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Abstract

We introduce and study a class of weighted functional estimators for the coefficient of tail

dependence in bivariate extreme value statistics. Asymptotic normality of these estimators

is established under a second order condition on the joint tail behavior, some conditions on

the weight function and for appropriately chosen sequences of intermediate order statistics.

Asymptotically unbiased estimators are constructed by judiciously chosen linear combina-

tions of weighted functional estimators, and variance optimality within this class of asymp-

totically unbiased estimators is discussed. The finite sample performance of some specific

examples from our class of estimators and some alternatives from the recent literature are

evaluated with a small simulation experiment.
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order condition.
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1 Introduction

In recent years, the area of multivariate extreme value theory has received a lot of attention, and

many directions have been explored to infer on the characteristics of multivariate extremes, in-

cluding e.g. the estimation of indices or functions describing tail dependence and the estimation

of the probability of extreme failure sets. We refer to Ledford & Tawn (1996, 1997), Beirlant

& Vandewalle (2002), Heffernan & Tawn (2004), Draisma et al. (2004), Peng (1999, 2010) to

name but a few.

Focusing on the bivariate case where we have at our disposal pairs (Xi, Yi), i = 1, ..., n, being

independent copies of the random vector (X,Y ) with joint distribution function F , it is math-

ematically convenient to assume that the marginals, FX and FY , are known and that they are

unit Fréchet distributions, i.e. FX(u) = FY (u) = exp(−1/u) for u > 0. In this case, denoting

by MX,n = max1≤i≤nXi and by MY,n = max1≤i≤n Yi, it is well-known that, if there exists

appropriate sequences an and bn > 0 such that

lim
n→∞

P

(

MX,n − an
bn

≤ x,
MY,n − an

bn
≤ y

)

= G(x, y) (1)

where G is a non-degenerate distribution function, then G is called a bivariate extreme value

distribution.

We say that MX,n and MY,n are asymptotically independent if G(x, y) = G(x,∞)G(∞, y), for

all x and y. This case is highly relevant in practice as for instance the bivariate normal distri-

bution with correlation coefficient |ρ| < 1 (see our examples in Section 4.1) has asymptotically

independent margins. Unfortunately, if we want to estimate the probability that both X and

Y exceed some high thresholds, convergence (1) is not helpful. Indeed, noting that (1) can be

reformulated in terms of the random pair (X,Y ) as

P

(

MX,n − an
bn

≤ x,
MY,n − an

bn
≤ y

)

= Fn(an + bnx, an + bny),

and taking the logarithm, yields after some rearrangements that

lim
n→∞

nP

(

X − an
bn

> x ,
Y − an

bn
> y

)

= logG(x, y) − logG(x,∞) − logG(∞, y),
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which is exactly 0 in the case of asymptotic independence. To solve this issue, Ledford & Tawn

(1996, 1997) introduced a submodel assuming that the function t 7→ q(t) := P(1 − FX(X) <

t, 1 − FY (Y ) < t) is regularly varying at zero with index 1/η. This means that q(t) = t1/ηℓ(t),

where ℓ is a function slowly varying at zero, i.e. an ultimately positive function satisfying

ℓ(tx)/ℓ(t) → 1 as t ↓ 0 for all x > 0 (see Bingham et al., 1987, p. 15-18). The parameter η is

called the coefficient of tail dependence, and satisfies η ∈ (0, 1]. Ledford & Tawn (1996, 1997)

motivate their model by showing that many important and commonly used bivariate distribu-

tion functions can be written in this form; we also refer to Heffernan (2000) for an extensive

list of examples. The case η = 1 and limt→0 ℓ(t) = c for some 0 < c ≤ 1, corresponds to the

asymptotic dependence case with degree c, whereas η ∈ (0, 1) or η = 1 with limt→0 ℓ(t) = 0

implies asymptotic independence with degree 2η − 1. Ledford & Tawn (1996) identify three

types of asymptotic independence:

• if η ∈ (0, 1/2), the pairs (X,Y ) which exceed a same high threshold occur less frequently than

if X and Y are independent;

• η = 1/2: extremes of X and Y are close to independence and are exactly independent if

ℓ(.) = 1;

• η ∈ (1/2, 1) or η = 1 and ℓ(t) → 0, the pairs (X,Y ) which exceed a same high threshold occur

more frequently than under exact independence.

Thus the degree of asymptotic dependence depends on both η and ℓ. Larger values of η indicate

a stronger association between extreme values of the two components X and Y .

