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Abstract

We investigate search problems under risk in state-
space graphs, with the aim of finding optimal
paths for risk-averse agents. We consider prob-
lems where uncertainty is due to the existence of
different scenarios of known probabilities, with
different impacts on costs of solution-paths. We
consider various non-linear decision criteria (EU,
RDU, Yaari) to express risk averse preferences;
then we provide a general optimization procedure
for such criteria, based on a path-ranking algorithm
applied on a scalarized valuation of the graph. We
also consider partial preference models like second
order stochastic dominance (SSD) and propose a
multiobjective search algorithm to determine SSD-
optimal paths. Finally, the numerical performance
of our algorithms are presented and discussed.

1 Introduction

Various problems investigated in Artificial Intelligencarcbe
formalized as shortest path problems in an implicit staéesp
graph (e.g. path-planning for mobile robots, VLSI layout, i
ternet searching). Starting from a given state, we want to d

eral cost functions attached to transitions, represerdiag
tances, times, energy consumptions...For such problems, c
structive search algorithms like*Aand A [Hartet al, 1968;
Pearl, 1984for single objective problems or MO#Afor mul-
tiobjective problemgStewart and White 111, 1991have been
proposed, performing the implicit enumeration of feasgde
lutions.
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e
termine an optimal sequence of admissible actions allowin
transitions from state to state until a goal state is reache

%, 18), P?
H 3 _ 4 H 4
Here, optimality refers to the minimization of one or sev- ith 2% = (16,15), P* = (1,2,5,6) with =
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transition-costs. For example, when costs are time depgnde
and representable by random variables, the SBKyorithm

has been introduced to determine the preferred paths accord
ing to the stochastic dominance partial orfiéelimanet al,,
1999. An extension of this algorithm specifically designed
to cope with both uncertainty and multiple criteria has been
proposed by Wurman and Wellman [1996].

We consider here another variation of the search prob-
lem under uncertainty, that concerns the search of “robust”
solution-paths, as introduced by Kouvelis and Yu [1997]- Un
der total uncertainty, it corresponds to situations whests
of paths might depend on different possible scenariosestat
of the world), or different viewpoints (discordant souraxs
information). Roughly speaking, the aim is to determine
paths with “reasonnable” cost in all scenarios. Under risk
(i.e. when probabilities are known) this problem genegsliz
to the search of “low-cost/low-risk” paths. Let us consider
simple example:

Example 1 Consider the network pictured on Figure 1 where
the initial state is 1 and the goal node is 6. Assume that only
two scenarios with known probabilities andp,, are relevant
concerning the traffic, yielding two different sets of camsts
the network. Hence, to each pafti is associated a vector
xi, x%), one cost per scenarioP! = (1,3,5,6) with 2 =
(1,3,6) with 22 = (8,15), P = (1,3,4,6)
(13,10),

P5 = (1,2,6) with 25 = (16,7), PS = (1,2,4,6) with

2% = (20, 2). Using cost-distributions(* = (2%, z%; p1, p2),
i=1,...,6,we wantto determine solutions paths associated
with low-risk cost-distributions.

