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Abstract. We introduce a robust and asymptotically unbiased estimator for the tail index of
Pareto-type distributions. The estimator is obtained by fitting the extended Pareto distribu-
tion to the relative excesses over a high threshold with the minimum density power divergence
criterion. Consistency and asymptotic normality of the estimator is established under a second
order condition on the distribution underlying the data, and for intermediate sequences of upper
order statistics. The finite sample properties of the proposed estimator and some alternatives
from the extreme value literature are evaluated by a small simulation experiment involving both
uncontaminated and contaminated samples.
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1 Introduction

Basu et al. (1998) introduced the idea of the density power divergence for the purpose of
developing a robust estimation criterion. In particular, the density power divergence between
density functions f and g is given by

∆α(f, g) :=

{ ∫
R

[
g1+α(y)−

(
1 + 1

α

)
gα(y)f(y) + 1

αf
1+α(y)

]
dy, α > 0,∫

R
log f(y)

g(y) f(y)dy, α = 0.

Assume that the density function g depends on a parameter vector θ, and let Y1, . . . , Yn be a
sample of independent and identically distributed (i.i.d.) random variables according to den-
sity function f . The minimum density power divergence estimator (MDPDE) is the point θ̂
minimizing the empirical density power divergence

∆̂α(θ) :=

∫

R

g1+α(y)dy −
(
1 +

1

α

)
1

n

n∑

i=1

gα(Yi),
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for α > 0, and

∆̂0(θ) := − 1

n

n∑

i=1

log g(Yi),

for α = 0. Note that in case α = 0, the empirical density power divergence corresponds with
minus the log-likelihood function. The parameter α controls the trade-off between efficiency and
robustness of the MDPDE: the estimator becomes more efficient but less robust against outliers
as α gets closer to zero, whereas for increasing α the robustness increases and the efficiency
decreases. In the present paper we will use the density power divergence criterion with the
objective to obtain a robust and asymptotically unbiased estimator for the tail parameter of a
Pareto-type distribution.

A distribution is said to be of Pareto-type if for some γ > 0 its survival function is of the form:

F̄ (x) := 1− F (x) = x−1/γℓF (x), x > 0, (1)

where ℓF denotes a slowly varying function at infinity, i.e.

ℓF (λx)

ℓF (x)
→ 1 as x → ∞ for all λ > 0. (2)

The parameter γ is the extreme value index, and clearly governs the tail behavior of F , with
larger values indicating heavier tails. This parameter assumes a central position in extreme value
statistics, and consequently considerable efforts have been dedicated to its estimation. We refer
to Beirlant et al. (2004) and de Haan and Ferreira (2006) for recent accounts on the estimation
of γ. Consistency of such estimators can usually be achieved under (1), whereas asymptotic
normality requires that one imposes some more structure on the tail of F . In the present paper
we will work with the second order condition of Beirlant et al. (2009). Let RVβ denote the class
of the regularly varying functions at infinity with index β, i.e. Lebesgue measurable ultimately
positive functions z satisfying limt→∞ z(tx)/z(t) = xβ for all x > 0.

Condition (R). Let γ > 0 and τ < 0 be constants. The distribution function F is such that
x1/γF̄ (x) → C ∈ (0,∞) as x → ∞ and the function δ defined via

F̄ (x) = Cx−1/γ(1 + γ−1δ(x)),

is ultimately nonzero, of constant sign and |δ| ∈ RVτ .

For practical purposes, condition (R) is not very restrictive and therefore well accepted in ex-
treme value theory. It is satisfied by e.g. the Hall class of Pareto-type distributions (Hall, 1982),
which is obtained if δ(x) ∼ Dxτ , x → ∞, for some D 6= 0. This class contains many commonly
used distributions like the Fréchet, Burr, absolute Student t, F and generalized Pareto, to name
but a few. In case there is doubt about the appropriateness of this model for a given set of data,
one can use a formal goodness-of-fit test for Pareto-type behavior with a second order condition,
see e.g. Beirlant et al. (2006), Goegebeur et al. (2008), Koning and Peng (2008). We also refer
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to Neves and Fraga Alves (2008) for a recent overview of test procedures concerning extreme
value conditions.

Clearly, condition (R) implies that the tail quantile function U , defined as U(y) = inf{x : F (x) ≥
1− 1/y}, y > 1, satisfies y−γU(y) → Cγ as y → ∞ and the function a implicitly defined by

U(y) = Cγyγ(1 + a(y)) (3)

satisfies a(y) = δ(Cγyγ)(1 + o(1)) as y → ∞, so |a| ∈ RVρ, with ρ = γτ .

The second order condition (R) can be used to derive the so-called extended Pareto distribution
(Beirlant et al., 2004, Beirlant et al., 2009), with distribution function given by

G(y) =

{
1− [y(1 + δ − δyτ )]−1/γ , y > 1,
0, y ≤ 1,

(4)

where γ > 0, τ < 0, and δ > max{−1, 1/τ}. In Beirlant et al. (2004) and Vandewalle et
al. (2007) a slightly different form of this model is presented, which consists of a mixture of
two Pareto distributions. In fact, as shown in Proposition 2.3 of Beirlant et al. (2009), for
distribution functions satisfying (R), the distribution function of the relative excess Y := X/u
given that X > u can be approximated by (4) with δ = δ(u) up to an error that is uniformly
o(δ(u)) for u → ∞. Beirlant et al. (2009) obtained an asymptotically unbiased estimator for
γ by applying a maximum likelihood procedure to (4). In the present paper we will introduce
a robust asymptotically unbiased estimator for γ, which is obtained by applying the minimum
density power divergence criterion to (4). The maximum likelihood estimator of Beirlant et al.
(2009) is then a special case of our approach and corresponds with α = 0.

Kim and Lee (2008) obtained a robust estimator for γ > 0 by fitting the strict Pareto distribu-
tion to the largest observations in a given dataset with the minimum density power divergence
criterion. Their method allows for strong mixing processes, but, since the estimator can be
seen as a robust version of the Hill estimator (Hill, 1975), it is not asymptotically unbiased.
Juárez and Schucany (2004) obtained the MDPDE for the parameters of the generalized Pareto
distribution (GPD). Although the method works in principle also for some γ < 0, in that
γ > −(1 + α)/(2 + α), they assumed that the data follow exactly a GPD, and hence the bias
which appears when using the GPD as approximation for the true, but in practice unknown,
distribution of the excesses over a high threshold, is ignored. Vandewalle et al. (2007) fitted a
so-called partial density component involving a mixture of two Pareto distributions by minimiz-
ing a L2 distance, a method which is closely related to the MDPDE approach presented in this
paper with α = 1. Although the method seems to be bias-correcting and robust, the authors did
not investigate the asymptotic properties of their estimators. Other contributions to the robust
estimation of the extreme value index can be found in e.g. Peng and Welsh (2001), Dupuis and
Victoria-Feser (2006) and Hubert et al. (2012).

The remainder of this paper is organized as follows. In the next section we introduce a robust
and asymptotically unbiased estimator for the positive extreme value index, obtained by fitting
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the extended Pareto distribution to the relative excesses over a high threshold by means of the
density power divergence criterion, and also examine the asymptotic properties of the estimator.
The finite sample performance of the proposed procedure is evaluated by a small simulation
experiment in Section 3. The proofs of all results are given in the appendix.

2 Estimation procedure and asymptotic properties

Let X1, . . . ,Xn be an i.i.d. sample from a distribution function satisfying (R), and denote the
associated ascending order statistics by X1,n ≤ . . . ≤ Xn,n. We estimate the parameters γ and δ
of the extended Pareto distribution with the minimum density power divergence criterion applied
to the relative excesses over the random threshold u = Xn−k,n, namely Yj := Xn−k+j,n/Xn−k,n,
j = 1, . . . , k.

