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Abstract

We investigate search problems under risk in state-
space graphs, with the aim of finding optimal
paths for risk-averse agents. We consider prob-
lems where uncertainty is due to the existence of
different scenarios of known probabilities, with
different impacts on costs of solution-paths. We
consider various non-linear decision criteria (EU,
RDU, Yaari) to express risk averse preferences;
then we provide a general optimization procedure
for such criteria, based on a path-ranking algorithm
applied on a scalarized valuation of the graph. We
also consider partial preference models like second
order stochastic dominance (SSD) and propose a
multiobjective search algorithm to determine SSD-
optimal paths. Finally, the numerical performance
of our algorithms are presented and discussed.

1 Introduction
Various problems investigated in Artificial Intelligence can be
formalized as shortest path problems in an implicit state space
graph (e.g. path-planning for mobile robots, VLSI layout, in-
ternet searching). Starting from a given state, we want to de-
termine an optimal sequence of admissible actions allowing
transitions from state to state until a goal state is reached.
Here, optimality refers to the minimization of one or sev-
eral cost functions attached to transitions, representingdis-
tances, times, energy consumptions...For such problems, con-
structive search algorithms like A∗ and A∗ε [Hartet al., 1968;
Pearl, 1984] for single objective problems or MOA∗ for mul-
tiobjective problems[Stewart and White III, 1991] have been
proposed, performing the implicit enumeration of feasibleso-
lutions.

An important source of complexity in path-planning prob-
lems is the uncertainty attached to some elements of the prob-
lem. In some situations, the consequences of actions are not
certain and the transitions are only known in probabilities. In
some other, the knowledge of the current state is imperfect
(partial observability). Finally, the costs of transitions might
itself be uncertain. Although many studies concentrate on the
two first sources of uncertainty (see the important litterature
on MDPs and POMDPS, e.g. Puterman, 1994; Kaeblinget
al., 1999), some others focus on the uncertainty attached to

transition-costs. For example, when costs are time dependent
and representable by random variables, the SDA∗ algorithm
has been introduced to determine the preferred paths accord-
ing to the stochastic dominance partial order[Wellmanet al.,
1995]. An extension of this algorithm specifically designed
to cope with both uncertainty and multiple criteria has been
proposed by Wurman and Wellman [1996].

We consider here another variation of the search prob-
lem under uncertainty, that concerns the search of “robust”
solution-paths, as introduced by Kouvelis and Yu [1997]. Un-
der total uncertainty, it corresponds to situations where costs
of paths might depend on different possible scenarios (states
of the world), or different viewpoints (discordant sourcesof
information). Roughly speaking, the aim is to determine
paths with “reasonnable” cost in all scenarios. Under risk
(i.e. when probabilities are known) this problem generalizes
to the search of “low-cost/low-risk” paths. Let us considera
simple example:

Example 1 Consider the network pictured on Figure 1 where
the initial state is 1 and the goal node is 6. Assume that only
two scenarios with known probabilitiesp1 andp2 are relevant
concerning the traffic, yielding two different sets of costson
the network. Hence, to each pathP i is associated a vector
(xi

1, x
i
2), one cost per scenario:P 1 = 〈1, 3, 5, 6〉 with x1 =

(5, 18), P 2 = 〈1, 3, 6〉 with x2 = (8, 15), P 3 = 〈1, 3, 4, 6〉
with x3 = (16, 15), P 4 = 〈1, 2, 5, 6〉 with x4 = (13, 10),
P 5 = 〈1, 2, 6〉 with x5 = (16, 7), P 6 = 〈1, 2, 4, 6〉 with
x6 = (20, 2). Using cost-distributionsXi = (xi

1, x
i
2; p1, p2),

i = 1, . . . , 6, we want to determine solutions paths associated
with low-risk cost-distributions.
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Figure 1: A 2-scenarios problem and its representation