As we can imagine, different methods have been proposed in the literature in order to estimate

η from observed data. In particular, as q is regularly varying with index 1/η, setting Zi =

min{Xi, Yi}, we have

P(Zi > z) = P(Xi > z, Yi > z) = z−1/ηL(z) (2)

with L(.) a slowly varying function at infinity. Thus the parameter η can be viewed as the

extreme value index of the minimum of the two components, and hence all the classical type of

estimators can be used, for instance the Hill (1975), moment (Dekkers et al., 1989) or maximum
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likelihood (Smith, 1987) estimators. Unfortunately, as usual in the extreme value context, the

bias of all these estimators is a big challenge. In the univariate case, bias-reduced estimators

have been introduced in e.g. Feuerverger & Hall (1999), Beirlant et al. (1999), and more recently

in Gomes et al. (2008), to name but a few, and such procedures have recently been considered

in the bivariate case in Beirlant & Vandewalle (2002) using an exponential regression model and

in Beirlant et al. (2011) under a Hall-type condition on the slowly varying function L. The

procedure by Beirlant & Vandewalle (2002) performs quite well with respect to bias, though it

should be noted that it is not necessarily asymptotically unbiased. The Beirlant et al. (2011)

procedure on the other hand is asymptotically unbiased, though it does not take the uncertainty

arising from the marginal transformation by means of the empirical distribution function into

account. Both estimation methods are maximum likelihood methods and no explicit expressions

for the estimators are available.

In this paper we reconsider the bias-issue when estimating the coefficient of tail dependence η.

In Section 2 we introduce a weighted functional estimator for η and establish its asymptotic

normality under a second order condition on the joint tail behavior of the underlying distribu-

tion function, some conditions on the weight function and for appropriately chosen sequences of

intermediate order statistics. A possible way to eliminate the asymptotic bias of such estima-

tors, consisting in taking appropriate linear combinations, is discussed in Section 3, where we

also derive the minimum variance asymptotically unbiased estimator. Unlike the above men-

tioned maximum likelihood approaches to bias-corrected estimation of η, our estimators have

explicit expressions, making them computationally inexpensive. Some simulations are discussed

in Section 4, in which we compare the finite sample efficiency of some examples of weighted

estimators with the likelihood based methods of Beirlant & Vandewalle (2002) and Beirlant et

al. (2011). The proofs of the results are postponed to the appendix, which is online available

as a supporting information.
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2 A functional estimator for η

In this section we introduce a class of weighted functional estimators for the coefficient of tail

dependence. Given a sample of independent and identically distributed (i.i.d.) random vectors

(X1, Y1), . . . , (Xn, Yn), Ledford & Tawn (1996) proposed to standardize the marginal distribu-

tions to unit Fréchet margins, for instance by their empirical distribution function combined

with the inverse probability integral transform, after which η can be estimated on the basis of

the minima of the components by a classical estimator for the extreme value index, e.g. the Hill

estimator (Hill, 1975) or the moment estimator (Dekkers et al., 1989). This idea was also used

in Beirlant & Vandewalle (2002), Draisma et al. (2004) and Beirlant et al. (2011), and will also

form the basis for our methodology.

Formally, let R(Xi) denote the rank of Xi among (X1, . . . ,Xn) and R(Yi) that of Yi among

(Y1, . . . , Yn), define

Zi = min

{

− 1

log(R(Xi)/(n + 1))
,− 1

log(R(Yi)/(n + 1))

}

, i = 1, . . . , n, (3)

the minimum of unit Fréchet transformed margins, and denote by Z1,n ≤ . . . ≤ Zn,n the cor-

responding ascending order statistics. Instead of assuming a transformation to unit Fréchet

margins, we can alternatively work with unit Pareto margins, with distribution function given

by F (u) = 1− 1/u, u > 1. In that case (3) has to be replaced by

Zi = min

{

1

1−R(Xi)/(n + 1)
,

1

1−R(Yi)/(n + 1)

}

, i = 1, . . . , n.

Now, consider the functional

TK(z) :=

∫

1

0

log
z(t)

z(1)
d(tK(t)),

for any measurable function z : [0, 1] → R (provided the right-hand side is defined and finite;

otherwise TK(z) = 0), leading to the following class of estimators for η:

η̂m(K) := TK(Qn)

=

∫

1

0

log
Qn(t)

Qn(1)
d(tK(t)) (4)
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where Qn(t) := Zn−⌊mt⌋,n, 0 < t < n/m, is the empirical quantile function, and K is a weight

or kernel function with support on (0, 1).

In order to establish the asymptotic distribution of (4) we have to introduce some conditions on

the kernel function K as well as a second order condition on the tail of the joint distribution

function F . Concerning the weight function K we assume the following.

