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INTRODUCTION TO WAVELETS IN ENGINEERING

The aim of this paper is to provide an introduction to the subject of wavelet analysis for engineering applications. The paper selects from the recent mathematical literature on wavelets the results necessary to develop wavelet-based numerical algorithms. In particular, we provide extensive details of the derivation of Mallat's transform and Daubechies' wavelet coefficients, since these are fundamental to gaining an insight into the properties of wavelets. The potential benefits of using wavelets are highlighted by presenting results of our research in one-and two-dimensional data analysis and in wavelet solutions of partial differential equations.

INTRODUCTION

History of wavelets

The appearance of wavelets is a r6latively recent development in mathemattcs. The name wavelet or ondelette was coined some ten years ago by French researchers, including Morlet et al., 1 Morlet 2 and Grossmann and Morlet. 3 The existence of wavelet-like functions has been known since the early part of the century (notable examples being what are now known as the Haar wavelet and the Littlewood-Paley wavelet) and many of the ideas now embodied in wavelets originated from work in subband coding in engineering, coherent states and renormalization group theory in physics and the study of Calderon-Zygmund operators in mathematics. However, it was not until recently that the unifying concepts necessary for a general understanding of wavelets were provided by researchers such as Stromberg, 4 Meyer, 5 Mallat, 6 Daubechies, 7 Battle 8 and Lemarie. 9 Since then, the growth of wavelet research in mathematics has been explosive with numerous authors contributing significantly.

In this paper we attempt to provide an introduction to wavelets which is attuned to the needs of the engineering researcher who may wish to apply wavelet techniques to his or her domain. We have found that the biggest barrier to entry is the derivation of the equations needed to program the algorithms. We have therefore provided in great detail the derivations of the matrices used in Mallat's wavelet transform, in the development of the wavelet coefficients and in the solution of partial differential equations.

Some properties of wavelets

The wavelet transform is a tool that cuts up data, functions or operators into different frequency components, and then studies each component with a resolution matched to its scale.*

• Associate Professor t Graduate Student • Daubechies 10 For example, in signal analysis, the wavelet transform allows us to view a time history in terms of its frequency components. In this respect, the wavelet transform performs in much the same way as the Fourier transform. The Fourier transform extracts from the signal details of the frequency content but loses all information on the location of a particular frequency within the signal. Time localization must then be achieved by first windowing the signal, and then by taking its Fourier transform. The problem with windowing is that the slice of the signal that is extracted is always the same length. Thus, the time slice (number of data points) used to resolve a highfrequency component is the same as the number used to resolve a low-frequency component.

In contrast to windowed Fourier transforms, the wavelet adapts the width of its time slice according to the frequency components being extracted. For example, if we express a windowed Fourier transform as (Twinf)(ro, t) = Jt(s)g(s -t)e-iwtds then the corresponding wavelet transform is

(Twavf)(a, b)= I f(t)t/1 ( t: b) dt (1) (2)
where the position of the slice of the signal that the wavelet samples in time is controlled by b and the extent of the slice by the scaling parameter a.

Wavelets are being used in signal processing to develop best basis methods for signal compression and for signal characterization.

Wavelet bases can also be used to precondition stiffness matrices and to develop fast hierarchical solution procedures for partial ditTerential equations.

In Section 2 we describe the general properties that we require of scaling functions and wavelets, using the Haar system as a specific example.

In Section 3 we show how to design and construct Daubechies' orthogonal compactly supported wavelet functions. The properties of other wavelet families are outlined in Section 4.

Section 5 outlines the theory of wavelet multiresolution analysis developed by Mallat. 6 • 11 In Sections 6 and 7 we show how wavelets may be used to solve engineering problems including: (1) analysis of image data and (2) solution of partial differential equations.

MULTILEVEL REPRESENTATION OF A FUNCTION

The goal of multiresolution analysis is to develop representations of a function f(x) at various levels of resolution. To achieve this we seek to expand the given function in terms of basis functions ¢(x) which can be scaled to give multiple resolutions of the original function.

