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A Tour of Constrained Tensor
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Jérémy Emile Cohen*, Konstantin Usevich and Pierre Comon, Fellow, IEEE

Abstract—This paper surveys the use of constraints in tensor
decomposition models. Constrained tensor decompositions have
been extensively applied to chemometrics and array processing,
but there is a growing interest in understanding these methods
independently of the application of interest. We suggest a
formalism that unifies various instances of constrained tensor
decomposition, while shedding light on some possible extensions
of existing methods.

Index Terms—Tensor, Multiway analysis, Constrained opti-
mization, Coupled decompositions, Data fusion, Compression, Big
Data, PARALIND.

INTRODUCTION

In the recent years, a great number of works has dealt
with theoretical and practical aspects of multiway data mining,
which studies data obtained from simultaneous measurements
at (often three) different modalities. That is, data are con-
tained in a cube of measurements, which is called the data
array or data tensor. Tensors have been used extensively
in chemometrics [1], [2], neural imaging [3]–[5], antenna
array processing [6], [7], fast matrix computations [8], [9],
statistics [10], differential equations [11], hyperspectral image
processing [12] among others. In those applications, tensors
can be decomposed according to a multilinear model known
as Canonical Polyadic decomposition (CP) (also referred to as
PARAFAC). This decomposition infers the relations between
all modalities, as opposed to standard data mining in which
data blocks would be unfolded into matrices without account-
ing for the multilinear structure of the underlying model.

In particular, the CP decomposition model gained in popu-
larity since, without further constraints than the model itself,
parameters can be uniquely recovered under mild conditions
on the decomposed tensor [13]. Since identifiability does
not need to be restored, it could thus seem unnecessary to
add constraints to the CP decomposition model, in contrast
with PCA or Tucker models for example [14] that arbitrarily
imposes orthogonality constraints on the parameters. However,
adding meaningful constraints to tensor CP decomposition
models turns out to be of crucial importance depending on
the application at hand. Firstly, some constraints on the output
of tensor decomposition help to interpret these outputs in a
physical sense. For example, non-negativity constraints are
often used when mining data stemming from fluorescence
spectroscopy, since it makes resulted estimated spectra and
concentrations physically intepretable [2]. This means that
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constraining the CP decomposition is a data-driven way to
build tensor decomposition models. Secondly, constraining
the set of parameters of a model is known to potentially
decrease estimation error and can restore identifiability of an
approximate problem. For instance, sparsity constraints have
been hugely successful in machine learning since it makes
dictionary learning a well-posed problem. For tensors, non-
negativity constraints have been shown to make the approxi-
mate CP decomposition problem well-posed [15].

OUTLINE AND CONTRIBUTIONS

This paper surveys constrained CP decompositions within
a unifying framework, suggesting some research topics and
proposing increments to existing models along the way. It
differs from recently published surveys [16], [17] since the
focus is here on physically interpretable models design and
giving a wide picture of constrained tensor decompositions.
The first section defines the CP decomposition as well as
some core concepts of tensor algebra. Simple yet widely
used constraints are then discussed. More complex interactions
between constraints are further exposed in the section devoted
to Applications. Finally, some algorithmic issues are discussed
in the last section.

NOTATION AND VOCABULARY

Among various notation habits in the multiway array pro-
cessing community, we choose to follow notation from [18],
[19], as presented in Tables I and II. We call a third-order
real K ˆ L ˆ M tensor T a vector from a tensor space
RK bRLbRM . Since this tensor space is isomorphic to
RKˆLˆM , third-order tensors and three-way arrays are often
confused, and unnecessarily cumbersome notations are conse-
quently used. However the array space is (only) one instance
of a tensor product space and tensor product notations can
be used instead of array-specific notations. Here, whenever
dealing with data array, i.e., when studied vectors are indeed
in RKˆLˆM , the tensor product of vectors in RK , RL and
RM can be cast as the outer product. In Table II, some
useful properties of multilinear operators acting on tensors
are specified. These operators also form a tensor space. More
properties on multilinear operators can be found in [19].

Given a K ˆ L ˆM tensor T , its CP decomposition of
rank R can be written as follows:

T “

R
ÿ

r“1

Dr (1)
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where Dr are decomposable tensors of the form Dr “

ar b br b cr. The rank of T is the minimal value of R such
that (1) holds exactly. Finding the CP decomposition of a
third-order tensor means finding rank-1 tensors Dr. Yet, each
tensor Dr may be defined by three vectors ar, br and cr,
only up to two scaling ambiguities; in fact, ar b br b cr “
αar bβbr b cr{αβ, @α, β ‰ 0.

Next, it is often convenient to store these vectors in ma-
trices as A “ ra1, . . . ,aRs, B “ rb1, . . . , bRs and C “

rc1, . . . , cRs. This leads to a convenient writing:

T “ pAbBbCqIR (2)

where A P RKˆR, B P RLˆR and C P RMˆR are called
factor matrices, and IR is a diagonal core tensor with only
ones on the diagonal. Model (2) now contains 2R scaling
indeterminacies (whereas definition (1) did not contain any).

Conditions on the dimensions of the tensor and rank of
the decomposition are given in the literature [13], [20], [21]
to ensure uniqueness of the factors in an unconstrained CP
model, but only when noise is absent. They will hence not
be introduced here since most applications of constrained CP
must consider noise.

E bF : tensor product space, linear space mapped by b from E ˆ F .

ab b: tensor product of two vectors, i.e. an element of E bF ,
can be understood as an outer product of vectors
if the tensor space is an array space. [18]

AdB: Khatri-Rao (columnwise Kronecker) product of matrices [22]
A �B: Hadamard product of matrices, i.e., element-wise product [22]

TABLE I
BASIC DEFINITIONS FROM LINEAR ALGEBRA

CONSTRAINED CP DECOMPOSITION

General Model

There are two ways to understand the CP model. It can be
understood as a pure mathematical problem where factors bear
no meaning with regard to physical quantities, or it can be seen
as a blind source separation model. In the latter, factors can be
interpreted as sources and coefficients, meaning that the nu-
merical values in the factors should be interpretable physically.
This also means that in many applications, a priori information
on the factors is available. For example in chemometrics,
factors may refer to spectra and concentrations [1], which are

U bV bW : an operator acting on a third order tensor.
pU bV bW qT : application of U on the first mode, V on the second

mode, and W on the third mode, also noted T ‚1 U ‚2 V ‚3 W .

pU bV q pab bq “ UabV b.