Condition K: Let K(.) be a kernel such that

(i) K(.) is continuously differentiable on (0, 1),

(ii)
∫

1

0
(− log t)d(tK(t)) = 1,

(iii) there exists M > 0, 0 ≤ r < 1/2 and p < 1 such that |K(u)| ≤ Mu−r and |K ′(u)| ≤ Mu−p−r

on (0, 1).

The conditions on K are not too restrictive and besides they are easy to verify for a given kernel

function. For instance, our introduced class (4) includes

• the log weight-type estimator if K(u) = (− log u)ν/Γ(ν + 1), u ∈ (0, 1), ν ≥ 1,

• estimators based on the weight functions proposed in Gomes et al. (2007) in the framework

of the estimation of the positive extreme value index γ :

K(u) = (1 + ν)uν and K(u) = (1 + ν)2uν(− log u),

with u ∈ (0, 1) and ν ≥ 0.

Similar conditions can be found in e.g. Gardes & Girard (2008a) and Goegebeur & Guillou

(2011) in the framework of the estimation of Weibull-type tails. We refer also to Mason (1981)

for general results on asymptotic normality for linear combinations of order statistics.

For what concerns the second order tail behavior of F we use the following slightly modified

version of the condition of Draisma et al. (2004) (see also de Haan & Stadtmüller, 1996). This

condition is not too restrictive and commonly used in estimation problems involving bivariate
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extreme values.

Condition SO: Let (X,Y ) be a random vector with joint distribution function F and continuous

marginal distribution functions FX and FY such that

lim
t↓0

q1(t)
−1

(

P (1− FX(X) < tx, 1− FY (Y ) < ty)

q(t)
− c(x, y)

)

=: c1(x, y) (5)

exists for all x ≥ 0, y ≥ 0 with x + y > 0, a positive function q and a function q1 both tending

to zero as t ↓ 0, and c1 a function neither constant nor a multiple of c. Moreover, we assume

that the convergence is uniform on {(x, y) ∈ [0,∞)2|x2 + y2 = 1}, that c1 is continuous and

c1(x, x) = x1/η(xτ − 1)/τ .

Remember that q(t) := P(1−FX(X) < t, 1−FY (Y ) < t). It can be shown that (5) implies that

q and |q1| are regularly varying at zero with index 1/η and τ ≥ 0, respectively. The function

c is homogeneous of order 1/η, that is c(tx, ty) = t1/ηc(x, y). In this paper, we only consider

the case where η < 1 and τ > 0 (similar restrictions were used in Beirlant & Vandewalle, 2002,

and Beirlant et al., 2011). We refer to Section 4 for some examples of distributions satisfying SO.

Our main result is stated in Theorem 1 below. It is essentially based on a modified version of

Lemma 6.2 in Draisma et al. (2004) by including a bias term, combined with the functional

delta method. We refer to the supporting information for further details.

Theorem 1 Assume Condition K and the second order condition SO with a function c that is

continuously differentiable. If m → ∞ such that m/n → 0 and
√
mq1(q

−1(m/n)) → λ, finite,

there exists a standard Brownian motion W , such that

√
m (TK(Qn)− η)

d−→ η

∫

1

0

t−1W (t)d(tK(t)) − ηW (1)K(1) + λ
η

τ

∫

1

0

(tητ − 1)d(tK(t)).

In particular
√
m (TK(Qn)− η) is asymptotically normal N (λAB(K),AV(K)) where

AB(K) :=
η

τ

∫

1

0

(tητ − 1)d(tK(t)),

AV(K) := η2
∫

1

0

∫

1

0

min{s, t}
st

d(tK(t))d(sK(s)) − η2K2(1).
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We can now illustrate this theorem in the special cases of the log weight-type kernels and the

two weights proposed in Gomes et al. (2007). This leads to the following corollaries.

Corollary 1 (Log weight). Under the conditions of Theorem 1, if K(u) = (− log u)ν/Γ(ν +

1), ν ≥ 1, then

√
m (TK(Qn)− η)

d−→ N
(

−λ
η2

(1 + ητ)ν+1
, η2

Γ(1 + 2ν)

Γ2(1 + ν)

)

.

Corollary 2 Under the conditions of Theorem 1, if K(u) = (1 + ν)uν , ν ≥ 0, then

√
m (TK(Qn)− η)

d−→ N
(

−λη2
1 + ν

1 + ν + ητ
, η2

(1 + ν)2

1 + 2ν

)

.

The Hill weight function K(u) = 1 is included in this family (ν = 0).