In order to develop a multilevel representation of a function in L 2 (R) we seek a sequence of embedded subspaces

V 1 such that {0}••• cV_ 1 cV 0 cV 1 cV 2 • .. cL 2 (R)
with the following properties: (d) Each subspace is spanned by integer translates of a single function g(x) such that g(x)eV 0 ¢> g(x + l)EV 0

We then seek a scaling function ¢(x) E V 0 such that its integer translates { ¢(x -k), k e Z} from a Riesz basis for the space V 0 • Then ¢(2x-k) form a basis for the space V 1 • (We note that scaling by powers other than two is possible but non-powers of 2 will not be discussed here.) Thus,

V 0 = span { ¢(x -k), k e Z} V 1 =span {¢(2x-k), keZ}
Since the space V 0 lies within the space V 1 , we can express any function in V 0 in terms of the basis functions of V 1 • In particular, 00 ¢(x) = L a" ¢(2x -k) [START_REF] Stromberg | A modified Franklin system and higher order spline systems on R" as unconditional bases for Hardy spaces[END_REF] k=-00 in which a", keZ is a square summable sequence. We will refer to equation [START_REF] Stromberg | A modified Franklin system and higher order spline systems on R" as unconditional bases for Hardy spaces[END_REF] as the dilation equation. The dilation equation is sometimes referred to as the refinement equation or the scaling relation.

If we now define [START_REF] Meyer | Principe d'incertitude, bases hilbertiennes et algebres d'operateurs[END_REF] then cf>m.k(x), keZ forms a Riesz basis for the space Vm. We shall refer to the dilation parameter m as the scale.

Example using the boxfunction as a basis

Let us demonstrate the validity of our assumptions so far by using the box function (Figure l(a)) as our basis function ¢(x),

¢(x) = {1, 0 ~ x < 1 0, otherwise (6) 
From Figure 1(b), it is evident that {¢(x-k), keZ} is an orthonormal set. We may now (in a crude sense) approximate a function feU(R) by its projection P 0 f onto the space V 0 : 00 Pof = L Co,~ccf>(xk) [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF] k=-00

In general, a function may be approximated by its projection Pmf onto the space V m: 00 Pmf= L Cm,kcPm,k(x) [START_REF] Battle | A block spin construction of ondelettes. Part 1: Lemarie functions[END_REF] k=-00 and in fact Pmf approaches f as m--+ oo. Figure 2(b) and 2(d) shows two such approximations to a function at consecutive scales.

We note that the box function satisfies the dilation equation with coefficients

a 0 = a 1 = 1, ¢(x) = ¢(2x) + ¢(2x -1) (9) 
from which we see that In this example we have shown that the box function can be used to develop a sequence of embedded spaces with each space spanned by the translates of the box function at that scale.

Wavelets

Now let us investigate the difference between subspaces V ,_ 1 and V ,.. Let us define a new subspace W,. _ 1 such that it is the orthogonal complement of V,. _ 1 in V ,., V,. = V,.-1 EBWm-1> V m-11. Wm-1 [START_REF] Daubechies | Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series[END_REF] where EB represents a direct sum. It follows then that the spaces Wi are orthogonal and that

EB wj = L 2 (R) (11) je Z
Now let us introduce a wavelet function l/f(x) such that 1/J(xk) form a Riesz basis for the subspace W 0 • Then

1/!m.k = 2"' 12 1/1(2"'x-k)
is a Riesz basis for W,.. If, in addition, the {1/J(xk), keZ} form an orthonormal set, then it follows that {l/1,., 1 , m, keZ} form an orthonormal basis for V(R).

Let us denote the projection off on W,. as Q,.f Then, from equation [START_REF] Daubechies | Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series[END_REF], we have [START_REF] Meyer | Ondettes et functions splines[END_REF] This means that Q,.f represents the detail that needs to be added to get from one level of approximation to the next finer level of approximation.

Furthermore, since the space W 0 is contained in the space V 1 , we can express the wavelet function in terms of the scaling function at the next higher scale, 00 l/f(x) = L b 1 ¢(2xk) [START_REF] Meyer | Ondettes, fonctions splines et analyses graduees[END_REF] k=-00

The wavelet which corresponds to the box function is called the Haar wavelet and is shown in Figure 1(d). This wavelet satisfies equation [START_REF] Meyer | Ondettes, fonctions splines et analyses graduees[END_REF] with coefficients b 0 = 1 and b 1 = -1, so that if

¢(x) is the box function, l/f(x) = ¢(2x)-¢(2x -1). (14)

Multiresolution analysis

Multiresolution decomposition takes the expansion coefficients c,., 1 of an approximation, P,.f, to a function at scale m and decomposes them into (1) the expansion coefficients, c,. _ 1. 1 , of the approximation P,. _ 1 f at the next coarser scale m -1,

(2) the expansion coefficients, d,. _ u, of the detail component Q,. _ d = P ,.J -P,. _ d.