The density function of the extended Pareto distribution is given by

g(y) =
1

γ
y−1/γ−1[1 + δ(1 − yτ )]−1/γ−1[1 + δ(1− (1 + τ)yτ )], y > 1,

where γ > 0, τ < 0, and δ > max{−1, 1/τ}. Remember that the parameter δ reflects in fact the
function δ(u), where δ(u) → 0 as u → ∞, in condition (R), but we do not make this dependence
on the threshold explicit in the notation.

The MDPDE for (γ, δ) satisfies the system of equations

0 =

∫
∞

1
gα(y)

∂g(y)

∂γ
dy − 1

k

k∑

j=1

gα−1(Yj)
∂g(Yj)

∂γ
, (5)

0 =

∫
∞

1
gα(y)

∂g(y)

∂δ
dy − 1

k

k∑

j=1

gα−1(Yj)
∂g(Yj)

∂δ
. (6)

These estimating equations depend also on the unknown parameter τ . For this parameter, we
use the parameterization τ = ρ/γ.

We examine the asymptotic properties of the solutions to the estimating equations (5) and (6),
assuming that the underlying distribution of the data satisfies (R). First we consider the case
where the true value of ρ is known, and establish existence and consistency of a sequence of
solutions to the estimating equations (5) and (6). From now on we denote the true value of γ
and ρ by γ0 and ρ0, respectively.

Theorem 1 Let X1, . . . ,Xn be a sample of i.i.d. random variables from a distribution function
satisfying (R). Then, if k, n → ∞ with k/n → 0 we have that with probability tending to 1,
there exist solutions (γ̂n, δ̂n) of the estimating equations (5) and (6), with ρ fixed at ρ0, such

that (γ̂n, δ̂n)
P→ (γ0, 0).

Next, we state the asymptotic normality of the sequence of consistent solutions of equations (5)
and (6). Let δn := δ(Xn−k,n).
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Theorem 2 Let X1, . . . ,Xn be a sample of i.i.d. random variables from a distribution function
satisfying (R), and assume that (γ̂n, δ̂n) is a consistent sequence of estimators for (γ0, 0), satis-
fying (5) and (6), with ρ fixed at ρ0. Then if k, n → ∞ with k/n → 0 and

√
ka(n/k) → λ ∈ R,

we have that

√
k

[
γ̂n − γ0
δ̂n − δn

]
 N2

(
0,C−1(ρ0)B(ρ0)Σ(ρ0)B

′(ρ0)C
−1(ρ0)

)
,

where the elements of the matrix Σ(ρ0) are given by (21)–(26), and the matrices B(ρ0) and
C(ρ0) are defined in (27) and (28), respectively.

Note that the condition
√
ka(n/k) → λ in Theorem 2 implies that

√
kδn = λ + oP(1). The

estimators are asymptotically unbiased in the sense that whatever the value of λ, the mean of
the normal limiting distribution is equal to zero. In Figure 1 we show the asymptotic standard
deviation of γ̂n as a function of ρ0 for some values of α in case γ0 = 0.5. As expected, the
smallest asymptotic variance is obtained for α = 0, which corresponds to maximum likelihood
estimation, and is given by γ20(1 − ρ0)

2/ρ20. Increasing α leads to more robust estimates, but
decreases the asymptotic efficiency of the estimation procedure. Table 1 displays some values
of the asymptotic relative efficiency of the estimator γ̂n with α = 0.1, 0.5 and 1, relative to the
estimator γ̂n with α = 0. For α = 1, the asymptotic relative efficiency has dropped already
considerably. The efficiency also tends to decrease for larger values of γ0 and ρ0. However,
the decreasing asymptotic relative efficiency for increasing values of α is not specific for our
estimation procedure. For instance, Juárez and Schucany (2004) studied the estimation of the
parameters of the generalized Pareto distribution by means of the density power divergence
criterion, and from Table 1 in their paper it is clear that also for their method the asymptotic
relative efficiency (compared to maximum likelihood estimation) drops quickly as a function of
α. In fact our figures are in line with the numbers reported in their Table 1. Also Kim and Lee
(2008) illustrate the loss of efficiency of their density power divergence estimator relative to the
Hill estimator as a function of α. The loss of efficiency is the price to pay to obtain an estimator
with better robustness properties. We illustrate the increased robustness by calculating the
influence function of our estimator as a function of the point of contamination in case of an un-
derlying Fréchet model with γ0 = 0.5 and a threshold for estimation fixed at quantile 0.75, and
this for several values of α ; see Figure 2. The calculation of the influence function is based on a
straightforward generalization of the idea presented in Vandewalle et al. (2007) to the MDPDE
framework, and therefore we omit the details. As is clear from Figure 2, if the contamination
is reasonably far in the tail of the distribution then the influence function is decreasing in α,
illustrating the improved robustness. In particular, observe that unlike the bias-corrected maxi-
mum likelihood estimator, our bias-corrected robust estimator has a bounded influence function
for the larger values of α, and therefore it can be considered to be B-robust (Hampel et al., 1986).

The following proposition deals with the behavior of the estimator when the parameter ρ is fixed
at some value ρ̃, possibly misspecified.

Proposition 1 Let X1, . . . ,Xn be a sample of i.i.d. random variables from a distribution func-
tion satisfying (R) and assume the parameter ρ is fixed at ρ̃ in (5) and (6). Then, if k, n → ∞
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Table 1: Asymptotic relative efficiency of γ̂n with α = 0.1, 0.5 and 1 relative to γ̂n with α = 0.

α = 0.1 α = 0.5 α = 1

γ0 = 0.5 ρ0 = −0.5 0.90 0.33 0.16
ρ0 = −1 0.91 0.39 0.21
ρ0 = −2 0.93 0.47 0.28

γ0 = 1 ρ0 = −0.5 0.84 0.24 0.11
ρ0 = −1 0.86 0.30 0.15
ρ0 = −2 0.88 0.38 0.22

γ0 = 2 ρ0 = −0.5 0.71 0.16 0.06
ρ0 = −1 0.75 0.21 0.09
ρ0 = −2 0.78 0.28 0.14

with k/n → 0 we have that with probability tending to 1, there exist solutions (γ̂n, δ̂n) of the es-

timating equations (5) and (6) such that (γ̂n, δ̂n)
P→ (γ0, 0). If additionally

√
ka(n/k) → λ ∈ R,

we also have that

√
k

[
γ̂n − γ0

δ̂n

]
 N2

(
−λC−1(ρ̃)B(ρ̃)µ̃, C−1(ρ̃)B(ρ̃)Σ(ρ̃)B′(ρ̃)C−1(ρ̃)

)
,

where the elements of the vector µ̃ are defined in (19), (29) and (20).

Note that, as expected, by a misspecification of ρ at some value ρ̃, one loses the bias-correcting
effect of taking the second order structure of F into account in the estimation. However, the
variance expression is the same as in Theorem 2, but with ρ0 replaced by ρ̃.

Finally, we examine the asymptotic behavior of (γ̂n, δ̂n) in the case where ρ is replaced by
an external consistent estimator ρ̂n in (5) and (6). In the recent extreme value literature,
several estimators for ρ have been proposed that work quite well in practice. We refer to
Fraga Alves et al. (2003), Ciuperca and Mercadier (2010) and Goegebeur et al. (2010). As
mentioned in these papers, consistency of estimators for ρ can be obtained under a second order
framework, though establishing asymptotic normality would require a third order framework.
For our purposes, consistency of the ρ estimator is enough, so there is no need for a third order
condition. Estimating the second order parameter ρ externally is a common approach in extreme
value statistics, and it leads to bias-corrected estimators for γ with a smaller asymptotic variance
compared to a joint estimation of (γ, δ, ρ) (see e.g. Gomes et al., 2008, for a detailed discussion
about the external estimation of second order scale and rate parameters). As shown in the next
theorem, replacing ρ by an external consistent estimator leads to the same limiting distribution
as in the case where ρ0 is known.

