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Abstract. We introduce a nonparametric robust and asymptotically unbiased estimator for the
tail index of a conditional Pareto-type response distribution in presence of random covariates.
The estimator is obtained from local fits of the extended Pareto distribution to the relative
excesses over a high threshold using an adjusted minimum density power divergence estimation
technique. We derive the asymptotic properties of the proposed estimator under some mild
regularity conditions, and also investigate its finite sample performance with a small simulation
experiment. The practical applicability of the methodology is illustrated on a dataset of calcium
content measurements of soil samples.
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1 Introduction

Extreme value statistics deals with drawing inferences about characteristics related to tails of
distribution functions, such as indices describing tail decay, extreme quantiles, small exceedance
probabilities, and measures of extremal dependence. The literature on the estimation of tail
characteristics based on a sample of independent and identically distributed random variables
is very elaborate. We refer to Beirlant et al. (2004) and de Haan and Ferreira (2006) for recent
accounts of the available methodologies. However, a major statistical theme is the description of
a variable of primary interest, the dependent variable, in terms of covariates, but this regression
point of view on extremes has been studied much less extensively. In the present paper we will
study nonparametric robust tail index estimation when the variable of interest Y , assumed to
be heavy tailed, is observed simultaneously with a random covariate X.
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A conditional response distribution function F (y;x) := P(Y ≤ y|X = x) is said to be of Pareto-
type if for some positive function γ(x) we can write

F̄ (y;x) := 1− F (y;x)

= y−1/γ(x)�F (y;x), y > 0, (1)

where �F is a slowly varying function at infinity, i.e.

lim
y→∞

�F (λy;x)

�F (y;x)
= 1, for all λ > 0. (2)

It is obvious that the tail heaviness of F̄ (y;x) is governed by the tail function γ(x), where larger
values correspond with heavier tails. The Pareto-type model finds many important practical
applications and has been systematically used in areas like actuarial science, finance, geology
and telecommunications, to name but a few.

The estimation of γ(x) in presence of fixed, that is nonrandom covariates, has been addressed
to some extent in the recent extreme value literature, and we refer to Chapter 7 in Beirlant
et al. (2004), and the references therein, for an overview. On the other hand, the random co-
variate case is much less explored. A parametric maximum likelihood approach was pursued in
Wang and Tsai (2009) within the Hall subclass of Pareto-type models (Hall, 1982). Also in the
framework of Pareto-type tails, Daouia et al. (2011) considered the nonparametric estimation of
extreme conditional quantiles, and plugged these conditional quantile estimators into classical
estimators for the extreme value index, such as the Hill (1975) and Pickands (1975) estimators.
Goegebeur et al. (2013) introduced a nonparametric and asymptotically unbiased estimator for
γ(x) based on locally weighted sums of power transformed excesses over a high threshold. Wang
et al. (2012) considered the estimation of extreme conditional quantiles for Pareto-type distri-
butions and developed a two step procedure based on quantile regression. Recently, in Daouia
et al. (2013), the methodology of Daouia et al. (2011) was extended to the general max-domain
of attraction.

In the present paper we develop a nonparametric robust and asymptotically unbiased estima-
tion procedure for the tail function γ(x) of heavy tailed distributions when the covariates are
random. The type of robustness we have in mind is robustness against outliers in the response
variable. The method is based on local fits of the extended Pareto distribution to the relative
excesses over a high threshold within a narrow window in the covariate space. The local fitting
is performed by an adjustment of the minimum density power divergence estimation (MDPDE)
criterion, originally proposed by Basu et al. (1998), to the locally weighted regression setting.
As illustrated in the original Basu et al. (1998) paper, in the density power divergence criterion
the estimating equations consist generally of likelihood score functions with a relative-to-the
model down-weighting for outlying observations. Thus, if an observation is unusual relative
to the proposed model then its contribution to the estimating equations gets less weight and
as such its influence on the estimation results becomes dampened. This criterion has already
been used for the univariate estimation of heavy tailed distributions. For instance, Kim and
Lee (2008) obtained a robust estimator for γ > 0 by fitting the strict Pareto distribution to the
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largest observations in a given dataset with the MDPDE method, whereas Dierckx et al. (2013)
used this criterion to obtain a robust and asymptotically unbiased estimator. To the best of our
knowledge, its application to the nonparametric extreme value regression context is new.

Our paper is organized as follows. In the next section we introduce a nonparametric robust and
asymptotically unbiased estimator, obtained from local fits of the extended Pareto distribution
to the relative excesses over a high threshold, and establish its weak convergence under suitable
regularity conditions. In Section 3 the finite sample performance of the proposed method is
evaluated by means of a small simulation experiment. The methodology is illustrated on a
dataset of calcium content measurements of soil samples in Section 4. Section 5 concludes the
paper. The main arguments of the proofs are given below each result and all the details are
postponed to an online appendix.

2 Estimation procedure and asymptotic properties

Basu et al. (1998) introduced the idea of the density power divergence for the purpose of
developing a robust estimation criterion. In particular, the density power divergence between
density functions f and g is given by

Δα(f, g) :=

{ ∫
R

[
g1+α(y)− (

1 + 1
α

)
gα(y)f(y) + 1

αf
1+α(y)

]
dy, α > 0,∫

R
log f(y)

g(y) f(y)dy, α = 0.
(3)

For the purpose of estimation, f is assumed to be the true (typically unknown) density of the
data, whereas g is a parametric model, depending on a parameter vector θ which is determined
by minimizing the empirical version of (3). In the present paper we will adjust this criterion to
the local estimation context with focus on estimating distributional tails.

Let (Xi, Yi), i = 1, . . . , n, be independent realizations of the random vector (X,Y ) ∈ R
p ×R+,0,

where X has a distribution with joint density function b, and F̄ (y;x) is of Pareto-type, though
also satisfying the following second order condition. Denote by RVβ the class of the regularly
varying functions at infinity with index β, i.e. Lebesgue measurable ultimately positive functions
z satisfying limt→∞ z(tx)/z(t) = xβ for all x > 0.

