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Abstract
We investigate efficient representations of subjec-
tive formulas in the modal logic of knowledge, S5,
and more generally of sets of sets of propositional
assignments. One motivation for this study is con-
tingent planning, for which many approaches use
operations on such formulas, and can clearly take
advantage of efficient representations. We study the
language S5-DNF introduced by Bienvenu et al., and
a natural variant of it that uses Binary Decision Di-
agrams at the propositional level. We also introduce
an alternative language, called Epistemic Splitting
Diagrams, which provides more compact represen-
tations. We compare all three languages from the
complexity-theoretic viewpoint of knowledge com-
pilation and also through experiments. Our work
sheds light on the pros and cons of each represen-
tation in both theory and practice.

1 Introduction
The epistemic modal logic S5 is the logic of monoagent
knowledge [Fagin et al., 1995], allowing for statements such
as (Kp ∨Kp) ∧ (¬K(p ∧ q)), which means that the agent
knows that p is true or knows that p is false (i.e., it knows
the value of p), but does not know that p∧q is true (it knows
that p∧q is false, or does not know whether it is true or false).

A particular setting where the logic S5 arises naturally is
that of contingent planning [Herzig et al., 2003; Petrick &
Bacchus, 2004; Hoffmann & Brafman, 2005; Iocchi et al.,
2004; Bonet & Geffner, 2014], which is the problem of com-
puting a plan towards a given goal, using two kinds of actions.
Ontic actions change the actual state of the world in a nonde-
terministic fashion, and epistemic actions give the agent feed-
back about the actual state. The plan sought for can be condi-
tional on the feedbacks received from the epistemic actions.

It is not hard to see that at any moment, an agent executing
a contingent plan has a unique set of states which are can-
didates for being the actual state of the environment. Such a
set is called a belief state in the planning literature. For in-
stance, if the agent knows that the initial state satisfies p∧q,
and executes an ontic action switch which nondeterministi-
cally switches either the value of p or that of q, then the re-
sulting belief state can be described by (p∧q)∨(p∧q). If the

agent then executes the epistemic action test, which indicates
whether p∧ r is true, and receives the feedback that it is the
case, then the resulting set can be described by (p∧q∧ r).

When planning, or verifying the validity of a plan, it is
also useful to consider the evolution of several possible belief
states at the same time, a process usually called offline pro-
gression. For instance, if the initial belief state is p∧ q, then
the ontic action switch leads to (p∧q)∨ (p∧q) as above, but
the epistemic action test leads to two possible belief states,
depending on its feedback: either (p ∧ q ∧ r) as above, or
(p∧q)∨ (p∧q∧ r) if feedback p∨ r is received. So, in plan-
ning and in other applications, it is important to be able to
handle general S5 formulas, which represent sets of belief
states. In the example above, we would use the representation
K(p∧q∧r)∨K

(
(p∧q)∨(p∧q∧r)

)
(note that planning usu-

ally does not use only-knowing [Levesque, 1990]: goals being
typically positive, knowing more is always better—in partic-
ular, one often needs only positive knowledge formulas).

Motivated by such uses in planning, we investigate sev-
eral representations of (subjective) S5 formulas from the
point of view of space and time efficiency. We consider
the s-S5-DNFDNF,CNF representation proposed by Bienvenu et
al. [2010], as well as its natural variant s-S5-DNFOBDD,OBDD. We
moreover introduce a new representation (Sections 3 and 4),
using structures that we call Epistemic Splitting Diagrams
(ESDs), which use ideas similar to Binary Decision Dia-
grams. We investigate these three languages from the point of
view of knowledge compilation [Darwiche & Marquis, 2002],
comparing their ability to support queries and transforma-
tions efficiently (Section 5) and to represent S5 formulas suc-
cinctly (Section 6). Finally, we report on experiments, which
confirm in practice the properties of the different languages
(Section 7). Our results show that each language has its pros
and cons; they also show that ESDs are more compact than
previous representations for positive S5 formulas.

2 Preliminaries
S5 The reader is supposed to be acquainted with the basic
concepts of propositional logic. We consider the language of
propositional S5 [Fagin et al., 1995], in which formulas are
built on a set of propositional atoms X with the usual con-
nectives ¬,∨,∧ and the knowledge modality K. For instance,
(Kx1∧¬K(x2∨x3))∨¬K(x1) is an S5 formula. We denote by
Var(Φ) the set of propositional atoms mentioned in a formula



Φ (i.e., {x1,x2,x3} in the previous example). For space rea-
sons, and motivated by the representations typically needed
in planning, we restrict our study to subjective S5, in which
one can express statements about the knowledge of agents,
but not about the actual state of the world (even though our
study could be rather directly extended to general S5 formu-
las). We thus only consider formulas in which all proposi-
tional atoms appear in the scope of K: e.g., x1 ∧Kx2 is not a
subjective formula. Since any S5 formula is equivalent to one
without nested modalities, we use the following definition.

