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Abstract Attributed directed graphs are directed graphs in which nodes are associated with
sets of attributes. Many data from the real world can be naturally represented by this type
of structure, but few algorithms are able to directly handle these complex graphs. Mining
attributed graphs is a difficult task because it requires combining the exploration of the graph
structure with the identification of frequent itemsets. In addition, due to the combinatorics
on itemsets, subgraph isomorphisms (which have a significant impact on performances) are
much more numerous than in labeled graphs. In this paper, we present a new data mining
method that can extract frequent patterns from one or more directed attributed graphs. We
show how to reduce the combinatorial explosion induced by subgraph isomorphisms thanks
to an appropriate processing of automorphic patterns.

Keywords Attributed graph · Frequent patternmining ·Automorphism · Structure mining ·
Itemset mining

1 Introduction

Directed graphs are well suited to model complex structures present in the real world. Gene
regulatory networks, for example, are directed graphs in which nodes represent genes and
edges represent regulatory influences. The World Wide Web is well modeled by a directed
graph in which nodes are pages and edges are hyperlinks. Email communications; social
graphs in which an individual can follow the activities of other people; citation networks in
which an article cites other articles are also ideally represented by directed graphs.
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Because of these numerous applications, graphs are extensively studied in graph theory,
and, more recently, in the context of data mining. Most researches focus either on unlabeled
graphs or on graphs whose nodes are associated with a unique label. In a social graph, for
example, labels can be the ID of individuals; in a gene regulatory network, they can represent
genes’ names; in a Web graph, nodes are often labeled with pages’ URL, etc.

However, in many applications, objects (represented by nodes) can be associated with
many features. Individuals in social graphs have many characteristics, as genes in regulatory
networks. In citation networks, articles are associated with many data like keywords, authors,
publication dates and patents. In these data, each characteristic associated with an object is
an attribute of the corresponding node. Graphs in which nodes are annotated with sets of
attributes (or itemsets) are named attributed graphs, and up to now, only few studies are
devoted to their analysis.1

One of the classical tasks when analyzing graph data is the discovery of frequent sub-
graphs. The interest of such patterns is to highlight how node labels are often organized.
Mining attributed graphs allows the identification of structural patterns, but also highlights
the relationship between nodes’ attributes.

Twomain reasons make the mining of attributed graphs very difficult. First, it is necessary
to combine the exploration of the graph structure with the identification of frequent itemsets
associated with nodes. The second reason is that, as for labeled graphs, the performance
of the mining process is highly affected by the cost of subgraph isomorphism tests [22].
As noted by [22], in sparse labeled graphs with diverse labels, the number of subgraph
isomorphisms remains pretty small. However, it is no longer the case in attributed graphs
where the combinatorics of attributes often implies a large number of subgraph isomorphism
tests.

The number of subgraphs with automorphisms is also much higher. As highlighted by
[15], the presence of automorphism is problematic for all labeled graph mining algorithms.
Using algorithms based on pattern extension, each automorphism in a subgraph of size k
can lead to a different candidate pattern of size k + 1. In the worst case, when the processed
subgraph is an unlabeled clique (or a clique with the same label attached to all nodes), the
number of automorphisms is k!.

However, up to now, little attention is given to this problem. Indeed, in labeled graphs,
nodes are associated with unique labels, which are, in general, manifold. Therefore, it is
not very frequent to have the same label associated with many nodes in a subgraph. This is
different in attributed graphs because entities represented by nodes are characterized by mul-
tiple attributes, and some of them are very common. Thus, it greatly increases the number of
possible automorphisms. In a social graph, for example, a given individual is often connected
with a group of other individuals sharing several characteristics (age group, hobbies, social
class, musical taste, etc.).