Corollary 3 Under the conditions of Theorem 1, if K(u) = (1 + ν)2uν(− log u), ν ≥ 0, then

√
m (TK(Qn)− η)

d−→ N
(

−λη2
(

1 + ν

1 + ν + ητ

)2

, 2η2
(1 + ν)4

(1 + 2ν)3

)

.

3 Bias correction and estimation of the second order parameter

3.1 An asymptotically unbiased estimator with minimum variance

In this section we introduce a class of bias-corrected estimators for the parameter η, and discuss

variance optimality in the considered class. In particular, we propose to combine two kernel-type

estimators for η in order to cancel the asymptotic bias appearing in Theorem 1. The elimination

of bias by the construction of an appropriately weighted sum of two estimators is also referred

to as the generalized Jackknife methodology; see Gray & Schucany (1972) for further details.

More precisely, let K1(.) and K2(.) be two different kernels, both satisfying Condition K and let

α be a real constant. Clearly

Kα(t) := αK1(t) + (1− α)K2(t) (6)

satisfies also Condition K, and hence Theorem 1 yields the asymptotic bias of this new estimator

TKα
, namely

AB(Kα) =
η

τ

∫

1

0

(tητ − 1)d (tKα(t)) = αAB(K1) + (1− α)AB(K2).

8



Equating the right-hand side of the latter equation to 0 leads to the value of α that eliminates

the asymptotic bias:

α∗ =
AB(K2)

AB(K2)−AB(K1)
, (7)

provided AB(K1) 6= AB(K2). This result is formalized in the following proposition.

Proposition 1 Under the second order condition SO with a function c that is continuously

differentiable, and assuming that K1 and K2 satisfy Condition K with AB(K1) 6= AB(K2), we

have that if m → ∞ such that m/n → 0 and
√
mq1(q

−1(m/n)) → λ, finite, then

√
m
(

TKα∗
(Qn)− η

) d−→ N (0,AV(Kα∗)) .

The bias-correcting weight depends on η and τ , i.e. α∗ = α∗(η, τ), which are unknown and hence

need to be estimated from the data. The following proposition states that replacing η and τ by

initial consistent estimators η̃ and τ̃ , respectively, which possibly depend on sequences of upper

order statistics different from the one used for the bias-corrected estimator, does not change the

limiting distribution of the normalized bias-corrected estimator. Denote α̂∗ := α∗(η̃, τ̃).

Proposition 2 Assume (i) the second order condition SO with a function c that is continuously

differentiable, (ii) kernel functions K1 and K2 that satisfy Condition K with AB(K1) 6= AB(K2)

and that are such that α∗ is continuously differentiable with respect to η and τ , and (iii) initial

consistent estimators η̃ and τ̃ for η and τ , respectively. Then, if m → ∞ such that m/n → 0

and
√
mq1(q

−1(m/n)) → λ, finite, we have that

√
m
(

TKα̂∗
(Qn)− η

) d−→ N (0,AV(Kα∗)) .

We refer to the next subsection for an example of a consistent estimator for the second order

parameter τ .

Now, inspired by Drees (1998a) and Proposition 3 in Gardes & Girard (2008b), we construct an

asymptotically unbiased functional estimator with minimum variance.

Theorem 2 Let αopt := (1 + ητ)2/(η2τ2), K1(t) = 1 and K2(t) = (1 + ητ)tητ . Then Kαopt
(.)

defined as in (6) is the asymptotically unbiased weight function with minimum variance among

unbiased weight functions satisfying Condition K.
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We refer to the appendix for a proof of Theorem 2. Also, direct computations yield that

the asymptotic variance of this optimal asymptotically unbiased estimator is given by η2(1 +

ητ)2/(ητ)2.

Corollary 4 Under the assumptions of Theorem 1 and Theorem 2,

√
m
(

TKαopt
(Qn)− η

)

d−→ N
(

0, η2
(1 + ητ)2

(ητ)2

)

.

From Theorem 1 we also obtain immediately the limiting distribution of the estimator for η that

is obtained with Kαopt
in case one mis-specifies the parameter ητ at some value. Let Ka denote

the kernel function Kαopt
with ητ fixed at the value a, i.e. Ka(t) := (1 + a)2/a2 − (1 + a)(1 +

2a)ta/a2, a > 0.

Corollary 5 Under the second order condition SO with a function c that is continuously dif-

ferentiable, we have that if m → ∞ such that m/n → 0 and
√
mq1(q

−1(m/n)) → λ, finite,

then

√
m (TKa

(Qn)− η)
d−→ N

(

λd(a, ητ), η2
(1 + a)2

a2

)

,

where

d(a, ητ) := −η2
(1 + a)(a− ητ)

a(1 + ητ)(1 + a+ ητ)
.