TABLE II
SOME DEFINITIONS AND PROPERTIES OF MULTILINEAR OPERATORS

obviously non-negative. More about CP decomposition applied
to chemometrics is discussed in Example 2.

This calls for a generalization of the CP decomposition to
include potential constraints stemming from a priori knowl-
edge into the decomposition model and noise distribution.
Then the following general constrained CP decomposition
model is obtained:

"

T “ pAbBbCqIR ` E
A P SA, B P SB , C P SC

(3)

where SA (resp. SB and SC) can be any constraint space
included in RKˆR (resp. RLˆR and RMˆR), and E is a
Gaussian noise on every coefficient of T . Note that (3) is
an approximate constrained decomposition model since noise
is considered.

The nature of (3) depends heavily on the constraint spaces
defined above. In the following, we present some examples of
constraint spaces that are being considered in the literature.
For the sake of simplicity, we suppose from now on that only
the factor C is constrained, although the following discussions
are unaltered if all factors are constrained. Only the paragraph
dealing with compression with constraints features constraints
on all three modes since compressing only dimension typically
makes little sense.

Linear constraints
A first approach to constrained CP is to consider only linear

constraints on columns of factors, or constraints that can be
linearized in this way. Then the constrained factor C can be
expressed with a spanning family W of the linear constraint
space,

C P SpantW u Ď SC . (4)

This yields the following model :
"

T “ pAbBbCqIR ` E
C “WCc

(5)

where Cc is a matrix of coefficients, of size R3ˆR, R3 ăM .
Linear constraints on columns ofC are useful to impose that

each component in the third mode belongs to a certain class of
functions and was first studied under the name CANDELIND
[23]. In chemometrics for instance, bases of splines have been
used to impose smoothness on one factor [24]. Such examples
of linear constraints are however scarce in the literature.
In the section devoted to algorithms, we show that linear
constraints with known spanning families of full column rank
can be handled through already existing algorithms with some
modification of the noise distribution, so that there is no
technical issue to their use within already known methods.

A common subclass of linearly constrained CP decomposi-
tion is obtained when the mixing matrix W P RMˆR3 is tall
and orthonormal. Such constraints allow for compression by
simply projecting all columns of C onto a smaller subspace
spanned by matrix W in which row correlation is decreased:

T “ pI b I bW qG ` E (6)
“ pI b I bW q pAbBbCcqIR ` E (7)
“ pAbBbWCcqIR ` E (8)



IEEE SIGNAL PROCESSING MAGAZINE, ISSUE XX, MAY 2016 3

where G is a small K ˆ L ˆ R3 core tensor, generally not
diagonal, and Cc is the R3ˆR third mode factor of G. Also E
remains independent and identically distributed. Only G needs
to be decomposed in an unconstrained fashion to obtain the
linearly constrained CP decomposition of T . If W were not
tall, i.e. if R3 were greater than M , then the constraint space
would be the whole space of definition ofC, and the constraint
would be unuseful since always verified. Constraint (5) is often
induced by the rank constraint described in the next subsection.

In some applications like antenna array processing, factors
in the CP decomposition may have Hankel, Toeplitz or another
particular structure [25], [26]. Since these structured matrices
form a linear space, taking into account the structure amounts
to linearly constrained CP as described in (5). In practice, for
constraint spaces of small dimension, specific finite algorithms
may be devised [25], [26], possibly to initialize iterative
algorithms.

On another topic, let us consider the case where C is a
multivariate random variable given by a linear additive model
with noise ν following some given distribution.

C “WCc ` ν. (9)

The CP decomposition constrained by this stochastic equation
designated as approximate linear constraints has been very
little studied. However, if W and Cc need to be estimated
given some a priori knowledge, a flexible constraint may
prevent over-fitting the constraint space, which will not be
correctly defined because of estimation errors. Moreover, it
also models factor C being close to the span of W , the
distance being some prior probability distribution more or less
known. Some work on approximate linear constraints can be
found in [27], [28] in the context of data fusion.

Rank constraints

A rank constraint can be cast on the rank of factor C, by
setting

SC “ tX P RMˆR | ranktXu ă minpM,Rqu. (10)

This constraint is difficult to take into account as is, since SC
is not a linear space. Yet it can be simplified as it implies
the existence of two orthogonal bases, defined by the columns
of two matrices W and H , respectively in RMˆranktXu and
RranktXuˆR so that C “ WCcH , with HTH “ I and
W TW “ I . In other words constraint (10) can be linearized.
Since in (10), ranktCu is strictly lower than M , at least
there exist W and some matrix N so that C “WN where
W is tall and orthogonal. Thus under a low rank constraint
on C, compression can be applied if W can be learnt. The
collinearity among columns induced by a fat H is discussed
in the next section through the PARALIND model.

Another constraint set is often used for C. A large majority
of CP decompositions are subject to a low rank constraint that
is easier to express,

SC “ tX P RMˆR | ranktXu ď R !Mu. (11)

If columns of C are independent, the column rank of C is
equal to R. Moreover C P SC will have linearly dependent

rows. If (11) is imposed on all factors A, B and C, the set
of constraints defines the tensor low-rank constraint.

This is at the very core of data mining that from high rank
noisy data should emerge a small number R of informative
components. Thus tensor low-rank constraint is almost a must-
have for any tensor-based analysis, including classical two-
way (i.e. matrix) data analysis [29]. In practice under tensor
low-rank constraint, rows of all factors whose dimension is
larger than the tensor rank are generically linearly dependent,
so that again compression can be performed on all modes of
the tensor.

Nonlinear constraints

Many applications require nonlinear constraints. A fre-
quently encountered one is non-negativity, essential in chemo-
metrics or hyperspectral imaging for instance. With a non-
negativity constraint on the third mode, the model becomes

"

T “ pAbBbCqIR ` E
C P RMˆR`

. (12)

This has been used extensively whenever factors bear
physical interpretation in chemometrics [2], [30], but also in
neuroscience [31], [32]. It is also especially popular for second
order tensors under the Non-negative Matrix Factorization
(NMF) acronym [33], [34], since this constraint for matrices
often restores identifiability of the factors.

For higher order tensors as well, non-negativity constraints
ensure that a best low rank approximation exists [35] for all
norms. Remember that this is the only constrained approximate
CP decomposition where such a guarantee exists yet.