Definition 1. A subjective S5 formula over X is a Boolean
combination, using ¬, ∨ and ∧, of epistemic atoms of the
form Kϕ , where each ϕ is a propositional formula over X .

We use uppercase (resp. lowercase) Greek letters Φ,Ψ, . . .
(resp. ϕ,ψ, . . . ) to denote S5 (resp. propositional) formulas.
Due to the axiomatic of S5, subjective formulas are natu-
rally interpreted over structures, which are simply nonempty
subsets of 2X , that is, nonempty sets of propositional assign-
ments (we silently assume that structures are over the set of all
propositional atoms under consideration). Intuitively, a struc-
ture represents a belief state, i.e., a set of assignments that the
agent considers as candidates for being the actual state of the
world; an S5 formula represents a set of such belief states.

A structure M is said to satisfy an epistemic atom Kϕ if all
propositional assignments m∈M satisfy ϕ under the standard
propositional semantics; M satisfies Φ∧Ψ (resp. Φ∨Ψ) if
it satisfies Φ and Ψ (resp. Φ or Ψ), and ¬Φ if it does not
satisfy Φ. Note that M satisfies ¬Kφ if it contains at least one
propositional countermodel of ϕ (intuitively, the agent does
not know φ if φ is false in at least one state which may be the
actual one), and that this is different from satisfying K¬ϕ .

We write M |= Φ if the structure M satisfies the subjective
S5 formula Φ; it is a model of Φ, and we denote by Mod(Φ)
the set of models of Φ. When Mod(Φ) = Mod(Ψ), Φ and
Ψ represent the same set of belief states; we call them logi-
cally equivalent, written Φ ≡Ψ. When Mod(Φ) ⊆Mod(Ψ),
we say that Φ entails Ψ, written Φ |= Ψ. A formula is tauto-
logical if all structures satisfy it. Notably useful in planning
are positive S5 formulas, i.e., formulas equivalent to some∨

i Kϕi; it can be shown that those are exactly the formulas
whose model set is closed by taking (nonempty) subsets.

Propositional languages A propositional formula (over X)
is in the NNF (Negation Normal Form) language if it is a com-
bination by ∨ and ∧ of propositional literals of the form x or
x (x ∈ X). Identical subformulas are shared in NNF formulas:
they are not trees but rather directed acyclic graphs (DAGs),
and the size |ϕ| of a formula ϕ is thus its number of nodes.
A term (resp. clause) is a conjunction (resp. disjunction) of
literals. A formula is in disjunctive (resp. conjunctive) nor-
mal form if it is a disjunction of terms (resp. a conjunction
of clauses); the corresponding language is called DNF (resp.
CNF). Conditioning a formula ϕ by a literal ` is, intuitively,
deciding on the value of the corresponding atom; it can be
done syntactically by replacing every instance of ` (resp. `)
by > (resp. ⊥). The result is denoted by ϕ|`. We also write
M|` for the structure obtained from a structure M by keeping
only the assignments satisfying `, then removing ` from them.

⊥

x3

x1
x2

>
>

⊥

x2

K K¬

∧∧

∨

K

∇

xn xn

∨

∨

x1x1

∨

x2 x2

∨

>

x3

x2

x1

x3

∇

x1

∨

x2

>

∨

∆

∆

∆

∆

∆∆

∆

∆

Figure 1: An EBDD (left) and two ESDs. Dots are to right children
of ite’s and spl’s, and leaves are duplicated only for clarity.

A Binary Decision Diagram (BDD) is a constant or a for-
mula of the form (x∧N)∨ (x∧N′), where N,N′ are BDDs;
the latter is written ite(x,N,N′). A BDD can be seen as a
DAG over nodes labeled with atoms (e.g., on Figure 1, left,
the DAG rooted at x1 is a BDD). A BDD is an ordered BDD
(OBDD) if atoms are encountered at most once and in the
same order along all paths from the root to a leaf. It is well-
known that any NNF ϕ can be represented as an OBDD (over
any atom ordering), using the Shannon expansion.

S5-DNF Bienvenu et al. [2010] give the first study of effec-
tive representations for S5 formulas, notably introducing the
following parameterized language:

Definition 2. Let L,L′ be two (propositional) sublanguages
of NNF; an S5 formula is in s-S5-DNFL,L′ if it is a disjunction
of terms, each consisting of at most one positive epistemic
literal Kϕ and of an arbitrary number of negative epistemic
literals ¬Kψi, where ϕ is in L and each ψi is in L′.