The key contributions of our work are the following: (1)We present the problem ofmining
frequent attributed subgraphs in one or more directed attributed graphs, and (2) we show how
the identification of frequent patterns can be achieved by exploring the spanning trees of the
graphs. (3)We define a new canonical form adapted to the exploration of the search space, and
(4) we show how to extend such patterns to generate attributed subgraphs. (5)We analyze the
particular case of automorphic patterns and show how the combinatorial explosion caused by
subgraph isomorphisms can be significantly limited. Before concluding, (6) we present the

1 Graphs with labeled edges can always be transformed into graphs with only labels on nodes (using, e.g., the
method proposed by [11]). For this reason, we only consider attributed nodes in our study.
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results obtained by analyzing several artificial and real datasets with the program AADAGE
(Automorphism Aware Directed Attributed Graph Explorer) that we have developed.

2 Related works

Many algorithms have been proposed for mining labeled graphs (with one item associated
with each node). Almost all proposed solutions are adaptations of frequent itemset mining.
They explore the solution space by enlarging candidate subgraphs and eliminating infrequent
patterns [1,12]. These methods differ in their way to explore the search space and in their
pruning strategies to avoid the generation of redundant solutions. Indeed, unlike itemset
mining where it is easy to generate all possible solutions in a unique way, in graph mining,
it is very common to build the same pattern several times.

One of the privileged ways to avoid repeatedly exploring the same part of the search space
is to define a systematic and orderly manner to add edges and nodes to candidate patterns
based on a canonical representation of subgraphs. The best-known methods for generating
all candidate subgraphs are depth-first search (gSpan [22], Closegraph [23]) and breadth-first
search (MoSS/MoFa [5]).

The underlying idea behind the use of canonical forms is to extend only one solution in
each isomorphism class of subgraphs. In graph theory, there are many ways to define the
canonical form of a graph. A commonly used method is to represent a graph as an adjacency
matrix, to swap rows and columns in order to generate all isomorphic graphs and to choose
one of the matrices as the canonical form. In data mining, one avoids as much as possible
to perform complete (and costly) isomorphism tests for each new candidate. The canonical
representation is chosen such that it is easy (and effective) to test whether a pattern has
already been generated. The most commonly used solution is to create a sequence of all
edges contained in a subgraph in the order in which they were added [4,22].

The use of canonical forms, if it avoids exploring several times the same subgraph, does
not obviate the need to identify all the possible ways to generate patterns. Thus, if the nodes
are ordered in the lexicographical order of their labels, the pattern in Fig. 1b is canonical,
and it appears 4 times in the initial graph presented in Fig. 1a. The patterns of Fig. 1c, d,
which are also canonical, can be generated in 12 different ways (in the initial graph, there
are 12 possible ways to choose 2 b nodes out of the 4 children labeled b or a). It is necessary
to consider all these forms because the chosen configuration influences the future extensions
of the pattern; for example, whether or not to extend each of the nodes labeled b with a node
labeled c. The patterns with many subgraph isomorphisms in input data are challenging for
all existing algorithms because of the problem of subgraph isomorphism, which is itself NP-
complete. Patterns presented in Fig. 1c, d, which have automorphisms, generate the biggest
problems and contribute significantly to performance degradation of the algorithms, because
the number of subgraph isomorphisms with the initial graph is increased.

Fig. 1 Example of a directed
labeled graph (a) and 3 patterns
(a, b, c and d) present in the
graph (the numbers displayed on
the edges show their creation
order)
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In the case of sparse labeled graphs, this number remains relatively small. In attributed
graphs, however, sincemany attributes are associatedwith nodes, the probability of observing
subgraphs sharing one ormore identical attributes is greatly increased.Oneway to circumvent
it is to remove from the graph the most frequent items, but we are depriving ourselves of
potentially interesting patterns.

Some studies deal specificallywith the analysis of graphs inwhich the nodes are associated
with itemsets as in the works of [8] or [18]. The issues addressed in these studies are different
from ours in the sense that they deal with the analysis of undirected graphs and search for
subgraphs sharing the same itemsets.

In our work, we seek to identify the recurrent presence of certain attributes associated with
connected nodes. In its objectives, our work is closer to sequence mining [2,3] or attributed
tree mining [19]. In our previous work [19], we proposed a method to mine substructures
reflecting the evolution of itemsets. However, our algorithm was dedicated to the analysis of
datasets that can be represented as attributed trees.

3 Basic concepts and problem statement

In this section, we give basic definitions and concepts, and then we introduce the problem of
attributed graph mining.