Theorem 3 Let X1, . . . ,Xn be a sample of i.i.d. random variables from a distribution function
satisfying (R). The result of Theorem 1 and 2 continues to hold if ρ is replaced by a consistent
estimator ρ̂n in (5) and (6).
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3 Simulation study

To study the finite sample behavior of the MDPDE γ̂n, a small simulation study has been per-
formed. In order to make the dependence on the tuning parameter α explicit, we use from now
on the notation γ̂n,α for the MDPDE of the extended Pareto distribution. The estimator γ̂n,α
is compared with the well-known Hill (1975) estimator γ̂H , the maximum likelihood estimator
for the extended Pareto Distribution (Beirlant et al., 2009), which corresponds in fact to γ̂n,0,
and the MDPDE estimator γ̂KL,α with α = 0.5 by Kim and Lee (2008). The choice α = 0.5 for
the Kim and Lee (2008) estimator can be motivated by the theoretical and simulation results
reported in their paper. Indeed, on uncontaminated data sets this choice still gives a reasonable
efficiency compared to the Hill estimator (approximately 70%), whereas on contaminated data
taking α = 0.5 seems to make a good trade of between robustness and efficiency.

We illustrate the finite sample behavior of the above mentioned estimators in Figures 3 to 7
based on 100 simulated datasets of size n = 200 for each of the following cases.

• Figure 3: Uncontaminated Fréchet distribution given by 1−F (x) = 1−exp(−x−β), x > 0,
β > 0, denoted Fréchet(β). We have chosen β = 2, such that the extreme value index
γ0 = 0.5. This model satisfies the second order condition (R) with ρ0 = −1.

• Figure 4: Uncontaminated Burr distribution 1 − F (x) =
(

η
η+xτ

)λ
, x > 0, η, τ , λ > 0,

denoted Burr(η, τ, λ). This model is of Pareto-type with γ0 = 1/(λτ), and also satisfies
the second order condition with ρ0 = −1/λ. We have chosen η = 1, τ = 1, λ = 2, such
that γ0 = 0.5 and ρ0 = −0.5.

• Figure 5: Uncontaminated log-gamma distribution for which

1− F (x) =

∫
∞

x

λβ

Γ(β)
w−λ−1(logw)β−1dw,

x > 1, β, λ > 0. This model is of Pareto-type with γ0 = 1/λ, but it does not satisfy
condition (R). It is included in the simulation experiment to illustrate the robustness of
the developed methodology with respect to deviations from the assumed model. We set
β = 2 and λ = 1 so that γ0 = 1.

• Figure 6: A contaminated Fréchet distribution with Fǫ(x) = (1 − ǫ)F (x) + ǫF̃ (x) where

the uncontaminated distribution F is a Fréchet(2) and F̃ (x) = 1 −
(

x
xc

)−β
, x > xc. We

have chosen β = 0.5, ǫ = 0.01, xc= 2 times the 99.99% quantile of the uncontaminated
Fréchet(2) distribution.

• Figure 7: A contaminated Burr distribution with Fǫ(x) = (1 − ǫ)F (x) + ǫF̃ (x) where the

uncontaminated distribution F is a Burr(1,1,2) and F̃ (x) = 1 −
(

x
xc

)−β
, x > xc. We

have chosen β = 0.5, ǫ = 0.1, xc= 1.2 times the 99.99% quantile of the uncontaminated
Burr(1,1,2) distribution.
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Other choices for ǫ ranging from 0.01 up to 0.1, and xc were considered and resulted in similar
findings.

In the panels (a) and (b) of Figures 3 to 7, we illustrate the behavior of γ̂n,α when different
levels of robustness are considered, namely α = 0.1 (dotted), α = 0.5 (solid) and α = 1 (dashed).
Concerning the simulation from the uncontaminated distributions we see from Figure 3 and 4
that in terms of bias the behavior of the estimators does not depend strongly on the value of
α. In terms of MSE we have, as expected from the theory, that the performance deteriorates
with increasing values of α, though the differences are distribution specific. In Figures 6 and
7 we show the behavior of γ̂n,α when contamination is present. The estimator γ̂n,0.5 seems
to be less biased compared to the estimator γ̂n,0.1, whereas the optimal MSE of γ̂n,0.5 is at
least as good. The estimators γ̂n,0.5 and γ̂n,1 are comparable with a slightly better behavior
of γ̂n,0.5. We conclude that for the contamination we considered, the value α = 0.5 seems to
be most appropriate, and will therefore be used in the subsequent comparison with alternative
robust estimation procedures from the extreme value literature. These observations seems to
be in line with the earlier theoretical considerations. Indeed, for α = 0.5 the efficiency is better
than for α = 1, while the robustness, as examined by the influence functions, seems to be similar.

In the panels (c) and (d) of Figures 3 to 7, γ̂n,0.5 (solid) is compared with γ̂H (dashed), γ̂n,0
(dashed-dotted) and γ̂KL,0.5 (dotted). For the uncontaminated cases γ̂n,0.5 is quite competitive
in terms of bias and MSE. For the contamination we considered, the estimator γ̂n,0.5 clearly out-
performs the non-robust estimators γ̂H and γ̂n,0 both in terms of bias and MSE. The minimum
value of the MSE of γ̂n,0.5 and that of γ̂KL,0.5 are comparable, but usually γ̂n,0.5 shows a more
stable sample path. This was to be expected, since the estimator γ̂n,α is designed to have better
second order properties. Similar stability results were reported in other studies of bias-corrected
estimators like Beirlant et al. (1999), Feuerverger and Hall (1999), Gomes et al. (2008), and
Beirlant et al. (2009).

We also evaluated the performance of all estimators on the log-gamma distribution, which is
of Pareto-type, but does not satisfy (R); see Figure 5. Clearly, the bias-corrected estimators
continue to work better with respect to bias than the uncorrected estimators.

In Figures 3 to 7, the parameter ρ was estimated using the estimator introduced by Fraga Alves
et al. (2003). In Figure 8 it is illustrated how γ̂n,0.5 changes when ρ is misspecified to -1. For
the smaller k-values, the estimation is quite insensitive to this misspecification, whereas for the
larger k-values, the estimator γ̂n,0.5 with a misspecification of ρ approximates the true value
γ0 = 0.5 even better.

From the simulations we can conclude that γ̂n is in general a good alternative to estimate γ. In
uncontaminated cases its behavior is, as expected, similar to that of the maximum likelihood
estimator for the extended Pareto distribution when α is kept small, say in the range 0.1 to
0.5. When contamination is present, γ̂n outperforms non-robust estimators while by taking the
second order structure of F explicitly into account, the estimator has more stable sample paths
than robust estimators using only the first order structure of F . These more stable sample
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paths alleviate the typical issue about the choice of k, the number of extremes to be used in
the estimation, to some extent. If there is need to determine k in an adaptive way then one
could use the method recently introduced by Gomes et al. (2012), where a versatile bootstrap
algorithm was proposed to select k for bias-corrected estimators.