20

N

15

An important source of complexity in path-planning prob-
lems is the uncertainty attached to some elements of the prob
lem. In some situations, the consequences of actions are nét )l
certain and the transitions are only known in probabilities
some other, the knowledge of the current state is imperfect
(partial observability). Finally, the costs of transitiomight
itself be uncertain. Although many studies concentraténen t
two first sources of uncertainty (see the important littert 0 5
on MDPs and POMDPS, e.g. Puterman, 1994; Kaelsing ) ] ] )
al., 1999), some others focus on the uncertainty attached to Figure 1: A 2-scenarios problem and its representation
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This simple problem might prove very hard to solve onn’. We callsolution-patha path froms to a goal nodey € T'.
larger instances due to the coexistence of two difficulties:  Throughout the paper, we assume that there exists at least on
combinatorial nature of the solution space and the existencsolution-path.
of several conflicting scenarios on costs. It is important to Following a classical scheme in robust optimizati&ou-
note that the vector-valued path problem introduced aboveelis and Yu, 199F we consider a finite setS =
cannot be reduced to a standard shortest path problem by lifs,, ..., s,,} of possible scenarios, each having possibly
ear scalarization of cost-vectors without loosing sigaffic  a different impact on the transition-costs, and a scenario-
information. Assume for example that the arcs of the graptdependent valuatiom : A x S — N giving, for any arc
plotted on the left part of Figure 1 are valued accoding toa € A and any scenarie € S the costv(a, s) of the tran-
their expected cost, so that each p#&threceives a weight sition represented by. Costs over a path are supposed to
w(zt, p) = p12t + paxl. Then algorithmA* used with such  be additive, which allows valuation to be extended from
scalars weights might outpit' or P%, depending on the rel- arcs to paths by setting, for any pathand any scenarie,
ative value ofy; andps, but neither pattP* nor P2, P5. This  v(P,s) = Y . pv(a,s). In the sequel, we assume that the
can easily be shown using the right part of Figure 1 where theost of every solution path is (upper) bounded by a positive
images of solution-paths are plotted in the valuation spaceconstant\/.
we can indeed see th&?, P* and P°> do not belong to the A cost-vectorz = (z1,...,2,) € R is associated to
boundary of the convex hull (grey triangle) of the images ofeach pathP in the graph in such a way that component
paths, thus being excluded from the set of potential winnersz; = v(P,s;). Let p; denote the probability of scenario
as long as a linear criterion is used. This is not satisfgctor s;, with p;, > 0 fori = 1,...,m and)_", p; = 1, then
becausé™* presents a well-balanced profile and might be pre-a path P with cost-vectorz is represented by the distribu-
ferred toP! or PS by a risk-averse agent. Similarly he might tion (z1,...,2.;p1, ..., pm). Let£ be the set of probabilis-
prefersP? to P! or P° to P°, depending on probabilities. tic distributions having a finite support i, M]. The cost

Example 1 shows the limitations of linear aggregationof each path is a random variahl characterized by law
functions in decision-making under risk on non-convex do-Px € L, defined for anyB C [0, M], by Px(B) = P({s €
mains. To overcome the difficulty, we need to resort to moreS : X (s) € B}). For any random variablé&’, the expected
sophisticated decision criteria to compare cost distiiingt  value of X is given by E(X) = >, p;x;, the cumulative
in term of risk, as those introduced in decision theory. Ehes function F'x is given byFx(z) = P({s € S : X(s) < z})
decision criteria escape linearity either by introducirigsas-  for all z € [0, M| and the associated decumulative function is
formation of costs as in the Expected Utility Model (EU denotedZ x(z) = 1 — Fx(2).

[von Neumann and Morgenstern, 19%@r by introducing a
probability-transformation as in Yaari’'s modefaari, 1987, 2.2 Decision Criteria for Risk-Averse Agents

or even both as in the Rank-Dependent Utility model (RDU| the field of decision making under risk, the concept ofisk
[Quiggin, 1993). Alternatively, partial comparison models aversion has been widely investigated, first in the framewor
including an idea of risk might be used when the agent’s util-of EU theory and then in more general frameworks. Roughly
ity function is not known (e.g. Second-order Stochastic Pom gpeaking, risk-aversion amounts to preferring a solutidth w
inance, SSD). The aim of this paper is to incorporate suchy guaranteed cost to any other risky solution with the same
models in search algorithms to determine low-risk solutionexpected cost. This was formalized by Pratt and AriBvatt,

paths in implicit graphs. _ _ ~1964; Arrow, 1965 that defineveak risk-aversiofor a weak
The paper is organized as follows: in Section 2, we intro-preference relatioir on £ as follows:

duce preliminary formal material as well as decision crite- = . , . )
ria modelling risk-sensitive decision behaviours. In §ect Definition 1 An agent is said to beveakly risk-aversf, for

3, we propose a general optimization procedure to find th&nY distributionX in Z, Qe considers that/(X) is as least
best paths with respect to such criteria. In Section 4, we pro@S 900d asy,, i.e. E(X) = X.