Section 5 details the algorithm for this decomposition. We can then repeat this process on the expansion coefficients c,.-1 , 1 of the approximation P,_ 1 f to find the coefficients c,.-2 ,k and d,.-2 , 1 , and so on. Multiresolution decomposition therefore breaks down the original L 2 space into a series of orthogonal subspaces at different resolutions.

CONSTRUCTION OF WAVELET SYSTEMS

Here we consider the problem of generating other wavelet functions with the special properties of orthogonality that we have seen in the case of the Haar function. Historically, special cases of wavelet functions, and functions with some of the properties of wavelets, were known long before Daubechies, Mallat and Meyer provided a general theory of wavelet functions.

Generalized scaling functions and wavelets

The Haar scaling function and the Haar wavelet described in Section 2 are special cases of a more general class of functions. In general, a scaling function, cp(x), is the solution to a dilation equation of the form

OCJ cp(x) = L ak cp(Sx -k) (l S) k=-00
A convenient choice of the dilation factor is S = 2, in which case the equation becomes

00 cp(x) = L ak ¢(2x -k) (16) k=-OCJ
The constant coefficients ak are called filter coefficients and it is often the case that only a finite number of these are non-zero. The filter coefficients are derived by imposing certain conditions on the scaling function. One of these conditions is that the scaling function and its translates should form an orthonormal set, i.e. where { 1, I= 0 c5o.t = 0, otherwise A wavelet, 1/J(x), is orthogonal to the scaling function and is defined by

OCJ 1/J(x)= L (-1taN-t-k¢(2x-k) (17) k=-OCJ
where N is an even integer. t This definition satisfies orthogonality, since

1 OCJ = 2 k='2;. oo ( -1)k akaN-t -k =0.
The sets of coefficients {ad and { (-1 )k aN_ 1 _ k} are said to form a pair of quadrature mirror filters.

t Some texts define the filter coefficients of the wavelet as ( -1) 1 a 1 _ 1 . Equation ( 17), however, is more convenient to use when there are only a finite number of filter coefficients a 0 , ... , aN_ 1 , since it leads to a wavelet that has support over the same interval, [0, N -1], as the scaling function.

Figure 3 illustrates four scaling functions and their corresponding wavelets. These have been obtained by using different sets of filter coefficients to solve equations ( 16) and ( 17).

Derivation of filter coefficients

If the scaling function is to form a useful basis for functional analysis, it should display certain properties which lead to corresponding conditions on the filter coefficients. Consider the following properties:

(i) In order to uniquely define all scaling functions of a given shape, the area under the scaling function is normalized to unity, i.e.

(

) 18 
The fact that the scaling function has a non-vanishing integral leads to the following condition on the filter coefficients: [START_REF] Amaratunga | Wavelet-Galerkin solutions for one dimensional partial differential equations[END_REF] k=-00 (ii) For the scaling function to be orthogonal to its integer translates, the filter coefficients must satisfy the additional requirement that

J~oo ¢(x)¢(x + l)dx = Oo,~> IEZ (20) 
This yields the condition 00

L akak+2l = 2c50 ," IEZ (21) 
k=-00

Once again, equation ( 21) is only a necessary condition for equation [START_REF] Amaratunga | Wavelet based Green's function approach to 20 PDEs[END_REF] to be satisfied. However, the condition is almost sufficient to ensure orthogonality and in practice it may be regarded as being sufficient. (iii) Equations ( 19) and ( 21) are insufficient to determine a unique set of filter coefficients. In an N coefficient system, they yield a total of N/2 + 1 equations. Another N/2 -1 equations are therefore required for a unique solution. One way to obtain the remaining equations, which will be considered here, is to require the scaling function to be able to exactly represent polynomials of order up to, but not greater than, p. Enforcing this requirement leads to the compactly supported wavelets developed by Daubechies. 7 It will be seen shortly that p = N/2. The requirement for approximation of order pis that any function of the form

f(x) = cto + 0:1X + O:zX 2 + • • • + O:p-lxp-1
can be exactly represented by an expansion of the form 00

f(x) = L ck¢(x-k) k=-00 (22) (23) 
This may be translated into a condition on the wavelet. Taking the inner product of equation ( 23) with 1/J(x) gives