This simple problem might prove very hard to solve on
larger instances due to the coexistence of two difficulties:the
combinatorial nature of the solution space and the existence
of several conflicting scenarios on costs. It is important to
note that the vector-valued path problem introduced above
cannot be reduced to a standard shortest path problem by lin-
ear scalarization of cost-vectors without loosing significant
information. Assume for example that the arcs of the graph
plotted on the left part of Figure 1 are valued accoding to
their expected cost, so that each pathP i receives a weight
w(xi, p) = p1x

i
1 + p2x

i
2. Then algorithmA∗ used with such

scalars weights might outputP 1 or P 6, depending on the rel-
ative value ofp1 andp2, but neither pathP 4 norP 2, P 5. This
can easily be shown using the right part of Figure 1 where the
images of solution-paths are plotted in the valuation space;
we can indeed see thatP 2, P 4 andP 5 do not belong to the
boundary of the convex hull (grey triangle) of the images of
paths, thus being excluded from the set of potential winners,
as long as a linear criterion is used. This is not satisfactory
becauseP 4 presents a well-balanced profile and might be pre-
ferred toP 1 or P 6 by a risk-averse agent. Similarly he might
prefersP 2 to P 1 or P 5 to P 6, depending on probabilities.

Example 1 shows the limitations of linear aggregation
functions in decision-making under risk on non-convex do-
mains. To overcome the difficulty, we need to resort to more
sophisticated decision criteria to compare cost distributions
in term of risk, as those introduced in decision theory. These
decision criteria escape linearity either by introducing atrans-
formation of costs as in the Expected Utility Model (EU
[von Neumann and Morgenstern, 1947]) or by introducing a
probability-transformation as in Yaari’s model[Yaari, 1987],
or even both as in the Rank-Dependent Utility model (RDU
[Quiggin, 1993]). Alternatively, partial comparison models
including an idea of risk might be used when the agent’s util-
ity function is not known (e.g. Second-order Stochastic Dom-
inance, SSD). The aim of this paper is to incorporate such
models in search algorithms to determine low-risk solution
paths in implicit graphs.

The paper is organized as follows: in Section 2, we intro-
duce preliminary formal material as well as decision crite-
ria modelling risk-sensitive decision behaviours. In Section
3, we propose a general optimization procedure to find the
best paths with respect to such criteria. In Section 4, we pro-
pose a multiobjective search algorithm for the determination
of SSD-optimal paths. Finally, numerical experiments of al-
gorithms are given in Section 5.

2 Problem Formulation
2.1 Notations and Definitions
We consider a state space graphG = (N, A) whereN is
a finite set of nodes (possible states), andA is a set of arcs
representing feasible transitions between nodes. Formally, we
haveA = {(n, n′), n ∈ N, n′ ∈ S(n)} whereS(n) ⊆ N is
the set of all successors of noden (nodes that can be reached
from n by a feasible elementary transition). Thens ∈ N
denotes the source of the graph (the initial state),Γ ⊆ N the
subset of goal nodes,P(s, Γ) the set of all paths froms to a
goal nodeγ ∈ Γ, andP(n, n′) the set of all paths linkingn to

n′. We callsolution-patha path froms to a goal nodeγ ∈ Γ.
Throughout the paper, we assume that there exists at least one
solution-path.

Following a classical scheme in robust optimization[Kou-
velis and Yu, 1997], we consider a finite setS =
{s1, . . . , sm} of possible scenarios, each having possibly
a different impact on the transition-costs, and a scenario-
dependent valuationv : A × S → N giving, for any arc
a ∈ A and any scenarios ∈ S the costv(a, s) of the tran-
sition represented bya. Costs over a path are supposed to
be additive, which allows valuationv to be extended from
arcs to paths by setting, for any pathP and any scenarios,
v(P, s) =

∑

a∈P v(a, s). In the sequel, we assume that the
cost of every solution path is (upper) bounded by a positive
constantM .

A cost-vectorx = (x1, . . . , xm) ∈ R
m
+ is associated to

each pathP in the graph in such a way that component
xi = v(P, si). Let pi denote the probability of scenario
si, with pi ≥ 0 for i = 1, . . . , m and

∑m

i=1 pi = 1, then
a pathP with cost-vectorx is represented by the distribu-
tion (x1, . . . , xm; p1, . . . , pm). LetL be the set of probabilis-
tic distributions having a finite support in[0, M ]. The cost
of each path is a random variableX characterized by law
PX ∈ L, defined for anyB ⊆ [0, M ], by PX(B) = P ({s ∈
S : X(s) ∈ B}). For any random variableX, the expected
value ofX is given byE(X) =

∑m

i=1 pixi, the cumulative
functionFX is given byFX(z) = P ({s ∈ S : X(s) ≤ z})
for all z ∈ [0, M ] and the associated decumulative function is
denotedGX(z) = 1 − FX(z).