Another common non-linear constraint is the `0 sparsity
constraint [36], [37] :

"

T “ pAbBbCqIR ` E
δ1 ď `0pCq ď δ2

(13)

for some integers δ1 ď δ2 and the `0 pseudo-norm can be taken
rowwise, columnwise or on all elements. This means that each
of the R components in the CP decomposition contributes only
sparsely to tensor T on the third mode. Sparsity constraints
are meaningful when at least one of the factor is understood
as a dictionary, and factor C has a small number of nonzero
coefficients. To our knowledge, it has not been studied yet
whether sparsity constraints have any impact on the existence
and uniqueness of a best approximate CP decomposition.

The `1 norm can be used in a similar fashion, as a relaxation
of the `0 norm for the optimization routine, or as a constraint
in itself. For instance, for C stemming from the decomposition
of hyperspectral data as presented in Example 1, rows of C
should sum to one which leads to `1pCq “ 1 row-wise. The `1
norm also serves as a regularizer for dictionary learning with
matrices. Sparsity for dictionary-based CP decomposition is
explored in the next section devoted to Applications.
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Example 1: CP decomposition can be used to process
multispectral and hyperspectral images, under the condition
that a third diversity is provided (time, angle, shift ...) [12].
Under multilinearity hypothesis, an image X is decom-
posed into a matrix of abundances A, which contains the
proportion of each component within each pixel, a matrix
of spectra B, which contains a reflectance spectrum for
each material, and a third factor matrix C containing for
example temporal signatures of each source. Each factor is
non-negative, and the abundances in A can be modeled to
sum to one in each row since they are percentages of the
total contribution of each pixel. Moreover, a dictionary of
spectra can be provided. In Figure 1, we use data from [12]
to compare unconstrained decomposition and constrained
dictionary-based CP decomposition. The decomposition
model and algorithm are described in Appendix B. When
the dictionary is provided in the decomposition model,
identification of the recovered spectral signatures is auto-
matic, and all spectra can be interpreted. On the other hand,
when the dictionary-based CP is not used, identification of
spectra in Figure 1 (upper left plot) may not be possible.

Other constraints like smoothness or unimodality have been
studied in the literature [2], but for concision purposes and
since they have often not been applied in the literature, these
constraints will not be presented here.

APPLICATIONS

In what follows, we study combinations of linear constraints
with non-linear constraints under the tensor low-rank con-
straint. Multimodal tensorial data models are also described
as constrained CP. We also discuss dictionary-based CP de-
composition. In this section the rank of the decomposition is
considered small with respect to tensor dimensions as in (11).

Collinearity in Factors

When decomposing some tensorial data with the CP model,
it can occur that some factors should have different number
of components (cf. Example 2). Since the rank chosen for
the decomposition fixes the number of components for all
factors, this means that collinearity in the columns of factors
can be encountered. In other words, we study the following
constrained CP decomposition :

"

T “ pAbBbCqIR ` E
rankpCq ă R !M

(14)

where the constraint amounts to (10). Here we focus on the
implication of the rank constraint on the column space of C.

Example 2: Let us consider a naive experiment where
factors should have different column ranks. Take a solution
with three fluorescent components at different concentra-
tions. Using a spectrophotometer, a mixture of the three
emission spectra and the three excitation spectra can be
acquired in the form of a matrix. Now by adding a bit of the
third component and diluting the whole solution, running
the experiment again gives another matrix. Repeating this
several times will result in a collection of matrices, our
measurement tensor, where the two first concentration
profiles are collinear. Thus the column rank of the factor C
related to concentration will be two, even though the rank
of the tensor will be three. A better model would thus use
a reduced set Cc of parameters by setting

C “ Cc

„

1 λ 0
0 0 1



where λ is the ratio between the two constant concentration
profiles. This model is called PARALIND [38], and is
discussed below.

Having collinear columns in the CP decomposition is not
a problem in terms of modeling, but it raises serious issues
with respect to conditioning of the underlying optimization
problem. For this reason, two approaches have been proposed
to reformulate (14), namely pLr, Lr, 1q Block Term Decom-
position and PARALIND [4], [38]–[40]. It is worth noting that
these two models are equivalent, which has remained widely
unnoticed.

As explained in the previous section, a rank constraint on
columns of C can be relaxed into a linear constraint :

C “ CcH (15)

where Cc P R
Mˆr with r ă R and H in a mixing matrix

acting on the columns of Cc to account for collinearity
between columns of C. Typically H is flat and full row rank,
see Example 2.

If H is known, then it simply needs to be included in the
gradient computation (26) when estimating Cc. However, in
most cases H will also be unknown, and may even be the
most important set of parameters to estimate from the data.
Without a priori knowledge, H is not identifiable, since many
couples pH,Ccq can yield a low column rank matrix C [41].
To provide a meaningful estimation of this mixing matrix, the
S-PARALIND model was developed [42]:

$

&

%

T “ pAbBbCqIR ` E
C “ CcH
`0pHq ď δ

(16)

where the `0 pseudo-norm is taken on all the coefficients
of H . It is shown that, contrary to the PARALIND model
where H is not identifiable, adding a sparsity constraint on
the mixing matrix yields a condition on obtaining the sparsest
H [41]. In other words, S-PARALIND is easier to interpret
since the sparsest possible mixing matrix is selected. However,
this is balanced by an increased complexity of the underlying
optimization problem.
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Fig. 1. Recovered factors from non-negative CP decomposition versus dictionary-based non-negative CP decomposition.

Dictionaries

Because of its similarity to matrix factorization, the CP
decomposition is sometimes interpreted as a dictionary learn-
ing model [36], [43]. Indeed, for two-way arrays, the CP
decomposition can be written has T “ DS where D is the
dictionary and S stands for the scores.

However, we see strong differences between low rank
unconstrained CP decomposition factors and dictionaries ob-
tained in dictionary learning methods. Firstly, for a low rank
CP model, factors have at most R columns and as stated
earlier, R is usually chosen small with respect to the dimen-
sions since it corresponds to the number of components of
interest in the data. On the other hand, dictionaries can be
over-complete families of atoms, so that usually the number of
atoms is far greater than their size. Secondly, when considering
tensorial data, each mode stems from a different modality. A
dictionary is often related to one modality – for instance a
library of spectra when dealing with spectral images – so that
dictionaries may help identifying each modality separately, i.e.
should help recovering the factors instead of being the factors
themselves.