pose a multiobjective search algorithm for the determarati In EU theory, risk-aversion means that the agent’s util-
of SSD-optimal paths. Finally, numerical experiments ef al ity function v on payoffs is increasing antbncave the co-
gorithms are given in Section 5. efficient of risk-aversion of any agent being measured by

—u (x) /o’ (x) [Arrow, 1969. In our context, the counterpart
2 Problem Formulation of EU is given by the expected weight function:

2.1 Notations and Definitions

We consider a state space graph= (N, A) where N is
a finite set of nodes (possible states), ahik a set of arcs
representing feasible transitions between nodes. Foymadl  wherew : [0, M] — R is a strictly increasing function
haveAd = {(n,n),n € N,n’ € S(n)} whereS(n) C Nis  such thatw(z;) represents the subjective weight (disutility)
the set of all successors of nodé€nodes that can be reached attached to cost; by the agent. CriteriolEW (X) is to be
from n by a feasible elementary transition). Thenc N minimized since it represents the disutility of any cost dis
denotes the source of the graph (the initial stdfe}, NV the  tribution X. In the EW model, risk aversion means choos-
subset of goal node® (s, T") the set of all paths frommto a  ing an increasing andonvexw in Equation (1), so as to get
goal nodey € T', andP(n, n’) the set of all paths linkingto ~ EW(E(X)) < EW(X) forall X € L.

EW(X) = _piw(w:) @



Despite its intuitive appeal, EU theory does not explainPerny [2006] to enumerate the solution-paths of an implicit

all rational decision making behaviors (e.g. the violatain
Savage’s sure thing principl&lisberg, 1961). This has led
researchers to sophisticate the definition of expectedyutil

graph by increasing order of costs. Before expliciting Sep
we need to establish the following result:

Proposition 1 For all non-decreasing probability transfor-

Among the most popular generalizations of EU, let us menmationsy on [0, 1] such thaty(q) > ¢ for all ¢ € [0, 1], for

tion the rank dependent utility introduced by Quiggin [1B93

which can be reformulated in our context as follows:

RDW(X) = w(zq) + @
Sl e(Gx () [wlzs)) — wlze)]

where (.) represents a permutation i ..., m} such that
) < ... < x(n), ¢ IS a non-decreasing probability trans-
formation function, proper to any agent, such théf) = 0
andp(1) = 1, andw is a weight function assigning subjective
disutility to real costs. This criterion can be interpregexfol-
lows: the weight of a path with cost-distributiof is at least
w(z (1)) with probability 1. Then the weight might increase
fromw(z(y)) tow(x (o)) with probability mass(G x (z(1)));
the same applies fromy(x(,)) to w(z(3)) with probability-
massyp(Gx (z(2))), and so on... Whew(z) = z for all z,
RDW is known as Yaari's modé¢laari, 1981.

Weak risk-aversion can be obtained in Yaari’'s model by. .-

choosing a probability transformation such thgp) > p
for all p € [0,1]. This holds also for RDW provided
function w is convex[Quiggin, 1993. On the other hand,
when ¢ is the identity function, thenRDW boils down
to EW. Indeed, considering probabilitieg,;, = 1 and
qei+1) = Gx(aj(i)) = Zzl:ljrl D(k) foralli:=1,...m—1,
RDW criterion can be rewritten as follows:

RDW(X) = Z?l}l [@(Q(i)) - ‘P(Q(Hl))] w(x(i)) (3)
+0(q(m)) W (T (m))