2.2 Decision Criteria for Risk-Averse Agents
In the field of decision making under risk, the concept of risk-
aversion has been widely investigated, first in the framework
of EU theory and then in more general frameworks. Roughly
speaking, risk-aversion amounts to preferring a solution with
a guaranteed cost to any other risky solution with the same
expected cost. This was formalized by Pratt and Arrow[Pratt,
1964; Arrow, 1965] that defineweak risk-aversionfor a weak
preference relation% onL as follows:

Definition 1 An agent is said to beweakly risk-averseif, for
any distributionX in L, he considers thatE(X) is as least
as good asX, i.e. E(X) % X.

In EU theory, risk-aversion means that the agent’s util-
ity function u on payoffs is increasing andconcave, the co-
efficient of risk-aversion of any agent being measured by
−u′′(x)/u′(x) [Arrow, 1965]. In our context, the counterpart
of EU is given by the expected weight function:

EW (X) =
m

∑

i=1

piw(xi) (1)

where w : [0, M ] → R is a strictly increasing function
such thatw(xi) represents the subjective weight (disutility)
attached to costxi by the agent. CriterionEW (X) is to be
minimized since it represents the disutility of any cost dis-
tribution X. In the EW model, risk aversion means choos-
ing an increasing andconvexw in Equation (1), so as to get
EW (E(X)) ≤ EW (X) for all X ∈ L.



Despite its intuitive appeal, EU theory does not explain
all rational decision making behaviors (e.g. the violationof
Savage’s sure thing principle[Ellsberg, 1961]). This has led
researchers to sophisticate the definition of expected utility.
Among the most popular generalizations of EU, let us men-
tion the rank dependent utility introduced by Quiggin [1993],
which can be reformulated in our context as follows:

RDW (X) = w(x(1)) +
∑m−1

i=1 ϕ(GX(x(i)))
[

w(x(i+1)) − w(x(i))
] (2)

where (.) represents a permutation on{1, . . . , m} such that
x(1) ≤ . . . ≤ x(m), ϕ is a non-decreasing probability trans-
formation function, proper to any agent, such thatϕ(0) = 0
andϕ(1) = 1, andw is a weight function assigning subjective
disutility to real costs. This criterion can be interpretedas fol-
lows: the weight of a path with cost-distributionX is at least
w(x(1)) with probability 1. Then the weight might increase
from w(x(1)) to w(x(2)) with probability massϕ(GX(x(1)));
the same applies fromw(x(2)) to w(x(3)) with probability-
massϕ(GX(x(2))), and so on... Whenw(z) = z for all z,
RDW is known as Yaari’s model[Yaari, 1987].

Weak risk-aversion can be obtained in Yaari’s model by
choosing a probability transformation such thatϕ(p) ≥ p
for all p ∈ [0, 1]. This holds also for RDW provided
function w is convex[Quiggin, 1993]. On the other hand,
when ϕ is the identity function, thenRDW boils down
to EW . Indeed, considering probabilitiesq(1) = 1 and
q(i+1) = GX(x(i)) =

∑m

k=i+1 p(k) for all i = 1, ..., m − 1,
RDW criterion can be rewritten as follows:

RDW (X) =
∑m−1

i=1

[

ϕ(q(i)) − ϕ(q(i+1))
]

w(x(i))
+ϕ(q(m))w(x(m))

(3)

From this last equation, observing thatq(i) − q(i+1) = p(i),
we can see that RDW reduces to EW whenϕ(z) = z for all
z. Hence, RDW generalizes both EW and Yaari’s model. For
the sake of generality, we consider RDW in the sequel and
investigate the following problem:

RDW Search Problem. We want to determine a RDW-
optimal distribution in the set of all cost distributions ofpaths
in P(s, Γ).