Hence we are led to consider a new model for dictionary-
based CP decomposition:

$

&

%

T “ pAbBbCqIR ` E
C “DCc

`0pCcq ď δ
(17)

where D is an over-complete dictionary in RMˆp and p " R.
This model was first suggested in [44] in the specific

context of harmonic retrieval with the `0 pseudo-norm taken

column-wise and δ is set to 1. It is similar to S-PARALIND
(16), except that the number of columns in D is greater
than R. Moreover, D might be provided as an a priori
known basis for decomposing factor C. Dictionary-based CP
decomposition can be understood also as a data fusion model
between tensor data and a known sparse representation basis of
C. Using dictionaries can improve interpretability in applied
CP decompositions. To illustrate this, an example of over-
complete dictionary-based CP decomposition for hyperspectral
data is provided in Example 1 and Figure 1, but most details
are reported in Appendix B.

Compression with constraints

In the previous section, compression for tensors following a
low tensor rank CP model has been described in (7) and (11).
It yields that decomposing a KˆLˆM tensor T into a CP of
rank R is equivalent in the least squares sense to decomposing
a smaller RˆRˆR tensor G provided a basis for each mode
U , V and W is known. In other words, for a Gaussian noise
E , model (11) is equivalent to

"

G “ pAcbBcbCcqIR ` E
A “ UAc, B “ V Bc, C “WCc

. (18)

Bases U , V and W can be estimated through the Tucker
decomposition with orthogonality constraints [14], or the Max-
imum Likelihood High Order Singular Value Decomposition,
which itself is well approximated by computing the SVD of
tensor T unfolded along each mode [45], [46]. Orthogonality
is often imposed so that E remains i.i.d., but only left invert-
ibility of U , V and W is required to perform compression.
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Sometimes it is necessary to choose a dimension higher than
R for the compressed space to account for estimation errors
in the column basis W [46].

The tricky part with compression is to include other non-
linear constraints. If constraints apply on the uncompressed
factor, then after compression, parameters are optimized and
constrained in two different spaces. This issue is discussed
in [47] where an alternating algorithm is designed, going
back and forth between compressed and uncompressed spaces.
When non-linear constraints are imposed on C, the following
model is obtained:

$

&

%

G “ pAcbBcbCcqIR ` E
A “ UAc, B “ V Bc, C “WCc

C P Sc
. (19)

We want to emphasize here that any property on existence
and uniqueness achieved by adding constraints to the CP
decomposition is challenged when using compression. For
instance, when compressing a non-negative tensor, existence
of a best non-negative low-rank decomposition is not directly
inherited from [35]. Using the Perron-Frobenius theorem,
we prove in Appendix A the existence of a best low rank
approximation for compressed non-negative tensors.

Joint Decompositions

When acquiring multiple multiway data sets from various
modalities, it may not be wise to consider a single high order
tensor of measurements. Rather, when these modalities are
linked through factors in the CP decomposition, using cou-
pled models can again improve interpretability and decrease
estimation error on the linked factor. An example of EEG and
MEG coupling is provided in Sidebar 3.

Coupled tensor decompositions have first been studied by
Harshmann [48], more recent models are studied by Acar et
alterae [49]. The simplest form of coupled CP decomposition
can be formalized as

"

T i “ pAibBibCiqIR ` Ei
Ci “ C @i ď n

(20)

where n is the number of coupled data sets. Note that here the
scaling ambiguity may hinder the model design and should be
pulled in one of the factors, as mentioned in [28].

Many refinements of this model can be found in the litera-
ture. Some focus on coupling only a subset of the components
by constraining the number of coupled sources to be low in
an unsupervised fashion [49], others generalize the coupling
relationship to account for transformations and error in the
coupling constraint [27]. Theoretical results on identifiability
when noise is absent are provided in [50], and the Cramér-Rao
bound for (20) are computed in [28].

Interestingly, joint decompositions can be used in combi-
nation with linear constraints when the coupling relationship
occurs in a transformed space. For instance, factors may be
coupled though their derivative [51] or through a learnt trans-
formed basis, the latter being the core idea behind PARAFAC2,
a refined model stemming from the CP decomposition [52],
[53]. This yields:

"

T i “ pAibBibCiqIR ` Ei
Ci “WiC @i ď n

. (21)

Note that in the PARAFAC2 model, factors Ai are all equal,
as well as factors Bi, and matrices W i are left-orthogonal to
ensure shared covariance over all factors Ci.

ALGORITHMS

Noise covariance and Preprocessing

Before discussing some workhorse algorithms for con-
strained CP decomposition, we show that linear constraints can
be handled through manipulations of the noise distribution. To
describe the distribution of a random multiway array, we use
the array normal law introduced in [54].

Definition: Let T be a multivariate random variable in
Rn1ˆ¨¨¨ˆnN . We say that T follows an array normal law of
mean M and with tensor covariance Γ “

ÂN
i“1 Σi if and

only if

p pT |M,Γq “

exp
ˆ

´
}Γ´ 1

2 pT ´Mq}
2
F

2

˙

p2πq
ś

i
ni
2 |Γ|

1
2

(22)

where Γ´
1
2 “

ÂN
i“1 Σ

´ 1
2

i and Σi are full rank symmetric,
and }T }2F “

ř

ijk

T 2
ijk is the squared Frobenius norm. This is

denoted in short as T „ AN pM,Γq.
The array normal law is especially useful when the data ten-

sor is transformed by a multilinear operator. Indeed, suppose
T follows an array normal law of mean M with diagonal
covariance

Â

i I , i.e. T “ M ` E with white Gaussian
noise E , then given full column rank matrices U , V and W ,
G “ pU bV bW qT is distributed as

G „ AN
´

pU bV bW qM,UUT
bV V T

bWW T
¯

. (23)

If U is however not full column rank, then the array nor-
mal distribution is degenerate and does not admit a density
function, a property inherited from multivariate normal distri-
butions.