Condition (R). Let γ(x) > 0 and ρ(x) < 0 be constants. The conditional distribution function
F (y;x) is such that y1/γ(x)F̄ (y;x) → C(x) ∈ (0,∞) as y → ∞ and the function δ(.;x) defined
via

F̄ (y;x) = C(x)y−1/γ(x)(1 + γ(x)−1δ(y;x)),

is ultimately nonzero, of constant sign and |δ| ∈ RVρ(x)/γ(x).

Condition (R) is not very restrictive. It is satisfied by most commonly used Pareto-type models
like the Burr, Student t, F, Fréchet and log-gamma distributions. Therefore it is well accepted
in the area of extreme value statistics.
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Now, consider the extended Pareto distribution (Beirlant et al., 2004, Beirlant et al., 2009), with
distribution function given by

G(z; γ, δ, ρ) =

{
1− [z(1 + δ − δzρ/γ)]−1/γ , z > 1,
0, z ≤ 1,

(4)

and density function

g(z; γ, δ, ρ) =

{ 1
γ z−1/γ−1[1 + δ(1 − zρ/γ)]−1/γ−1[1 + δ(1 − (1 + ρ/γ)zρ/γ)], z > 1,

0, z ≤ 1,

where γ > 0, ρ < 0, and δ > max{−1, γ/ρ}. It is well-known that for distribution functions
satisfying (R), one can approximate the conditional distribution function of Z := Y/u, given
that Y > u, where u denotes a high threshold value, by the extended Pareto distribution.
Indeed, as shown in Beirlant et al. (2009), one has that

sup
z≥1

∣∣∣∣ F̄ (uz;x)

F̄ (u;x)
− Ḡ(z; γ(x), δ(u;x), ρ(x))

∣∣∣∣ = o(δ(u;x)), if u → ∞.

Clearly, based on this result, one can obtain an estimator for γ(x) by fitting the extended Pareto
distribution to the relative excesses over a high threshold. This has been pursued in the uni-
variate context using a maximum likelihood procedure by Beirlant et al., (2009), and further
generalized by Dierckx et al. (2013) who applied the MDPDE criterion. As is well-known in
extreme value statistics, by taking the second order behavior of F explicitly into account in the
estimation stage one obtains asymptotically unbiased estimators for the extreme value index
(see e.g. Beirlant et al., 1999, Feuerverger and Hall, 1999).

In the present context we will develop a nonparametric, robust and asymptotically unbiased
estimator for γ(x) by fitting g locally to the relative excesses Zi := Yi/un, i = 1, . . . , n, by
means of the MDPDE criterion, adjusted to locally weighted estimation, i.e. we minimize

Δ̂α(γ, δ; ρ) :=

1

n

n∑
i=1

Khn(x−Xi)

{∫ ∞

1
g1+α(z; γ, δ, ρ)dz −

(
1 +

1

α

)
gα(Zi; γ, δ, ρ)

}
1{Yi > un}, (5)

in case α > 0 and

Δ̂0(γ, δ; ρ) := − 1

n

n∑
i=1

Khn(x−Xi) ln g(Zi; γ, δ, ρ)1{Yi > un}, (6)

in case α = 0, where Khn(x) := K(x/hn)/h
p
n, K is a joint density function on R

p, hn is a non-
random sequence of bandwidths with hn → 0 if n → ∞, 1{A} is the indicator function on the
event A and un is a local non-random threshold sequence satisfying un → ∞ if n → ∞. Note that
in case α = 0, the local empirical density power divergence criterion corresponds with a locally
weighted log-likelihood function. The parameter α controls the trade-off between efficiency and
robustness of the MDPDE criterion: the estimator becomes more efficient but less robust as α
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gets closer to zero, whereas for increasing α the robustness increases and the efficiency decreases.

Note that in (5) and (6) the parameters of g are taken to be constant, i.e. not depending on Xi,
which means that, in the language of local polynomial fitting, we perform a local constant esti-
mation. Of course, the parameters γ and δ could also be replaced by polynomials, as was done
e.g. in Beirlant and Goegebeur (2004) in the context of local polynomial maximum likelihood
estimation of the generalized Pareto distribution, but this will make the derivations more com-
plicated. Also note that in our approach only γ(x) and δ(un;x) are estimated by the MDPDE
method. The rate parameter ρ(x) will either be fixed or estimated externally in a consistent way.
Estimating the second order rate parameter ρ(x) externally is a common approach in extreme
value statistics and allows to obtain bias-corrected estimators for γ(x) with a smaller asymptotic
variance compared to those obtained with an internal estimation of ρ(x); see for instance Gomes
et al. (2007) for a discussion in the univariate framework.

The MDPD estimators of (γ(x), δ(un;x)) satisfy the estimating equations

0 =
1

n

n∑
i=1

Khn(x−Xi)1{Yi > un}
∫ ∞

1
gα(z; γ, δ, ρ)

∂g(z; γ, δ, ρ)

∂γ
dz

− 1

n

n∑
i=1

Khn(x−Xi)g
α−1(Zi; γ, δ, ρ)

∂g(Zi ; γ, δ, ρ)

∂γ
1{Yi > un}, (7)

0 =
1

n

n∑
i=1

Khn(x−Xi)1{Yi > un}
∫ ∞

1
gα(z; γ, δ, ρ)

∂g(z; γ, δ, ρ)

∂δ
dz

− 1

n

n∑
i=1

Khn(x−Xi)g
α−1(Zi; γ, δ, ρ)

∂g(Zi ; γ, δ, ρ)

∂δ
1{Yi > un}. (8)

The following statistic is crucial for studying the asymptotic behavior of the estimators. Set
ln+ x := lnmax{x, 1}, x > 0, and

Tn(K, s, t;x) :=
1

n

n∑
i=1

Khn(x−Xi)

(
Yi

un

)s(
ln+

Yi

un

)t

1{Yi > un}, (9)

where s ≤ 0 and t ≥ 0. The motivation for considering this type of statistic is that the estimat-
ing equations (7) and (8) only depend on statistics of this form. Note that ln+ x is introduced
to ensure that (ln+ Yi/un)

t is always well defined (t is nonnegative, not necessary integer).