This problem is NP-hard. Indeed, choosingw(x) = x,
ϕ(0) = 0 and ϕ(x) = 1 for all x ∈ (0, M ], we get
RDW(X) = x(m) = maxi xi. Hence RDW minimization
in a vector valued graph reduces to the min-max shortest path
problem, proved NP-hard by Murthy and Her [1992].

3 Search with RDW
As many other non-linear criteria, RDW breaks the Bellman
principle and one cannot directly resort to dynamic program-
ming to compute optimal paths. To overcome this difficulty,
we propose an exact algorithm which proceeds in three steps:
1) linear scalarization:the cost of every arc is defined as the
expected value of its cost distribution; 2)ranking: enumera-
tion of paths by increasing order of expected costs; 3)stop-
ping condition:stops enumeration when we can prove that a
RDW-optimal distribution has been found. Step 2 can be per-
formed bykA∗, an extension ofA∗ proposed by Galand and

Perny [2006] to enumerate the solution-paths of an implicit
graph by increasing order of costs. Before expliciting step3,
we need to establish the following result:

Proposition 1 For all non-decreasing probability transfor-
mationsϕ on [0, 1] such thatϕ(q) ≥ q for all q ∈ [0, 1], for
all non-decreasing and convex weight functionsw on [0, M ],
for all X ∈ L we have:RDW (X) ≥ w (E(X))

Proof. Sincex(i+1) ≥ x(i) for i = 1, . . . , m − 1 andw is
non-decreasing, we have:w(x(i+1)) − w(x(i)) ≥ 0 for all
i = 1, . . . , m − 1. Hence, from Equation (2),ϕ(q) ≥ q for
all q ∈ [0, 1] implies that:RDW (X)

≥ w(x(1)) +
∑m−1

i=1 GX(x(i))
[

w(x(i+1)) − w(x(i))
]

=
[

1 − GX(x(1))
]

w(x(1)) + GX(x(m−1))w(x(m))

+
∑m−1

i=2

[

GX(x(i−1)) − GX(x(i))
]

w(x(i))

= p(1)w(x(1))+ p(m)w(x(m)) +
∑m−1

i=2 p(i)w(x(i))
= EW (X) ≥ w(E(X)) by convexity ofw. 2

Now, let {P 1, . . . , P r} denotes the set of elemen-
tary solution-paths inP(s, Γ), with cost distributions
X1, . . . , Xr, indexed in such a way thatE(X1) ≤ E(X2) ≤

. . . ≤ E(Xr). Each distributionXj yields costxj
i =

v(P j , si) with probability pi for i = 1, . . . , m. The se-
quence of paths(P j)j=1,...,r can be generated by imple-
menting the ranking algorithm of step 2 on the initial graph
G = (N, A), using a scalar valuationv′ : A → R+ defined
byv′(a) =

∑m

i=1 piv(a, si). Indeed, the value of any pathP j

in this graph isv′(P j) = E(Xj) by linearity of expectation.
Now, assume that, during the enumeration, we reach (at

stepk) a pathP k such that:w(E(Xk)) ≥ RDW (Xβ(k))
where β(k) is the index of a RDW -optimal path in
{P 1, . . . , P k}, then enumeration can be stopped thanks to:

Proposition 2 If w(E(Xk)) ≥ RDW (Xβ(k)) for somek ∈
{1, . . . , r}, whereβ(k) is the index of aRDW -minimal path
in {P 1, . . . , P k}, thenP β(k) is a RDW -minimal solution-
path inP(s, Γ).

Proof. We know that P β(k) is RDW -minimal among
the k-first detected paths. We only have to show that
no other solution-path can have a lower weight accord-
ing to RDW . For all j ∈ {k + 1, . . . , r} we have:
RDW (Xj) ≥ w(E(Xj)) thanks to Proposition 1. More-
over E(Xj) ≥ E(Xk) which implies w(E(Xj)) ≥
w(E(Xk)) ≥ RDW (Xβ(k)). Hence RDW (Xj) ≥
RDW (Xβ(k)) which shows thatP β(k) is RDW -minimal
overP(s, Γ). 2

Propositions 1 and 2 show that the ranked enumeration of
solution-paths performed at step 2 can be interrupted with-
out loosing theRDW -optimal solution. This establishes the
admissibility of our 3-steps algorithm. Numerical tests per-
formed on different instances and presented in Section 5 in-
dicate that the stopping condition is activated early in the
enumeration, which shows the practical efficiency of the pro-
posed algorithm.