From this last equation, observing thaly — q(+1) = py),

we can see that RDW reduces to EW whe) = = for all

all non-decreasing and convex weight functianen [0, M],
forall X € £ we have:RDW (X) > w (E(X))
Proof. Sincex(;11) > z) fori =1,...,m — 1 andw is
non-decreasing, we haveo(z ;1)) — w(z)) > 0 for all
i =1,...,m — 1. Hence, from Equation (2)y(q) > ¢ for
all g € [0,1] implies that: RDW (X)
> w(z) + 20 Gx (o) [wlzesn) — wlze))]
= [1-Gx(z)] wl@m) + Gx (@(m-—1)w(@m)
+ 20 [Gx (@) = Gx (xp)] wlzw)
= pyw (@) + P (@m) + S0y payw(ae)
= EW(X) > w(E(X)) by convexity ofw.
Now, let {P! ...,P"} denotes the set of elemen-
tary solution-paths inP(s,I"), with cost distributions
X1 ..., X", indexed in such away th&(X') < F(X?) <
< E(X"). Each distributionX/ yields costz’
v(P7,s;) with probability p; for i = 1,...,m. The se-
quence of path§P’);—;,_, can be generated by imple-
menting the ranking algorithm of step 2 on the initial graph
G = (N, A), using a scalar valuationl : A — R, defined
byv'(a) = Y, piv(a, s;). Indeed, the value of any patt
in this graph i’ (P7) = E(X7) by linearity of expectation.
Now, assume that, during the enumeration, we reach (at
stepk) a pathP* such that:w(E(X*)) > RDW (XA*)
where 3(k) is the index of a RDW-optimal path in
{P!,..., P}, then enumeration can be stopped thanks to:
Proposition 2 If w(E(X*)) > RDW (X#®)) for somek €
{1,...,7}, whereg(k) is the index of &R DW-minimal path

a

z. Hence, RDW generalizes both EW and Yaari's model. Folin {p1 .. P*} then P?(*) is a RDW-minimal solution-

the sake of generality, we consider RDW in the sequel angath inP(s,T)

investigate the following problem:

RDW Search Problem. We want to determine a RDW-
optimal distribution in the set of all cost distributionsydths
inP(s,T).

This problem is NP-hard. Indeed, choosingx) x,
©(0) = 0andp(z) = 1 for all x € (0,M], we get
RDW(X) = x(,) = max; z;. Hence RDW minimization

Proof. We know that P#(*) is RDW-minimal among
the k-first detected paths. We only have to show that
no other solution-path can have a lower weight accord-
ing to RDW. Forallj € {k+ 1,...,r} we have:
RDW (X7) > w(E(Xjk)) thanks to Proposition 1. More-
over E(X?) > E(X") which implies w(E(X7)) >

w(E(X*) > RDW(XP®). Hence RDW(X7) >

in a vector valued graph reduces to the min-max shortest patR DW (X #(*)) which shows thatP?(*) is RDW-minimal

problem, proved NP-hard by Murthy and Her [1992].

3 Search with RDW

As many other non-linear criteria, RDW breaks the Bellman
principle and one cannot directly resort to dynamic program
ming to compute optimal paths. To overcome this difficulty,
we propose an exact algorithm which proceeds in three step
1) linear scalarization:the cost of every arc is defined as the

expected value of its cost distribution; Znking: enumera-
tion of paths by increasing order of expected costsst8p-
ping condition:stops enumeration when we can prove that

B

overP(s,I'). O
Propositions 1 and 2 show that the ranked enumeration of
solution-paths performed at step 2 can be interrupted with-
out loosing theR DWW -optimal solution. This establishes the
admissibility of our 3-steps algorithm. Numerical tests-pe
formed on different instances and presented in Section 5 in-

gjcate that the stopping condition is activated early in the

enumeration, which shows the practical efficiency of the pro
posed algorithm.

Dominance-based Search

RDW-optimal distribution has been found. Step 2 can be perFunctions RDW and EW provide sharp evaluation crite-

formed byk A*, an extension ofi* proposed by Galand and

ria but require a precise knowledge of the agent’s attitude



towards risk (at least to assess the disutility function). |  Interestingly enough, relations FSD and SSD dominance
this section we consider less demanding models yet allowingelations can equivalently be defined by:
well-founded discrimination between some distributions. = =

X FSDY « [vp € [0,1], Gx(p) < Gy (p)] 4

4.1 Dominance Relations X SSDY & [vp € [0,1],G%(p) < G5 (p)] (5)

A primary dominance concept to compare cost distribution
in £ is the following:

Definition 2 For all X, Y € £, Functional Dominance is Gx(p) =inf{z € [0, M] : Gx(z) < p} for p € [0,1],

whereG x andG% are inverse functions defined by:

defined by:X FDY & [Vs € S, X(s) < Y (s)] G%(p) = [y Gx(q)dg, forp € [0,1]

For relation FD and any other dominance relatierde- Since S is finite in our context,X is a discrete distribu-
fined in the sequel, the set Bf-optimaldistributions inL. C tion; 'EhereforeGX andG y are step functions. Moreoveét%
Lisdefinedby{X e L: VY e LY > X=X >»Y}. and G% are piecewise linear functions. Functi6f (z) is

Iknown as the Lorenz function. It is commonly used for in-
equality ordering of positive random variablgduliere and
Scarsini, 198R As an illustration, consider Example 1 with

Defintion 3 For all XV £ the Fi der Stochastic P 0.4 andp, = 0.6. We have:G%, (p) = 18p for all
efinition rall X,Y € L, the Hrst order Stochastic 2 — for all 1]. wherea
Dominance relation is defined by: p €10,0.6), G (p) =784 5p p €[0-6,1), w S

p € [0.4,1]; henceG% (p) < G% (p) for all p and therefore
X? SSDX!. This confirms the intuition that patR® with
cost(16, 7) is less risky than patte® with cost(5, 18)

The dominance relations introduced in this subsection be-

When the probabilities of scenarios are known, functiona
dominance can be refined Eyst order stochastic dominance
defined as follows:

Actually, the usual definition of FSD involves cumulative
distributions F'x applied to payoffs instead of decumulative
functionsG x applied to costs. In Definition 3X FSD Y

means thafX assigns no more probability than to events . o i e
of type: “the cost of the path will go beyond. Hence it ing transitive, the sets of FD-optimal elements, FSD-optim

. . - elements and SSD-optimal elements are not empty. More-
ir;zé[gr}afl to consider thaX’ is at least as good & when over, these sets are nested thanks to the following impli-

cations: X FDY = X FSDY and X FSDY =
Relation FSD is clearly related to thB1W model since X SSDY, for all distributions X,Y € L. In Exam-
X FSDY ifand only if EW(X) < EW(Y) for all increas-  ple 1 we haveL = {X*' X2 X3 X* X% X°®} andp; =
ing weight functionw [Quiggin, 1993. This gives a nice 0.4 and p; = 0.6. Hence the set of FD-optimal ele-
interpretation to Definition 3 within EU theory, with a use- ments is{ X!, X2 X4 X° X}, the set of FSD-optimal el-
ful consequence: if the agent is a EW-minimizer (with anyements is the same and the set of SSD-optimal elements is
increasing weight functionw), then his preferred solutions {X*, X°, X°}. The next section is devoted to the following:

necessarily belong to the set of FSD-optimal solutions. Nowssp search ProblemWe want to determine all SSD-optimal
an even richer dominance relation can be considered: distributions in the set of cost distributions of pathgifs, I)
Definition 4 For all X,Y € L, the Second order Stochastic and for each of them, at least one solution-path.
Dominance relation is defined as follows: .