3.2 Estimation of the second order parameter τ

In this section we introduce a simple estimator for the second order parameter τ , the coefficient

of regular variation of the function |q1|. In the univariate Pareto-type framework, the estima-

tion of second order parameters has been well studied and several good working estimators are

available, we refer to Goegebeur et al. (2010) and the references therein for a recent account on

the topic. In the multivariate setting little work has been done in this respect. Peng (2010) in-

troduced an estimator for a rate parameter appearing in a second order condition that is slightly

different from condition SO, but apart from this we are not aware of other attempts.
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As the basic building block for our estimator we use the statistic

S(x, y) :=
n
∑

i=1

1{Xi ≥ x, Yi ≥ y}.

Inspired by Goegebeur et al. (2010) and Peng (2010) we propose the following estimator for τ

τ̂k(x) := − 1

log 2
log

∣

∣

∣

∣

H(x)−H(2x)

H(2x)−H(4x)

∣

∣

∣

∣

,

where

H(x) :=
S
(

Xn−⌊kx⌋+1,n, Yn−⌊kx⌋+1,n

)

S
(

Xn−⌊k2x⌋+1,n, Yn−⌊k2x⌋+1,n

) .

The consistency of this estimator is established in the following proposition.

Proposition 3 Assume that the second order condition SO is satisfied with a function c that has

continuous first order partial derivatives. If k, n → ∞, such that k/n → 0 and
√

nq(k/n)q1(k/n) →
∞, then τ̂k(x)

P→ τ .

4 Simulation results

The aim of this section is to illustrate the finite sample performance of our bias-reduced estimator

compared to alternative methodologies. To this aim, we first study some bivariate models. Here

we consider three distributions which satisfy our framework and one, the bivariate normal case,

which does not. We also shortly describe some alternative estimation methods from the recent

literature, and compare these with the methodology presented in this paper in a small simulation

experiment.

4.1 Some bivariate distributions

First note that, because of the assumed continuous marginal distribution functions in condition

SO we have that FX(X) and FY (Y ) are uniform (0,1) random variables, and hence

P(1− FX(X) < tx, 1− FY (Y ) < ty) = tx+ ty − 1 + C(1− tx, 1− ty),

where C is the copula function of the joint distribution function F . Verification of condition SO
for a specific distribution can therefore be based completely on the copula function C.
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• The Farlie Gumbel Morgenstern distribution

The Farlie Gumbel Morgenstern copula function is given by

C(u, v) = uv [1 + ξ(1− u)(1− v)] , (u, v) ∈ [0, 1]2,

with ξ ∈ [−1, 1]. Straightforward calculations lead to

P(1− FX(X) < tx, 1− FY (Y ) < ty) = t2xy
[

1 + ξ − ξt (x+ y) + ξt2xy
]

.

In the case where ξ ∈ (−1, 1],

P(1− FX(X) < tx, 1− FY (Y ) < ty)

P(1− FX(X) < t, 1− FY (Y ) < t)
= xy

[

1− ξt

1 + ξ
(x+ y − 2) +O

(

t2
)

]

,

from which one easily verifies that condition SO is satisfied with η = 0.5, c(x, y) = xy, c1(x, y) =

xy(x+ y − 2)/2, q1(t) = −2ξt/(1 + ξ), so τ = 1, while for the case ξ = −1

P(1− FX(X) < tx, 1− FY (Y ) < ty)

P(1− FX(X) < t, 1− FY (Y ) < t)
= xy

[

x+ y

2
+

t

4
(x+ y − 2xy) +O(t2)

]

,

and hence condition SO is satisfied with η = 1/3, c(x, y) = xy(x + y)/2, c1(x, y) = xy(2xy −
x− y)/2, q1(t) = −t/2, so τ = 1.

For the simulation we consider ξ = −1 and -0.25.

• The Frank distribution

The copula function for the bivariate Frank distribution is given by

C(u, v) = −1

ξ
log

[

1− (1− e−ξu)(1 − e−ξv)

1− e−ξ

]

, (u, v) ∈ [0, 1]2,

where ξ > 0. Tedious computations based on expansions of the above copula function lead to

the following approximation

P(1− FX(X) < tx, 1− FY (Y ) < ty) =
ξ

1− e−ξ
t2xy

[

1− ξt

2
(x+ y) +O(t2)

]

,
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from which we deduce that

P(1− FX(X) < tx, 1− FY (Y ) < ty)

P(1− FX(X) < t, 1− FY (Y ) < t)
= xy

[

1− ξt

2
(x+ y − 2) +O

(

t2
)

]

.