00 <f(x),ljl(x))= L ck<¢(x-k),ljl(x))=O k=-00 (a} ill r - Of-----' 0 -1 -1 ~ -1 0 2 -1 0 2 2.-------~~~CL-~-------, -1 -2L-----~------~----~ -2L----L-~-L-----' 0 2 3 0 2 3 2.---------~~eL----------.
-1 This identity is valid for all a.i (j = 0, 1, 2, ... , p -1). Choosing tx 1 = 1 and all other a.i = 0 gives f~oo I/J(x)x 1 dx=0, 1=0,1,2, . .. ,p-1

-2L-------------------~ -2 ' ----------_ . . . J 0 5 0 5 
(24)
Thus the first p moments of the wavelet must be zero. To determine what constraints this places on the filter coefficients, substitute equation [START_REF] Weiss | Wavelets and the study of two dimensional turbulence[END_REF] in equation [START_REF] Chui | A Tutorial in Theory and Applications[END_REF]. Some calculation shows that 00

L (-1) 1 atk 1 =0, 1=0,1,2, ... ,p-1 ( 25 
)
k=-00

It has already been shown that equation ( 25) must yield N /2 -1 new equations. The equation obtained by putting I = 0 is redundant since it may be obtained from

J2[equation(21)] 1 =o + 4[equation(21)],> 0 -[equation(19)] 2
Thus, equation ( 25) yields p -1 new equations which means that p = N /2. Then the final condition on the filter coefficients becomes 00

L (-1) 1 a 1 k 1 =0, 1=0,1,2, ... ,N/2-1 (26) 
It=-00

The filter coefficients {at. k = 1, ... , N -1} for anN coefficient system are uniquely defined by equations ( 19), ( 21) and [START_REF] Strang | Introduction to Applied Mathematics[END_REF]. Table I lists the coefficients for the Daubechies D4, 06 and 08 wavelet systems.

The problem which now remains is to construct the actual scaling function ¢(x) from its filter coefficients.

Construction of scaling functions

In general, scaling functions do not have a closed-form solution. Instead, they have to be generated recursively from the dilation equation (equation ( 16)). The dilation equation may be Writing this relationship for all integer values x = j, it can be seen that (a) for j < 0, cf>(j) is a linear combination of cf>(l <j). Thus if cf>(x)EL 2 (R), i.e. square integrable, then there exists some integer it < 0 for which ¢ (l < j J) = 0. This means that cf>(jt) = 0. By induction, it follows that cf>(j) = 0 for all j < 0.

(b) for j > N -1, cf>(j) is a linear combination of ¢(1 > j). Thus, if ¢(x) E V(R), then there exists some integer h > N -1 for which cf>(l >h)= 0. This means that cf>(h) = 0. By induction, it follows that cf>(j) = 0 for all j > N -1.

Thus, the only remaining equations are

cf>(O) = a 0 cf> (0) cf>(l) = a 0 cf>(2) + a 1 cf>(1) + a 2 cf>(O) cf>(2) = a 0 ¢(4) + a 1 cf>(3) + a2cf>(2) + a 3 ¢(1) + a 4 cf>(O) cf>(N -2) = aN-3 cf>(N -1) + aN-2 c/J(N -2) +aN-! cf>(N-3) c/J(N -1) =aN-! cf>(N -1)
In matrix form this becomes ao 0 0 As in all eigenvalue problems, the solution to the system

0 0 0 cf>(O) cf>(O)
(M -/)¢' = 0 ( 27 
)
is not unique, and so a normalizing condition is required in order to determine a unique eigenvector. In this case the normalizing condition arises from equation [START_REF] Qian | Wavelets and the numerical solution of partial differential equations[END_REF]. Some calculation shows that co Now that cf>(x) is known at the integer values of x, the values of cf>{x) at the half integers can be found from equation [START_REF] Latto | Les ondelettes a support compact et Ia solution numerique de !'equation de Burgers[END_REF]:

L c/J(i) = 1, iEZ (28 
{29)
This process is repeated as many times as necessary to find the values of cf>(x) at all dyadic points {i/2"; i, n E Z }.