We derive the asymptotic expansion for E[Tn(K, s, t;x)]. First consider the conditional expec-
tation

m(un, s, t;x) := E

[(
Y

un

)s(
ln+

Y

un

)t

1{Y > un}
∣∣∣X = x

]
.

Let Γ denote the gamma function, i.e. Γ(ξ) :=
∫∞
0 e−uuξ−1du, ξ > 0.
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Lemma 1 Case (i), s = t = 0:

m(un, 0, 0;x) = F̄ (un;x).

Case (ii), s < 0 or t > 0: assume (R), then for un → ∞ we have that

m(un, s, t;x) = γt(x)F̄ (un;x)Γ(t+ 1)

{
1

(1− sγ(x))t+1

−δ(un;x)

γ(x)

[
1

(1− sγ(x))t+1
− 1− ρ(x)

(1− ρ(x)− sγ(x))t+1

]
(1 + o(1))

}
.

Proof of Lemma 1. The result is based on a straightforward integration by parts, an applica-
tion of Taylor’s theorem to Ḡ and the following slight modification of Proposition 2.3 in Beirlant
et al. (2009)

sup
z≥1

z1/γ(x)
∣∣∣∣ F̄ (unz;x)

F̄ (un;x)
− Ḡ(z; γ(x), δ(un;x), ρ(x))

∣∣∣∣ = o(δ(un;x)), un → ∞.

See more details in the Online Appendix. �

Now let

m̃n(K, s, t;x) := E

[
Khn(x−X)

(
Y

un

)s(
ln+

Y

un

)t

1{Y > un}
]
.

Note that m̃n(K, s, t;x) = E[Tn(K, s, t;x)]. In order to obtain the asymptotic expansion of
m̃n(K, s, t;x) we need to introduce some further conditions. For all x1, x2 ∈ R

p, the Euclidean
distance between x1 and x2 is denoted by d(x1, x2).

Concerning the density function b of the covariate X we assume a Lipschitz condition.

Assumption (B) There exists cb > 0 such that |b(x1)− b(x2)| ≤ cbd(x1, x2) for all x1, x2 ∈ R
p.

The following assumption is standard in the context of local estimation.

Assumption (K) K is a bounded density function on R
p, with support Ω included in the unit

hypersphere in R
p.

Finally, we need a smoothness condition for the conditional response distribution function, when
considered as a function of x. This condition will be formulated in terms of the conditional ex-
pectation m(un, s, t;x).

Assumption (M) The function m(un, s, t;x) satisfies that, for un → ∞, hn → 0, and some
S < 0 and T > 0,

Φ(un, hn;x) := sup
(s,t)∈[S,0]×[0,T ]

sup
z∈Ω

∣∣∣∣m(un, s, t;x− hnz)

m(un, s, t;x)
− 1

∣∣∣∣ → 0 if n → ∞.
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Lemma 2 Assume (R), (B), (K), (M) and (s, t) ∈ [S, 0]× [0, T ]. For all x ∈ R
p where b(x) > 0

we have that if un → ∞ and hn → 0 then

m̃n(K, s, t;x) = m(un, s, t;x)b(x) {1 +O(hn) +O(Φ(un, hn;x))} .

Proof of Lemma 2. A direct application of the rule of repeated expectations and straightfor-
ward calculations lead to the result. See more details in the Online Appendix. �

By combining the result from Lemmas 1 and 2 we have that

m̃n(K, 0, 0;x) = F̄ (un;x)b(x) {1 +O(hn) +O(Φ(un, hn;x))} , (10)

and, in case (s, t) ∈ [S, 0] × [0, T ] \ (0, 0)

m̃n(K, s, t;x) = γt(x)F̄ (un;x)b(x)Γ(t + 1)

{
1

(1− sγ(x))t+1

−δ(un;x)

γ(x)

[
1

(1− sγ(x))t+1
− 1− ρ(x)

(1− ρ(x)− sγ(x))t+1

]
(1 + o(1))

+O(hn) +O(Φ(un, hn;x))} . (11)

Let rn :=
√

nhpnF̄ (un;x)b(x), J := {0, 1, 2, 3}, and consider the empirical processes

P
(j)
n (s) := rn

[
Tn(K, s, j;x)

F̄ (un;x)b(x)
− E

(
Tn(K, s, j;x)

F̄ (un;x)b(x)

)]
, j ∈ J,

where s ∈ [S, 0]. In the following theorem we establish the joint convergence of these empirical
processes.

Theorem 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where Y |X = x satisfies (R), X follows a distribution with joint density function b,
and assume (B), (K) and (M) hold. For all x ∈ R

p where b(x) > 0, we have that if hn → 0,
un → ∞, with nhpnF̄ (un;x) → ∞, then in C4([S, 0])

(P(0)
n ,P(1)

n ,P(2)
n ,P(3)

n )� (P(0),P(1),P(2),P(3)), for n → ∞,

a zero-mean Gaussian process, with, for s1, s2 ∈ [S, 0], covariance functions

Cov(P(j)(s1),P
(k)(s2)) =

(j + k)!γj+k(x)‖K‖22
[1− (s1 + s2)γ(x)]1+j+k

, j, k ∈ J. (12)

Proof of Theorem 1. Note that

P
(j)
n (s) =

√
n

[
1

n

n∑
i=1

1√
hpnF̄ (un;x)b(x)

K

(
x−Xi

hn

)(
Yi

un

)s(
ln

Yi

un

)j

1{Yi > un}

−E

(
1√

hpnF̄ (un;x)b(x)
K

(
x−X

hn

)(
Y

un

)s(
ln

Y

un

)j

1{Y > un}
)]

, j ∈ J.
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As such, the empirical processes under consideration fit in the framework of Section 19.5 in van
der Vaart (2007) on changing function classes. Theorem 1 then follows by using Lemmas 1 and
2 in order to check all the conditions of Theorem 19.28 in van der Vaart (2007). See more details
in the Online Appendix. �

The following theorem states the existence and consistency of sequences of solutions to the
estimating equations (7) and (8). From now on we denote the true value of γ(x) and ρ(x) by
γ0(x) and ρ0(x), respectively. In first instance we assume that ρ0(x) is known.