This means that an algorithm designed for data corrupted by
an additive white Gaussian noise can be used for tensors with
known non diagonal but separable covariance, i.e. a known
covariance as in the above definition. This noisy tensor only
needs to be preprocessed with an adequate multilinear oper-
ator. On the other hand, when dealing with linear constraints
on factors, preprocessing the tensor can allow us to get rid of
the constraints at the cost of correlating the noise. This means
that algorithmically, model (5) with white Gaussian noise can
be handled as an unconstrained optimization problem with
correlated Gaussian noise; more explicitly, if the mixing matrix
W has a left pseudo-inverse W :, the linearly constrained CP
decomposition model (5) is equivalent to

$

’

&

’

%

G “ pI b I bW :
qT

“ pAbBbCcqIR ` E 1

E 1 „ AN
´

0, IK b ILbW
:W :T

¯

. (24)
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Preprocessing a data tensor to remove the linear constraint
is another way to understand compression. An instance of
compression computed using a basis of splines for factor
C can be found in chemometrics [24], but only the QR
decomposition of this basis was used to preprocess, to avoid
to correlate the noise. However, correlating the noise is not an
issue since the correlation is known.

Projected algorithms

Unconstrained CP decomposition remains a vast field of
research in terms of optimization algorithms. Still, popular
algorithms all depend on the gradient of a well-chosen cost
function. For Gaussian noise with separable covariance Γ and
constrained factor C, a cost function γ is derived from (3)

@C P Sc, γ pA,B,Cq “ }Γ´
1
2 pT ´ pAbBbCqIRq }2F ,

(25)
but depending on the exact nature of Sc, its gradient w.r.t. C
may not easy to compute in general. However, for all constraint
spaces introduced above, it is possible to define a projection
operator Π mapping RMˆR to Sc. When the descent direction
and a step is given, a projected algorithm updates the current
values of the parameters and then projects them onto the
constraint space Sc using Π. For non-negativity constraints,
ΠpCq sets to zero all negative values of C [55]. For sparsity
constraints, projecting means thresholding values in the factor
until the constraints are satisfied, which is an instance of the
well-studied water-filling problem.

Most early algorithms for constrained CP in the literature
have used projected gradient as a standard [2]. For complete-
ness, we give below the gradient of (25) with no constraints,
which can be set to zero factor-wise to obtain the renowned
Alternating Least Squares algorithm. The gradient can also be
used as is for projected conjuguate gradient [56] or second
order methods [57], [58].

Defining the matricization of an array as in [19] with last
mode being the first rolling index, i.e. rT p1qsk,`M`m “ T k`m,
the gradient of γ along the first mode is given by

Bγ
BA
pA,B,Cq “ U´1T p1q

´

`

V V T
˘´1

B d
`

WW T
˘´1

C
¯

´ U´1A
´

BT
`

V V T
˘´1

B �CT
`

WW T
˘´1

C
¯

.

(26)
The gradients on the other modes are obtained by circulating
the variables and covariances since the cost function has the
same shape with respect to the three modes when constraints
on C are dropped.

The problem with alternating gradient descent and projec-
tion steps is that there is no guaranty of convergence to a
local minimum. Worse, the algorithm may not converge at all
if no critical point of the unconstrained cost function may be
reached locally while satisfying the constraints. On the other
hand, those algorithms are easy to design if unconstrained
algorithms are given. Some results on convergence for more
general block coordinate descent methods can be found in
[59]–[61]?

Proximal algorithms

Recently more complex methods have been proposed to
tackle constrained tensor decompositions, namely proximal
methods [62]. The latter offer a wide variety of algorithms
depending on the specificities of the optimization problem
at hand. ADMM [63] was designed and implemented for
tensor decompositions under many different constraint types
[43], [64]. Although to our knowledge FISTA and Douglas-
Rachford algorithms have not been studied in the context
of CP decomposition, proximal gradient [63] and accelerated
proximal gradient [65] have been studied in the context of non-
negative CP decomposition (12). Seemingly alternating least
squares methods incorporating proximal sets, called Outer-
loop ADMM in [43], is an efficient way to apply proximal
methods to constrained CP decompositions. In Sidebar 3, the
workhorse Alternating Non-negative Least Square algorithm
[55] for non-negative CP decomposition is cast as proximal
gradient algorithm with optimal step size.

Algorithm 1 ANLS / Alternate Outerloop Proximal Gradient
algorithm for non-negative CP decomposition.

Given T and initial factors A, B and C,
while convergence criterion is not met do

A “ T p1q pB dCq
´

BTB �CTC
¯´1

B “ T p2q pAdCq
´

ATA�CTC
¯´1

C “

„

T p3q pAdBq
´

ATA�BTB
¯´1

`

end while

In the context of compression, a linear transformation has to
be included in the proximal step, which is known to be difficult
if the columns of compression matrix W are not orthogonal.
Some works focus on fast decomposition of non-negative
tensors using compression [47], [65], [66]. But there does not
exist any method exploiting known proximal algorithms that
work only in the linearly compressed tensor space. A useful
tool in this regard would be recent primal-dual methods from
[67], [68], which allow a linear transformation of the variables
when computing the proximal operator of the characteristic
function η of the constraint space.
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Sidebar 3: Proximal gradient for non-negative CP
decomposition The proximal gradient method for solving
constrained optimization problems is closely related to
traditional projected gradient descent methods. Indeed, it is
an iterative algorithm that requires to compute the gradient
at any given point of the unconstrained cost function,
and then projects the new estimate on the constraint
space. However, to ensure both convergence and satisfied
constraints, the projection on the constraint space is done
using a particular operator called the proximal operator.
It is easy to prove that projected gradient and proximal
gradient are identical if an orthogonal projector on the
constraint space is known.

For the solving the non-negative CPD optimization problem

argmin
C

}T ´ pAbBbCqIR}2F
s.t. C P RKˆR` .

(27)

the proximal gradient can be used in a block-coordinate
or ALS spirit by computing the gradient and proximal
operators for each factor sequentially. Since (27) is linear
with respect to each factor, a gradient method with optimal
step is equivalent to the least squares update, so that without
projections, estimates of factors A, B and C are estimated
sequentially as in traditional ALS.
That leaves the computation of the proximal operator of the
non-negativity constraint on C. By definition, the proximal
operator Πλ in this case is given by

Πλ pXq “ argmin
U

ηpUq ` λ}X ´U}22 (28)

where ηpXq is the characteristic function of matrices with
non-negative coefficients, i.e.

ηpUq “

"

0 if Uij ě 0 @Uij
`8 if there exist Uij ă 0

(29)

It can be seen that ΠλpXq “ rXs
` for all X, λ, which

means that all negative values in least squares estimate of
C are set to zero while leaving the other values intact.
This shows that an alternate outerloop of proximal gradient
amounts to the ANLS from [] recalled in Algorithm 1.