They study the properties of s-S5-DNFL,L′ in a general set-
ting, in terms of the properties of L and L′; they also focus on a
specific instantiation, s-S5-DNFDNF,CNF (we denote it by EDNF
for short), which turns out to have good properties for the
operations involved in planning. Another natural instantia-
tion is s-S5-DNFOBDD,OBDD (denoted here by EBDD); Bienvenu et
al. [2010] do not explicitly consider it, but most of their gen-
eral results directly apply to it. Figure 1 (left) gives an EBDD
for (K(x1∨ x3)∧¬K(x2∨ x3))∨ (¬K(x2∨ x3)∧K(x2)).

3 Epistemic Splitting Diagrams
We now introduce a new language, written ESD, for rep-
resenting subjective S5 formulas. As pointed out by Bi-
envenu et al. [2010, Example 15], the Shannon expansion
cannot be used for S5 formulas at the epistemic level, but
we introduce the related notion of splitting. Intuitively, a
split over a propositional atom x divides a structure M
into M|x and M|x. For instance, with M1 = {x2x3,x2x3}
and M2 = {x2x3}, spl(x1,M1,M2) represents the structure
{x1x2x3,x1x2x3,x1x2x3}. More generally, we allow splits to
represent sets of structures of a specific form: spl(x,M,M′)
represents the set {spl(x,M,M′) |M ∈M,M′ ∈M′}.

As splits are not enough for obtaining a complete language,
ESD also uses the ∨ connective. Moreover, since the model set
of an S5-formula contains structures, which are themselves
sets, we have four constant formulas: the usual constants ⊥



and >, which are satisfied by no structure and by all struc-
tures, respectively, and two new ones, ∆ and ∇, respectively
satisfied exactly by the empty structure, and by all nonempty
structures. The two latter constants are notably used as chil-
dren of splitting nodes; for instance, on Figure 1 (right), the
ESD rooted at the bottom left x2 node is satisfied by all struc-
tures which contain an assignment satisfying x2. Formally:

Definition 3. Epistemic splitting diagrams (ESDs) are de-
fined inductively as follows:

• >, ∇, ⊥, and ∆ are ESDs;

• if Φ1 and Φ2 are ESDs, then spl(x,Φ1,Φ2) is an ESD;

• if Φ1, . . . ,Φn are ESDs, then
∨n

i=1 Φi is an ESD.

A structure M satisfies an ESD Φ, denoted by M |=Φ, if either
(i) Φ is ∇ (resp. ∆) and M is not ∅ (resp. is ∅); or (ii) Φ is
spl(x,Φ1,Φ2) and M|x |= Φ1 and M|x |= Φ2 hold; or (iii) Φ

is
∨n

i=1 Φi and M satisfies Φi for at least one i ∈ {1, . . . ,n}.
Additionally, M always satisfies > and never satisfies ⊥.

Recall that S5 formulas are interpreted over nonempty
structures. However, for ease of exposition we allow the
empty structure M∅ as a model of some ESDs. This is harm-
less since Φ∧∇ has the same models as Φ except for M∅,
and can be computed efficiently (Proposition 14).

Figure 1 (right) gives an example of an ESD: the left child
of its root is satisfied exactly by the structures M such that
(i) M|x1 is empty or contains an assignment satisfying x2, and
(ii) M|x1 contains an assignment satisfying x3. Remark that,
like OBDDs, we view ESDs as DAGs, and we assume that
identical subgraphs are systematically shared.

Definition 3 places no specific syntactic restriction on
ESDs; it is however useful to consider reduced ESDs.

Definition 4. An ESD Φ is said to be reduced if none of the
following rules applies to it:

• simplify using (⊥∨Φ)≡Φ, (>∨Φ)≡>, spl(x,∆,∆)≡
∆, spl(x,>,>)≡>, spl(x,Φ,⊥)≡ spl(x,⊥,Φ)≡⊥;

• replace spl(x,Φ,Ψ1) ∨ spl(x,Φ,Ψ2) by spl(x,Φ,Ψ1 ∨
Ψ2), and dually when it is right children that match;

• remove duplicates among children of ∨-nodes, and flat-
ten (Φ1∨·· ·∨(Ψ1∨·· ·∨Ψk)∨·· ·∨Φm) into (Φ1∨·· ·∨
Ψ1∨·· ·∨Ψk∨·· ·∨Φm),

∨
{Φ} into Φ, and

∨
∅ into⊥;

• replace (Φ1 ∨ ·· · ∨ ∆∨ ·· · ∨Φk) by (Φ1 ∨ ·· · ∨Φk) if
some Φi is satisfied by M∅;

• replace (Φ1∨ ·· ·∨∇∨ ·· ·∨Φk) by > if some Φi is sat-
isfied by M∅ and by ∇ otherwise.