4 Dominance-based Search
FunctionsRDW and EW provide sharp evaluation crite-
ria but require a precise knowledge of the agent’s attitude



towards risk (at least to assess the disutility function). In
this section we consider less demanding models yet allowing
well-founded discrimination between some distributions.

4.1 Dominance Relations
A primary dominance concept to compare cost distributions
in L is the following:

Definition 2 For all X, Y ∈ L, Functional Dominance is
defined by:X FD Y ⇔ [∀s ∈ S, X(s) ≤ Y (s)]

For relation FD and any other dominance relation� de-
fined in the sequel, the set of�-optimaldistributions inL ⊆
L is defined by:{X ∈ L : ∀Y ∈ L, Y � X ⇒ X � Y }.

When the probabilities of scenarios are known, functional
dominance can be refined byfirst order stochastic dominance
defined as follows:

Definition 3 For all X, Y ∈ L, the First order Stochastic
Dominance relation is defined by:

X FSDY ⇔ [∀z ∈ [0, M ], GX(z) ≤ GY (z)]

Actually, the usual definition of FSD involves cumulative
distributionsFX applied to payoffs instead of decumulative
functionsGX applied to costs. In Definition 3,X FSD Y
means thatX assigns no more probability thanY to events
of type: “the cost of the path will go beyondz”. Hence it
is natural to consider thatX is at least as good asY when
X FSDY .

Relation FSD is clearly related to theEW model since
X FSDY if and only if EW (X) ≤ EW (Y ) for all increas-
ing weight functionw [Quiggin, 1993]. This gives a nice
interpretation to Definition 3 within EU theory, with a use-
ful consequence: if the agent is a EW-minimizer (with any
increasing weight functionw), then his preferred solutions
necessarily belong to the set of FSD-optimal solutions. Now,
an even richer dominance relation can be considered:

Definition 4 For all X, Y ∈ L, the Second order Stochastic
Dominance relation is defined as follows:

X SSDY ⇔ [∀z ∈ [0, M ], G2
X(z) ≤ G2

Y (z)]

whereG2
X(z) =

∫ M

z
GX(y)dy, for all z ∈ [0, M ].

Stochastic Dominance is acknowledged as a standard way
of characterizing risk-averse behaviors independently ofany
utility model. For example, Rotschild and Stiglitz [1970]
and Machina and Pratt [1997] provide axiomatic character-
izations of SSD in terms of risk using “mean preserving
spreads”. As a consequence, an agent is said to bestrongly
risk-averseif he prefersX to Y wheneverX SSDY . More-
over, SSD has a natural interpretation within EU theory:
X SSDY if and only if EW (X) ≤ EW (Y ) for all increas-
ing and convex weight functionw [Quiggin, 1993]. As a nice
consequence, we know that whenever an agent is a risk-averse
EW-minimizer, then his preferred solutions necessarily be-
long to the set of SSD-optimal solutions. The same applies
to RDW providedφ(q) ≥ q for all q ∈ [0, 1] and function
w is convex (this directly follows from a result of Quiggin
[1993]). This shows that, even outside EU theory, SSD ap-
pears as a natural preference relation for risk-averse agents.
It can be used as a first efficient filtering of risky paths.