3.1 Preliminaries

Let I = {i1, i2, .., in} be a set of items. An itemset is a subset of I. The items belonging
to an itemset are sorted by lexicographical order and are accessed by their index (e.g., I2 to
access the second item of I).

A directed attributed graph G = (V, E, λ) on a set of items I consists of a set of
vertices or nodes V , a set of edges E ⊆ {(u, v) ∈ V 2|u �= v} and a labeling function
λ(v) : V → P(I) which associates a set of labels i ∈ I to each vertex v ∈ V . P(I) denotes
the power set of I. For an edge (u, v) ∈ E , u is the parent of v and v is the child of u. There is
a cycle in the directed graph if a path can be found from a vertex to itself. A directed labeled
graph is rooted if one can find a vertex v such that there exists a path between v and any
other vertex of the graph.

Two attributed graphsG1 = (V1, E1, λ1) andG2 = (V2, E2, λ2) are isomorphic iff there
exists a bijective function ϕ : V1 → V2 such that:

1. ∀v ∈ V1 : λ1(v) = λ2(ϕ(v)),
2. ∀(u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2.

An automorphism is an isomorphism where G1 = G2.
Attributed graphs can be seen as itemsets organized in a graph structure.As such, the notion

of attributed subgraph can be defined w.r.t. itemsets inclusion and structural inclusion. For
itemset inclusion, we say that an attributed graph G1 is contained in another attributed graph
G if both attributed graphs have the same structure, and for each vertex of G1, the associated
itemset is contained in the itemset of the corresponding vertex in G.

Definition 1 (Itemset/content inclusion) G1 = (V1, E1, λ1) is contained in G = (V, E, λ)

and is denoted by G1 �I G, iff there exists a function ϕ : V1 → V such that:

1. ∀v ∈ V1 : λ1(v) ⊆ λ2(ϕ(v)),
2. ∀(u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2.
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Structural inclusion is represented by the classical concept of subgraph [10,14,24]. In
labeled graph mining, the labels on vertices are preserved by the mapping function. In the
case of attributedgraphs, themapping functionpreserves the itemsets associatedwith vertices.

Definition 2 (Structural inclusion) G1 = (V1, E1, λ1) is included in G = (V, E, λ) and is
denoted by G1 �S G, iff there exists a function ϕ : V1 → V such that:

1. ∀v ∈ V1 : ϕ(v) ∈ V ,
2. ∀v ∈ V1 : λ1(v) = λ(ϕ(v)),
3. ∀(u, v) ∈ E1 : (ϕ(u), ϕ(v)) ∈ E .

An attributed subgraph is defined in the following way to include both content and struc-
tural inclusion.

Definition 3 (Attributed subgraph) An attributed graph G1 = (V1, E1, λ1) is an attributed
subgraph ofG = (V, E, λ) and is denotedbyG1 � G, iff there exists a functionϕ : V1 → V
such that:

1. ∀v ∈ V1 : ϕ(v) ∈ V ,
2. ∀v ∈ V1 : λ1(v) ⊆ λ(ϕ(v)), and
3. ∀(u, v) ∈ E1 : (ϕ(u), ϕ(v)) ∈ E .

If G1 is an attributed subgraph of G, we say that G is an attributed supergraph of G1.
Each attributed graph G1 that is isomorphic to G defines one embedding of G1 in G.

Two different embeddings may refer to the same nodes and edges, simply by mapping the
nodes in a permuted way.

3.2 Problem statement

3.2.1 Frequent attributed subgraph mining

Our work considers two settings w.r.t. input data: the transactional setting and the single
graph setting. In the first case, input data are organized as a transactional database B in which
each transaction is a graph. In such case, it is possible to calculate, for each generated pattern
P , a per-transaction frequency, which is given by the number of graphs in B for which P is a
subgraph. In the second case, input data are only composed of a single graph (not necessarily
connected). In such case, we use the frequency measure defined by [6]. Using this definition,
the absolute frequency of a graph pattern P is equal to the minimum number of unique nodes
in G that a node of P is mapped to. Based on this measure, we can calculate a relative
frequency, which is given by the absolute frequency divided by the number of nodes in the
graph.