Theorem 2 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where Y |X = x satisfies (R), X follows a distribution with joint density function b,
and assume (B), (K) and (M) hold. For all x ∈ R

p where b(x) > 0, we have that if hn → 0,
un → ∞ with nhpnF̄ (un;x) → ∞, then with probability tending to 1 there exists sequences of
solutions (γ̂n(x), δ̂n(x)) of the estimating equations (7) and (8), with ρ fixed at ρ0(x), such that

(γ̂n(x), δ̂n(x))
P→ (γ0(x), 0), as n → ∞.

Proof of Theorem 2. To prove the existence and consistency of (γ̂n(x), δ̂n(x)) we adapt
the proof of Theorem 5.1 in Chapter 6 of Lehmann and Casella (1998), where existence and
consistency of solutions of the likelihood equations is established, to the MDPDE framework.
Let Qr denote the sphere centered at (γ0(x), 0) and radius r, and let Δ̂α(γ, δ; ρ) denote the
density power divergence objective function. Note that r should be such that Qr is a subset of
the parameter space. First rescale Δ̂α(γ, δ; ρ) as Δ̃α(γ, δ; ρ) := Δ̂α(γ, δ; ρ)/(F̄ (un;x)b(x)). We
can show that for any r sufficiently small

P(γ0(x),0)(Δ̃α(γ0(x), 0; ρ0(x)) < Δ̃α(γ, δ; ρ0(x)) for all (γ, δ) on the surface of Qr) → 1.

We end the proof by adjusting the line of argumentation of Theorem 3.7 in Chapter 6 of Lehmann
and Casella (1998). See more details in the Online Appendix. �

In order to establish the asymptotic normality of the consistent sequence of solutions (γ̂n(x), δ̂n(x)),
we re-center the empirical processes with the leading terms of the asymptotic expansions of
m̃n(K, s, j;x), as given in (10) and (11). Let

S
(j)
n (s) := rn

[
Tn(K, s, j;x)

F̄ (un;x)b(x)
− j!γj0(x)

[1− sγ0(x)]j+1

]
, j ∈ J.

Corollary 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where Y |X = x satisfies (R), X follows a distribution with joint density function b,
and assume (B), (K) and (M) hold. For all x ∈ R

p where b(x) > 0, we have that if hn → 0,
un → ∞, with nhpnF̄ (un;x) → ∞,

√
nhpnF̄ (un;x)δ(un;x) → λ ∈ R,

√
nhpnF̄ (un;x)hn → 0,√

nhpnF̄ (un;x)Φ(un, hn;x) → 0, then in C4([S, 0])

(S(0)n ,S(1)n ,S(2)n ,S(3)n )� (S(0),S(1),S(2),S(3)), for n → ∞,

a Gaussian process, with, for s ∈ [S, 0], mean functions

E[S(j)(s)] = −λ
√
b(x)j!γj−1

0 (x)

[
1

[1− sγ0(x)]j+1
− 1− ρ0(x)

[1− ρ0(x)− sγ0(x)]j+1

]
, j ∈ J,
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and covariance functions as given in (12).

Proof of Corollary 1. We have that

S
(j)
n (s) = P

(j)
n (s) + rn

[
E

(
Tn(K, s, j;x)

F̄ (un;x)b(x)

)
− j!γj0(x)

[1− sγ0(x)]1+j

]
, j ∈ J.

Thus a direct application of Lemmas 1 and 2 achieves the proof. See more details in the Online
Appendix. �

Based on these results one can establish the asymptotic normality of the estimators, when
suitably normalized.

Theorem 3 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector
(X,Y ) where Y |X = x satisfies (R), X follows a distribution with joint density function b, and
assume (B), (K) and (M) hold. Consider (γ̂n(x), δ̂n(x)), a consistent sequence of estimators
for (γ0(x), 0) satisfying (7) and (8), with ρ fixed at ρ0(x). For all x ∈ R

p where b(x) > 0,
we have that if hn → 0, un → ∞ with nhpnF̄ (un;x) → ∞,

√
nhpnF̄ (un;x)δ(un;x) → λ ∈ R,√

nhpnF̄ (un;x)hn → 0, and
√

nhpnF̄ (un;x)Φ(un, hn;x) → 0, then

rn

[
γ̂n(x)− γ0(x)

δ̂n(x)− δ(un;x)

]
� N2(0,C

−1(ρ0(x))B(ρ0(x))Σ(ρ0(x))B
′(ρ0(x))C−1(ρ0(x))),

for n → ∞, where the matrix B(ρ0(x)) is defined by

B(ρ0(x)) := γ−α−2
0 (x)

⎡⎢⎣ −αγ0(x)(1+γ0(x))
[1+α(1+γ0(x))]2

γ0(x) 0 −1

− αγ0(x)ρ0(x)(1+γ0(x))
[1+α(1+γ0(x))][1−ρ0(x)+α(1+γ0(x))]

γ0(x) −γ0(x)(1 − ρ0(x)) 0

⎤⎥⎦ ,
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the elements of the symmetric (4 × 4) matrix Σ(ρ0(x)) are given by

σ11(ρ0(x)) := ‖K‖22
σ21(ρ0(x)) :=

‖K‖22
1 + α(1 + γ0(x))

σ22(ρ0(x)) :=
‖K‖22

1 + 2α(1 + γ0(x))

σ31(ρ0(x)) :=
‖K‖22

1− ρ0(x) + α(1 + γ0(x))

σ32(ρ0(x)) :=
‖K‖22

1− ρ0(x) + 2α(1 + γ0(x))

σ33(ρ0(x)) :=
‖K‖22

1− 2ρ0(x) + 2α(1 + γ0(x))