It is easily seen that all these rules preserve logical equiv-
alence, and can be enforced in linear time. Another impor-
tant property (obtained by a simple structural induction), is
that the only reduced ESD equivalent to ⊥ (resp. to ∆) is
⊥ itself (resp. ∆ itself). Contrastingly, as is the case for
EDNF and EBDD, there are several reduced ESDs equivalent
to > or ∇. For instance (abusing notation), spl(x,Ky,∆) ∨
spl(x,>,∇)∨ spl(x,¬Ky,>) is reduced but logically equiv-
alent to K(x∧ y)∨¬Kx∨¬K(x∨ y), which is tautological.

As for OBDD, we can impose ESDs to be ordered. Given a
total ordering < on X , an ESD is said to be <-ordered if the

propositional atoms appear in (strict) increasing order wrt <
along each path from the root to a leaf.

In this paper, we only consider reduced ordered ESDs. We
write ESD for the language consisting of all ESDs which are
reduced and ordered (leaving < implicit). For instance, the
ESDs on Figure 1 are reduced, and ordered wrt x1 < · · ·< xn.

ESDs share many features with OBDDs. An important dif-
ference is in the status of stuttering nodes. A node ite(x,ϕ,ϕ)
can be eliminated from an OBDD (and replaced by ϕ), but the
same is not true for ESDs: in general, we have spl(x,Φ,Φ) 6|=
Φ. For instance, with Φ≡Ky∨Ky, we have that M = {xy,xy}
satisfies spl(x,Φ,Φ) (since M|x = {y} satisfies Ky and hence
Φ, and M|x = {y} satisfies Ky and hence Φ), but M does not
satisfy Φ (since in M both y and y are possible). Due to this,
in order to be efficient, some transformations require that (re-
duced, ordered) ESDs have a specific form.
Definition 5. Let < be a total order on X , with x1 < · · ·< xn.
An ESD Φ is said to be explicitly <-ordered if it is <-ordered
and for each path P from the root to a leaf, the set of atoms
appearing along P is {x1,x2, . . . ,xi} for some i ∈ {1, . . . ,n}.

For instance, on the ESD of Figure 1 (right), the third path
from the left, (∨,x1,∨,x2,∇), is explicitly ordered with re-
spect to x1 < x2 < x3, but the fourth one, (∨,x1,x3,∇), is not
(x2 is missing). Hence the ESD is not explicitly ordered.

In the rest of the paper, we always consider OBDDs and
ESDs ordered over the same (implicit) atom ordering. Unless
specified, we do not require the ESDs to be explicitly ordered.

4 Compiling Epistemic Atoms into ESDs
Arguably, it is natural to specify formulas such as goals, ini-
tial states, etc., in the form of S5 logical formulas. Manip-
ulating ESDs thus requires to first compile [Marquis, 2015]
standard epistemic representations into the ESD language. We
show in this section how to compile epistemic atoms as ESDs;
Section 5 will show how to combine them using connectives.

Since compiling propositional formulas into OBDD is a
well-studied problem [Bryant, 1992; Meinel & Theobald,
1998; Huang & Darwiche, 2005], we assume that epistemic
atoms are in the form Kϕ , where ϕ is an OBDD over the
atom ordering that we want for the ESD. Building ϕ is hard,
but once it is done, Kϕ can be obtained very efficiently:
Proposition 6. Given a formula ϕ in OBDD, one can build in
linear (resp. quadratic) time an ordered ESD (resp. an explic-
itly ordered ESD) logically equivalent to Kϕ ∨∆ or to ¬Kϕ .

Proof. Let us build an ESD Φ from ϕ by replacing the ⊥
leaf by ∆ and each node ite(x,ϕ1,ϕ2) by spl(x,Φ1,Φ2), with
Φ1,Φ2 obtained recursively from ϕ1,ϕ2. Then we can show
by induction that Φ is equivalent to Kϕ ∨∆ because (i) by
replacing ⊥ by ∆ we prevent any countermodel of ϕ to be in
a satisfying structure, and (ii) by keeping the > leaf we allow
any model of ϕ to be or not to be in a satisfying structure. The
result follows from M |= Kϕ ∨∆ ⇐⇒ M ⊆Mod(ϕ).