Hence condition SO is satisfied with η = 0.5, c(x, y) = xy, c1(x, y) = xy(x+y−2)/2, q1(t) = −ξt

and τ = 1.

In the simulation we use ξ = 2 and 5.

• The Ali-Mikhail-Haq distribution

For this distribution the copula function is given by

C(u, v) =
uv

1− ξ(1− u)(1 − v)
, (u, v) ∈ [0, 1]2,

with ξ ∈ [−1, 1]. From the copula we easily establish that

P(1− FX(X) < tx, 1− FY (Y ) < ty) =

t2xy
[

1 + ξ − ξt(x+ y) + ξ(1 + ξ)t2xy − ξ2t3xy(x+ y) +O(t4)
]

.

First we consider the case where ξ ∈ (−1, 1]. Using Taylor’s theorem we obtain

P(1− FX(X) < tx, 1− FY (Y ) < ty)

P(1− FX(X) < t, 1− FY (Y ) < t)
= xy

[

1− ξt

1 + ξ
(x+ y − 2) +O(t2)

]

,

and hence condition SO is satisfied with η = 0.5, c(x, y) = xy, c1(x, y) = xy(x + y − 2)/2,

q1(t) = −2ξt/(1 + ξ), so τ = 1. In case ξ = −1 we obtain

P(1− FX(X) < tx, 1− FY (Y ) < ty)

P(1− FX(X) < t, 1− FY (Y ) < t)
= xy

[

x+ y

2
− t2

2
(x+ y)(xy − 1) +O(t3)

]

,

leading to η = 1/3, c(x, y) = xy(x+y)/2, c1(x, y) = xy(x+y)(xy−1)/4, q1(t) = −2t2, and τ = 2.

We will consider ξ = −1.

• The bivariate normal distribution
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The bivariate normal distribution with mean 0, variance 1 and correlation coefficient ρ ∈ (−1, 1)

satisfies condition SO with η = (1 + ρ)/2. We refer to Draisma et al. (2004) and Ledford &

Tawn (1997) for further details. Unfortunately, it falls outside the scope of the present paper

since τ = 0. However, we add this distribution in our simulation study in order to examine the

robustness of our approach. We consider the cases ρ = −0.5 and ρ = 0.5, for which η = 0.25

and η = 0.75, respectively.

4.2 Estimators

In the simulation experiment we compare the optimal (in the sense of minimal asymptotic

variance) bias-corrected estimator with the Hill estimator and two estimators from the recent

extreme value literature, described below. Note that the optimal weight in the bias-corrected

estimator involves the parameter ητ . In the simulation experiment, for all distributions, except

the bivariate normal, we will explore two strategies namely fixing ητ at its true value and a

mis-specification of this parameter at ητ = 1. For the bivariate normal distribution, which

has τ = 0, we consider fixing ητ at 0.5 and 1. Fixing second (or higher) order distributional

parameters at a canonical choice, e.g. taking ητ = 1, is a common approach in extreme value

statistics. For instance, in the univariate extreme value framework, the second order parameter

ρ is often fixed at -1 in practical implementations of bias-corrected estimators for the extreme

value index; see e.g. Feuerverger & Hall (1999) and Gomes & Martins (2004). Alternatively, the

second order parameter τ could also be estimated with the estimator proposed in Section 3.2.

Though this estimator is proven to be consistent, its practical use needs further investigation,

and this will be pursued in future research on the estimation of the second order parameter in

the multivariate extreme value framework.

Beirlant & Vandewalle (2002) proposed to estimate η by applying the maximum likelihood

method to the following approximate exponential regression model for scaled log-ratios

j log

(

Zn−j+1,n − Zn−m,n

Zn−j,n − Zn−m,n

)

≈ η

1− (j/m)η
fj, j = 1, . . . ,m− 1,

where f1, . . . , fm−1 are i.i.d. standard exponential random variables. The resulting estimator

will here be denoted as η̂BV . Beirlant & Vandewalle (2002) proved that η̂BV , when appropriately
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normalized, is asymptotically normally distributed, though it should be mentioned that it is not

asymptotically unbiased. Nevertheless, in the simulations reported in their paper, the estimator

performs quite well with respect to bias.

Beirlant et al. (2011) introduced the extended Pareto distribution as approximate model for

relative excesses over a threshold

P(Yw > tz)

P(Yw > t)
≈ [z(1 + δw(t)− δw(t)z

−τ )]−1/η ,

where Yw := min(Z1, Z2w/(1 − w)), Z1 and Z2 unit Fréchet random variables, w a tuning pa-

rameter, and obtained an estimator for η, denoted here as η̂B , from linearized score functions.