σ41(ρ0(x)) :=
γ0(x)‖K‖22

[1 + α(1 + γ0(x))]2

σ42(ρ0(x)) :=
γ0(x)‖K‖22

[1 + 2α(1 + γ0(x))]2

σ43(ρ0(x)) :=
γ0(x)‖K‖22

[1− ρ0(x) + 2α(1 + γ0(x))]2

σ44(ρ0(x)) :=
2γ20(x)‖K‖22

[1 + 2α(1 + γ0(x))]3

and those of the symmetric (2× 2) matrix C(ρ0(x)) by

C11(ρ0(x)) := γ−α−2
0 (x)

1 + α2(1 + γ0(x))
2

[1 + α(1 + γ0(x))]3

C21(ρ0(x)) := γ−α−2
0 (x)

ρ0(x)(1 − ρ0(x))[1 + α(1 + γ0(x)) + α2(1 + γ0(x))
2] + α3ρ0(x)(1 + γ0(x))

3

[1 + α(1 + γ0(x))]2[1− ρ0(x) + α(1 + γ0(x))]2

C22(ρ0(x)) := γ−α−2
0 (x)

(1− ρ0(x))ρ
2
0(x) + αρ20(x)(1 + γ0(x))[α(1 + γ0(x))− ρ0(x)]

[1 + α(1 + γ0(x))][1 − ρ0(x) + α(1 + γ0(x))][1 − 2ρ0(x) + α(1 + γ0(x))]
.

Proof of Theorem 3. Let fs(γ, δ; ρ0(x)), s = 1, 2, denote the derivatives of Δ̃α(γ, δ; ρ0(x))
with respect to γ and δ, respectively, without the common scale factor 1+α. First we establish
the joint limiting distribution of the random terms appearing in fs(γ0(x), 0; ρ0(x)), s = 1, 2,
when appropriately normalized. To this aim, let

Tn :=
1

F̄ (un;x)b(x)

⎡⎢⎢⎣
Tn(K, 0, 0;x)

Tn(K,−α(1 + γ0(x))/γ0(x), 0;x)
Tn(K,−(α(1 + γ0(x)) − ρ0(x))/γ0(x), 0;x)

Tn(K,−α(1 + γ0(x))/γ0(x), 1;x)

⎤⎥⎥⎦ ,
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and

T̃ :=

⎡⎢⎢⎢⎣
1
1

1+α(1+γ0(x))
1

1−ρ0(x)+α(1+γ0(x))
γ0(x)

[1+α(1+γ0(x))]2

⎤⎥⎥⎥⎦ .

An application of Corollary 1 leads to

rn[Tn − T̃]� N4(λ
√

b(x)D,Σ(ρ0(x))),

where D is a (4× 1) vector with elements given by

D1 := 0

D2 := − αρ0(x)(1 + γ0(x))

γ0(x)[1 + α(1 + γ0(x))][1 − ρ0(x) + α(1 + γ0(x))]

D3 := − ρ0(x)[α(1 + γ0(x)) − ρ0(x)]

γ0(x)[1 − ρ0(x) + α(1 + γ0(x))][1 − 2ρ0(x) + α(1 + γ0(x))]

D4 :=
ρ0(x)(1 − ρ0(x)) − α2ρ0(x)(1 + γ0(x))

2

[1 + α(1 + γ0(x))]2[1− ρ0(x) + α(1 + γ0(x))]2
.

Then by applying a Taylor series expansion of the estimating equations fs(γ̂n(x), δ̂n(x); ρ0(x)) =
0, s = 1, 2, around (γ0(x), 0), Theorem 3 follows. See more details in the Online Appendix. �

Note that the expected value of the limiting random vector in Theorem 3 is zero, whatever the
value of λ. The estimator is therefore said to be asymptotically unbiased.

The following proposition deals with the behavior of the estimator when the parameter ρ is fixed
at some value ρ̃(x) < 0, possibly misspecified.

Proposition 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vec-
tor (X,Y ) where Y |X = x satisfies (R) and assume the parameter ρ is fixed at ρ̃(x) in (7)
and (8). Suppose also that X follows a distribution with joint density function b, and assume
(B), (M) and (K) hold. For all x ∈ R

p where b(x) > 0, we have that if hn → 0, un → ∞ with
nhpnF̄ (un;x) → ∞, when n → ∞, then with probability tending to 1 there exists sequences of solu-

tions (γ̂n(x), δ̂n(x)) of the estimating equations (7) and (8) such that (γ̂n(x), δ̂n(x))
P→ (γ0(x), 0).

If additionally
√

nhpnF̄ (un;x)δ(un;x) → λ ∈ R,
√

nhpnF̄ (un;x)hn → 0, and√
nhpnF̄ (un;x)Φ(un, hn;x) → 0, then

rn

[
γ̂n(x)− γ0(x)

δ̂n(x)

]
� N2(−λ

√
b(x)C−1(ρ̃(x))B(ρ̃(x))D̃,

C
−1(ρ̃(x))B(ρ̃(x))Σ(ρ̃(x))B′(ρ̃(x))C−1(ρ̃(x))),
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for n → ∞, where the elements of the vector D̃ are the following

D̃1 := D1

D̃2 := D2

D̃3 := − [α(1 + γ0(x))− ρ̃(x)]ρ0(x)

γ0(x)[1− ρ̃(x) + α(1 + γ0(x))][1 − ρ0(x)− ρ̃(x) + α(1 + γ0(x))]

D̃4 := D4.

Proof of Proposition 1. The arguments needed to prove the consistency and asymptotic
normality are the same as those used in the proofs of Theorems 2 and 3. See more details in
the Online Appendix. �

Note that, as expected, by a misspecification of ρ at some value ρ̃(x), one loses the bias-correcting
effect of taking the second order structure of F into account in the estimation. However, the
variance expression remains the same as in Theorem 3, but with ρ0(x) replaced by ρ̃(x).

Finally, we examine the asymptotic behavior of (γ̂n(x), δ̂n(x)) in the case where ρ is replaced
by an external consistent estimator ρ̂n(x) in (7) and (8). For an example of a locally consistent
estimator for ρ(x) we refer to Goegebeur et al. (2013), where the estimator proposed by Fraga
Alves et al. (2003) was adjusted to the local estimation context.

Theorem 4 The result of Theorems 2 and 3 continues to hold if ρ is replaced by an external
consistent estimator ρ̂n(x) in (7) and (8).