Interestingly enough, relations FSD and SSD dominance
relations can equivalently be defined by:

X FSDY ⇔ [∀p ∈ [0, 1], ǦX(p) ≤ ǦY (p)] (4)

X SSDY ⇔ [∀p ∈ [0, 1], Ǧ2
X(p) ≤ Ǧ2

Y (p)] (5)

whereǦX andǦ2
X are inverse functions defined by:

ǦX(p) = inf{z ∈ [0, M ] : GX(z) ≤ p} for p ∈ [0, 1],
Ǧ2

X(p) =
∫ p

0
ǦX(q)dq, for p ∈ [0, 1]

SinceS is finite in our context,X is a discrete distribu-
tion; thereforeGX andǦX are step functions. MoreoverG2

X

andǦ2
X are piecewise linear functions. FunctioňG2

X(z) is
known as the Lorenz function. It is commonly used for in-
equality ordering of positive random variables[Muliere and
Scarsini, 1989]. As an illustration, consider Example 1 with
p1 = 0.4 andp2 = 0.6. We have:Ǧ2

X1(p) = 18p for all
p ∈ [0, 0.6), Ǧ2

X1(p) = 7.8 + 5p for all p ∈ [0.6, 1], whereas
Ǧ2

X5(p) = 16p for all p ∈ [0, 0.4), Ǧ2
X5(p) = 3.6+7p for all

p ∈ [0.4, 1]; henceǦ2
X5(p) ≤ Ǧ2

X1(p) for all p and therefore
X5 SSDX1. This confirms the intuition that pathP 5 with
cost(16, 7) is less risky than pathP 1 with cost(5, 18)

The dominance relations introduced in this subsection be-
ing transitive, the sets of FD-optimal elements, FSD-optimal
elements and SSD-optimal elements are not empty. More-
over, these sets are nested thanks to the following impli-
cations: X FD Y ⇒ X FSD Y and X FSD Y ⇒
X SSD Y , for all distributions X, Y ∈ L. In Exam-
ple 1 we haveL = {X1, X2, X3, X4, X5, X6} andp1 =
0.4 and p2 = 0.6. Hence the set of FD-optimal ele-
ments is{X1, X2, X4, X5, X6}, the set of FSD-optimal el-
ements is the same and the set of SSD-optimal elements is
{X4, X5, X6}. The next section is devoted to the following:

SSD Search Problem.We want to determine all SSD-optimal
distributions in the set of cost distributions of paths inP(s, Γ)
and for each of them, at least one solution-path.

4.2 Problem Complexity
To assess complexity of the search, we first make explicit a
link between SSD and Generalized Lorenz Dominance, as
defined by Marshall and Olkin [1979]. Generalized Lorenz
dominance, denoted GLD in the sequel, is based on the defi-
nition of Lorenz vectorL(x) = (L1(x), . . . , Lm(x)) for any
vectorx = (x1, . . . , xm) whereLk(x) is the sum of thek
greatest components ofx. Then, relation GLD is defined
as follows: x GLD y if L(x) Pareto dominatesL(y), i.e.
Lk(x) ≤ Lk(y) for k = 1, . . . , m. Now, if pi = 1/m for
i = 1, . . . , m then SSD defined by Equation (5) on distribu-
tions reduces to Lorenz dominance on the corresponding cost
vectors sinceLk(x) = mǦ2

X(k/m). Hence, in the particular
case of equally probable scenarios, the SSD search problem
reduces to the search of Lorenz non-dominated paths, a NP-
hard problem as shown by Perny and Spanjaard [2003]. This
shows that the SSD search problem is also NP-hard.

4.3 The SSDA∗ Algorithm
Consider Example 1 and assume that the two scenarios have
equal probabilities, we can see that the preferred subpath



from node 1 to node 5 isP = 〈1, 3, 5〉 with costxP = (3, 10)
which is preferred to pathP ′ = 〈1, 2, 5〉 with costxP ′ =
(11, 2) since(3, 10; 0.5, 0.5) SSD (11, 2; 0.5, 0.5). Indeed,
we are in the case of Subsection 4.2 (equally probable scenar-
ios) with L(xP ) = (10, 13) andL(xP ′) = (11, 13) and ob-
viously (10, 13) Pareto dominates(11, 13). Now, appending
pathP ′′ = 〈5, 6〉 with xP ′′ = (2, 8) to P andP ′ respectively
yields pathP 1 = P ∪ P ′′ with costx1 = (5, 18) and path
P 4 = P ′∪P ′′ with x4 = (13, 10). HenceL(x4) Pareto dom-
inatesL(x1), therefore(13, 10; 0.5, 0.5) SSD(5, 18; 0.5, 0.5)
which constitutes a preference reversal and illustrates a viola-
tion of Bellman principle, thus invalidating a direct dynamic
programming approach (optimal pathP 4 would be lost dur-
ing the search ifP ′ is pruned at node 5 due toP ).