These two methods of frequency calculation are used the same way. In this paper, we will
refer to these measures by the generic term “frequency.”

A pattern is frequent if its frequency is greater than or equal to a minimum threshold value
that is called support. The problem consists in enumerating all frequent attributed subgraphs
in a given dataset.

3.2.2 Mining closed attributed subgraphs

The problem with frequent attributed graph mining is that the number of frequent patterns
is often huge. In real applications, generating all solutions can be very expensive or even

123



C. Pasquier et al.

impossible. Moreover, many of these frequent attributed subgraphs contain redundant infor-
mation.

Huge efforts have been made to design condensed representations that are able to summa-
rize solutions in smaller sets (see, e.g., the works of [16] and [20]). The set of closed patterns
is an example of such a condensed representation [20]. We say that an attributed graph G is
a closed attributed graph if none of its proper attributed supergraphs has the same support
as G. However, mining frequent closed attributed graphs could also be very expensive. We
propose to relax the closure property on attributed graphs and to mine only attributed graphs
which are closed w.r.t. their content (i.e., itemsets associated with vertices). This condensed
representation, called the set of c-closed attributed graphs (content closed), is a superset of
the set of closed attributed graphs (and a subset of the set of attributed graphs). We say that an
attributed graph G is a c-closed attributed graph if there is no pattern with the same structure,
the same support and supersets in the corresponding vertices.

4 Canonical form of directed attributed graphs

We propose a canonical form based on the spanning tree of the pattern (a subgraph). Our
canonical form is the sequence of nodes obtained by performing a depth-first traversal of the
spanning tree (note that other approaches use a sequence of edges).

In order to unambiguously identify each spanning tree, it is sufficient to identify each
node by its associated attributes and its depth. As we also need to represent reentrant links,
we use a third attribute that contains the index of the destination node if it is already present
in the pattern.

4.1 Ordering of itemsets

In our application, nodes are associated with itemsets and one should define a total order on
itemsets. Given two itemsets I andJ (I �= J ), we say that I < J iff ∃k ∈ [1,min(|I|, |J |)]
such that (1) ∀i < k : Ii = Ji and (2) Ik < Jk or k = |J |.
4.2 Ordering of nodes

The code of a node is a triple (d,Q, p) where d is the depth of the node in the spanning tree,
Q is the set of items associated with the node, and p is 0 if the node is used for the first time
or p is equal to the position of a node in the sequence (starting position is 0) if the destination
node is already in the sequence. To compare two nodes, it is sufficient to compare their codes
as triples.

Given two triples T1 = (d1,Q1, p1) and T2 = (d2,Q2, p2), we say that T1 < T2 iff one
of the following assertions is true:

1. d1 > d2,
2. d1 = d2 and Q1 < Q2,
3. d1 = d2 and Q1 = Q2 and p1 < p2.

In Fig. 2, for example, the three children of node a in pattern P1 are represented by the
following triples: (1, cd, 0), (1, cd, 3) and (1, cd, 0). All nodes are located at a depth of 1,
they are all associated with the same itemset cd , but the second node references the fourth
node present in the sequence (whose index is 3).
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Fig. 2 Example of four isomorphic patterns (the numbers displayed on the edges show their creation order)

4.3 Ordering of attributed subgraphs

Let P be a pattern with a root node r(P), we note code(r(P)) the code of this pattern. It
is constructed by concatenating the codes of the nodes of the corresponding spanning tree
explored in a depth-first fashion. The smallest code represents the canonical form.

Given two patterns P1 and P2, respectively, encoded by C1 =< c11, ..., c
m
1 > and C2 =<

c12, ..., c
n
2 >, we say that C1 < C2 iff one of the following assertions is true:

1. ∃k ∈ [1,min(m, n)] such that ∀i < k : ci1 = ci2 and c
k
1 < ck2

2. ∀i < min(m, n) : ci1 = ci2 and m > n.