Proof of Theorem 4. Again the proof is similar to that of Theorems 2 and 3. See more details
in the Online Appendix. �

3 Simulation study

In this section, we illustrate the finite sample behavior of our estimator γ̂n(x) with a small
simulation study. In particular we compare our estimator with the following non-robust and
biased version proposed in Goegebeur et al. (2013):

γ̂(2)n (x, t,K,K) :=
1

t+ 1

∑n
i=1Kh(x−Xi)(ln Yi − lnun)

t+1
+ 1{Yi > un}∑n

i=1 Kh(x−Xi)(lnYi − lnun)t+1{Yi > un}

with t = 0 and two (non-robust) bias-corrected versions of the form

γ̂(2)n (x, β) := βγ̂(2)n (x, 0,K,K) + (1− β)γ̂(2)n (x, 1,K,K)

with β = −1 and β = 1/ρ̂(x). To estimate ρ(x) we use the consistent estimator proposed in
Goegebeur et al. (2013). In the robust case, a first order estimator is obtained by setting
δ = 0 in (4), whereas a second order bias-corrected version is derived by estimating γ and δ

12



α = 0.1 α = 0.5 α = 1

γ0 = 0.2 ρ0 = -0.5 0.93 0.42 0.20
ρ0 = -1 0.94 0.48 0.26
ρ0 = -2 0.95 0.54 0.33

γ0 = 0.4 ρ0 = -0.5 0.91 0.36 0.17
ρ0 = -1 0.92 0.42 0.22
ρ0 = -2 0.93 0.49 0.29

Table 1: Asymptotic relative efficiency of γ̂n(x) with α = 0.1, 0.5 and 1 relative to γ̂n(x) with
α = 0.

jointly. In that case the value of ρ(x) is either fixed to −1 or estimated consistently as previously
mentioned. All kernels are taken as the bi-quadratic kernel function

K(x) =
15

16
(1− x2)21{x ∈ [−1, 1]}, x ∈ R.

Concerning α, the values α = 0.1 and α = 0.5 are considered. According to Table 1, higher
values of α are not appropriate, due to a low asymptotic relative efficiency compared to γ̂n(x)
with α = 0. The values γ0 = 0.2 and γ0 = 0.4 are representative for the range of the function
γ(x) considered in the simulation experiment. This decrease in asymptotic relative efficiency
for increasing α is not specific for our estimator. Indeed, it was also observed in the univariate
extreme value framework by Kim and Lee (2008) for the strict Pareto distribution and by Juárez
and Schucany (2004) for the generalized Pareto distribution. We also refer to the original Basu
et al. (1998) paper, where the asymptotic relative efficiencies for a range of common models like
normal, Poisson and exponential were examined, and where a similar decrease was observed. In
view of this decrease of efficiency, when using the MDPDE method it is generally recommended
to keep α rather small, say in the range 0 ≤ α ≤ 1. For what concerns our method, in absence
of outliers we have thus that α = 0 (maximum likelihood estimation) is optimal in the class
of asymptotically unbiased density power divergence estimators (since it leads to the smallest
asymptotic variance). However, as we will see in the simulation experiments, if one keeps α
small then one does not loose much. The decrease in asymptotic efficiency compared to the
maximum likelihood estimator is the price to pay for the increased robustness obtained with
the MDPD estimator for increasing values of α. Concerning the robustness, we refer to Dierckx
et al. (2013), where the influence functions for the MDPD estimators of the extended Pareto
distribution are derived in the univariate framework. These influence functions are bounded
when considered as a function of the point of contamination when α is not too close to zero.
Similar findings can be expected to hold also here.

For the practical implementation of our estimators we have to determine the bandwidth param-
eter hn and the threshold un, where we take, as usual in extreme value statistics, the latter as
the (k+1)−th largest response observation in the ball B(x, hn). To determine an optimal value
for k and hn, two strategies are applied as in Goegebeur et al. (2013): an oracle strategy and a
completely data driven method; see also Daouia et al. (2011, 2013). For the oracle strategy, the
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same algorithm as in Goegebeur et al. (2013) was applied to our new estimator of γ, that is

(hn,o, ko) := argmin
hn∈H0,k∈K0

Ψ(γ̂(·), γ(·)) , (13)

where H0 and K0 are grids of values of hn and k, respectively, and

Ψ2 (γ̂(·), γ(·)) := 1

M

M∑
m=1

(γ̂(zm)− γ(zm))2 ,

where z1, . . . , zM are regularly spaced in the covariate space. Note that this method requires
knowledge of the function γ(x), which is unknown in practical situations.

For the completely data driven method, the optimal bandwidth hn is determined using the
leave-one-out cross-validation method of Daouia et al. (2011) and for the optimal k we proceed
as follows for all x under consideration:

• we compute the estimates for γ(x) with k = 5, 9, 13, . . . ,mx − 4 (mx being the number of
observations in the ball B(x, hn));

• we split the range of k into several blocks of same size;

• we calculate the standard deviation of the estimates for γ(x) in each block;

• the block with minimal standard deviation determines the k to be used.

Note that in this implementation hn and k are selected separately. One could also pursue a
simultaneous determination of these two parameters, as was attempted in e.g. Daouia et al.
(2013). However, as reported in that paper, the simultaneous selection is not without problems,
and in practice it does not seem to perform any better than the separate selection of the tuning
parameters.

Practically, the parameter estimates are determined by minimizing the objective function given
in (5) or (6), depending on the value of α, with a program written in the R language. In this,
the adaptive quadrature numerical integration procedure as described in Piessens et al. (1983)
(implemented in the R function integrate) is used to determine the integral in the objective
function. The minimization is carried out with the numerical minimization procedure described
in Byrd et al. (1995) (R function optim, with method = "L-BFGS-B"). This method is a quasi
Newton method adapted to allow for the constraint γ > 0.

We simulate N = 100 samples of size n = 1000, with X ∼ U(0, 1) and Y |X = x is generated
from the following Burr distribution

1− F (y;x) =
(
1 + y−ρ(x)/γ(x)

)1/ρ(x)
, y > 0.

