψ = 1 on U .

For j = 1, . . . , n, let v j be defined by

v j = ψ + y j (1 -ψ),
and put v = (v 1 , . . . , v n ). We claim that f + vg ∈ U n (A) and ||v j || ∞ = 1.
In fact,

• |v j | ≤ ψ + (1/2)(1 -ψ) ≤ 1; • |v j (x 0 )| = ψ(x 0 ) = 1; hence ||v j || ∞ = 1; • |f + vg| = |f + y g| = |u| > 0 on X \ V ; • |f + vg| ≥ |f | -|g| |v| ≥ δ - √ nδ/(2 √ n) = δ/2 on V .
Suppose now that Z(g) = ∅ and let (f , g) ∈ U n+1 (A), n ≥ 2 (the case n = 1 was done in the preceding paragraph). Then (g -1 f , 1) ∈ U n+1 (A) and it suffices to prove the existence of v = (v 1 , . . . , v n ) ∈ A n such that ||v j || ∞ = 1 and

g -1 f + v ∈ U n (A).
Let F := g -1 f and denote the coordinates of F by F j . Since tsr A = n, there is u = (u 1 , . . . , u n ) ∈ U n (A) such that

||F -u|| < 1/2.
We shall proceed inductively, with respect to the length of invertible subtuples of u, and will frequently use the following type of estimates. Let

u := (u 1 , . . . , u m ) ∈ U m (A) and v = (v 1 , . . . , v m ) := u 1 | u| , . . . , u m | u| .
The hypothesis u ∈ U m (A) (or equivalently | u| ≥ δ > 0 on X) implies that v ∈ A m and each coordinate of v has norm less than 1 (may be strict).

Moreover, if F = (F 1 , . . . , F m ), then (2.1) 
F + v ∈ U m (A), because | F + v| = |( F -u) + ( u + v)| ≥ | u + v| -| F -u| = (1 + | u|) -| F -u| ≥ 1 -||F -u|| ≥ 1/2.
• If u 1 ∈ A -1 = U 1 (A) then, by the paragraph above for m = 1, we see that

F 1 + u 1 /|u 1 | ∈ A -1 . (Note that |F 1 -u 1 | < 1/2). Hence F 1 + u 1 |u 1 | , F 2 + 1, . . . , F n + 1 ∈ U n (A). • If u 1,2 := (u 1 , u 2 ) ∈ U 2 (A), but neither u 1 nor u 2 is in U 1 (A)
, then there are x j ∈ X such that u j (x j ) = 0, (j = 1, 2). Hence, the coordinates of

v 1,2 := u 1 |u 1 | 2 + |u 2 | 2 , u 2 |u 1 | 2 + |u 2 | 2 ,
have norm 1. Moreover, by (2.1).

H 1,2 := F 1,2 + v 1,2 := (F 1 + v 1 , F 2 + v 2 ) ∈ U 2 (A),
and so

(F 1 + v 1 , F 2 + v 2 , F 3 + 1, . . . , F n + 1) ∈ U n (A).
• If u 1,2,3 := (u 1 , u 2 , u 3 ) ∈ U 3 (A), but neither (u 1 , u 2 ), (u 1 , u 3 ) nor (u 2 , u 3 ) in U 2 (A), then there are x 1,2 , x 1,3 , x 2,3 ∈ X such that u i (x 1,2 ) = 0, (i = 1, 2), Lemma 3.1. Let 0 < η < 1 and 0 < ε < 1. Then there exists an automorphism L of the unit disk with fixed points -1 and 1, and a positive zero a such that the image of {z ∈ D : |z -1| > η} under L is contained in {w ∈ D : |w + 1| < ε}. Proposition 3.2. Let A be a uniform algebra. We view A as a uniformly closed subalgebra of C(X, C), where X = M (A). Suppose that n := snr A < ∞ and let (f , g) ∈ U n+1 (A). Then (f , g) is norm-one reducible if Z(g) meets the Shilov boundary.

Proof. Recall that by Proposition 2.3 that snsr A ≤ nor A. If f j ≡ 0 on X for every j, then (0 + 1 • g, . . . , 0 + 1 • g) ∈ U n (A) is a solution to our norm-controlled reducibility. So we may assume that not all the f j are the zero functions. If g ≡ 0, then f ∈ U n (A) and we take f + e • g as a solution, where e = (1, . . . , 1).

Let E = ∂A be the Shilov boundary of A. By our assumption, Z(g)∩E = ∅. Since snr A = n, there is y = (y 1 , . . . , y n ) ∈ A n with u := f +y g ∈ U n (A) and ||y j || < 1/2. Let x 0 ∈ Z(g) ∩ E. Since f = 0 on Z(g), say |f | > δ > 0 on Z(g), we may choose two open sets U and V such that

x 0 ⊆ U ⊆ U ⊆ V ⊆ V ⊆ {x ∈ X : |g| < δ/(2 √ n)} ∩ {x ∈ X : |f (x)| > δ}.
Because E is the closure of the set of weak-peak points [3], U ∩ E contains such a point x 1 . Hence, there is a peak-set S such that x 1 ∈ S ⊆ U . Choose a peak function q ∈ A associated with S. Let m ∈ N, m ≥ 2, be so big that on X \ V the function Φ := [(1 + q)/2] m satisfies |Φ| ≤ 1/2.