An example: the Daubechies 4 coefficient wavelet system

This section demonstrates how the results ofthe preceding discussion may be used to construct the Daubechies 4 coefficient {04) scaling function and wavelet.

Consider first the construction of the filter coefficients. To solve equations {19), {21) and {26), it is easiest to include the redundant equation for l = 0 in equation ( 26), which is linear, and exclude the non-linear equation for l = 1 in equation {21). Thus,

a 0 + a 1 + a 2 + a 3 = 2 a~ + ai + a~ + a~ = 2 a 0 -a 1 + a 2 -a 3 = 0 -a 1 + 2a 2 -3a 3 = 0
From the linear equations, Substituting for a 0 , a 2 and a 3 in the quadratic equation and solving gives Thus,

1 ±J3 ao = 4 ,
Clearly, one set of solutions is the antithesis of the other. If one leads to the scaling function cf>{x), then the other will lead to cf>( -x). Both functions satisfy the conditions of normality, orthonormality and exact representation of a linear function. The solution that will be adopted is

1+J3 3+J3 3-J3 1-J3 ao = 4 , al = 4 , a2 = 4 , a3 = 4 
The values of the scaling function at the integer points are then given by equation ( 27): 

cP (~) = aocf>(l) = 2 + 4 J3 cP ( ~) = a1 c/>(2) + a2 c/>(1) = 0 cP ( ~) = a3 c/>(2) + 2 ~ J3
All other half integer values are zero, following an argument similar to that presented in Section 3.3 for the integer values of cf>(x). Repeating this process for all dyadic points, it will be found that the scaling function is zero outside the interval [0, 3], i.e. it has compact support.

CLASSIFICATION OF WAVELET BASES

There are many families of orthogonal wavelets that have been constructed in L 2 (R). Their differences lie in their localization in physical and frequency space, in their continuity and hence, in their differentiability. In 1982, Stromberg which provides a general framework for the construction of wavelets. The families of wavelets described so far exhibit inverse polynomial or exponential decay in physical space but they do not have compact support. Daubechies 7 in 1988 provides the first general theory for the derivation of compactly supported wavelets. These wavelets are strictly localized in physical space while also retaining good localization in frequency space. Unlike the wavelets of Meyer, Battle and Lemarie, however, these wavelets do not exhibit symmetry.

MULTIRESOLUTION ANALYSIS USING THE MALLAT TRANSFORM

The Mallat transform 11 provides a simple means of transforming data from one level of resolution, m, to the next coarser level of resolution, m -1. The inverse Mallat transform is a transformation from the coarser level, m -1, back to the finer level, m.

M ultiresolution decomposition

Multiresolution decomposition takes the expansion coefficients of the approximation, P,.f, to a function at scale m and decomposes them into (l) the expansion coefficients, c,.-l.k, of the approximation, P,.- 30) and (31) form the basis of the Mallat transform algorithm described in Section 5.3. 32) forms the basis of the inverse Mallat transform algorithm described in Section 5.3.

Multiresolution reconstruction

The Mallat transform and inverse transform algorithms

The results of Sections 5.1 and 5.2 have been expressed as a simple algorithm by Mallat. 11 The Mallat transform algorithm implements the decomposition process as follows.

Consider a string of data, cm,k> of finite length, n, which represents the approximation, Pmf; to a function. For convenience, suppose that this data is periodic with period n. Then the matrix form of equation ( 30 Cm,n-1 in which x represents information of no value. The effect of the periodicity is simply a wrap around of the filter coefficients at the bottom left corner of the matrix. Note that the matrix of filter coefficients is a circulant matrix, so that the right-hand side of the equation is effectively a convolution of the discrete filter

- 1 T h = J2 [
a 0 ,0, 0,0, ... , 0, aN-I> ... , a 2 , ad with the data cm,k• Only every other sample of the result need be kept; this process is called decimation.