We refer to Beirlant et al. (2011) for more details about w and δw(t). The estimator was proven

to be asymptotically unbiased with minimal asymptotic variance η2(1+ ητ)2/(ητ)2, though the

uncertainty arising from the marginal transformations by means of the empirical distribution

functions was not explicitly taken into account. The parameter w was introduced to estimate

probabilities in joint tail regions, but has little practical relevance for the estimation of η, and

therefore we fix it at 0.5. Concerning the second order parameter τ , Beirlant et al. (2011)

showed that replacing it by a consistent estimator does not change the limiting distribution

of η̂B , though no estimator for that parameter was proposed. As suggested by these authors,

in the simulation experiment we implement their estimator with τ fixed at the canonical choice 1.

In Figure 1 we show the asymptotic standard deviations of the estimators under study as a

function of η. Similar to the univariate case, the Hill estimator, which will be denoted by η̂H has

the smallest possible variance, but it is not unbiased. The estimators TKαopt
and η̂B have the

same asymptotic variance, which is here shown for three values of τ namely τ = 0.5, 1, 2. From

Corollary 4, the increase in variance relative to the Hill estimator is immediately clear, and is

given by (1 + ητ)2/(ητ)2. The Beirlant & Vandewalle (2002) estimator η̂BV has approximately

the same variance as TKαopt
and η̂B in case τ = 1. For values of τ below 1, η̂BV will typically have

a smaller asymptotic variance than TKαopt
and η̂B , though it is not asymptotically unbiased.

Insert Figure 1 here
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4.3 Results

The simulation experiment considers the distributions listed in Section 4.1, with both unit

Pareto and unit Fréchet margins. For each of the distributions we generated 1000 samples of

size n = 500, and computed all the above mentioned estimators for m = 5, . . . , 499, where m

denotes the number of upper order statistics of the Zi observations used in the estimation of η.

In Figures 2 till 6 we show the sample mean (left) and the empirical mean squared error (MSE)

(right) as a function of m for the estimators TKαopt
with the true value of ητ (black solid line),

TKαopt
with ητ = 1 (black dashed line), η̂H (black dotted line), η̂B (grey solid line) and η̂BV

(grey dashed line). For the bivariate normal copula function the results are shown in Figures 7

and 8. Here TKαopt
is computed with ητ = 0.5 and ητ = 1. From the simulation results we can

draw the following conclusions:

(i) The Hill estimator is generally biased, though the bias seems to be a more severe problem for

unit Fréchet marginal distributions than for unit Pareto marginal distributions. This observation

is in agreement with the theoretical considerations in Drees (1998a, b). For the distributions

where the bias is a problem, like e.g. the Farlie Gumbel Morgenstern with unit Fréchet margins

and the distributions based on Frank’s copula, the estimators TKαopt
, η̂B and η̂BV typically

outperform η̂H in terms of minimal MSE. Also, the sample paths of these estimators show a

longer stable part compared to η̂H .

(ii) The estimators η̂B and η̂BV exhibit a very similar behavior, both in terms of bias and MSE,

but η̂B behaves somewhat less erratic than η̂BV , as can be seen from its more stable sample paths.

(iii) As expected, no estimator performs uniformly best, but TKαopt
is highly competitive com-

pared to η̂B and η̂BV , especially if one takes into account that, unlike the maximum likelihood

based estimators, it can be computed directly from the data without needing an iterative opti-

mization scheme. Also, for TKαopt
, mis-specifying ητ at the canonical choice 1, often turns out

to work better in practice than using the true value of that parameter. This can be explained

from Corollary 5, at least for the cases with τ > 0. Indeed, from Corollary 5 the asymptotic
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variance is decreasing in the parameter a, and hence the estimator with ητ fixed at the value 1

will have a smaller variance compared to the estimator obtained with the true value of ητ (for

the distributions under consideration in the simulation ητ < 1). This difference in variance can

be considerable, e.g. in case η = 1/3 and τ = 1 we have an asymptotic variance of 1.78 in case

one uses the true value of ητ , compared to an asymptotic variance of only 0.44 when one fixes

ητ at 1. Using the true value of ητ of course eliminates the bias, at least theoretically. However,

in the simulations fixing ητ at 1 performs often as well as using the true value of ητ in terms

of bias, and in some cases even better, which then lead to the better performance in terms of

minimum MSE.