X SSDY < [Vz € [0, M], G%(2) < G2(2)] 4.2 Problem Complexity

M To assess complexity of the search, we first make explicit a

whereG% (z) = [.” Gx (y)dy, forall z € [0, M]. link between SSD and Generalized Lorenz DominanFcJ:e, as
Stochastic Dominance is acknowledged as a standard walefined by Marshall and Olkin [1979]. Generalized Lorenz
of characterizing risk-averse behaviors independentigrgf  dominance, denoted GLD in the sequel, is based on the defi-
utility model. For example, Rotschild and Stiglitz [1970] nition of Lorenz vectotL(z) = (Li(x), ..., L, (x)) for any
and Machina and Pratt [1997] provide axiomatic charactervectorz = (z1,...,2,) where Ly (x) is the sum of thek
izations of SSD in terms of risk using “mean preservinggreatest components of Then, relation GLD is defined
spreads”. As a consequence, an agent is said &irbagly  as follows: = GLD y if L(z) Pareto dominated.(y), i.e.
risk-aversdf he prefersX to Y wheneverX SSDY. More-  Li(z) < Lg(y) for k = 1,...,m. Now, if p; = 1/m for
over, SSD has a natural interpretation within EU theory:i = 1,..., m then SSD defined by Equation (5) on distribu-
X SSDY ifand only if EW(X) < EW(Y) for all increas-  tions reduces to Lorenz dominance on the corresponding cost
ing and convex weight functiom [Quiggin, 1993. Asanice  vectors sincd . (z) = mG% (k/m). Hence, in the particular
consequence, we know that whenever an agent is a risk-aversase of equally probable scenarios, the SSD search problem
EW-minimizer, then his preferred solutions necessarily be reduces to the search of Lorenz non-dominated paths, a NP-
long to the set of SSD-optimal solutions. The same appliefard problem as shown by Perny and Spanjaard [2003]. This
to RDW provided¢(q) > ¢ for all ¢ € [0,1] and function ~ shows that the SSD search problem is also NP-hard.
w is convex (this directly follows from a result of Quiggin i
[1993]). This shows that, even outside EU theory, SSD ap4-3 The SSDA Algorithm
pears as a natural preference relation for risk-aversetagen Consider Example 1 and assume that the two scenarios have
It can be used as a first efficient filtering of risky paths. equal probabilities, we can see that the preferred subpath