However, the problem can be overcome knowing that:i)
SSD-optimal paths are also FD-optimal;ii) FD-optimality
satisfies the Bellman principle;iii) the set of scenarios be-
ing finite, FD-optimality on cost distributions is nothing else
but Pareto-optimality on cost-vectors. SSD-optimal distribu-
tions might indeed be obtained in two stages: 1) generate
FD-optimal solution-paths using Multiobjective A∗ (MOA∗,
Stewart and White III, 1991; Mandow and de la Cruz, 2005);
2) eliminate SSD-dominated solutions within the output set.
However, FD-optimal solutions being often numerous, it is
more efficient to focus directly on SSD-optimal solutions dur-
ing the search. For this reason we introduce now a refinement
of MOA∗ called SSDA∗ for the direct determination of SSD-
optimal solutions.

As in MOA∗, SSDA∗ expands vector-valued labels (at-
tached to subpaths) rather than nodes. Note that, unlike
the scalar case, there possibly exists several Pareto non-
dominated paths with distinct cost-vectors to reach a given
node; hence several labels can be associate to a same node
n. At each step of the search, the set of generated labels is
divided into two disjoint sets: a setOPENof not yet expanded
labels and a setCLOSED of already expanded labels. When-
ever the label selected for expansion is attached to a solution
path, it is stored in a setSOL. Initially, OPENcontains only the
label attached to the empty subpath on nodes, while CLOSED
andSOL are empty. We describe below the essential features
of the SSDA∗ algorithm.
Output: it determines the set of SSD-optimal solution-paths,
i.e. solution-paths the distribution of which is SSD-optimal.
If several paths have the sameG2 distribution, only one
path among them is stored using standard bookkeeping tech-
niques.
Heuristics: like in MOA∗, a set H(n) of heuristic cost-
vectors is used at any noden sincen may be on the path
of more than one non-dominated solution. This set estimates
the setH∗(n) of non-dominated costs of paths fromn to Γ.
Priority: to direct the search we use aset-valuedlabel-
evaluation functionF defined in such a way that,F (ℓ), at
any labelℓ, estimates the setF ∗(ℓ) of non-dominated costs
of solution paths extending the subpath associated withℓ.
This setF (ℓ) is computed from all possible combinations
{g(ℓ) + h : h ∈ H(n)}, whereg(ℓ) denotes the value of
the subpath associated withℓ andn the node to whichℓ is
attached. At each step of the search, SSDA∗ expands a label
ℓ in OPEN such thatF (ℓ) contains at least one SSD-optimal

cost-vector in
⋃

ℓ∈OPENF (ℓ). Such a label can be chosen,
for instance, so as to minimize EW with a convexw function.
At goal nodes, this priority rule guarantees to expand only
labels attached to SSD-optimal paths.
Pruning: the pruning of labels cannot be done directly with
the SSD relation, as shown in the beginning of this subsec-
tion. The following pruning rules are used:
RULE 1: at noden, a labelℓ ∈ OPEN is pruned if there exists
another labelℓ′ at the same noden such thatg(ℓ′) FD g(ℓ).
This rule is essentially the same as in MOA∗ and is justified
by the fact that FD-optimality does satisfy the Bellman princi-
ple and FD dominance implies SSD dominance. Indeed, la-
bels pruned like this necessarily lead to a FD-dominated paths
and therefore cannot lead to SSD-optimal solution paths.
RULE 2: a labelℓ ∈ OPEN is pruned if for allf ∈ F (ℓ) there
existsℓ′ ∈ SOL such thatg(ℓ′) SSDf . This rule allows an
early elimination of uninteresting labels while keeping admis-
sibility of the algorithm provided heuristicH is admissible,
i.e. ∀n ∈ N , ∀h∗ ∈ H∗(n), ∃h ∈ H(n) s.t. h FD h∗.
Indeed, ifH is admissible, then for allf∗ ∈ F ∗(ℓ) there ex-
istsf ∈ F (ℓ) such thatf = g(ℓ) + h FD g(ℓ) + h∗ = f∗,
which implies thatf SSDf∗ and thereforeg(ℓ′) SSDf∗ by
transitivity of SSD.