Figure 2 shows four isomorphic patterns of the same directed attributed graph. Their codes
are represented by the following sequences:

1. code(r(P1)) = < (0, a, 0)(1, cd, 0)(2, cd, 0)(2, cd, 0)(1, cd, 3)(1, cd, 0)(2, cd, 0) >

2. code(r(P2)) = < (0, a, 0)(1, cd, 0)(2, cd, 0)(2, cd, 0)(1, cd, 2)(1, cd, 0)(2, cd, 0) >

3. code(r(P3)) = < (0, a, 0)(1, cd, 0)(2, cd, 0)(2, cd, 0)(1, cd, 0)(2, cd, 0)(1, cd, 3) >

4. code(r(P4)) = < (0, a, 0)(1, cd, 0)(2, cd, 0)(2, cd, 0)(1, cd, 0)(2, cd, 0)(1, cd, 2) >

Byusing theorderingof triples previously defined,we found code(r(P4))<code(r(P3))<
code(r(P2)) < code(r(P1)); then, the pattern P4 is the canonical form.

5 Enumeration of patterns

Subgraphpatterns are generated byperforming adepth-first traversal of the search space based
on their spanning tree. All items present in the input graph(s) constitute the initial patterns
that will be progressively extended. Each pattern extension is built using the canonical form
sequence generated in the previous step.

The use of the strategy defined by [19] allows enumerating all spanning trees. The genera-
tion of new patterns is performed by using the rightmost path extensionmethod [7]. Two types
of extensions are possible: The itemset extension adds a new item to the itemset associated
with the rightmost node of the spanning tree, and the structural extension adds a new child
to one of the nodes composing the right path of the spanning tree. Themethod is complete but
might generate redundant patterns in the form of isomorphic graphs. Duplicate candidates
are detected and discarded before the candidate extension process by performing a canonical
check. The limitation of this approach is that it only allows finding rooted patterns.

5.1 Identification of canonical and automorphic patterns

The code for the graphs defined above has, like most of the codes used by graph mining
algorithms, the following property: Each prefix of a canonical code is itself canonical [9,22].
The extension of a pattern does not change the order of the triples in the case of the generation
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of a new canonical pattern. Thus, each canonical pattern can only be obtained by adding a
new triple or adding an item to the itemset associated with the last triple.

By using the rightmost path expansion strategy, it is possible to check the canonicity of a
pattern by testing only the nodes belonging to the right path. Let l and p be two functions that
return the last and penultimate child of a node, respectively. It is possible to determine the
canonicity of a pattern in the following way: For all the nodes n belonging to the right path,
if ∃p(n) and code(p(n)) ≤ code(l(n)), then the pattern is in canonical form. It is, in the
same way, fairly easy to identify the extensions that produce patterns with automorphisms.
If at least one of the nodes belonging to the right path has more than one child and for all
the nodes n belonging to the right path, if ∃p(n) and code(p(n)) = code(l(n)), then the
pattern has automorphisms. On such a pattern, we call split node the node from the right
path that is closest to the root and that has several children with the same label. Thus, the
patterns shown in Fig. 1c, d have automorphisms. On these two figures, the split node is the
node a.

5.2 Handling reentrant links

From the enumeration of spanning trees described above, it is possible to define a method for
enumerating all rooted subgraphs (since a rooted subgraph is a tree with reentrant links). For
this, we need to identify when a structural extension adds a node that is already present in
the candidate pattern. When this happens, the node is added to the pattern as if it is a normal
structural extension, but we indicate that it is a reuse of a node already present by storing
the index of the pointed node. The exploration of the search space is stopped from this node.
Indeed, because using this exploration strategy, we are sure that all the nodes belonging to the
right path are extended in the current generation phase. All structures that are not part of the
rightmost path have already been fully explored. The reuse of a node is only reflected in the
code of the graph by adding a triple that refers to another triple. This operation generates no
change in the properties of the code, the completeness of the method and the way to eliminate
noncanonical patterns.

5.3 Handling cycles

The extension of a pattern can lead to the creation of a cycle if and only if the new added node
points to one of the nodes already present in the rightmost path. When a cycle is created, we
proceed in the samemanner as other reentrant links: A new node is addedwith the index of the
reused node, and the extensions from this node are stopped. The completeness of the method
is not affected by this operation. However, if the reused node is the root, we can generate
redundant solutions. In such case, many isomorphic patterns are generated by starting the
exploration from the other nodes belonging to the cycle.