Appendix

An auxiliary lemma

First we state a lemma giving the limiting distribution of the random terms that appear in the
derivations of Theorems 1 and 2. For convenience we state the result in terms of convergence of
empirical processes. For s ≤ 0, let

A
(1)
k,n(s) :=

1

k

k∑

j=1

Y s
j ,

A
(2)
k,n(s) :=

1

k

k∑

j=1

Y s
j log Yj,

A
(3)
k,n(s) :=

1

k

k∑

j=1

Y s
j log2 Yj,

and

A
(1)
k,n(s) :=

√
k

(
A

(1)
k,n(s)−

1

1− sγ0

)
,

A
(2)
k,n(s) :=

√
k

(
A

(2)
k,n(s)−

γ0
(1− sγ0)2

)
,

A
(3)
k,n(s) :=

√
k

(
A

(3)
k,n(s)−

2γ20
(1− sγ0)3

)
.

Lemma 1 Let X1, . . . ,Xn be a sample of i.i.d. random variables from a distribution function
satisfying (R). Then if k, n → ∞ with k/n → 0 and

√
ka(n/k) → λ ∈ R, for every s0 < 0, in

C3[s0, 0], we have that

(A
(1)
k,n,A

(2)
k,n,A

(3)
k,n) (A(1),A(2),A(3)),

a Gaussian process, with, for s, s1, s2 ∈ [s0, 0], expected values

E(A(1)(s)) = λ
sρ0

(1− sγ0)(1 − ρ0 − sγ0)
,

E(A(2)(s)) = λ

{
ρ0

(1 − sγ0)(1− ρ0 − sγ0)
+ sγ0

[
1

(1− ρ0 − sγ0)2
− 1

(1− sγ0)2

]}
,

E(A(3)(s)) = λ2γ0

{
1

(1− ρ0 − sγ0)2
− 1

(1− sγ0)2
+ γ0s

[
1

(1− ρ0 − sγ0)3
− 1

(1− sγ0)3

]}
,

9



and covariances

Cov(A(1)(s1),A
(1)(s2)) =

γ20s1s2
(1− s1γ0)(1 − s2γ0)[1− (s1 + s2)γ0]

, (7)

Cov(A(2)(s1),A
(2)(s2)) = γ20

{
2

[1− (s1 + s2)γ0]3
− 1

(1− s1γ0)2(1− s2γ0)2

}
, (8)

Cov(A(3)(s1),A
(3)(s2)) = γ40

{
4!

[1− (s1 + s2)γ0]5
− 4

(1− s1γ0)3(1− s2γ0)3

}
, (9)

Cov(A(1)(s1),A
(2)(s2)) = γ0

{
1

[1− (s1 + s2)γ0]2
− 1

(1 − s1γ0)(1− s2γ0)2

}
, (10)

Cov(A(1)(s1),A
(3)(s2)) = 2γ20

{
1

[1− (s1 + s2)γ0]3
− 1

(1− s1γ0)(1 − s2γ0)3

}
, (11)

Cov(A(2)(s1),A
(3)(s2)) = 2γ30

{
3

[1− (s1 + s2)γ0]4
− 1

(1− s1γ0)2(1− s2γ0)3

}
. (12)

Proof of Lemma 1

The term A
(1)
k,n(s) was already treated in Beirlant et al. (2009). The terms A

(2)
k,n(s) and A

(3)
k,n(s)

can be dealt with analogously, and therefore we only give the big lines of the proof.

Let Y̆1, . . . , Y̆n be independent unit Pareto random variables, with order statistics Y̆1,n ≤ . . . ≤
Y̆n,n. From the inverse probability integral transform we have that

(Xj,n; j = 1, . . . , n)
D
= (U(Y̆j,n); j = 1, . . . , n).

For unit Pareto order statistics it is well-known that(
Y̆n−k+j,n

Y̆n−k,n

; j = 1, . . . , k

)
D
= (Ỹj,k; j = 1, . . . , k),

where Ỹ1,k ≤ . . . ≤ Ỹk,k are the order statistics of a random sample of size k from the unit Pareto

distribution, and Ỹ1,k, . . . , Ỹk,k are independent of Y̆n−k,n. Combining the above two displays we
have the following distributional representation

(Xn−k+j,n; j = 1, . . . , k)
D
= (U(Ỹj,kY̆n−k,n); j = 1, . . . , k). (13)

Let η(y) := log(1 + a(y)). From (3) and (13), and introducing εj,n := η(Ỹj Y̆n−k,n)/η(Y̆n−k,n) −
Ỹ ρ0
j , j = 1, . . . , k, we then have

A
(1)
k,n(s)

D
=

1

k

k∑

j=1

Ỹ sγ0
j esη(Y̆n−k,n)(Ỹ

ρ0
j −1+εj,n),

A
(2)
k,n(s)

D
=

1

k

k∑

j=1

Ỹ sγ0
j esη(Y̆n−k,n)(Ỹ

ρ0
j −1+εj,n)[γ0 log Ỹj + η(Y̆n−k,n)(Ỹ

ρ0
j − 1 + εj,n)],

A
(3)
k,n(s)

D
=

1

k

k∑

j=1

Ỹ sγ0
j esη(Y̆n−k,n)(Ỹ

ρ0
j −1+εj,n)[γ0 log Ỹj + η(Y̆n−k,n)(Ỹ

ρ0
j − 1 + εj,n)]

2.
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Since |a| ∈ RVρ0 , ρ0 < 0, we have that a(y) → 0 for y → ∞, and hence η(y) = a(y)(1 + o(1)).
Further, as shown in Corollary 2.2.2 in de Haan and Ferreira (2006), if k, n → ∞ with k/n → 0
we have that

√
k(k/nY̆n−k,n − 1)  N(0, 1) and thus Y̆n−k,n = n/k(1 + oP(1)). The above

combined with Proposition B.1.10 in de Haan and Ferreira (2006) (see also Drees, 1998), give
that for any ε > 0 and 0 < ξ < −ρ0 there exists an n0 such that for n ≥ n0, with arbitrary large
probability,

|εj,n| ≤ εỸ ρ0+ξ
j ≤ ε.

Hence maxj=1,...,k |εj,n| = oP(1).

Now use the inequality |ez − 1− z| ≤ z2/2max(ez , 1), z ∈ R, to obtain

sup
s∈[s0,0]

∣∣∣∣∣∣
A

(1)
k,n(s)−

1

k

k∑

j=1

Ỹ sγ0
j − sη(Y̆n−k,n)

1

k

k∑

j=1

Ỹ sγ0
j (Ỹ ρ0

j − 1)

∣∣∣∣∣∣
= oP(k

−1/2),

sup
s∈[s0,0]

∣∣∣∣∣∣
A

(2)
k,n(s)− γ0

1

k

k∑

j=1

Ỹ sγ0
j log Ỹj − η(Y̆n−k,n)

1

k

k∑

j=1

Ỹ sγ0
j (Ỹ ρ0

j − 1)

−sγ0η(Y̆n−k,n)
1

k

k∑

j=1

Ỹ sγ0
j log Ỹj(Ỹ

ρ0
j − 1)

∣∣∣∣∣∣
= oP(k

−1/2),

sup
s∈[s0,0]

∣∣∣∣∣∣
A

(3)
k,n(s)− γ20

1

k

k∑

j=1

Ỹ sγ0
j log2 Ỹj − 2γ0η(Y̆n−k,n)

1

k

k∑

j=1

Ỹ sγ0
j log Ỹj(Ỹ

ρ0
j − 1)

−sγ20η(Y̆n−k,n)
1

k

k∑

j=1

Ỹ sγ0
j log2 Ỹj(Ỹ

ρ0
j − 1)

∣∣∣∣∣∣
= oP(k

−1/2).