This model clearly satisfies condition (R). In fact, the above Burr model is parameterized in
such a way that γ(x) and ρ(x) correspond with those appearing in (R). We set here

γ(x) = 0.5 (0.1 + sin(πx))
(
1.1− 0.5 exp(−64(x − 0.5)2)

)
and ρ(x) = −1.
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This function for γ(x) was also used in the simulation experiments of Daouia et al. (2011)
and Goegebeur et al. (2013). In case of contamination in the response variable, the following
distribution function will be used

Fε(y;x) = (1− ε)F (y;x) + εF̃ (y;x)

where F̃ (y;x) = 1−
(

y
xc

)−0.5
, y > xc, and ε ∈ (0, 1) is the fraction of contamination.

The following settings were considered

• Setting 1: uncontaminated situation;

• Setting 2: ε = 0.01, xc= 1.2 times the 99.99% quantile of F (y;x);

• Setting 3: ε = 0.01, xc= 2 times the 99.99% quantile of F (y;x);

• Setting 4: ε = 0.05, xc= 1.2 times the 99.99% quantile of F (y;x);

• Setting 5: ε = 0.05, xc= 2 times the 99.99% quantile of F (y;x).

In the paper we only illustrate the Settings 1, 2 and 4, since the Settings 3 and 5 give results
very similar to 2 and 4, respectively. In the oracle method, the minimization is performed on a
grid of hn ∈ [0.05; 0.5] and of k ∈ {2, ...,mx − 1} with M = 35.

In the uncontaminated situation (Setting 1), from Table 2, we see that the non-robust bias-
corrected estimator with ρ(x) fixed at -1 behaves best in terms of mean squared error (MSE,
computed as the average of Ψ2 over the 100 simulated datasets). However, in general the robust
estimators are competitive compared to the corresponding non-robust ones. The MSE increases
slightly when α increases, mainly due to the larger variance in the estimation of γ(x). For the
robust estimators, as well as for the non-robust ones, the bias-corrected estimators outperform
the biased ones in terms of MSE. Further, when the data driven method is applied, the MSE is
usually at least twice the MSE obtained using the oracle strategy. The difference is largest for
the biased estimators. Thus unsurprisingly, the robust biased estimator using the data driven
method behaves the worst in terms of MSE. In Figures 1 and 2 we show the boxplots of the
different estimators for γ(x) under consideration for the oracle and data driven strategies, re-
spectively. In all figures, the dashed line represents the true function γ(x).

In Setting 2, the non-robust estimators clearly suffer from the contamination. In the first column
of Figures 3 and 4, one can observe the large biases and variances, especially for the bias-corrected
estimators. In particular, the sinus behavior of γ as a function of x is not captured very well by
the non-robust estimators. This is confirmed in Table 3, where we can observe that the MSE is
largest for the non-robust estimators, whereas the best results in terms of MSE are obtained for
the robust estimator with α = 0.5 and ρ(x) fixed at -1, although the result for ρ(x) estimated
is not much worse. Note also that in these best cases the results obtained by the data driven
method are comparable to those of the oracle strategy.
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Figure 1: Setting 1: boxplots of γ̂n(x) with ko and hn,o determined using the oracle strategy;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ(x) =
−1, row 3: bias-corrected estimator with ρ(x) = ρ̂(x).

Non Robust/Robust Estimator Oracle strategy Data driven method

non robust biased 0.006 0.019
non robust bias-corrected ρ(x) = −1 0.003 0.006
non robust bias-corrected ρ(x) = ρ̂(x) 0.007 0.006

robust α = 0.1 biased 0.006 0.025
robust α = 0.1 bias-corrected ρ(x) = −1 0.007 0.011
robust α = 0.1 bias-corrected ρ(x) = ρ̂(x) 0.006 0.007

robust α = 0.5 biased 0.008 0.055
robust α = 0.5 bias-corrected ρ(x) = −1 0.007 0.017
robust α = 0.5 bias-corrected ρ(x) = ρ̂(x) 0.007 0.019

Table 2: MSE for different estimators of γ(x) based on 100 datasets simulated according to
Setting 1.
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Figure 2: Setting 1: boxplots of γ̂n(x) with ko and hn,o determined using the data driven
method; column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3:
robust estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with
ρ(x) = −1, row 3: bias-corrected estimator with ρ(x) = ρ̂(x).

Non Robust/Robust Estimator Oracle strategy Data driven method

non robust biased 0.053 0.069
non robust bias-corrected ρ(x) = −1 0.291 0.977
non robust bias-corrected ρ(x) = ρ̂(x) 0.447 0.470

robust α = 0.1 biased 0.020 0.039
robust α = 0.1 bias-corrected ρ(x) = −1 0.011 0.025
robust α = 0.1 bias-corrected ρ(x) = ρ̂(x) 0.014 0.023

robust α = 0.5 biased 0.012 0.060
robust α = 0.5 bias-corrected ρ(x) = −1 0.007 0.009
robust α = 0.5 bias-corrected ρ(x) = ρ̂(x) 0.009 0.012

Table 3: MSE for different estimators of γ(x) based on 100 datasets simulated according to
Setting 2.
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Figure 3: Setting 2: boxplots of γ̂n(x) with ko and hn,o determined using the oracle strategy;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ(x) =
−1, row 3: bias-corrected estimator with ρ(x) = ρ̂(x).

When the contamination percentage is increased from 1 to 5%, the results for the non-robust
estimators are appalling, especially when the bias-corrected versions are applied. Whereas the
robust estimator with α = 0.1 could somewhat withstand 1% contamination, this is no longer
true for 5% contamination. Although behaving better than the corresponding non-robust estima-
tors, the estimators show a considerable bias and variance. The bias-corrected robust estimators
with α = 0.5 behave now the best by far. In these cases, the estimators with ρ(x) fixed to -1 are
somewhat better than the estimators with ρ(x) estimated, and the data and oracle strategies
are comparable.