Let η > 0 be such that Then ψ := (1+L•Φ)/2 again is a peak function in A associated with S (note that the membership in A is given by the functional calculus: σ(Φ) ⊆ D and L holomorphic in a neighborhood of D). Due to the choice of our parameters, ψ ∼ 0 on X \ V ; more precisely,

|ψ| ≤ δ ′ 8 √ n||g|| ∞ .
For j = 1, . . . , n, let v j be defined by But v j -y j = ψ 2 +y j (1+ψ 2 -2ψ)-y j = ψ 2 +y j ψ 2 -2ψy j = ψ(ψ+y j ψ-2y j ). Hence, on X \ V ,

v j = ψ 2 + y j (1 -ψ) 2 = 1 + L • Φ 2 2 + y j 1 -L • Φ 2
|v j -y j | ≤ 4|ψ| ≤ 4 δ ′ 8 ||g|| ∞ √ n .
Consequently, on X \ V ,

|f + v g| ≥ δ ′ -||g|| ∞ δ ′ 2||g|| ∞ √ n √ n = δ ′ /2 > 0.

Proposition 2 . 2 (

 22 Badea). Let A = (A, • ) be normed cQ-algebra and ||a|| := n j=1 a j , a ∈ A n . Then bsr A ≤ usr A ≤ tsr A ≤ snr A ≤ nor A.

  {z ∈ D : |z| ≤ 1/2} ⊆ {z ∈ D : |z -1| > η},and putε := δ ′ 4 √ n||g|| ∞ ,where δ ′ := min X |u|. Consider the Möbius transform of Lemma 3.1withL(1) = 1, L(-1) = -1, L({z ∈ D : |z -1| > η}) ⊆ {w ∈ D : |w + 1| < ε}.

2 ,+ p 2 2 + |y j | 1 -p 2 2 ≤ 1 1 +

 221211 and put v = (v 1 , . . . , v n ). Then v ∈ A n . We claim thatf + vg ∈ U n (A) and ||v j || ∞ = 1. In fact, since x 1 ∈ S ∩ E, |v j (x 1 )| = 1. Moreover if p := L • Φ, |v j | ≤ 1 |p| 2 + 2Re p) + (1 + |p| 2 -2Re p) + vg| ≥ |f | -|v| |g| ≥ δ -√ n δ/(2 √ n) = δ/2 on V and • |f + vg| ≥ |f + yg| -|v -y| |g| = |u| -|v -y| |g| on X \ V .

in order to distinguish our stable rank here from the one given in [6], I added my initial M here

Here we may use Proposition 0.1 or directly the assumption usr R = n.

u i (x 1,3 ) = 0, (i = 1, 3), and u i (x 2,3 ) = 0, (i = 2, 3). Hence, the coordinates of

have norm 1. Moreover, by (2.1).

and so

. Now we proceed inductively up to the n-th step. Since u ∈ U n (A), we may assume (by the induction hypothesis), that no subtuple of order n -1 is invertible. Then we may choose

Consequently, the coordinates of

)), we are done. Case 3 tsr A = ∞. By Theorem 2.2, nor A cannot be finite in that case. Hence we deduce from all the three cases above that nor A ≤ tsr A ≤ nor A, and so we have equality of all the three stable ranks for C(X, K).

A combination of the previous results now yields:

Corollary 2.6. Let X be a compact Hausdorff space and A = C(X, K). Then bsr A = usr A = aur A = tsr A = snr A = nor A.

Recall that in the context of the algebras C(X, K), the original question by Rieffel reads as follows:

• Given (f , g) ∈ U n+1 (C(X, K)), when does there exist u = (u 1 , . . . , u n ) ∈ C(X, K n ) with f + u g ∈ U n (C(X, K)) such that all the components u j of u have modulus one? It remains unanswered.

General uniform algebras

Given a commutative unital normed algebra A, let us call an (n + 1)-tuple (f , g) ∈ U n+1 (A) norm-one reducible, if there exists c = (c 1 . . . , c n ) ∈ A n such that ||c j || = 1 and f + c g ∈ U n (A). In the previous section we have shown that in C(X, K) every invertible (n + 1)-tuple is norm-one reducible, provided tsr C(X, K) = n. Using those ideas, we give a sufficient condition on tuples to be norm-one reducible in an arbitrary uniform algebra. The proof is based on the theory of (weak) peak-points and the following function theoretic Lemma from [4, p. 491]. Recall that a point x ∈ X is a weak peak point for a uniformly closed subalgebra A of C(X, C) if {x} is an intersection of peak-sets (these are closed subsets E of X for which there exists f ∈ A such that f (ξ) = 1 if ξ ∈ E and |f (ξ)| < 1 if ξ ∈ X \ E).