For ¬Kϕ , we build an ESD Ψ from ϕ by replacing ⊥ by
∇, > by ⊥, and each node ite(x,ϕ1,ϕ2) by spl(x,Ψ1,>)∨
spl(x,>,Ψ2), with Ψ1,Ψ2 obtained recursively. An easy in-
duction shows that a structure M satisfies Ψ exactly if it con-
tains at least one countermodel of ϕ , hence Ψ≡ ¬Kϕ .
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EQ,SE ◦ [11] ◦ [B18] ◦ [B18]

MCe
√

[9]
√
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√
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BCEBDD

√
E [12]

√
[12] ?
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√
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√
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√

[10]

Transf. ESD EBDD EDNF

∨C
√

[13]
√

[B20]
√

[B20]
∧BC

√
E [14]

√
[B20]

√
[B20]

∧C • [13] • [B20] • [B20]
¬C • [13] • [B20] • [B20]
FO • [15] • [B21]

√
[B21]

SFO
√

E [15]
√

[B21]
√

[B21]

Table 1: Complexity of operations; names come from Bienvenu et
al. [2010] and the KC literature. Symbols

√
,•,◦ resp. mean “poly-

time”, “not polytime”, and “not polytime if P 6= NP”;
√

E means
“polytime if the formula is explicitly ordered, otherwise unknown”.
Brackets refer to propositions here or in Bienvenu et al. [2010].

Observe that both constructions do not require ϕ to be a
reduced OBDD. Hence, the resulting ESD is explicitly or-
dered if ϕ is first made explicitly ordered, by recursively
replacing all nodes ite(xi,ψ, ·), where ψ = ite(xk,ϕ1,ϕ2),
by ite(xi, ite(x j,ψ,ψ), ·), as long as there is a j such that
xi < x j < xk holds (and dually for the other child). This clearly
increases the size of ϕ by a factor |Var(ϕ)| at most.

Moreover, an interesting feature of ESDs is that they can
efficiently represent “only-know” atoms. Recall that Oϕ is
satisfied by a single structure, namely Mod(ϕ): the agent
knows ϕ , but does not know more [Levesque, 1990]. Mixing
K and O modalities requires specific inference rules, while
representing Oϕ using K modalities requires the conjunction
Kϕ ∧

∧
m|=ϕ ¬K¬m (in general, exponentially long). So the

ability to represent Oϕ naturally is unique to ESD.
Proposition 7. Given an OBDD ϕ , one can build an explic-
itly ordered ESD logically equivalent to Oϕ in quadratic time.

Proof. We first make ϕ fully explicit: for each path in ϕ ,
we proceed as in Proposition 6, but also until the leaves
are reached (e.g., we recursively replace ite(xi,>, ·) by
ite(xi, ite(x j,>,>), ·)). Then we replace⊥ by ∆,> by ∇, and
each ite(x,φ1,φ2) by spl(x,Φ1,Φ2), with Φ1,Φ2 obtained re-
cursively. The resulting ESD is satisfied exactly by Mod(ϕ)
because ∆ prevents the countermodels of ϕ to be in a satisfy-
ing structure, and ∇ forces its models to be in.

Observing that any formula Φ is equivalent to
∨

M|=Φ OϕM ,
where ϕM is an OBDD with Mod(ϕ) = M, we easily deduce:
Proposition 8. ESD is complete for subjective S5: for any
subjective S5 formula Φ, there exists an ESD Ψ with Ψ≡Φ.

5 Queries and Transformations
With EDNF, EBDD, and ESD, we have three available languages
for representing subjective S5 formulas. Before comparing
their ability to represent formulas compactly (Section 6), we
study how efficiently they support queries (i.e., reasoning
tasks) and transformations; this is summarized in Table 1 to
allow for easy comparison. Most results for EDNF and EBDD
come from Bienvenu et al. [2010], hence we focus on ESD.
The first result is easy, so we omit the proof (simply recall
from Section 3 that ⊥ and ∆ have unique reduced ESDs).
Proposition 9. Given a formula Φ in either EDNF, EBDD or
ESD, it can be decided in polynomial time whether Φ is sat-
isfiable, and whether it is satisfied by a structure M given in
extension (i.e., as a set of propositional assignments).

Proposition 10. Given a satisfiable formula in either EDNF,
EBDD or ESD, a structure satisfying it can be computed in
polytime (in particular, a polysize model always exists).

Proof. For EDNF (resp. EBDD), we choose a satisfiable term
Kϕ ∧

∧
i¬Kψi, and we build M by taking one model of ϕ ∧

¬ψi for each i, which is polytime since ϕ is in DNF and ψi in
CNF (resp. since both are OBDDs). For ESD, at each ∨-node
we select a satisfiable child, and at each node spl(x,Φ1,Φ2),
we build M from M|x and M|x, obtained recursively.

We now turn to validity and entailment checking:
Proposition 11. Given a formula Φ in ESD, it is coNP-hard
to decide whether Φ is tautological, and to decide whether
Kψ |= Φ holds for ψ in NNF or OBDD.

Proof. Let φ =
∧

i∈I ci be a propositional CNF, where each
ci is a clause, and let Φ be the ESD ∆∨

∨
i∈I Φi, where Φi is

equivalent to¬Kci. Since Φ can be built in polytime (Prop. 6),
and it can be shown that Φ is tautological if and only if φ is
unsatisfiable, we get the first statement. For the second one,
remark that Φ is tautological if and only if K> entails Φ.