CONCLUSIONS

We introduced a formalism for constrained tensor Canonical
Polyadic Decomposition that sheds light on similarities and
differences among the many tensor decomposition models
proposed in the recent years. Rank, linear and non-linear
constraints were first presented, then more intricate models
mixing these constraints were discussed. Finally we surveyed
decomposition algorithms taking constraints into account.

Overall, we show how constraints can be used to design
new tensor decomposition models relying on multilinearity of
data with respect to underlying parameters. In particular, we
introduce dictionary-based CP as a way to obtain interpretable
factors. Moreover, data fusion is cast in terms of jointly
constrained CPDs. We also explain why preprocessing of noisy
data can deal with some linear constraints.

Many open questions remain, among which we wish to em-
phasize the followings. First, what kind of constraints restore
existence of a best low rank approximate of a tensor. Second,
can we further design fast algorithms for constrained tensor
decomposition, e.g. using compression. Last, can constraints
be used in a probabilistic context to gain some flexibility on
how much they should be satisfied.

APPENDIX A
PROJECTED NON-NEGATIVE ALS: SOME PROPERTIES

A. Introduction

In what follows, for a tensor T (or a matrix, vector), we
write T ľ 0 if all the elements are non-negative and T ą 0 if
all elements are positive. Let T P RKˆLˆM be a non-negative
tensor (i.e., T ľ 0), and

T « pU bV bW qG,

be its HOSVD approximation [46] for the multilinear rank
pR1, R2, R3q, i.e., U P RKˆR1 , V P RLˆR2 , W P RMˆR3 ,
where the matrices U , V and W are composed of the first
left singular vectors of the corresponding unfoldings of T .

The projected ALS algorithm [47] involves optimization
over Ac P RR1ˆR, Bc P RR2ˆR, Cc P RR3ˆR, Rk ě R,
such that they satisfy

UAc ľ 0,V Bc ľ 0,WCc ľ 0, (30)

where Ac,Bc,Cc have normalized columns. In what follows,
we are going to show that the set defined by (30) is nonempty
in most cases.

B. Perron-Frobenius theorems

The following two results are known [69].

Theorem 1. Let A P Rnˆn, be a non-negative matrix A ľ 0,
such that An

‰ 0. Then
‚ ρpAq (the spectral radius) is an eigenvalue of A;
‚ there exists a non-negative vector v ľ 0 such that it is an

eigenvector corresponding to ρpAq, i.e. Av “ ρpAqv.

Theorem 2. Let A P Rnˆn, be an eventually positive matrix,
i.e. pAqk ą 0 for k ě k0. Then
‚ ρpAq is a simple eigenvalue of A, the only eigenvalue

with absolute value equal to ρpAq;
‚ the eigenvector corresponding to ρpAq can be chosen

positive, i.e. v ą 0.

From these two theorems, we deduce a simple corollary on
singular values/singular vectors of non-negative matrices.

Corollary 2.1. Let A P Rmˆn, m ď n be a non-negative
matrix (A ľ 0). Let

A “
m
ÿ

j“1

σjujv
J
j , (31)

be an SVD of A, σ1 ě ¨ ¨ ¨ ě σm ě 0. Then the following
statements hold true.

1) There exists an SVD of A such that u1 ľ 0. In particular,
if σ1 ą σ2, then u1 ľ 0.
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2) If none of the rows of A is orthogonal to all of the others
and none of the columns of A is orthogonal to all of the
others, then σ1 ą σ2 and u1 ą 0.

Proof. 1) We have that AAJ ľ 0, and by Theorem 1, there
exists a non-negative eigenvector of AAJ corresponding
to its largest eigenvalue.

2) If none of the rows of A is orthogonal to all of the
others, then the weighted graph corresponding to AAJ is
connected, hence there exists k such that pAAJqk ą 0.
The case with columns is similar, but we need to consider
pAJAqk.

Corollary 2.2. A random1 non-negative matrix A P Rmˆn
has a simple largest singular value, and the corresponding
left singular vector u1 is positive.

C. Feasibility of the projected NN CP approximation problem

Proposition 2.1. Let A P Rmˆn, m ě n be a non-negative
matrix, and U “

“

u1 ¨ ¨ ¨ uR
‰

P RmˆR be the matrix of
its first R left singular vectors, R ď n, obtained from an SVD
as in (31).

1) If u1 ľ 0, then the cone

K :“ tv P RR |Uv ľ 0u

contains at least one nonzero vector.
2) If u1 ą 0, then the cone K is solid (has nonempty

interior), i.e.,
spanK “ RR.

Proof. 1) Let e1 “
“

1 0 ¨ ¨ ¨ 0
‰J

. Since u1 ľ 0, we
have that Ue1 ľ 0.

2) The dual cone of the cone K is equal to

K˚ “ tUJα |α P Rm,α ľ 0u.

Since u1 ą 0, we have that

v P K˚, pvq1 ď 0 ñ α “ 0 ñ v “ 0.

Therefore,
K˚ X´K˚ “ t0u,

i.e., the cone K˚ is pointed2.
As shown, for example in [70, p. 53], a dual cone of a
pointed cone is a solid cone.

Corollary 2.3. 1) For a random non-negative tensor T , the
set (30) is nonempty.

2) Generically, the matricesAc,Bc,Cc satisfying (30) have
rank R.

Proof. The statements 1 and 2 follow from the corresponding
statements of Proposition 2.1, because U (resp. V and W )
is the matrix of left singular vectors of the first (resp. second
and third) unfolding matrix of T .

1It is meant here that all matrix entries are independently drawn according
to an absolutely continuous probability distribution. Such an array is referred
to as “generic”.

2 Alternatively, K is a pointed cone if Kz0 lies in an open half space, i.e.
there exists a hyperplane that intersects K only at 0.

APPENDIX B
A PROJECTED ALGORITHM FOR DICTIONARY-BASED CP

DECOMPOSITION

Here we present briefly the algorithm and model that were
used to obtain the results presented in Figure 1. Hyperspectral
images of the Alps taken over time were used [12]. A
dictionary D of spectra that should appear in the hyperspectral
images is provided, and we suppose only these spectra are of
interest. Thus we want the columns of C to be exactly among
the columns of the dictionary D, and therefore a constraint
C “DS where S has exactly one non zero coefficient in each
column is imposed. The dictionary-based CP decomposition
as described in (17) for this particular framework leads to the
following optimization problem:

argmin
A,B,SPt0,1uNˆR,}si}0“1

}T ´ pAbBbDSqIR}2F (32)

Note that the sum to one constraint on the abundances B was
dropped here for simplicity.