Note that deciding whetherX SSDY can be performed
in constant time. Indeed, since functionsǦ2

X(p) andǦ2
Y (p)

are piecewise linear as indicated in Section 2, their compar-
ison amounts to test for Pareto dominance on the union set
of break points of both functions, the cardinality of which is
upper bounded by2m.
Termination: the process is kept running until the setOPEN
becomes empty, i.e. there is no remaining subpath able to
reach a new SSD-optimal solution path. By construction,
SSDA∗ develops a subgraph of the one developped by MOA∗

and the termination derives from the termination of MOA∗.

5 Numerical Tests
Various tests have been performed to evaluate the perfor-
mance of algorithms on randomly generated graphs of dif-
ferent sizes. The number of nodes in these graphs varies from
1000 to 6000 and the number of arcs from 105 (for 1000
nodes) to 5.106(for 6000 nodes). Cost vectors are integers
randomly drawn within interval [0, 100]. Algorithms were
implemented in C++. The computational experiments were
carried out with a Pentium IV CPU 3.2GHz PC.

Table 1 presents the average performance of algorithms for
different classes of instances, characterized by #nodes (the
number of nodes in the graph), andm (the number of sce-
narios). In each class, we give the average performance com-
puted over 20 different instances. For every class, we give
#SSD the average number of SSD-optimal distributions and
tSSD the average time (in seconds) to solve the SSD search
problem with SSDA∗. Results given in Table 1 show that
the average number of SSD-optimal distributions increases
slowly with the size of the graph; moreover SSDA∗ com-
putation times show a good efficiency (less than 15 sec-
onds in worst cases). The two rightmost columns of Table 1
concern the performance in determining RDW-optimal paths
with w(z) = z2 andϕ(p) = p

1

2 . We give #Gen, the aver-



m #nodes #NSSD tNSSD #Gen tRDW

1000 2.20 0.12 2.70 0.038
2 3500 2.25 1.75 3.35 0.561

6000 2.45 5.75 3.10 1.750
1000 5.10 0.25 14.90 0.05

5 3500 5.70 4.14 33.05 0.75
6000 6.60 13.69 30.95 2.36
1000 10.75 0.55 83.35 0.08

10 3500 14.15 9.47 261.1 1.68
6000 13.5 30.97 314.5 6.80

Table 1: Performance of the algorithms

age number of paths generated before reaching the stopping
condition of Proposition 2, andtRDW the average time of
the search in seconds. Values obtained for #Gen show that
path enumeration is stopped after a very reasonable number
of iterations and computation times are about one second in
worst cases. The gain in efficiency when compared to SSDA∗

is due to the preliminary scalarization of the graph valua-
tion which avoids numerous Pareto-dominance tests during
the exploration, but also to the fact that we only seek one
RDW-optimal path among NSSD paths. We have performed
other experiments which are not reported here to save space:
whenϕ(p) = p (EW model) orw(z) = z (Yaari’s model),
the performance is even slightly better. Moreover, when con-
vexity of w and concavity ofϕ are increased to enhance risk-
aversion, e.g. withw(z) = z10 andϕ(p) = p

1

10 , the perfor-
mance is not significantly degraded.

6 Conclusion
We have provided efficient exact algorithms to determine
low-risk/low-cost solution paths. Algorithm SSDA∗ pro-
posed in Section 4 provides a subset of paths convenient for a
risk-averse agent, without requiring the definition of a disutil-
ity function. Moreover, when a disutility criterion is known,
more or less risky paths can be efficiently determined with
the algorithm proposed in Section 3. In the future, it should
be worth investigating optimization based on risk-sensitive
models in other dynamic decision making problems, e.g. de-
cision trees or Markov Decision Processes. In that direction,
the main problem to deal with is the existence of dynamic in-
consistencies induced by such nonlinear models. To face this
difficulty, adapting the approaches proposed here to bypass
the violation of Bellman principle might be of interest.
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