A similar process gives the expansion coefficients, dm-1 , 1 ., of the detail which is lost in reducing the resolution of the data. The matrix form of equation ( 31) is Once again, the matrix of filter coefficients is a circulant matrix, so that the right-hand side of the equation is effectively a convolution of the discrete filter 

aN-1 -aN-2 aN-3 0 aN-I -aN-2 0 0 aN-I 0 0 0 1 fl 0 0 0 -ao 0 0 aN-3 -aN-4 aN-5 -aN-2 aN-3 -aN-4 dm-1,0 X dm-1, I X dm-1,2 X dm-1, n/2-1 X -aN-
0 0 0 0 0 aN-2 ao aN-1 0 0 0 -ao -aN-2 aN -1 0 0 0 aN-3 -aN-2 aN-t 0 0 -aN-4 1 aN•-3 -aN-2 aN-1 0 J2 a1 -a2 a3 -a4 -ao at -a2 a3 0 0 0 0 -a2 0 0 0 0 a1
Thus, the inverse Mallat transform (reconstruction) algorithm is (i) insert a zero between every sample in Cm-t,k and dm-t,k• (ii) convolve Cm-l.k with the filter h, (iii) convolve dm-l,k with the filter g, (iv) add, to get the original data, cm,k•

Cm-1,0 0 Cm -1, 1 0 
Cm-t. 2 + 0 Cm-l.n/2-I 0 -aN-2 dm-1,0 aN-3 0 -aN-4 dm-1,1 aN-5 0 dm-1,2 -ao 0 0 0 dm-1,n/2-1 aN-1 0
where the filters h and g are given by

1 T h = .j2 [a 0 , a 1 , a 2 , a 3 , ••• , aN-2 ,
aN-l, . .. , 0, 0] and 6. DATA ANALYSIS USING WAVELETS One of the most promising applications of wavelets is in the analysis of engineering data. By nature of their construction, a scaling function is a low pass filter and a wavelet is a high pass filter. Figure 4 shows the frequency responses of the Battle-Lemarie scaling function, <f>(x), and the Battle-Lemarie wavelet, 1/J(x), shown in Figure 3(g) and 3(h). The effect of dilation by a factor of 2 in physical space is a corresponding scaling of the frequency axis. Thus, while 1/J(x) passes frequencies in the range [0•5, 1•0] Hz, 1/1(2x) passes frequencies in the range [1•0, 2•0] Hz. Furthermore, the good localization of the Battle-Lemarie wavelet in physical space means that the wavelet decomposition of a function will capture not only the frequencies contained in the function, but also the locations at which frequencies occur. Consider, for example, Figure 5 It also demonstrates that data may be compressed by discarding the wavelet components which are below a predetermined threshold.

Application to images

The most obvious two-dimensional application of wavelets is in image processing. An image may be regarded as a discrete sampling of a function of two variables, f(x, y)e [0, dx] x [0, dy]. Although by no means essential, it will be assumed here that f(x, y) is periodic with periods dx and dy in x and y. With this assumption, the Mallat transform algorithm of Section 5.3 may be conveniently applied to the decomposition of images. The two-dimensional wavelet decomposition of the function, f(x, y), is a tensor product: 00 00 f(x,y)= I I di.k,l r/ti.dx) r/ti.l(y) (33) j=-ro k=-oo 1=-oo

The first step in decomposing an image is to recognize that the image can be decomposed into its scaling function components at the finest scale, m, with m being determined by the size of the image in pixels (p, q):

ro oo f(x, y) ~ Pmf(x, y) = L (34) k=-ro 1=-oo
Since m is the finest scale, this scaling function decomposition must result in p x q coefficients cm,k,h the maximum number permitted by the pixel data. It is assumed here that p and q are powers of 2, as implicitly demanded by the Mallat transform algorithm. From the assumption of periodicity and from equation (34), m is given by

p = 2mdx, q = 2mdy, p, qEZ
The actual magnitudes of the assumed periods, dx and dy, do not affect the resulting decomposition, but they must be consistent with the assumption that p and q are powers of 2 and their ratio must be consistent with the ratio p/q, e.g. for a 256 x 512 image, dx might be 1 and dy might be 2, so that m = 8.