Consider the functions h1,θ(y) = yθ, h2,θ(y) = yθ log y and h3,θ(y) = yθ log2 y, where y ≥ 1 and
θ < 0, and introduce the classes Hi := {hi,θ : θ ∈ [θ0, 0]}, θ0 < 0, i = 1, 2, 3. By the mean value
theorem we have that

|h1,θ1(y)− h1,θ2(y)| ≤ |θ1 − θ2| log y,
|h2,θ1(y)− h2,θ2(y)| ≤ |θ1 − θ2| log2 y,
|h3,θ1(y)− h3,θ2(y)| ≤ |θ1 − θ2| log3 y.

Also, E(loga Ỹ1) = Γ(a + 1), a > 0, and hence, using the result from Example 19.7 in van der
Vaart (2007), the function classes H1, H2 and H3 are Glivenko-Cantelli for the unit Pareto-
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distribution. Thus, if k → ∞

sup
θ∈[θ0,0]

∣∣∣∣∣∣
1

k

k∑

j=1

Ỹ θ
j − 1

1− θ

∣∣∣∣∣∣
P→ 0,

sup
θ∈[θ0,0]

∣∣∣∣∣∣
1

k

k∑

j=1

Ỹ θ
j log Ỹj −

1

(1− θ)2

∣∣∣∣∣∣
P→ 0,

sup
θ∈[θ0,0]

∣∣∣∣∣∣
1

k

k∑

j=1

Ỹ θ
j log2 Ỹj −

2

(1− θ)3

∣∣∣∣∣∣
P→ 0,

and therefore

A
(1)
k,n(s)

D
=

√
k


1

k

k∑

j=1

Ỹ sγ0
j − 1

1− sγ0


+ λ

sρ0
(1− sγ0)(1− ρ0 − sγ0)

+ ε(1)n (s), (14)

A
(2)
k,n(s)

D
= γ0

√
k


1

k

k∑

j=1

Ỹ sγ0
j log Ỹj −

1

(1− sγ0)2


+ λ

{
ρ0

(1− sγ0)(1− ρ0 − sγ0)

+sγ0

[
1

(1− ρ0 − sγ0)2
− 1

(1− sγ0)2

]}
+ ε(2)n (s), (15)

A
(3)
k,n(s)

D
= γ20

√
k


1

k

k∑

j=1

Ỹ sγ0
j log2 Ỹj −

2

(1− sγ0)3


+ λ2γ0

{
1

(1− ρ0 − sγ0)2
− 1

(1− sγ0)2

+sγ0

[
1

(1− ρ0 − sγ0)3
− 1

(1− sγ0)3

]}
+ ε(3)n (s), (16)

where sups∈[s0,0] |ε
(i)
n (s)| = oP(1), i = 1, 2, 3.

Finally we comment on the joint convergence of the processes A
(1)
k,n, A

(2)
k,n and A

(3)
k,n. To this aim

introduce

Ã
(1)
k,n(s) :=

√
k


1

k

k∑

j=1

Ỹ sγ0
j − 1

1− sγ0


 ,

Ã
(2)
k,n(s) := γ0

√
k


1

k

k∑

j=1

Ỹ sγ0
j log Ỹj −

1

(1− sγ0)2


 ,

Ã
(3)
k,n(s) := γ20

√
k


1

k

k∑

j=1

Ỹ sγ0
j log2 Ỹj −

2

(1− sγ0)3


 .

Again by the result for parametric classes of functions from Example 19.7 in van der Vaart
(2007) we have that the classes H1, H2 and H3 are Donsker for the unit Pareto distribution.
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Following van der Vaart (2007) p. 270 this is equivalent to the class of vector valued functions
h = (h1,θ1 , h2,θ2 , h3,θ3) to be Donsker and hence, in C3([s0, 0]),

(Ã
(1)
k,n, Ã

(2)
k,n, Ã

(3)
k,n) (Ã(1), Ã(2), Ã(3)),

a zero centered Gaussian process with covariance functions as given in (7) till (12). Combining
this with the result in (14), (15) and (16), establishes the result of the lemma.

�

Proof of Theorem 1

To prove the existence and consistency of (γ̂n, δ̂n) we adapt the proof of Theorem 5.1 in Chapter
6 of Lehmann and Casella (1998), where existence and consistency of solutions of the likelihood
equations is established, to the MDPDE framework. Let Qr denote the sphere centered at (γ0, 0)
and radius r, and let ∆̂α(γ, δ; ρ) denote the density power divergence objective function. Note
that r should be such that Qr is a subset of the parameter space. First we show that for any r
sufficiently small

P(γ0,0)(∆̂α(γ0, 0; ρ0) < ∆̂α(γ, δ; ρ0) for all (γ, δ) on the surface of Qr) → 1.

Let fs(γ, δ; ρ0), s = 1, 2, denote the derivatives of ∆̂α(γ, δ; ρ0) with respect to γ and δ, respec-
tively, without the common scale factor 1 + α. Similarly, fst and fstu, s, t, u = 1, 2, denote the
second and third order derivatives, respectively (again apart from the common scaling by 1+α).

By Taylor’s theorem

∆̂α(γ, δ; ρ0)− ∆̂α(γ0, 0; ρ0) = (1 + α) {f1(γ0, 0; ρ0)(γ − γ0) + f2(γ0, 0; ρ0)δ

+
1

2

[
f11(γ0, 0; ρ0)(γ − γ0)

2 + f22(γ0, 0; ρ0)δ
2 + 2f12(γ0, 0; ρ0)(γ − γ0)δ

]

+
1

6

[
f111(γ̃, δ̃; ρ0)(γ − γ0)

3 + f222(γ̃, δ̃; ρ0)δ
3 + 3f112(γ̃, δ̃; ρ0)(γ − γ0)

2δ

+3f122(γ̃, δ̃; ρ0)(γ − γ0)δ
2
]}

(17)

=: (1 + α){S1 + S2 + S3},

where (γ̃, δ̃) is a point on the line segment connecting (γ, δ) and (γ0, 0). After some tedious, but
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straightforward derivations one obtains

f1(γ0, 0; ρ0) = γ−α−2
0

[
− αγ0(1 + γ0)

[1 + α(1 + γ0)]2
+ γ0A

(1)
k,n(−α(1 + γ0)/γ0)−A

(2)
k,n(−α(1 + γ0)/γ0)

]
,

f11(γ0, 0; ρ0) = γ−α−2
0

[
α+ 2

1 + α(1 + γ0)
− 2α+ 4

[1 + α(1 + γ0)]2
+

2α + 2

[1 + α(1 + γ0)]3

−(α+ 1)A
(1)
k,n(−α(1 + γ0)/γ0) +

2α+ 2

γ0
A

(2)
k,n(−α(1 + γ0)/γ0)

− α

γ20
A

(3)
k,n(−α(1 + γ0)/γ0)

]
,

f12(γ0, 0; ρ0) = γ−α−2
0

[
1 + α(2 + α)(1 + γ0)

[1 + α(1 + γ0)]2

−(1− ρ0)
2 − α[ρ0(1− ρ0)− 2(1 + γ0)(1− ρ0)] + α2(1 + γ0)(1 − ρ0)

[1− ρ0 + α(1 + γ0)]2

−(1 + α)A
(1)
k,n(−α(1 + γ0)/γ0) + (α+ 1)(1 − ρ0)A

(1)
k,n(−(α(1 + γ0)− ρ0)/γ0)

+
α

γ0
A

(2)
k,n(−α(1 + γ0)/γ0)−

(α− ρ0)(1 − ρ0)

γ0
A

(2)
k,n(−(α(1 + γ0)− ρ0)/γ0)

]
,

f2(γ0, 0; ρ0) = γ−α−1
0

[
− αρ0(1 + γ0)

[1 + α(1 + γ0)][1 − ρ0 + α(1 + γ0)]
+A

(1)
k,n(−α(1 + γ0)/γ0)

−(1− ρ0)A
(1)
k,n(−(α(1 + γ0)− ρ0)/γ0)

]
,

f22(γ0, 0; ρ0) = γ−α−2
0

[
1 + α+ γ0

1 + α(1 + γ0)
− 2(1− ρ0)(1 + γ0 + α)

1− ρ0 + α(1 + γ0)
+

(1 + γ0)(1− 2ρ0) + α(1 − ρ0)
2

1− 2ρ0 + α(1 + γ0)

−(α+ γ0)A
(1)
k,n(−α(1 + γ0)/γ0) + 2(1 − ρ0)(α + γ0)A

(1)
k,n(−(α(1 + γ0)− ρ0)/γ0)

−[(1 + γ0)(1 − 2ρ0) + (α− 1)(1 − ρ0)
2]A

(1)
k,n(−(α(1 + γ0)− 2ρ0)/γ0)

]
.