from node 1tonode 5i® = (1,3, 5) with costzp = (3,10)  cost-vector inJ,copenF(£). Such a label can be chosen,
which is preferred to pattP’ = (1,2,5) with costzps =  forinstance, so as to minimize EW with a conuwexunction.
(11,2) since(3,10;0.5,0.5) SSD(11,2;0.5,0.5). Indeed, At goal nodes, this priority rule guarantees to expand only
we are in the case of Subsection 4.2 (equally probable scendabels attached to SSD-optimal paths.
ios) with L(zp) = (10,13) and L(xp/) = (11,13) and ob-  Pruning: the pruning of labels cannot be done directly with
viously (10, 13) Pareto dominate§l1, 13). Now, appending the SSD relation, as shown in the beginning of this subsec-
pathP” = (5,6) with zp» = (2,8) to P and P’ respectively tion. The following pruning rules are used:
yields pathP! = P U P” with costz! = (5,18) and path  RULE 1: at noden, a label/ € OPENis pruned if there exists
P* = P'UP” with z* = (13,10). HenceL(z*) Pareto dom-  another label’ at the same node such thaig(¢') FD g(¢).
inatesL(z1), thereforg(13, 10; 0.5, 0.5) SSD(5, 18; 0.5, 0.5) This rule is essentially the same as in MOand is justified
which constitutes a preference reversal and illustratésla-v by the fact that FD-optimality does satisfy the Bellman piin
tion of Bellman principle, thus invalidating a direct dyn@m ple and FD dominance implies SSD dominance. Indeed, la-
programming approach (optimal pa#tt would be lost dur-  bels pruned like this necessarily lead to a FD-dominatelagat
ing the search if”’ is pruned at node 5 due 18). and therefore cannot lead to SSD-optimal solution paths.
However, the problem can be overcome knowing thiat: RULE 2: a label¢ € oPENIs pruned if for allf € F(¢) there
SSD-optimal paths are also FD-optimal) FD-optimality — exists¢’ € soL such thatg(¢') SSD f. This rule allows an
satisfies the Bellman principleji) the set of scenarios be- early elimination of uninteresting labels while keepingrast
ing finite, FD-optimality on cost distributions is nothintge  sibility of the algorithm provided heuristié/ is admissible,
but Pareto-optimality on cost-vectors. SSD-optimal distr i.e. VYn € N, Vh* € H*(n), 3h € H(n) s.t. h FD h*.
tions might indeed be obtained in two stages: 1) generatindeed, ifH is admissible, then for alf* € F*(¢) there ex-
FD-optimal solution-paths using Multiobjective* AMOA*,  ists f € F(¢) such thatf = ¢g(¢) + h FD g(¢) + h* = f*,
Stewart and White 1ll, 1991; Mandow and de la Cruz, 2005);which implies thatf SSD f* and thereforey(¢’) SSD f* by
2) eliminate SSD-dominated solutions within the output settransitivity of SSD.
However, FD-optimal solutions being often numerous, it is Note that deciding whethek SSDY can be performed
more efficient to focus directly on SSD-optimal solutions-du in constant time. Indeed, since functiofi§. (p) andG%(p)
ing the search. For this reason we introduce now a refinemerare piecewise linear as indicated in Section 2, their compar
of MOA* called SSDA for the direct determination of SSD- ison amounts to test for Pareto dominance on the union set
optimal solutions. of break points of both functions, the cardinality of which i
As in MOA*, SSDA* expands vector-valued labels (at- upper bounded bgm.
tached to subpaths) rather than nodes. Note that, unlik@ermination: the process is kept running until the ssteEN
the scalar case, there possibly exists several Pareto nobecomes empty, i.e. there is no remaining subpath able to
dominated paths with distinct cost-vectors to reach a givemeach a new SSD-optimal solution path. By construction,
node; hence several labels can be associate to a same n@8DA* develops a subgraph of the one developped by MOA
n. At each step of the search, the set of generated labels &nd the termination derives from the termination of MOA
divided into two disjoint sets: a setPENof not yet expanded
labels and a setLOSED of already _e-xpanded labels. When—_ 5 Numerical Tests
ever the label selected for expansion is attached to a ealuti
path, itis stored in a setoL. Initially, oPENcontains only the Various tests have been performed to evaluate the perfor-
label attached to the empty subpath on ngdehilecLosep  mance of algorithms on randomly generated graphs of dif-
andsoL are empty. We describe below the essential featureferent sizes. The number of nodes in these graphs varies from
of the SSDA algorithm. 1000 to 6000 and the number of arcs fron 1@r 1000
Output: it determines the set of SSD-optimal solution-paths,nodes) to 5.1%for 6000 nodes). Cost vectors are integers
i.e. solution-paths the distribution of which is SSD-omim randomly drawn within interval [0, 100]. Algorithms were
If several paths have the sand¢ distribution, only one implemented in C++. The computational experiments were
path among them is stored using standard bookkeeping tecarried out with a Pentium IV CPU 3.2GHz PC.
niques. Table 1 presents the average performance of algorithms for
Heuristics: like in MOA*, a set H(n) of heuristic cost- different classes of instances, characterized hy;# (the
vectors is used at any nodesincen may be on the path number of nodes in the graph), and (the number of sce-
of more than one non-dominated solution. This set estimate8arios). In each class, we give the average performance com-
the setH* (n) of non-dominated costs of paths fromto I puted over 20 different instances. For every class, we give
Priority: to direct the search we use set-valuedlabel- #ssp the average number of SSD-optimal distributions and
evaluation functionF defined in such a way thaf'(¢), at  tssp the average time (in seconds) to solve the SSD search
any label/, estimates the sdt*(¢) of non-dominated costs Problem with SSDA. Results given in Table 1 show that
of solution paths extending the subpath associated with the average num.ber of SSD-optimal distributions increases
This setF(¢) is computed from all possible combinations slowly with the size of the graph; moreover SSDaom-
{g(t) + h : h € H(n)}, whereg(¢) denotes the value of putation times show a good efficiency (less than 15 sec-
the subpath associated withand» the node to whickf is ~ onds in worst cases). The two rightmost columns of Table 1
attached. At each step of the search, SSBApands a label ~concern the performance in determining RDW-optimal paths
¢ in oPENSuch thatF (¢) contains at least one SSD-optimal with w(z) = 22 andy(p) = pz. We give #.,, the aver-



M | #nodes | #NSSD  INSSD | #Gen trDW [Kaeblinget al, 1999 L.P. Kaebling, M. Littman, and
1000 | 220 012 } 270  0.038 A. Cassandra. Planning and acting in partially observ-

2 | 3500 2.25 175 | 335 0.561 able stochastic domaingArtificial Intelligence 101:99—
6000 2.45 5.75 3.10 1.750 134. 1999
1000 5.10 0.25 | 14.90 0.05 ! ’

5 | 3500 | 5.70 4.14 | 33.05 0.75 [Kouvelis and Yu, 1997 P. Kouvelis and G. YuRobust dis-
6000 | 6.60 13.69 | 30.95 2.36 crete optimization and its application&luwer Academic
1000 10.75 0.55 | 83.35 0.08 Publisher, 1997.