Proposition 12. For any fixed k, given an explicitly ordered
ESD Φ and a disjunction Ψ of at most k atoms Kϕi or ¬Kϕi,
where all ϕi’s are OBDDs, it is polytime to decide Φ |= Ψ.

Proof. Since it is polytime to compute the negation of the
atoms in Ψ (Prop. 6), and since bounded conjunction and sat-
isfiability are polytime on ESD (Prop. 14 and 9), we can decide
efficiently whether Φ∧¬Ψ is unsatisfiable.

However, we conjecture that unbounded clausal entailment
(CE) is hard on ESD. Note that EBDD supports bounded CE
(similar proof as Prop. 12); EDNF supports unbounded CE for
another representation of atoms [Bienvenu et al., 2010].

We finally consider combinations and transformations.
Proposition 13. Given k ESDs Φ1, . . . ,Φk, an ESD equiva-
lent to

∨k
i=1 Φi can be computed in linear time, but an ESD

of size polynomial in ∑
k
i=1|Φi| and equivalent to

∧k
i=1 Φi does

not always exist. Also, given an ESD Φ, an ESD equivalent to
¬Φ and of size polynomial in |Φ| does not always exist.

Proof sketch. This is clear for disjunction: ESD allows the ∨
connective. For conjunction, let Φi be an ESD equivalent to
K(xi = yi)∨K(xi 6= yi). Clearly, ∑

k
i=1|Φi| is linear in k; yet it

can be shown that the smallest ESD equivalent to
∧k

i=1 Φi has
size exponential in k. Finally, since

∧k
i=1 Φi ≡ ¬

∨k
i=1¬Φi, if

negation were polysize, conjunction also would.

However, bounded conjunction can be computed effi-
ciently on ESDs that are explicitly ordered:
Proposition 14. Given two explicitly ordered ESDs Φ1,Φ2,
an explicitly ordered ESD for Φ1 ∧Φ2 can be computed in
quadratic time.

Proof sketch. One can design an algorithm akin to “apply” on
OBDDs [Bryant, 1986], relying on rules (i) (Ψ1∨Ψ2)∧Ψ≡
(Ψ1∧Ψ)∨(Ψ2∧Ψ) and (ii) spl(x,Ψ1,Ψ2)∧spl(x,Ψ3,Ψ4)≡
spl(x,Ψ1∧Ψ3,Ψ2∧Ψ4) (explicit ordering guarantees that the
current split atom is the same).



The last transformation we consider is forgetting. Given an
atom x and a structure M, Fo(x,M) is defined to be the struc-
ture M|x ∪M|x. For a subjective formula Φ, Fo(x,Φ) is any
formula Ψ satisfying Mod(Ψ) = {Fo(x,M) |M ∈Mod(Φ)};
this is naturally extended to forgetting sets of variables. For-
getting turns out to be polytime for explicitly ordered ESDs,
but only when restricted to a bounded number of atoms.

Proposition 15. Given an explicitly ordered ESD Φ and a
propositional atom x, an ESD for Fo(x,Φ) can be computed
in polytime. However, given a set Y of atoms, it is not guar-
anteed that there is a polysize ESD for Fo(Y,Φ).

Proof. Clearly, forgetting distributes over ∨. Now let Φ =
spl(y,Φ1,Φ2). If x > y, then spl(y,Fo(x,Φ1),Fo(x,Φ2)) is ap-
propriate, and x < y cannot occur because Φ is explicitly or-
dered, so let Φ = spl(x,Φ1,Φ2). It follows from the defini-
tions that Fo(x,Φ) is equivalent to Ψ = Φ1⊗Φ2 defined by
Mod(Ψ) = {M1∪M2 |M1 |= Φ1,M2 |= Φ2}. Finally, it can be
shown that binary ⊗ can be applied efficiently on explicitly
ordered ESDs, using an algorithm similar to the one sketched
above for binary ∧. Now the negative result can be lifted from
OBDD, by considering the case Fo(Y,Kϕ)≡K(Fo(Y,ϕ)).

6 Succinctness
We now turn to the comparison of the three languages with
respect to their ability to represent S5 formulas compactly.

Definition 16. A language L1 is at least as succinct as an-
other language L2, denoted by L1 ≤s L2, if and only if there
exists a polynomial P verifying that for any formula Φ2 in L2,
there exists an equivalent Φ1 in L1 such that |Φ1| ≤ P(|Φ2|).