There are many possibilities to tackle this non-convex
optimization problem. Since we mean only proof of concept
here to encourage further research, we used a simple algorithm
based on projected Alternating Least Squares, detailed in
Algorithm 2. When optimizing over S, the linear system is
ill-posed because D is over-complete, i.e. the system has more
parameters than equations. The sparsity constraint should reg-
ularize the linear system, but since we alternate the projection
step on the constraint space with the least squares update,
a Tikhonov regularization on S was added to regularize the
linear system with respect to S. Regularization parameter λ
was chosen by hand. Updates on A and B are computed
through plain ALS.

Algorithm 2 Projected ALS with known Dictionary
Given T and initial factors A, B and C,
while convergence criterion is not met do
A and B updates:

A “ T p1q pB dCq
´

BTB �CTC
¯´1

B “ T p2q pAdCq
´

ATA�CTC
¯´1

S first estimate:

DTDS
´

ATA�BTB
¯

` λS “ T p3q pAdBq

solved as a Sylvester equation.

S projection step:

@i ă R sij “ 1rmaxj sijs; C “DS

end while

The parameters of the CP decomposition model used for
Figure 1 where the following: CP rank R was set to 7,
maximum number of iterations was set to 103, initial values
for factors were drawn with a zero-mean unit-variance normal
distribution coefficient-wise, and λ was set to 10´3. Dictionary
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D was normalized columns-wise. Comparison with ANLS is
done with the same set of parameters and same initial factors.
All data and codes are available online3.

REFERENCES

[1] A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis. Chichester UK:
Wiley, 2004.

[2] R. Bro, “Multi-way Analysis in the Food Industry: Models, Algorithms,
and Applications,” Ph.D. dissertation, University of Amsterdam, The
Netherlands, 1998.

[3] M. Mørup, L. K. Hansen, C. S. Herrmann, J. Parnas, and S. M. Arnfred,
“Parallel factor analysis as an exploratory tool for wavelet transformed
event-related eeg,” NeuroImage, vol. 29, no. 3, pp. 938–947, 2006.

[4] B. Hunyadi, D. Camps, L. Sorber, W. Van Paesschen, M. De Vos,
S. Van Huffel, and L. De Lathauwer, “Block term decomposition for
modelling epileptic seizures,” EURASIP Journal on Advances in Signal
Processing, vol. 2014, no. 1, pp. 1–19, 2014.

[5] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Ca-
iafa, and H. A. Phan, “Tensor decompositions for signal processing
applications: From two-way to multiway component analysis,” Signal
Processing Magazine, IEEE, vol. 32, no. 2, pp. 145–163, 2015.

[6] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor analysis
in sensor array processing,” IEEE Trans. Sig. Proc., vol. 48, no. 8, pp.
2377–2388, Aug. 2000.

[7] A. L. De Almeida, G. Favier, and J. C. M. Mota, “Constrained tensor
modeling approach to blind multiple-antenna cdma schemes,” Signal
Processing, IEEE Transactions on, vol. 56, no. 6, pp. 2417–2428, 2008.

[8] L.-H. Lim, “Foundations of numerical multilinear algebra: decom-
position and approximation of tensors,” Ph.D. dissertation, Stanford
University, 2007.

[9] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity
Theory. Berlin Heidelberg: Springer, 1997, vol. 315.

[10] P. Mccullagh, Tensor Methods in Statistics, ser. Monographs on Statistics
and Applied Probability. Chapman and Hall, 1987.

[11] M. Espig, W. Hackbusch, A. Litvinenko, H. G. Matthies, and E. Zander,
“Efficient analysis of high dimensional data in tensor formats,” in Sparse
Grids and Applications. Springer, 2012, pp. 31–56.

[12] M. A. Veganzones, J. E. Cohen, R. Cabral Farias, J. Chanussot, and
P. Comon, “Nonnegative tensor CP decomposition of hyperspectral
data,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 52,
pp. 2577–2588, 2016.

[13] J. M. Landsberg and G. Ottaviani, “Equations for secant varieties of
veronese and other varieties,” Annali di Matematica Pura ed Applicata,
vol. 192, no. 4, pp. 569–606, 2013.

[14] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[15] Y. Qi, P. Comon, and L. H. Lim, “Uniqueness of non-negative tensor
approximations,” IEEE Trans. Inf. Theory, vol. 62, no. 4, pp. 2170–2183,
2016, arXiv:1410.8129.

[16] P. Comon, “Tensors: a brief introduction,” IEEE Sig. Proc. Magazine,
vol. 31, no. 3, pp. 44–53, May 2014.

[17] G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, “Nonnegative matrix and
tensor factorizations : An algorithmic perspective,” Signal processing
Magazine, vol. 31, no. 3, pp. 54–65, 2014.

[18] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, ser.
Series in Computational Mathematics. Berlin, Heidelberg: Springer,
2012.

[19] J. E. Cohen, “About notations in multiway array processing,” arXiv
preprint arXiv:1511.01306, 2015.

[20] J. B. Kruskal, “Three-way arrays: rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and statistics,”
Linear algebra and its applications, vol. 18, no. 2, pp. 95–138, 1977.

[21] I. Domanov and L. De Lathauwer, “On the uniqueness of the canonical
polyadic decomposition of third-order tensors—part ii: Uniqueness of
the overall decomposition,” SIAM Journal on Matrix Analysis and
Applications, vol. 34, no. 3, pp. 876–903, 2013.

[22] C. R. Rao, Linear Statistical Inference and its Applications, ser. Proba-
bility and Statistics. Wiley, 1965.

[23] J. D. Carroll, S. Pruzansky, and J. B. Kruskal, “Candelinc: A general
approach to multidimensional analysis of many-way arrays with linear
constraints on parameters,” Psychometrika, vol. 45, no. 1, pp. 3–24,
1980.

3Codes and data used to produce Figure 1 are available at www.gipsa-
lab.fr/„pierre.comon/TensorPackage.