We solve this problem by only extending one of these patterns. First, we generate all the
isomorphic patterns s.t. their root is one of the nodes belonging to the right path. Then, we
keep the pattern with the smallest canonical form and continue the exploration only for this
pattern. In Fig. 3, P1 represents a pattern generated from the graph G. The node labeled with
d is the last node added to the pattern. This extension creates a cycle composed of 3 nodes
belonging to the right path (d , c and bc). Thus, we have 2 other isomorphic patterns (one for
each other node of the cycle). From the node bc, we obtain the pattern P2. From the node c,
we obtain the pattern P3. The pattern that has the smallest code is the one rooted in bc, so
we stop here the exploration of the pattern P1.
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Fig. 3 Illustration of redundant patterns related to cycle
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Fig. 4 Illustration of the possible extensions of a pattern with automorphisms

5.4 Handling automorphic patterns

The use of canonical forms avoids the generation of redundant solutions. It is used in our
algorithm to prune the search space. However, this does not solve the problem posed by the
presence of automorphic patterns.

For example, let us consider the directed attributed graph shown in Fig. 4a. This graph
contains several automorphic substructures that make less efficient the pruning based on
canonical forms. When the pattern shown in Fig. 4b is analyzed, it is accepted and extended
since it is in canonical form. However, this pattern can be obtained in twelve different ways.
The naive algorithm consists, for each of these forms, to extend the pattern by using, as
defined above, the itemset extension or the structural extension.

Itemset extension generates the pattern shown in Fig. 4c. This pattern will be rejected
because it is not in canonical form. Structural extensions from node b generate one of the
patterns shown in Fig. 4e. In all cases, the resulting pattern is not in canonical form and, as a
consequence, it will be discarded. The only operation that can generate a canonical pattern
is a structural extension from the split node a (Fig. 4d).

When we identify a new pattern with automorphisms, we know that this pattern cannot
be extended on the last node or on all the nodes located after the split node. In fact, for a
split node n, we have code(p(n)) = code(l(n)), then any extension done on the pattern of
root l(n) will lead to a pattern with a code lower than p(n), so this pattern will not be in
canonical form. We can use this fact to avoid generating unnecessary patterns. This is a first
optimization, but its impact is limited.
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The second optimization is to remove themappings of a pattern that are not able to generate
new canonical patterns. In Fig. 1, for example, the pattern of Fig. 4d, which is obtained in
twelve different ways, can be only extended by adding a third child to the split node annotated
a. Whatever way the pattern of Fig. 4d has been obtained, the possibilities of expansion are
unchanged. It is therefore possible, in this case, without omitting solution, to keep only one
mapping of the pattern.

With the graph in Fig. 4a, the situation is more complicated because it is possible, from
this pattern, to add a child c to the node labeled a. In this case, it will be possible in the next
generation, to apply any type of extension for all the nodes belonging to the right path. In
the example, we could, in particular, add e, f , g or h as a child of node c. In order that all
possible patterns could be generated, we must keep the possibility of extending the pattern
with 2 bc nodes from the 3 bc nodes with a child. This represents

(3
2

)
different mappings.

In a real graph, the situation is often less simpler and determining what mappings it is
possible to remove is not an easy task. To avoid performing calculations on the graph structure
that would affect the performance of the algorithm, we choose to keep only one mapping
among those using the same nodes. This decreases the number of mappings from a number
of permutations to a number of combinations. This solution is not optimal, but it is sufficient
to limit the combinatorial explosion.

In a star graph in which a node is associated with n nodes with the same label, there exists∑n
i=1

nPi different ways of generating all the included patterns. After the optimization, this
number drops to

∑n−1
i=0 (n − i)

(n
i

)
.

6 Mining algorithm

Mining all frequent rooted attributed subgraphs generates a huge number of patterns. In real
applications, generating all solutions can be very expensive or even impossible. In addition,
many of these frequent attributed subgraphs contain redundant information. On the other
hand, mining frequent closed attributed graphs is very expensive in terms of processing time.