The succinctness relation is a preorder; we write L1 6≷s L2 if
both L1 �s L2 and L1 �s L2 hold, that is, if the two languages
are incomparable with respect to succinctness. The following
proposition shows that it is the case for two pairs of our three
languages when restricted to positive epistemic formulas (we
denote by L+ the language L restricted to positive formulas).

Proposition 17. EDNF+ 6≷s EBDD
+ and EDNF+ 6≷s ESD

+ hold.

Proof sketch. We first show EBDD+ �s EDNF
+. Let (ϕn)n be

a family of DNFs such that for no polynomial P does there
exist a family of OBDDs (ψn)n with ∀n,ψn ≡ ϕn and |ψn| ≤
P(|ϕn|) (such a family exists since OBDD 6≷s DNF, see Dar-
wiche & Marquis [2002]). Consider the family (Kϕn)n of
formulas in EDNF+ (actually, of epistemic atoms). It can be
shown that the smallest representations of Kϕn in EBDD are of
the form Kψn for some OBDD ψn ≡ ϕn. Since by assump-
tion such ψn is exponentially larger than ϕn, we indeed get
EBDD+ �s EDNF

+.
We can show EDNF+ �s EBDD

+ similarly, using OBDDs
which have no equivalent polysize DNFs. Now, for ESD, using
the construction of Prop. 6 we can show that a smallest ESD
for Kϕ (ϕ ∈ OBDD) has essentially the same size as ϕ , hence
the proof of EDNF+ 6≷s EBDD

+ works for EDNF+ 6≷s ESD
+.

As a corollary, we get ESD 6≷s EDNF (since if any ESD could
be turned into a polysize EDNF, it would be the case in par-
ticular for positive formulas, and conversely), and we recover
EBDD 6≷s EDNF [Bienvenu et al., 2010, Prop. 17].

We are thus left with comparing ESD and EBDD. We show
that they are incomparable in general, but that ESD is strictly
more succinct on positive formulas.

Proposition 18. It holds that ESD�s EBDD.

Proof sketch. Let Φ be the EBDD
∧n

i=1¬K(ϕi), with ϕi an
OBDD for x↔ xi, and assume ∀i,x < xi. The smallest ESD
equivalent to Φ is

∨
I⊆{1,...,n} spl(x,

∧
i∈I¬Kxi,

∧
i/∈I¬Kxi) (not

proven here for space reasons), which is exponentially larger
than Φ.

Proposition 19. ESD+ is strictly more succinct than EBDD+

(and, as a corollary, it holds that EBDD 6≷s ESD).

Proof. A formula in EBDD+ is simply a disjunction of positive
atoms Kφi, with each φi an OBDD. From Proposition 6 and
the fact that ∨ is a connective in ESD, we get ESD+ ≤s EBDD

+.
Now consider the family of formulas (Φn)n, with Φn =∧n

i=1(Kxi ∨Kxi). It can be seen that the only EBDD equiv-
alent to Φn is

∨
t(Kt), where t ranges over all 2n terms on

x1, . . . ,xn (represented as OBDDs). Now, it can also be seen
that the ESD of Figure 1 (middle) is equivalent to Φn and has
size linear in n; hence ESD+ �s EBDD

+. This in turn entails
ESD�s EBDD, and EBDD 6≷s ESD with Proposition 18.

Interestingly, note that representing in s-S5-DNFL,L′ the
family (Φn)n used in the previous proof requires exponen-
tial space for any choice of L,L′, since the proof works at the
epistemic level. This shows that even the language built as
the union of all s-S5-DNFL,L′ languages (over all languages
L,L′) is not at least as succinct as ESD for representing pos-
itive epistemic formulas. This spatial efficiency of ESD does
not hold only for positive epistemic formulas: as seen in Sec-
tion 4, ESD can succinctly represent atoms of the form Oϕ ,
while s-S5-DNFL,L′ cannot (whatever L,L′). This gives an ex-
ample of formulas which are not positive and on which ESD
is more succinct than s-S5-DNFL,L′ as a whole.

Finally, the following result intuitively shows that while
transforming a positive ESD into an equivalent EBDD can
require exponential space, it is not actually difficult.

Proposition 20. There exist a polynomial P and an algorithm
transforming any formula Φ in ESD+ into the (unique) equiv-
alent formula Ψ in EBDD+ in time bounded by P(|Φ|, |Ψ|).

Proof. The algorithm simply consists in “pushing the dis-
junctions upwards” in the ESD, i.e., replacing bottom-up each
node spl(x,Φ1 ∨ Φ2,Φ3) by spl(x,Φ1,Φ3) ∨ spl(x,Φ2,Φ3)
(and symmetrically for disjunctions in the other child).
Clearly, this process converges to an equivalent ESD which
is structurally equal to Ψ. Since the size of the ESD only in-
creases at each step, the process is output-polynomial.