[24] M. E. Timmerman and H. A. Kiers, “Three-way component analysis
with smoothness constraints,” Computational statistics & data analysis,
vol. 40, no. 3, pp. 447–470, 2002.

[25] P. Comon, M. Sorensen, and E. Tsigaridas, “Decomposing tensors
with structured matrix factors reduces to rank-1 approximations,” in
ICASSP’2010, Dallas, Mar. 14-19 2010.

[26] M. Boizard, R. Boyer, G. Favier, J. E. Cohen, and P. Comon, “Perfor-
mance estimation for tensor CP decomposition with structured factors,”
in ICASSP, Brisbane, Australia, Apr. 19-24 2015, pp. 3482–3486.

[27] R. C. Farias, J. E. Cohen, C. Jutten, and P. Comon, “Joint decompo-
sitions with flexible couplings,” in Latent Variable Analysis and Signal
Separation. Springer, 2015, pp. 119–126.

[28] R. Cabral-Farias, J. E. Cohen, and P. Comon, “Exploring multimodal
data fusion through joint decompositions with flexible couplings,”
IEEE Trans. Sig. Proc., 2016, submitted. [Online]. Available:
http://arxiv.org/abs/1505.07717

[29] I. Markovsky, Low rank approximation: algorithms, implementation,
applications. Springer Science & Business Media, 2011.

[30] X. Luciani, S. Mounier, H. Paraquetti, R. Redon, Y. Lucas, A. Bois,
L. Lacerda, M. Raynaud, and M. Ripert, “Tracing of dissolved organic
matter from the sepetiba bay (brazil) by parafac analysis of total
luminescence matrices,” Marine Environmental Research, vol. 65, no. 2,
pp. 148–157, 2008.

[31] H. Bharath, D. Sima, N. Sauwen, U. Himmelreich, L. De Lathauwer,
and S. Van Huffel, “Tensor based tumor tissue type differentiation
using magnetic resonance spectroscopic imaging,” in Engineering in
Medicine and Biology Society (EMBC), 2015 37th Annual International
Conference of the IEEE. IEEE, 2015, pp. 7003–7006.

[32] S. F. V. Nielsen and M. Morup, “Non-negative tensor factorization
with missing data for the modeling of gene expressions in the human
brain,” in Machine Learning for Signal Processing (MLSP), 2014 IEEE
International Workshop on. IEEE, 2014, pp. 1–6.

[33] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791,
1999.

[34] N. Gillis et al., “Nonnegative matrix factorization: Complexity, algo-
rithms and applications,” Ph.D. dissertation, UCL, 2011.

[35] L.-H. Lim and P. Comon, “Nonnegative approximations of nonnegative
tensors,” Journal of chemometrics, vol. 23, no. 7-8, pp. 432–441, 2009.

[36] C. F. Caiafa and A. Cichocki, “Multidimensional compressed sensing
and their applications,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 3, no. 6, pp. 355–380, 2013.

[37] L.-H. Lim and P. Comon, “Multiarray signal processing: Tensor decom-
position meets compressed sensing,” Comptes Rendus Mecanique, vol.
338, no. 6, pp. 311–320, 2010.

[38] R. Bro, R. A. Harshman, N. D. Sidiropoulos, and M. E. Lundy,
“Modeling multi-way data with linearly dependent loadings,” Journal
of Chemometrics, vol. 23, no. 7-8, pp. 324–340, 2009.

[39] L. De Lathauwer, “Decompositions of a higher-order tensor in block
terms-part II: definitions and uniqueness,” SIAM Journal on Matrix
Analysis and Applications, vol. 30, no. 3, pp. 1033–1066, 2008.

[40] H. Chen, B. Zheng, and Y. Song, “Comparison of parafac and paralind
in modeling three-way fluorescence data array with special linear
dependences in three modes: a case study in 2-naphthol,” Journal of
Chemometrics, vol. 25, no. 1, pp. 20–27, 2011.

[41] S. Miron and D. Brie, “Some rank conditions for the identifiability
of the sparse Paralind model,” in Latent Variable Analysis and Signal
Separation. Springer, 2015, pp. 41–48.

[42] F. Caland, S. Miron, D. Brie, and C. Mustin, “A blind sparse approach
for estimating constraint matrices in paralind data models,” in Signal
Processing Conference (EUSIPCO), 2012 Proceedings of the 20th
European. IEEE, 2012, pp. 839–843.

[43] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and efficient
algorithmic framework for constrained matrix and tensor factorization,”
arXiv preprint arXiv:1506.04209, 2015.

[44] S. Sahnoun, E.-H. Djermoune, D. Brie, and P. Comon, “A simultaneous
sparse approximation method for multidimensional harmonic retrieval,”
arXiv preprint arXiv:1507.02075, 2015.

[45] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM journal on Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[46] L. De Lathauwer and J. Vandewalle, “Dimensionality reduction in
higher-order signal processing and rank-(R1, R2, , Rn) reduction in
multilinear algebra,” Linear Algebra and its Applications, vol. 391, pp.
31–55, 2004.

http://www.gipsa-lab.fr/~pierre.comon/TensorPackage/tensorPackage.html
http://www.gipsa-lab.fr/~pierre.comon/TensorPackage/tensorPackage.html
http://arxiv.org/abs/1505.07717


IEEE SIGNAL PROCESSING MAGAZINE, ISSUE XX, MAY 2016 11

[47] J. E. Cohen, R. C. Farias, and P. Comon, “Fast decomposition of large
nonnegative tensors,” Signal Processing Letters, IEEE, vol. 22, no. 7,
pp. 862–866, 2015.

[48] R. A. Harshman and M. E. Lundy, “Data preprocessing and the extended
PARAFAC model,” in Research methods for multimode data analysis.,
H. G. Law, C. W. Snyder Jr, J. A. Hattie, and R. P. McDonald, Eds.
Praeger, 1984, pp. 216–284.

[49] E. Acar, R. Bro, and A. K. Smilde, “Data fusion in metabolomics using
coupled matrix and tensor factorizations,” Proceedings of the IEEE, vol.
103, no. 9, pp. 1602–1620, 2015.

[50] M. Sørensen and L. D. De Lathauwer, “Coupled canonical polyadic
decompositions and (coupled) decompositions in multilinear rank-
(Lr, Lr, 1) terms—part I: Uniqueness,” SIAM Journal on Matrix Anal-
ysis and Applications, vol. 36, no. 2, pp. 496–522, 2015.
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