Following the lines of proof of Lemma 1 we have that f1(γ0, 0; ρ0)
P→ 0 and f2(γ0, 0; ρ0)

P→ 0,
so, for any given r > 0 we have that |f1(γ0, 0; ρ0)| < r2 and |f2(γ0, 0; ρ0)| < r2 with probability
tending to 1, and hence, on Qr, |S1| < 2r3 with probability tending to 1.

Concerning S2, let f
∗
st(γ0, 0; ρ0) denote the limits of the random terms fst(γ0, 0; ρ0), s, t = 1, 2.

These can be obtained from the result of Lemma 1, and are given by

f∗
11(γ0, 0; ρ0) = γ−α−2

0

1 + α2(1 + γ0)
2

[1 + α(1 + γ0)]3
,

f∗
12(γ0, 0; ρ0) = γ−α−2

0

ρ0(1− ρ0)[1 + α(1 + γ0) + α2(1 + γ0)
2] + α3ρ0(1 + γ0)

3

[1 + α(1 + γ0)]2[1− ρ0 + α(1 + γ0)]2
,

f∗
22(γ0, 0; ρ0) = γ−α−2

0

(1− ρ0)ρ
2
0 + αρ20(1 + γ0)[α(1 + γ0)− ρ0]

[1 + α(1 + γ0)][1− ρ0 + α(1 + γ0)][1− 2ρ0 + α(1 + γ0)]
.
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Now, write

2S2 = f∗
11(γ0, 0; ρ0)(γ − γ0)

2 + f∗
22(γ0, 0; ρ0)δ

2 + 2f∗
12(γ0, 0; ρ0)(γ − γ0)δ

+[f11(γ0, 0; ρ0)− f∗
11(γ0, 0; ρ0)](γ − γ0)

2 + [f22(γ0, 0; ρ0)− f∗
22(γ0, 0; ρ0)]δ

2

+2[f12(γ0, 0; ρ0)− f∗
12(γ0, 0; ρ0)](γ − γ0)δ.

Note that the first three terms are in fact a nonrandom positive definite quadratic form in (γ−γ0)
and δ. By the spectral decomposition this quadratic form can be rewritten as λ1ξ

2
1+λ2ξ

2
2 , where

0 < λ1 ≤ λ2 are the eigenvalues and ξ1 and ξ2 are orthogonal transformations of (γ − γ0) and
δ. Note that in this new coordinate system Qr becomes ξ21 + ξ22 = r2. Thus, for the quadratic
form we have that λ1ξ

2
1 + λ2ξ

2
2 ≥ λ1(ξ

2
1 + ξ22) = λ1r

2. For the random part of S2 we know from

Lemma 1 that fst(γ0, 0; ρ0)
P→ f∗

st(γ0, 0; ρ0), s, t = 1, 2, and thus in absolute value the random
part is less than 4r3 with probability tending to 1. Overall, we have that there exists c > 0 and
r0 > 0 such that for r < r0

S2 > cr2

with probability tending to 1.

For the term S3, one can show that |fstu(γ, δ; ρ0)| ≤ Mstu(Y ), where Y ′ = (Y1, . . . , Yk), for

(γ, δ) ∈ Qr, with Mstu(Y )
P→ mstu, s, t, u = 1, 2, which is bounded. The derivations are

straightforward but tedious, and are for brevity omitted from the paper. Thus, with probability
tending to 1, |fstu(γ̃, δ̃; ρ0)| < 2mstu, and hence |S3| < br3 on Qr, where

b =
1

3

2∑

s=1

2∑

t=1

2∑

u=1

mstu.

Combining the above we find that with probability tending to 1,

min(S1 + S2 + S3) > cr2 − (2 + b)r3,

where the minimum is over (γ, δ) on the surface of Qr. Clearly, the right-hand side of the above
inequality is positive if r < c/(2 + b).

To complete the proof of the existence and consistency we adjust the line of argumentation of
Theorem 3.7 in Chapter 6 of Lehmann and Casella (1998). For r > 0, small enough that Qr is
a subset of the parameter space, consider

Sn(r) := {y : ∆̂α(γ0, 0; ρ0) < ∆̂α(γ, δ; ρ0) for all (γ, δ) on the surface of Qr}.

From the above we have that P(γ0,0)(Sn(r)) → 1 for any such r, and hence there exists a

sequence rn ↓ 0 such that P(γ0,0)(Sn(rn)) → 1 as n → ∞. By the differentiability of ∆̂α(γ, δ; ρ0)

we have that y ∈ Sn(rn) implies that there exists a point (γ̂n(rn), δ̂n(rn)) ∈ Qrn for which
∆̂α(γ, δ; ρ0) attains a local minimum, and thus fs(γ̂n(rn), δ̂n(rn); ρ0) = 0, s = 1, 2. Now let
(γ̂∗n, δ̂

∗
n) := (γ̂n(rn), δ̂n(rn)) for y ∈ Sn(rn) and arbitrary otherwise. Clearly

P(γ0,0)(f1(γ̂
∗
n, δ̂

∗
n; ρ0) = 0, f2(γ̂

∗
n, δ̂

∗
n; ρ0) = 0) ≥ P(γ0,0)(Sn(rn)) → 1,
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as n → ∞. Thus with probability tending to 1 there exists a sequence of solutions to the
estimating equations (5) and (6). Let d(v,w) denote the Euclidean distance between the points
v and w. Then, for any fixed r > 0 and n sufficiently large

P(γ0,0)(d((γ̂
∗
n, δ̂

∗
n), (γ0, 0)) < r) ≥ P(γ0,0)(d((γ̂

∗
n, δ̂

∗
n), (γ0, 0)) < rn) ≥ P(γ0,0)(Sn(rn)) → 1,

which establishes the consistency of the sequence (γ̂∗n, δ̂
∗
n).