In practice, the scaling function decomposition does not usually need to be carried out since, at the finest scale, the scaling function approaches the delta function, i.e. cPm.dx)-+ 2m 12 t5(2mx-k), as m-+ 00 and this is the basis for a discrete sampling of f(x, y). The projection off onto the space of delta functions is From equations (34) and (35), it is seen that for sufficiently large m (which is usually the case for images)

Cm,k,l ~ 2mJk., = 2mf(2-mk, 2-ml)

The cm. k,t may now be decomposed by repeatedly applying the two-dimensional Mallat transform algorithm, first to each of the columns of pixel values and then to each of the rows. After decomposition, it may be necessary to renormalize the pixel values if they lie outside the usual range [0, 255]. Figure 6 shows an image and the first three stages in the decomposition of the image. At each stage, the result is an averaged image and several detail components. For example, the first level of decomposition (Figure 6(b)) contains an average image corresponding to the basis 4Jm-l,k(x) 4Jm-l,t(Y)

and three detail components corresponding to the bases 4Jm-l.k(x)I/Jm-l,t(y), I/Jm-l,k(x)4Jm-t,t(Y) and 1/Jm-l.k(x)I/Jm-l,l(y)

The average image may be further decomposed into four quadrants, while the detail components corresponding to the bases 4lm-l.k(x)I/Jm-l,t(Y) and l/lm-t,dx)4Jm-l.t(Y) may be decomposed into two halves. This gives the second level of decomposition (Figure 6(c)).

If this procedure is continued, the result would be a finite scale expansion similar to equation (33). On the other hand, it may be sufficient only to further decompose the average image at each stage, depending on the application in mind. As in the one-dimensional example, it is easy to see that efficient compression of the image may be obtained by storing only those components of the expansion which contain a significant amount of information and discarding the remaining components.

Application to stiffness matrices

The two-dimensional wavelet decomposition algorithm may be applied to any matrix. For example, a single stage wavelet decomposition produces an average matrix of! the size of the original matrix, much like the average image in the top left-hand corner of Figure 6(b). The average matrix captures many of the properties of the original matrix. Consider, for example, the eigenvalues and eigenfrequencies of the stiffness matrix systems. The figure shows that the eigenvalues of the average matrices are very similar to the lower eigenvalues of the original matrix. This result is to be expected since the average matrices are obtained by the low pass filtering action of the scaling function. These results have significant implications in modal analysis, where engineers are often interested in determining the lowest eigenfrequencies since these are potentially the most damaging to a structure. The seismic damage to a structure can be catastrophic if its fundamental frequency is of the same order as the frequency of the earthquake. In this situation, therefore, it would be of interest to determine the lowest eigenvalue of the stiffness matrix and perhaps the eigenvalues corresponding to the second and third modes. The structure can have many more higher modes which are less important. Thus, by applying several stages of the wavelet decomposition to the stiffness matrix, good estimates of the most critical frequencies may be obtained with relatively little work.
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SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS USING WAVELETS

The hierarchical nature of wavelets makes them a particularly appealing technique for the solution of partial differential equations. In the wavelet-Galerkin method! 4 -20 the solution to a POE is expressed as an expansion of scaling functions. Figure 8 shows how a function may be represented in terms of the Daubechies 06 scaling function at scale 1. The expansion coefficients represent the solution in wavelet space, i.e. they give the magnitude of each scaling function component of the solution.

The expansion coefficients may be calculated by solving a system of linear equations which contain the connection coefficients. 15 The system of equations may be solved very efficiently using 

  (a) Uiez Vi is dense in L 2 (R). (We use Z to denote the set of integers.) (b) njeZ Vj = {0}. (c) The embedded subspaces are related by a scaling law g(x)eVi ¢> g(2x)EVj+t(3)

Figure 1 . 5 - 5 Figure 2 .

 1552 Figure 1. (a) The Haar scaling function tf>(x) = 4> 0 , 0 . (b) Translations of the Haar scaling function t/> 0 . 0 , t/> 0 . 1 and t/> 0 , 2 • (c) Dilations of the Haar scaling functiOn 4> _ 1.o and t/>_ 1 _ 1 • (d) The Haar wavelet t/l(x) = t/lo.o

Figure 3 .