In conclusion, we can say that in both cases (contaminated and uncontaminated) the robust bias-
corrected estimator with α = 0.5 and ρ(x) fixed at -1 has a very attractive behavior. Also, using
the consistent estimator ρ̂(x) for ρ(x) in the estimation of γ̂n(x) is not much worse than using
the true value of this parameter. The selection of the tuning parameters hn and k is challenging,
though the proposed methods give a good practical performance. Note that the selection of hn
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Figure 4: Setting 2: boxplots of γ̂n(x) with ko and hn,o determined using the data strategy;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ(x) =
−1, row 3: bias-corrected estimator with ρ(x) = ρ̂(x).

Non robust/Robust Estimator Oracle strategy Data driven method

non robust biased 0.368 0.419
non robust bias-corrected ρ(x) = −1 1.312 7.508
non robust bias-corrected ρ(x) = ρ̂(x) 2.752 18244.6

robust α = 0.1 biased 0.124 0.159
robust α = 0.1 bias-corrected ρ(x) = −1 0.197 0.676
robust α = 0.1 bias-corrected ρ(x) = ρ̂(x) 0.240 0.668

robust α = 0.5 biased 0.036 0.091
robust α = 0.5 bias-corrected ρ(x) = −1 0.013 0.017
robust α = 0.5 bias-corrected ρ(x) = ρ̂(x) 0.023 0.020

Table 4: MSE for different estimators of γ(x) based on 100 datasets simulated according to
Setting 4.
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Figure 5: Setting 4: boxplots of γ̂n(x) with ko and hn,o determined using the oracle strategy;
column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3: robust
estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with ρ(x) =
−1, row 3: bias-corrected estimator with ρ(x) = ρ̂(x).

and k (or some other threshold related parameter) is not specific for our paper, but a recurrent
issue when one applies extreme value methods nonparametrically by local estimation. Indeed,
we refer to Beirlant and Goegebeur (2004) for an early contribution to local estimation of the
GPD, and more recently to Daouia et al. (2011) and Daouia et al. (2013) for examples of kernel
estimators. For the considered tuning parameter selection criteria, we can say that the data
driven method gives for the above suggested robust bias-corrected γ estimator a MSE that is
quite close to the one obtained with the oracle strategy, indicating the general good performance
of the method. Also, both methods capture the sine behavior of the γ function quite well. The
selection of the tuning parameters hn and k (or un), can also be addressed from a theoretical
point of view, though this is highly technical and outside the scope of this paper, which mainly
focused on the theoretical asymptotic properties of the estimators for γ(x).
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Figure 6: Setting 4: boxplots of γ̂n(x) with ko and hn,o determined using the data driven
method; column 1: non-robust estimators, column 2: robust estimators with α = 0.1, column 3:
robust estimators with α = 0.5, row 1: biased estimator, row 2: bias-corrected estimator with
ρ(x) = −1, row 3: bias-corrected estimator with ρ(x) = ρ̂(x).

4 Case study: Condroz soil data

In agriculture, a new concept of crop management, called precision farming has emerged. This
development permits within-field variation of crop techniques, for instance the adjustment of
fertilizer inputs on the basis of soil sampling and soil analysis. As a consequence of precision
farming there is an increased demand for soil data, and laboratories are now burdened with
large datasets. Inevitably there is concern about data quality and outliers, since outliers may
heavily influence estimation results in data analysis. Robust estimation methods have therefore
become the necessary tools in order to provide high quality information.

In this section we will illustrate our robust estimation method on soil data from the Condroz
region in Belgium. The Condroz soil database is centralized at the Unit of Biometry, Data Man-
agement and Agrometeorology of the Agricultural Research Centre of Gembloux, and contains
information about the chemical composition (pHKCL, K, Mg, Ca, . . . ) of soil samples originat-
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ing from the Condroz region. We refer to Laroche and Oger (1999) and Goegebeur et al. (2005)
for further details about the database. In particular, we will focus on the estimation of the tail
index of the calcium content distribution conditional on the soil pH level using the data from
one of the communities in the Condroz. The dataset under consideration has 1505 observations.
In Figure 7 (a) we show the scatterplot of calcium content versus pH level of the soil samples.
The scatterplot clearly indicates an overall positive association between the two variables. Also,
some extreme observations for calcium content are present, especially at the larger pH levels. In
panels (b), (c) and (d) of Figure 7 we show local (i.e. for some neighborhoods in the covariate
space) Pareto quantile plots of the calcium content of soil samples. For pH∈ [5.5, 5.7] (panel
(b)) the Pareto quantile plot becomes linear in the largest observations indicating a good fit
of the conditional Pareto-type model (1). The same can be said for pH∈ [6.5, 6.7] (panel (c))
and pH∈ [7, 7.2] (panel (d)) though there seem to be some observations that are outlying with
respect to the conditional Pareto-type model, especially at the larger values of pH. These out-
lying observations clearly require that the tail index γ(pH) is estimated in a robust way. The
MDPD estimator for γ(pH) is obtained with the completely data-driven method as described
in the simulation section, where for the optimal selection of k we used blocks of size 10 and
hn ∈ {0.05, 0.10, . . . , 0.50}. The cross-validation criterion leads to a bandwidth hn,o = 0.15. In
Figure 8 we show the bias-corrected MDPD estimator for γ(pH) with ρ(pH) fixed at -1 and
α = 0 (solid line), α = 0.1 (dashed line) and α = 0.5 (dotted line). For pH values where the
data do not contain outliers for the variable calcium content, the estimates obtained with the
three values of α are as expected very similar. For pH∈ [7, 7.5] we see that the estimates for
γ(pH) corresponding with α = 0 and α = 0.1 are clearly influenced by the observations that
are outlying with respect to the conditional Pareto-type model, leading to elevated estimates
for γ(pH) compared to the more robust estimator obtained with α = 0.5.

5 Conclusion

We considered the robust and asymptotically unbiased estimation of the tail index of a condi-
tional Pareto-type response distribution in the presence of random covariates. The asymptotic
properties of our estimator were established together with its performance on simulated and real
datasets. The theoretical study of the selection of the tuning parameters hn and un, and the
robust asymptotically unbiased estimation of extreme conditional quantiles will be the subjects
of forthcoming studies.
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