10 gggg 1143;_155 3%_4577 g?i:é é:gg [Machina and Pratt, 1997M.J. Machina and J. W. Pratt. In-

creasing risk: Some direct constructionkurnal of Risk
and Uncertainty14:103-127, 1997.

[Mandow and de la Cruz, 2003.. Mandow and J.L. Prez

de la Cruz. A new approach to multiobjective &earch.
age number of paths generated before reaching the stopping In Proceedings of IJCAI-Q5ages 218-223, 2005.
condition of Proposition 2, antzpw the average time of - [y1arshall and Olkin, 1970 W. Marshall and 1. Olkin. In-
the search in seconds. Values obtained for,#show that equalities: Theory of Majorization and its Applications
path enumeration is stopped after a very reasonable number ac,qemic Press, London, 1979.

of iterations and computation times are about one second i[1 . T . .
worst cases. The gain in efficiency when compared to SSDAMuliere and Scarsini, 199P. Muliere and M. Scarsini. A
note on stochastic dominance and inequality mesures.

is due to the preliminary scalarization of the graph valua- -
tion which avoids numerous Pareto-dominance tests during Journal of Economic Theoryt9:314-323, 1989.

the exploration, but also to the fact that we only seek ondMurthy and Her, 199P I. Murthy and S. Her. Solving min-
RDW-optimal path among NSSD paths. We have performed max shortest-path problems on a netwadylaval Research
other experiments which are not reported here to save space: Logistics 39:669-689, 1992.

wheny(p) = p (EW model) orw(z) = = (Yaar's model),  [peay| 198% J. Pearl. Heuristics. Intelligent Search Strate-

the performance is even slightly better. Moreover, when con gies for Computer Problem SolvingAddison Wesley,
vexity of w and concavity ofp are increased to enhance risk-  7gg4

aversion, e.g. witho(z) = z'° andy(p) = p1o, the perfor-
mance is not significantly degraded.

Table 1: Performance of the algorithms

[Perny and Spanjaard, 200®. Perny and O. Spanjaard. An
axiomatic approach to robustness in search problems with
multiple scenarios. IProc. of UAI'03 pages 469-476,

6 Conclusion 2003,
We have provided efficient exact algorithms to determingp ot 1963 J. Pratt. Risk aversion in the small and in the
low-risk/low-cost solution paths. Algorithm SSDApro- large. Econometrica32(1):122—136, 1964.

posed in Section 4 provides a subset of paths convenient for[a .
risk-averse agent, without requiring the definition of autils Puterman, 194M.L. Puterman. Markov decision pro-
ity function. Moreover, when a disutility criterion is know cesses, discrete stochastic dynamic programmgey
more or less risky paths can be efficiently determined with & Sons, 1994.

the algorithm proposed in Section 3. In the future, it should[Quiggin, 1993 J. Quiggin. Generalized Expected Utility
be worth investigating optimization based on risk-sewsiti Theory: The Rank-Dependent Modgluwer, 1993.
models in other dynamic decision making problems, e.g. .de[RotschiId and Stiglitz, 1970M. Rotschild and J. Stiglitz.
cision trees or Markov Decision Processes. In that diractio Increasing risk: I. a definitionJournal of Economic The-
the main problem to deal with is the existence of dynamic in- ory, 2:225-243, 1970.

consistencies induced by such nonlinear models. Tofaseths'@t t and White IIl. 1041B. S. St . dC C
ewart an ite 11, . S. ewart an . C.

difficulty, adapting the approaches proposed here to bypa : e i, . _
the violation of Bellman principle might be of interest. \é\ﬂtiggl'\/'u'tmblec'fwe A*. Journal of ACM 38(4):775—
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