Based on the experiments we conducted on attributed tree mining [19], we developed
an algorithm called AADAGE (Automorphism Aware Directed Attributed Graph Explorer)
that is designed to mine content closed attributed graphs. It has been shown (Pasquier
et al. [19]) thatmining content closed patterns is a good compromise between non redundancy
of solutions and execution time.

Figure 5 shows the high-level structure of the AADAGE algorithm. The algorithm takes in
parameter a database (B) and a minimum support (minSup). First (line 1), a set C containing
all attributed subgraphs of size 1 is built by scanning B. A subgraph of size 1 is composed
of one node associated with one item. Therefore, C is the set of nodes associated with every
item presents in B. In line 2, the set of solutions S is initialized with the empty set. Between
line 3 and line 22, a loop allows to process every candidate in the set.

The function Get First (line 4) returns the smallest candidate in the set according to the
order of attributed graphs defined in Sect. 4.3. In line 5, the algorithm performs a canonical
test (function isCanonical, implementing themethod described in Sect. 5.1) and a frequency
test (function f requency) and discards, from further processing, the candidates that do not
pass these tests. In line 6, candidates for which the previous extension step leads to the
creation of a cycle (detected with the function hasCycle) are checked for canonicity with
the method described in Sect. 5.3. Candidates that have a cycle and that are not canonical are
discarded. In line 7, the algorithmperforms a test for the presence of automorphisms (function
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AADAGE(B,minSup)
1: C ← {all attributed subgraphs of size 1 in B}
2: S ← ∅
3: while C �= ∅ do
4: G ← getF irst(C)
5: if isCanonical(G) and frequency(G) ≥ minSup then
6: if not hasCycle(G) or (hasCycle(G) and isCycleCanonical(G)) then
7: if hasAutomorphisms(G) then
8: G ← optimizeMappings(G)
9: X ← extendBefore(G, getSplitNode(G))

10: else
11: X ← extend(G)
12: end if
13: if � ∃G′ ∈ S : G �I G′ and omFrequency(G′) = omFrequency(G)

then
14: C ← C ∪ X
15: end if
16: if � ∃G′ ∈ S : frequency(G′) = frequency(G) then
17: S ← S ∪ {G}
18: end if
19: end if
20: end if
21: C ← C \ {G}
22: end while
23: printSolutions(S)

Fig. 5 AADAGE Algorithm

has Automorphisms, implementing the method described in Sect. 5.1). Candidates with
automorphisms are processed in line 8 to 9. In line 8, the mappings of the patterns that are
not able to generate new canonical patterns are removed (see Sect. 5.4). In line 9, extension
of the patterns (stored in the setX ) are only performed for nodes located before the split node
(function extendBe f ore that takes as parameters the candidate node G and the splitNode
determined by the function get Spli t Node. see Sect. 5.4). In line 11, candidates that do not
have automorphisms are extended by the regular method extend .

In lines 13 to 15, the set of extensions is added to the set of candidates only if the current
candidate G is not contained in a pattern belonging to the set of solutions with exactly the
same occurrences. We use for the test, the method omFrequency that computes the total
number of occurrences of a pattern in B (the occurrence-match frequency).

In line 16 to 18, the candidate is added to the set of solutions only if it is content closed;
i.e., G is not contained in a pattern belonging to the set of solutions with the same fre-
quency.

The processing of a candidate finishes by removing it from the candidates’ list (line 21).

7 Experimental results

The method described in this paper has been implemented in C++ using STL. Experiments
were performed on a computer running Ubuntu 13.04 and based on a Intel©Core™i5-2400
@ 3.10GHz with 12GB main memory. The hard disk used for the experiment is a 500GB
capacity with a SATA 3Gb/s interface, 32MB cache and 5400RPM spin speed. All timings
are based on total execution time, including all preprocessing and results output.
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7.1 Synthetic datasets

Aset of 10,000 directed graphs, each comprising 1,000 nodes and 5000 edges, were generated
with the program of [13]. This set of graphs was used as the basis for the creation of five
datasets of directed attributed graphs named A1 to A5 in which nodes were associated with
itemsets of size ranging from 1 to 5. To simulate the fact that, as in many real datasets, most
attributes are rare, but a few are very common, we assigned each item a random integer value
distributed according to a power law (more specifically, we have used a Pareto distribution
with parameter α = 0.05).