Insert Figures 2-8 here

5 Conclusion

In this paper we considered the estimation of the coefficient of tail dependence in bivariate

extreme value statistics, and introduced a class of weighted functional estimators for this pa-

rameter. By using the functional delta method the estimators were shown to be asymptotically

normal under a second order condition on the joint tail behavior, some conditions on the kernel

function and for an intermediate sequence of upper order statistics. By taking appropriately

chosen weighted sums of two (biased) estimators we obtained a class of asymptotically unbiased

estimators, and we established variance optimality within this class. The simulations indicated

that the estimator is highly competitive with recent alternatives from the extreme value litera-

ture, especially if one takes their low computational demands into account. In future work we

will focus on the further development of estimators for the second order parameter τ , as well as

their practical implementation.
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Figure 1: Asymptotic standard deviations as a function of η: TKαopt
and η̂B when τ = 1 (black

solid line), τ = 2 (black dashed line) and τ = 0.5 (black dotted line), η̂H (grey solid line), and

η̂BV (grey dashed line) estimators.
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Figure 2: Bivariate Farlie Gumbel Morgenstern copula with ξ = −1 (row 1) and ξ = −0.25 (row

2), sample mean (left) and MSE (right), transformation to unit Pareto margins: Hill (black,

dotted), TK(Qn) with optimal bias-correcting weight and the true value of ητ (black, solid),

TK(Qn) with optimal bias-correcting weight and ητ = 1 (black, dashed), η̂B (grey solid) and

η̂BV (grey, dashed) as a function of m. The horizontal line is the true value of η.
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Figure 3: Bivariate Farlie Gumbel Morgenstern copula with ξ = −1 (row 1) and ξ = −0.25 (row

2), sample mean (left) and MSE (right), transformation to unit Fréchet margins: Hill (black,

dotted), TK(Qn) with optimal bias-correcting weight and the true value of ητ (black, solid),

TK(Qn) with optimal bias-correcting weight and ητ = 1 (black, dashed), η̂B (grey, solid) and

η̂BV (grey, dashed) as a function of m. The horizontal line is the true value of η.
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Figure 4: Bivariate Frank copula with ξ = 2 (row 1) and ξ = 5 (row 2), sample mean (left) and

MSE (right), transformation to unit Pareto margins: Hill (black, dotted), TK(Qn) with optimal

bias-correcting weight and ητ = 0.5 (black, solid), TK(Qn) with optimal bias-correcting weight

and ητ = 1 (black, dashed), η̂B (grey, solid) and η̂BV (grey, dashed) as a function of m. The

horizontal line is the true value of η.
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Figure 5: Bivariate Frank copula with ξ = 2 (row 1) and ξ = 5 (row 2), sample mean (left) and

MSE (right), transformation to unit Fréchet margins: Hill (black, dotted), TK(Qn) with optimal

bias-correcting weight and ητ = 0.5 (black, solid), TK(Qn) with optimal bias-correcting weight

and ητ = 1 (black, dashed), η̂B (grey, solid) and η̂BV (grey, dashed) as a function of m. The

horizontal line is the true value of η.
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Figure 6: Bivariate Ali-Mikhail-Haq copula with ξ = −1, unit Pareto margins (row 1) and unit

Fréchet margins (row 2), sample mean (left) and MSE (right): Hill (black, dotted), TK(Qn) with

optimal bias-correcting weight and ητ = 2/3 (black, solid), TK(Qn) with optimal bias-correcting

weight and ητ = 1 (black, dashed), η̂B (grey, solid) and η̂BV (grey, dashed) as a function of m.

The horizontal line is the true value of η.
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Figure 7: Bivariate normal copula with µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, ρ = −0.5 (row 1) and

ρ = 0.5 (row 2), sample mean (left) and MSE (right), transformation to unit Pareto margins:

Hill (black, dotted), TK(Qn) with optimal bias-correcting weight and ητ = 0.5 (black, solid),

TK(Qn) with optimal bias-correcting weight and ητ = 1 (black, dashed), η̂B (grey, solid) and

η̂BV (grey, dashed) as a function of m. The horizontal line is the true value of η.
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Figure 8: Bivariate normal copula with µ1 = µ2 = 0, σ2
1 = σ2

2 = 1, ρ = −0.5 (row 1) and

ρ = 0.5 (row 2), sample mean (left) and MSE (right), transformation to unit Fréchet margins:

Hill (black, dotted), TK(Qn) with optimal bias-correcting weight and ητ = 0.5 (black, solid),

TK(Qn) with optimal bias-correcting weight and ητ = 1 (black, dashed), η̂B (grey, solid) and

η̂BV (grey, dashed) as a function of m. The horizontal line is the true value of η.
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