�

Proof of Theorem 2

First, apply a Taylor series expansion of the estimating equations f1(γ̂n, δ̂n; ρ0) = 0 and f2(γ̂n, δ̂n; ρ0) =
0 around (γ0, 0). This gives

0 = f1(γ0, 0; ρ0) + f11(γ0, 0; ρ0)(γ̂n − γ0) + f12(γ0, 0; ρ0)δ̂n

+
1

2

{
f111(γ̆n, δ̆n; ρ0)(γ̂n − γ0)

2 + f122(γ̆n, δ̆n; ρ0)δ̂
2
n + 2f112(γ̆n, δ̆n; ρ0)(γ̂n − γ0)δ̂n

}
,

0 = f2(γ0, 0; ρ0) + f21(γ0, 0; ρ0)(γ̂n − γ0) + f22(γ0, 0; ρ0)δ̂n

+
1

2

{
f211(γ̆n, δ̆n; ρ0)(γ̂n − γ0)

2 + f222(γ̆n, δ̆n; ρ0)δ̂
2
n + 2f122(γ̆n, δ̆n; ρ0)(γ̂n − γ0)δ̂n

}
,

where (γ̆n, δ̆n) is a point on the line segment connecting (γ̂n, δ̂n) and (γ0, 0). A straightforward
rearrangement gives a set of random equations where interest is in

√
k(γ̂n − γ0) and

√
kδ̂n:

−
√
k

[
f1(γ0, 0; ρ0)
f2(γ0, 0; ρ0)

]
=

[
f̃11(γ0, 0; ρ0) f̃12(γ0, 0; ρ0)

f̃12(γ0, 0; ρ0) f̃22(γ0, 0; ρ0)

] [ √
k(γ̂n − γ0)√

kδ̂n

]
, (18)

where

f̃11(γ0, 0; ρ0) := f11(γ0, 0; ρ0) +
1

2

[
f111(γ̆n, δ̆n; ρ0)(γ̂n − γ0) + f112(γ̆n, δ̆n; ρ0)δ̂n

]
,

f̃12(γ0, 0; ρ0) := f12(γ0, 0; ρ0) +
1

2

[
f122(γ̆n, δ̆n; ρ0)δ̂n + f112(γ̆n, δ̆n; ρ0)(γ̂n − γ0)

]
,

f̃22(γ0, 0; ρ0) := f22(γ0, 0; ρ0) +
1

2

[
f222(γ̆n, δ̆n; ρ0)δ̂n + f122(γ̆n, δ̆n; ρ0)(γ̂n − γ0)

]
.

Let

Ak,n(ρ0) :=




A
(1)
k,n(−α(1 + γ0)/γ0)

A
(1)
k,n(−(α(1 + γ0)− ρ0)/γ0)

A
(2)
k,n(−α(1 + γ0)/γ0)


 ,

µ a vector with elements

µ1 := − αρ0(1 + γ0)

γ0[1 + α(1 + γ0)][1 − ρ0 + α(1 + γ0)]
, (19)

µ2 := − [α(1 + γ0)− ρ0]ρ0
γ0[1− ρ0 + α(1 + γ0)][1− 2ρ0 + α(1 + γ0)]

,

µ3 :=
ρ0(1− ρ0)− α2ρ0(1 + γ0)

2

[1 + α(1 + γ0)]2[1− ρ0 + α(1 + γ0)]2
, (20)
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and Σ(ρ0) a symmetric (3× 3) matrix with elements

σ11(ρ0) :=
α2(1 + γ0)

2

[1 + α(1 + γ0)]2[1 + 2α(1 + γ0)]
, (21)

σ21(ρ0) :=
α(1 + γ0)[α(1 + γ0)− ρ0]

[1 + α(1 + γ0)][1− ρ0 + α(1 + γ0)][1− ρ0 + 2α(1 + γ0)]
, (22)

σ22(ρ0) :=
[α(1 + γ0)− ρ0]

2

[1− ρ0 + α(1 + γ0)]2[1− 2ρ0 + 2α(1 + γ0)]
, (23)

σ31(ρ0) := γ0

(
1

[1 + 2α(1 + γ0)]2
− 1

[1 + α(1 + γ0)]3

)
, (24)

σ32(ρ0) := γ0

(
1

[1− ρ0 + 2α(1 + γ0)]2
− 1

[1 + α(1 + γ0)]2[1− ρ0 + α(1 + γ0)]

)
, (25)

σ33(ρ0) := γ20

(
2

[1 + 2α(1 + γ0)]3
− 1

[1 + α(1 + γ0)]4

)
. (26)

Note that, from Lemma 1

Ak,n(ρ0) N3(λµ,Σ(ρ0)).

Now, introduce

B(ρ0) := γ−α−2
0

[
γ0 0 −1
γ0 −γ0(1− ρ0) 0

]
, (27)

so that
√
k

[
f1(γ0, 0; ρ0)
f2(γ0, 0; ρ0)

]
= B(ρ0)Ak,n(ρ0),

leading to the weak convergence

√
k

[
f1(γ0, 0; ρ0)
f2(γ0, 0; ρ0)

]
 N2(λB(ρ0)µ,B(ρ0)Σ(ρ0)B

′(ρ0)).

Concerning the terms f̃st(γ0, 0; ρ0), s, t = 1, 2, we have by Lemma 1, the consistency of (γ̂n, δ̂n)
and because |fstu(γ, δ; ρ0)| ≤ Mstu(Y ), in some open neighborhood of (γ0, 0), with Mstu(Y ) =

OP(1), s, t, u = 1, 2, that f̃st(γ0, 0; ρ0)
P→ f∗

st(γ0, 0; ρ0), s, t = 1, 2. Let

C(ρ0) :=

[
f∗
11(γ0, 0; ρ0) f∗

12(γ0, 0; ρ0)
f∗
12(γ0, 0; ρ0) f∗

22(γ0, 0; ρ0)

]
. (28)

From the proof of the consistency, we know that C(ρ0) is a positive definite matrix, and thus
invertible. Then, according to Lemma 5.2 in Chapter 6 of Lehmann and Casella (1998), for the
solution of the system of equations (18), we have the following convergence

√
k

[
γ̂n − γ0

δ̂n

]
 N2(−λC−1(ρ0)B(ρ0)µ,C

−1(ρ0)B(ρ0)Σ(ρ0)B
′(ρ0)C

−1(ρ0)).

After tedious calculations one can show that −C−1(ρ0)B(ρ0)µ = [0, 1]′. Taking into account

that
√
kδn

P→ λ, the theorem follows.
�
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Proof of Proposition 1

The arguments needed to prove the consistency and asymptotic normality are the same as those
used in the proofs of Theorem 1 and 2, and therefore we limit ourselves to giving some comments
to the main ideas. Concerning the consistency one works with ∆̂α(γ, δ; ρ̃) and its derivatives.

Again by Lemma 1 we have that fs(γ0, 0; ρ̃)
P→ 0, s = 1, 2, and that fst(γ0, 0; ρ̃)

P→ f∗
st(γ0, 0; ρ̃),

s, t = 1, 2, leading to the results for S1 and S2. Also for the third order derivatives we can use the
same arguments. This establishes the existence and the consistency. To prove the asymptotic
normality one uses the same line of argumentation as in Theorem 2, with ρ0 replaced by ρ̃ in
Ak,n(ρ0), Σ(ρ0), B(ρ0) and C(ρ0), and replacing the vector µ by µ̃, having as elements µ̃1 := µ1,
µ̃3 := µ3 and

µ̃2 := − [α(1 + γ0)− ρ̃]ρ0
γ0[1− ρ̃+ α(1 + γ0)][1− ρ0 − ρ̃+ α(1 + γ0)]

. (29)

�

Proof of Theorem 3

To prove the existence and consistency we will condition on the event that ρ̂n ∈ (ρ0 − ε, ρ0 + ε),
for some ε > 0, with ρ0 + ε < 0. We then have that

P(γ0,0)(∆̂α(γ0, 0; ρ̂n) < ∆̂α(γ, δ; ρ̂n) for all (γ, δ) on the surface of Qr)

≥ P(γ0,0)(∆̂α(γ0, 0; ρ̂n) < ∆̂α(γ, δ; ρ̂n) for all (γ, δ) on the surface of Qr|ρ̂n ∈ (ρ0 − ε, ρ0 + ε))

×P(ρ̂n ∈ (ρ0 − ε, ρ0 + ε)).

By the consistency of ρ̂n we have that P(ρ̂n ∈ (ρ0 − ε, ρ0 + ε)) → 1, so it remains to show that

P(γ0,0)(∆̂α(γ0, 0; ρ̂n) < ∆̂α(γ, δ; ρ̂n) for all (γ, δ) on the surface of Qr|ρ̂n ∈ (ρ0 − ε, ρ0 + ε)) → 1.