7.2 Google+ and Twitter datasets

We used the social graphs of Google+ and Twitter built by [17]. In each dataset, a node
represents an individual and the associated attributes are the characteristics of this person.
There is an edge between two persons when one of them is following the activity of the other.
The datasets are substantial (107,614 nodes and 13,673,453 edges for Google+, 81,306 nodes
and 1,768,149 edges for Twitter).

7.3 PubMed Central citation network

PubMed Central is a bibliographic database of scientific articles in the field of life sciences.
This database contains 322,526 Open Source papers but only 58,728 of them cite another
paper which is itself Open Source. We built a citation graph where each node represents a
paper, each edge, a citation link, and the attributes associated with nodes identify the papers’
keywords. The graph is very sparse as it contains only 60,012 edges; however, some attributes
are frequently associated with subsets of connected nodes.

7.4 Performances evaluation

The results of our algorithm are shown in Fig. 6. The comparison with existing algorithms is
only possible with labeled graphs. The only dataset in which each node is associated with a
single item is dataset A1 presented in Fig. 6a. For this dataset, the performance obtained with
the implementations of Gspan carried out in the project ParSeMiS [21] (an implementation
that allows the mining of directed graphs) is also presented. Gspan and AADAGE, which are
set to mine directed, rooted and connected subgraphs, generate exactly the same results. For
the smallest values of support, our strategy of mapping filtering allows making a difference
with Gspan.

Figure 6b shows the impact of itemset size (for the same graph) on algorithm perfor-
mance. The execution times increase exponentially when the number of itemsets in each
node increases. This highlights the difficulty of mining attributed graphs in comparison with
labeled graphs. Indeed, when mining attributed graphs, we have to deal with the combina-
torics of graphs and itemsets at the same time.

The Google+ and Twitter datasets contain many nodes, many attributes and especially
some very common attributes (e.g., the attribute “gender = male,” which is present in 52%
of the nodes) whose presence generates so many patterns that the mining fails. In Fig. 6c,
the two gender attributes were removed from Google+ dataset. Twitter dataset has not been
changed. Despite its size, Google+ dataset was successfully mined by setting a minimum
support of 3%. Twitter dataset, although smaller, has been treated up to a support of 5%.
The common feature of these two datasets is that they are treated fairly rapidly up to a
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Fig. 6 Performances of the algorithm on several datasets

specific threshold corresponding to the inclusion of a new frequent attribute that generates
an enormous amount of patterns.

With PubMed Central dataset, it was possible to use a very low support (Fig. 6d). This
allowed identifying some interesting patterns. A pattern, for example, concerns a set of
papers annotated with “p53” which is the name of an oncogene. These papers are cited
by other papers annotated “rapamycin” (an immunosuppressant drug designed in 1975)
that are themselves cited by papers annotated “aging” (the influences of rapamycin on the
deceleration of cellular senescence were discovered in 2009) and “mT OR” (a gene that is
inhibited by rapamycin). This pattern represents a highly summarized picture of the progress
of some research on aging.

8 Conclusion and perspectives

We have presented in this paper a method to mine directed attributed graphs and shown
its effectiveness in the analysis of multiple datasets. We focused specifically on graphs in
which, as in real data, some attributes are shared by a large number of nodes. We have shown
that, depending on the structure of the pattern being analyzed, it is not always necessary to
extend all possible mappings of a pattern. We treated specifically the case of automorphic
patterns, but there exists other patterns for which some optimizations can be performed.
For example, when the pattern in Fig. 1b, which does not have automorphisms, is found 12
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times on the graph of Fig. 4a, we can see quite easily that some mappings can be discarded.
We are convinced that the detailed analysis of the patterns and their mappings may reveal
other configurations where a reduction of the search space can be performed, which could
make possible the mining of larger or denser datasets. It is a future work that we aim to
explore.
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