This gives an interesting perspective about the relation be-
tween the two languages: while EBDD+ can support queries
that ESD+ does not support, this proposition guarantees that
ESD+ will only perform polynomially worse than EBDD+ on
these queries. All in all, positive formulas are generally more
compact in ESD, and in the worst case we can always “un-
compress” the formula and fall back on EBDD.
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Figure 2: Results for positive feedbacks. From left to right: size for n = 15; size for n = 30; time for n = 15; time for n = 30. Each curve
corresponds to a pair language/term size. We do not report time for EDNF with t = 7, which was very bad.

7 Experiments

To investigate the languages in practice, we ran experiments
on randomly drawn scenarios inspired from planning. Our
first set of experiments focused on positive formulas, by run-
ning offline progressions of belief states by actions test(ϕi).
For each run, we drew m actions of the form test(ϕi) (i =
1, . . . ,m), with ϕi a random (uniform, satisfiable) term of
a given size t. Then, starting from Φ0 = >, we iteratively
computed the current set of belief states Φi, i = 1, . . . ,m,
by progressing Φi−1 through test(ϕi), that is, by computing
Φi−1∧(Kϕi∨K¬ϕi). For instance, with t = 3, a possible term
was x4 ∧ x1 ∧ x2, yielding progression by K(x4 ∧ x1 ∧ x2)∨
K(x4∨ x1∨ x2).

We ran experiments with a moderate and a larger number
of variables (n = 15 and n = 30; recall that there are 22n

struc-
tures over n atoms!) with term sizes t = 1,3,7, and numbers
of actions m = 1, . . . ,18. For each tuple (n, t,m), we averaged
the results over 100 runs. Figure 2 plots the size of the final
set of belief states Φm, and the time taken for computing it
iteratively from Φ0. It can be seen that ESD provides the most
compact representations, especially for small terms: as terms
get larger (e.g., t = 7), feedbacks Kϕi are most constrained
and the set of belief states shrinks, masking the differences
between ESDs and EBDDs. On the other hand, it can be seen
that in practice, EDNF does not provide compact representa-
tions. For running time, the advantage of ESD over EBDD and
EDNF is not so clear; the gain in compactness in ESD comes
with some computational overhead in practice (notably, re-
duction operations).

We also experimented on entailment: at the end of each
run, we decided Φm |= (Kxi∨K¬xi) for all atoms xi. The re-
sults (not reported here for lack of space) show that all three
languages are very efficient at this, even when Φm is large.

We performed a second set of experiments, with the same
setup except that for each feedback Kϕi and K¬ϕi, a polarity
was drawn uniformly: for instance, the i-th action could yield
an epistemic progression by Kϕi∨¬K¬ϕi. Results (again not

reported in detail) show that for this setting the most interest-
ing language is EBDD, both in succinctness and computation
time. Both EDNF and ESD are clearly worse, and EDNFs tend
to be more compact but not more efficient than ESDs.

Finally, we experimented interleaving progression by
test(ϕi)’s (with positive feedbacks) and progression by on-
tic actions similar to conditional STRIPS actions, such as
ψ = (x1 ∧ x′2 ∧ x′3)∨ (x1 ∧ x′1 ∧ x′3), which sets x2,x3 to > in
states satisfying x1, and x1 to > and x3 to ⊥ in other states.
Progressing a belief state Φi−1 by an ontic action ψ essen-
tially consists in computing Φi−1 ∧Kψ and forgetting all
nonprimed atoms in the result. We thus aimed at measuring
the efficiency of forgetting in all three languages. The results
show that forgetting is cheap for all languages, and we ob-
served the same trends as in the first set of experiments.

8 Conclusion
We introduced the language ESD of epistemic splitting di-
agrams for representing subjective S5 formulas. We inves-
tigated ESD and the known languages s-S5-DNFDNF,CNF and
s-S5-DNFOBDD,OBDD (called EDNF and EBDD here), both from the
viewpoint of knowledge compilation and with experiments
on random scenarios inspired from contingent planning. This
is to our knowledge the first empirical study on effective S5
representations, although work in planning addressed specific
issues of representation [e.g. Hoffmann & Brafman, 2005].

Our theoretical and empirical results complement each
other. On positive formulas, ESD is more succinct than EBDD,
while supporting mostly the same queries and transforma-
tions; this was confirmed by the experiments. On the other
hand, both are incomparable to EDNF for succinctness, yet in
practice EDNFs are clearly less compact. Experiments also
show that computations are heavier on ESD, partly balancing
succinctness. The picture is different on general formulas, for
which EBDD turns out to be very succinct and efficient.

A short-term perspective of this work is to revisit with effi-
cient representations, and notably EBDD and ESD, the standard
planning approaches that (explicitly or not) use S5 reasoning.
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