The arguments are again similar to those used in the proof of Theorem 1 and therefore we only
give an outline. First make a Taylor series expansion as in (17), though now with ρ0 replaced
by ρ̂n.

As for S1, we have that f1(γ0, 0; ρ̂n) does not depend on ρ̂n and therefore f1(γ0, 0; ρ̂n)
P→ 0,

whereas f2(γ0, 0; ρ̂n) can be analyzed by using Lemma 1. In particular, from the proof of
Lemma 1

A
(1)
k,n(s)

D
=

1

k

k∑

j=1

Ỹ sγ0
j + sη(Y̆n−k,n)

1

k

k∑

j=1

Ỹ sγ0
j (Ỹ ρ0

j − 1) + oP(k
−1/2),

uniformly in s ∈ [s0, 0]. Assume that (−(α(1 + γ0)− (ρ0 − ε))/γ0,−(α(1 + γ0)− (ρ0 + ε))/γ0) ⊂
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[s0, 0]. Setting s = −(α(1 + γ0)− ρ̂n)/γ0, we have that

A
(1)
k,n(−(α(1 + γ0)− ρ̂n)/γ0)

D
=

1

1− ρ0 + α(1 + γ0)
+


1

k

k∑

j=1

Ỹ
−(α(1+γ0)−ρ̂n)
j − 1

1− ρ̂n + α(1 + γ0)




−α(1 + γ0)− ρ̂n
γ0

η(Y̆n−k,n)
1

k

k∑

j=1

Ỹ
−(α(1+γ0)−ρ̂n)
j (Ỹ ρ0

j − 1) + oP(1)

=:
1

1− ρ0 + α(1 + γ0)
+ T1 −

α(1 + γ0)− ρ̂n
γ0

η(Y̆n−k,n)T2 + oP(1).

Again from the proof of Lemma 1

|T1| ≤ sup
ρ∈(ρ0−ε,ρ0+ε)

∣∣∣∣∣∣
1

k

k∑

j=1

Ỹ
−(α(1+γ0)−ρ)
j − 1

1− ρ+ α(1 + γ0)

∣∣∣∣∣∣
P→ 0,

and

|T2| ≤
1

k

k∑

j=1

|Ỹ ρ0
j − 1| ≤ 2.

Thus

A
(1)
k,n(−(α(1 + γ0)− ρ̂n)/γ0)

P→ 1

1− ρ0 + α(1 + γ0)
,

and therefore f2(γ0, 0; ρ̂n)
P→ 0.

For S2, write

2S2 = f∗
11(γ0, 0; ρ0)(γ − γ0)

2 + f∗
22(γ0, 0; ρ0)δ

2 + 2f∗
12(γ0, 0; ρ0)(γ − γ0)δ

+[f11(γ0, 0; ρ̂n)− f∗
11(γ0, 0; ρ0)](γ − γ0)

2 + [f22(γ0, 0; ρ̂n)− f∗
22(γ0, 0; ρ0)]δ

2

+2[f12(γ0, 0; ρ̂n)− f∗
12(γ0, 0; ρ0)](γ − γ0)δ.

By arguments similar to those used when dealing with f2(γ0, 0; ρ̂n), we have that fst(γ0, 0; ρ̂n)
P→

f∗
st(γ0, 0; ρ0), s, t = 1, 2, and hence we can proceed as in the proof of Theorem 1. Finally, con-
ditionally on ρ̂n ∈ (ρ0 − ε, ρ0 + ε), also the argument for the third order derivatives holds and
the proof for the existence and consistency can be completed in the same way as in the proof of
Theorem 1.

For what concerns asymptotic normality, we make as before a Taylor series expansion of the
estimating equations, leading to (18), though with ρ0 replaced by ρ̂n. Since P(ρ̂n ∈ (ρ0 − ε, ρ0 +
ε)) → 1, we have that (by an appropriate choice of s0 in Lemma 1)

Ak,n(ρ̂n) N3(λµ,Σ(ρ0)),
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and hence

√
k

[
f1(γ0, 0; ρ̂n)
f2(γ0, 0; ρ̂n)

]
= B(ρ̂n)Ak,n(ρ̂n) N2(λB(ρ0)µ,B(ρ0)Σ(ρ0)B

′(ρ0)).

The rest of the proof is identical to that of Theorem 2.

�
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Figure 1: Asymptotic standard deviation of γ̂n as a function of ρ0 in case γ0 = 0.5 : α = 0
(solid), α = 0.5 (dashed), α = 1 (dotted), and α = 2 (dashed-dotted).
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Figure 2: Influence function for (a) the parameter γ and (b) the parameter δ, with α = 0 (solid
line), 0.1 (dashed line), 0.5 (dotted line) and 1 (dashed-dotted line), in case the distribution is
Fréchet with γ = 1/2 and the threshold for estimation is set at quantile 0.75.
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Figure 3: Estimators for γ based on 100 samples of size n = 200 from an uncontaminated
Fréchet(2) distribution. (a) Median and (b) MSE of γ̂n,α as a function of k with α = 0.1
(dotted), α = 0.5 (solid), α = 1 (dashed); (c) Median and (d) MSE as a function of k for γ̂H
(dashed), γ̂KL,0.5 (dotted), γ̂n,0 (dashed-dotted) and γ̂n,0.5 (solid). The true value γ0 is added
by a horizontal line.
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Figure 4: Estimators for γ based on 100 samples of size n = 200 from an uncontaminated
Burr(1,1,2) distribution. (a) Median and (b) MSE of γ̂n,α as a function of k with α = 0.1
(dotted), α = 0.5 (solid), α = 1 (dashed); (c) Median and (d) MSE as a function of k for γ̂H
(dashed), γ̂KL,0.5 (dotted), γ̂n,0 (dashed-dotted) and γ̂n,0.5 (solid). The true value γ0 is added
by a horizontal line.
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Figure 5: Estimators for γ based on 100 samples of size n = 200 from an uncontaminated
log-gamma distribution. (a) Median and (b) MSE of γ̂n,α as a function of k with α = 0.1
(dotted), α = 0.5 (solid), α = 1 (dashed); (c) Median and (d) MSE as a function of k for γ̂H
(dashed), γ̂KL,0.5 (dotted), γ̂n,0 (dashed-dotted) and γ̂n,0.5 (solid). The true value γ0 is added
by a horizontal line.
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Figure 6: Estimators for γ based on 100 samples of size n = 200 from a contaminated Fréchet(2)
distribution. (a) Median and (b) MSE of γ̂n,α as a function of k with α = 0.1 (dotted), α = 0.5
(solid), α = 1 (dashed); (c) Median and (d) MSE as a function of k for γ̂H (dashed), γ̂KL,0.5

(dotted), γ̂n,0 (dashed-dotted) and γ̂n,0.5 (solid). The true value γ0 is added by a horizontal line.
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Figure 7: Estimators for γ based on 100 samples of size n = 200 from a contaminated Burr(1,1,2)
distribution. (a) Median and (b) MSE of γ̂n,α as function of k with α = 0.1 (dotted), α = 0.5
(solid), α = 1 (dashed); (c) Median and (d) MSE as a function of k for γ̂H (dashed), γ̂KL,0.5

(dotted), γ̂n,0 (dashed-dotted) and γ̂n,0.5 (solid). The true value γ0 is added by a horizontal line.
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Figure 8: Estimators for γ based on 100 samples of size n = 200 from a contaminated Burr(1,1,2)
distribution. (a) Median and (b) MSE of γ̂n,0.5 as a function of k with ρ fixed at -1 (solid) and
ρ estimated (dashed). The true value γ0 is added by a horizontal line.

30