 3 Figure 3. (a) Haar scaling function, (b) Haar wavelet, (c) Oaubechies 04 scaling function, (d) Oaubechies 04 wavelet, (e) Oaubechies 06 scaling function, (f) Oaubechies 06 wavelet, (g) Battle-Lemarie scaling function, (h) Battle-Lemarie wavelet

  cf>(x) = a 0 cf>(2x) + a 1 cf>(2x -1) + • • • +aN-t cf>(2x-N + 1)

  vector of integer values of the scaling function,¢', is the eigenvector of M corresponding to the eigenvalue 1.

  ) k=co Hence, the values of the scaling function at the integers are given by the solution to equation (27) normalized by equation (28).

  then gives the values of cf>(x) at the half integers:

  Multiresolution reconstruction uses the scaling function and wavelet coefficients, c,.-1 ,k and dm-t.k• at level of resolution m -1 to reconstruct the scaling function coefficients, c,.,t. at the next finer level of resolution, m.Since Wm-I is the orthogonal complement ofVm-I in Vm,

- 1 g= 2 Cm

 12 fl[aN-1 ,0,0,0, ... ,0, -a 0 , ... ,aN_ 3 , -aN_ 2 ]T with the data Cm, k.Thus, the Mallat transform (decomposition) algorithm for the data, cm,k• is (a) convolve data with ii and decimate to get Cm-l,t.(b) convolve data with g and decimate to get dm-l.k•The inverse Mallat transform implements the reconstruction process. The matrix form of equation (32) is Cm,n-

  (a), which shows a 24 Hz signal which has constant amplitude in the interval x = [0, 0•5] and a 12Hz modulated amplitude in the interval x = [0•5, 1•0]. Thus, the left half interval contains the frequency 24Hz while the right half interval contains the frequencies 12 and 36Hz. Figure 5(b)-(d) show the results of a wavelet decomposition at scales 4, 5 and 6, respectively. These clearly show the presence of a frequency in the left half interval at scale 5 ([16•0, 32•0] Hz) and the presence of two frequencies in the right half interval: one at scale 4 ([8•0, 16•0] Hz) and the other at scale 6 ([32•0, 64•0] Hz). This example clearly illustrates the time-frequency decomposition characteristics of wavelets.

3 ,Figure 4 . 1 -Figure 5 .

 3415 Figure 4. (a) Frequency response of the Battle-Lemarie scaling function. (b) Frequency response of the Battle-Lemarie wavelet

Figure 6 .

 6 Figure 6. Successive stages in the wavelet decomposition of an image, showing the averaged image and the detail components

Figure 7 Figure 7 .

 77 Figure 7 compares the eigenvalues (and hence the eigenfrequencies) of the original matrix with those of the average matrices of! and h the size derived using the Haar, D4, D6 and D20 wavelet

1. 5 ,Figure 8 .Figure 9

 589 Figure 8. Scaling function components of a given function u (solid line)

  In 1985, Meyer5 developed wavelets which, in frequency space, are both compactly supported and have Ck continuity (k is arbitrary and may be oo). These wavelets are well localized in physical space too, showing decay faster than any inverse polynomial but not showing exponential decay. They are also C"" continuous in physical space. In 1987, Tchamitchian constructed the first examples of biorthogonal wavelets. Soon after, Battle 8 and Lemarie9 independently constructed identical families of orthonormal wavelets based on spline functions. These wavelets, like the Stromberg wavelets, have exponential decay (the decay rate decreases ask increases) and are Ck continuous. In 1986, Mallat6 and Meyer12 • 13 developed the theory of multiresolution analysis,

4 

constructed wavelets which have Ck continuity, where k is arbitrary but finite. These wavelets have exponential decay,

  1 /. at the next coarser scale, m -1, and (2) the expansion coefficients, d,. _ 1 , k, of the detail component, Q,. _ 1 f = P ,.j -P,. _ 1 f, at the next coarser scale. Consider a function f Let P,.f denote the projection off onto the subspace Vm and Q,.f denote the projection off onto the subspace Wm. Thus,

	k=-00
	Since Wm_ 1 is the orthogonal complement of Vm_ 1 in Vm,
	Substituting this in
	leads to the following result:
	(30)
	Similarly, it can be shown that
	(31)
	Equations (

00 P,.f = L c,.,kcf>m.k(x), Cm,k = <f. cl>m,k > k=-00 and 00 Q,.f = L d,.,kl/lm,k(x), dm,k = (f, l/lm,k)
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