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Analyzing the exchange energy of two conduction electrons in a crystal at many-body approach we find that the exchange energy may be negative and, thus, the singlet state may be favorable. A full overlap in the real space of the wave functions of two conduction electrons leads to a deeper exchange energy. Thus the exchange interaction causes a bond between two conduction electrons in the real space. The singlet bond is possible because the singlet electrons are in average closer to positive ions than single electrons. If conduction electrons, before the pairing, are put on the Fermi surface in the momentum space, then every pair may exist permanently in time. The motion of conduction electrons in the crystal may prevent the formation of Cooper pairs, because the kinetic energy of the motion is usually larger than the binding energy in the pair. Conduction electrons as standing waves have zero momenta, hence their momenta are synchronous; therefore the formation of Cooper pairs is more probable than in case of non-zero momenta. The approach of standing waves explains the inverse isotope effect and many other facts about superconductors. Considering the electronic pairs as bosons we find that a further necessary condition for superconductivity is a non-zero temperature of the Bose-Einstein-Condensation.

Introduction and motivation.

The knowledge of root causes of superconductivity (SC) would explain many mysterious facts about all classes of superconductors. However, a unified solution remains still an open question, current theories are not universal and explain many effects ambiguously [START_REF] Hirsch | Superconducting materials classes: Introduction and overview[END_REF]. The mainstream theories assume that SC is a result of the electron pairing at a mean-field approximation, the spin ordering plays a part for the pair formation [START_REF] Bardeen | Theory of Superconductivity[END_REF], [START_REF] Moriya | Spin fluctuations and high temperature superconductivity[END_REF], [4]. Every spin ordering is related with the exchange interaction, which influences the total energy of the electrons interacting with every particle of the crystal. Moreover the exchange interaction may in itself cause binding states in quantum systems at a many-body approach [START_REF] Bleaney | Electricity and Magnetism[END_REF], [START_REF] Suzuki | [END_REF]. Therefore the many-body approach is more appropriate to define the electron states than the meanfield approximation, and the role of the exchange interaction seems to be crucially important for the pair formation. In the work is shown that the Pauli Exclusion Principle and its associated exchange interaction may in principle lead to binding states of conduction electrons, which under certain conditions become superconducting.

Formation of superconducting pairs.

Normally the spins of conduction electrons in a crystal are unordered because the thermal fluctuations and own motion of electrons destroy the spin ordering. Thus the spin of every conduction electron e 1 is random to spins of all other electrons. This state of electron e 1 is designated as unpaired or single. If the spins of electrons e 1 , e 2 form a singlet in their overlap area in the real space, then the state of the electrons is designated as paired. Every unpaired conduction electron has its accurate spatial wave function describing the position of the electron in the crystal. Knowing the accurate wave functions of unpaired electrons e 1 , e 2 we can compute their exchange energy. If two electrons 2 [START_REF] Hirsch | Superconducting materials classes: Introduction and overview[END_REF] , e e form a singlet, then their overall position-space wave function ) , ( 
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If the exchange interaction of electrons e 1 , e 2 is very weak, then their spins remain unpaired and fully random. In this case the exchange energy is negligible and the overall energy of the unpaired electrons is equal to the direct term D as it should be for the unpaired electrons with accurate wave functions
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If the exchange interaction of electrons e 1 , e 2 is not negligible, then their exchange term J is not zero. A singlet state of e 1 , e 2 is favorable, if their exchange energy J is negative [START_REF] Van Vleck | The Theory of Electric and Magnetic Susceptibilities[END_REF]. J takes into account the modification of the initially unpaired wave functions resulting from the pairing. This wave function modification influences all interactions of e 1 , e 2 in the crystal; hence we must compute the exchange energy J for ) , ( ˆ2 1 r r O   as a sum of all interactions of e 1 , e 2 including their kinetic energy, repulsion of e 1 , e 2 from every conduction electron and attraction of e 1 , e 2 to every ion. If two electrons form a triplet, then their overall position-space wave function is antisymmetric. The triplet state of e 1 , e 2 is favorable, if their exchange energy J is positive. We assume that ) ( 

) ( ) ( 2 1 r r   appearing in Eq. (2.4) is not zero: ) 5 . 2 ( 0 ) ( ) ( 2 1 r r  
The wave functions of conduction electrons fade out slowly with the distance and can cover many points of lattice, thus the wave functions of many electrons may overlap in a shared real space, so we consider at first the limiting case that
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Below we will see that this assumption is true because a maximal overlap in the real space of two paired wave functions is energetically favorable in comparison to a partial overlap. Using Eq. (2.6) and non-orthogonality of
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 in Eq. (2.5) we can use for Eq. (2.4):
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Substituting Eq. (2.7) into (2.4) we obtain:

) 8 . 2 ( ) ( ) ( ) , ( ) ( ) ( 2 2 1 1 2 1 2 2 1 1 r r r r O r r J      
We see that Eq. (2.8) is equal to Eq. (2.3), i.e. in the case of the full overlap of non-orthogonal wave functions
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 the exchange energy of two singlet electrons is equal to the overall energy of two initially unpaired electrons:
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We may define that the electron energy outside of the crystal is zero. Then the electron energy ) , ( inside the crystal should be negative, otherwise the states of single electrons in the crystal are instable. Thus the exchange energy J of e 1 , e 2 is also negative and the paired state is favorable in comparison to the unpaired state. This conclusion has a clear physical meaning. The exchange term takes into account that the average distance between two singlet electrons decreases [START_REF] Griffiths | Introduction to Quantum Mechanics[END_REF], [START_REF] Stöhr | Magnetism: From Fundamentals to Nanoscale Dynamics[END_REF], what increases the repulsion between electrons. Consider a small area around one of ions in the overlap area of e 1 , e 2 in the real space; due to the Exclusion Principle two singlet electrons are located in this small area with a probability higher than two electrons with parallel spins, because the electrons with parallel spins avoid each other and cannot be put into a small area (i.e. the probability that 2 1 r r   is little). If two electrons are unpaired, then their spins are equiprobably parallel or antiparallel, hence the electrons avoid each other, but do it weaker than the electrons with parallel spins. Thus the probability to observe in this small area two unpaired electrons is larger than this probability for two electrons with parallel spins, and smaller than this probability for a singlet. Therefore the singlet electrons are in average closer to the ion than two unpaired electrons. In simple words two singlet electrons are closer to each other, the ions are located somewhere between electrons, therefore the singlet electrons are unavoidably closer to ions. The exchange term takes into account this decrease in distance between electrons and ions.

Consider that the overlap area of e 1 , e 2 in the real space is negligible (i.e. integral
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is small), then the exchange energy in Eq. (2.4) is negligible. In this case there is no advantage of the singlet state, since the electrons are separated in the real space. Thus the larger the overlap, the greater the energy advantage of the pairing. Consequently two paired wave functions tend to a full coincidence in the real space and remain together in equilibrium. Thus the assumption in Eq. (2.6) is justified. Finally two electron waves stay together because the singlet state with a full overlap in the real space reduces their total energy. It is possible to show that the singlet pairing of some conduction electrons is favorable for the whole crystal. We define all parts of the overall energy of two unpaired conduction electrons ) , ( 
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The points 1-6 are a list of the crystal energy terms, which contain the paired electrons e 1 , e 2 . If the crystal has many singlet pairs, then the energy of each pair ) , ( 1i i e e contains the points 1-6 (however, we must again correct double counting the repulsion between electrons of different pairs). The total energy of the many-body crystal contains additional energy terms:

7. The kinetic energies of single conduction electrons; 8. The potential energy of repulsion between single conduction electrons; 9. The potential energy of attraction of single conduction electrons to ions; 10. The potential energy of repulsion between ions. The points 1-10 are a full list of all crystal energy terms. The single, remaining unpaired, electrons don't change their states; hence the crystal energy terms in the points 7-10 remain unchanged. In the points 1-6 the overall energy of every singlet pair ) , ( 1i i e e is lower than the energy of two unpaired electrons i i e e , 1 due to the negative exchange energy J. Thus the singlet pairing of some conduction electrons inevitably leads to the energy lowering of the whole crystal, the macroscopic state can exist. One can obtain the same result by exploring the many-body crystal Hamiltonian ) ... (
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and the total crystal wave function as a product of normalized accurate wave functions of every single [START_REF] Stöhr | Magnetism: From Fundamentals to Nanoscale Dynamics[END_REF] and paired electron: 
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However, it is a rare event that the momenta k  of two running waves are equal permanently in time. The momenta of electrons may be permanently equal if before pairing each electron is a standing wave, which is a sum of two equiprobable Bloch waves propagating in opposite directions:
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The total momentum of each electron as standing wave is zero, hence the momenta of electrons are synchronous, so the pairing is possible despite the fact that the kinetic energy of electrons may be larger than their pairing energy. The overall energy of two unpaired electrons ) , ( 21 r r E   is usually not arbitrarily small; consequently the exchange energy J in Eq. (2.9) is also not arbitrarily small. The sign of the exchange term J is related with the sign of the energy increment resulting from the pairing. This energy increment is related with wave function modifications and is not necessarily negligible if J is not negligible; therefore the binding energy 2∆ in the singlet pair is also not negligible:
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are normalized accurate wave functions of e 1 , e 2 after pairing; A is a positive material constant. Since the binding (pairing) energy 2∆ is not arbitrarily weak, the unpaired (normal) state of e 1 , e 2 is instable. However, the paired state of e 1 , e 2 is permanent in time only if external energies (temperature, radiation, magnetic field) are weaker than 2∆. The binding energy 2∆ is roughly related to a pairing temperature T*: 2|∆| ≈ k B T*. If the wave functions of two conduction electrons in the crystal (for sample two s-electrons) permanently coincide in the real space and form a permanent singlet, then the electrons are similar to the electrons in the ground state of Helium. The difference is that in the crystal the wave functions cover many ions and the pair can move in an external potential, since all crystal areas are equipotential for the pair. In the ground state of Helium the singlet state is favorable despite the fact that the repulsion of electrons is maximal; the increase in attraction of the singlet s-electrons to the Helium nucleus exceeds the increase in repulsion and in kinetic energy. The electronic pair is stable like a valence bond in multi-atom systems, so the pair doesn't form/lose any bonds in the crystal and doesn't absorb/radiate any chemical energy. Every standing wave is limited in the real space, therefore a stable singlet of two standing waves can be considered as a zero-spin boson. Bosons can form the Bose-Einstein-Condensate (BEC) below a certain temperature T BEC . If all electronic pairs are in the BEC ground state, then the excitation energy of every pair is roughly related to k B T BEC , which is not zero if the bosonic density is not zero. If all external influences are weaker than k B T BEC , then the pairs remain in the BEC ground state and cannot absorb/radiate any energy in the crystal; as a result the total energy and momentum of all pairs don't dissipate, the pairs fluctuate without resistance despite the fact that the single electrons were standing waves before pairing. Thus the pairing of conduction electrons and BEC of the pairs lead to the zero resistivity (likewise works the superfluidity in Helium-4; the pairing energy of electrons k B T* in Helium-4 is huge, whereas k B T BEC is small). In an external magnetic field H the crystal obtains an additional energy density , hence the electrons may pair up despite the band gap. A doping in the crystal may reduce the band gap and, thus, give rise to SC. This doping effect is observable in cuprates [START_REF] Lee | Doping a Mott insulator: Physics of high-temperature superconductivity[END_REF], in iron-based superconductors [13], in semiconductors [14]. A necessary condition for SC in metals is that the electrons, before pairing, are close to the Fermi surface in the momentum space. We show this assuming that the pairing occurs when the energy of the single electron has a certain value E λ . If the thermal energy doesn't exceed the binding energy │∆│ in Eq. (2.14), then the concentration of the pairs is not zero and in the energy spectrum of single electrons occurs a gap around the value E λ . The gap is thin, since │∆│ is usually small and the density of electrons with close energies is limited by the Exclusion Principle. If E λ is notably less than the Fermi level E F , then there are single electrons with the energy larger than E λ . These single electrons may drop to the level E λ due to energy fluctuations and may, thus, form new pairs. The concentration of the paired electrons is limited by the thin gap around E λ ; therefore the new pairs replace the already existing pairs, which lose the paired state. Thus each electron is not permanently paired, but it becomes periodically unpaired. During every switching of states the electron absorbs/loses energy, in the unpaired state the electron is resistive, therefore the momentum of the electron and of the pair dissipates. Thus the state with E λ < E F cannot keep a supercurrent, despite the fact that the pairing is possible. If E λ = E F then every pair may exist permanently in time, because below a temperature T c the single electrons cannot overcome the energy gap and cannot reach the pairing level E λ = E F ; as a result the new pairs don't arise and don't replace the existing pairs. Hence the switching of states doesn't occur and the total momentum of the pairs doesn't dissipate. Thus the superconducting pairing occurs only for single electrons in an energy gap with E F as the upper limit. Only such permanent pairs are superconducting. At a temperature above T c the thermal energy is sufficient to scatter single electrons through the energy gap to the pairing level E λ , therefore new pairs may arise and replace the existing ones, the state becomes dissipative.

Pairing of standing waves.

We found that the binding energy in the singlet pair e 1 , e 2 is maximal if the overlap integral
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i.e. the wave functions coincide in the real space. The energy gap of superconductors has order of magnitude 10 -3 eV, the Fermi level has order of magnitude a few eV. Consequently the electron motion can split the pair in the real space. The energy of very slow electrons is usually much lower than the Fermi level; hence the slow electrons cannot form superconducting pairs. Two electrons can form a pair if their momenta are synchronous, but it is a rare event for running waves. The electrons as standing waves have zero-momenta, hence their momenta may be synchronous and the pairing is possible despite a large kinetic energy. A standing wave occurs as a result of reflections of a running wave from a periodic potential. The condition of the standing wave in a crystal is the Bragg condition [15]:
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Where: n integer; length of the Bloch wave in Eq. (2.12); R one of lattice parameters.

Under Bragg condition the electron becomes a set of standing waves with a zero total momentum [16]. At n=1 in Eq. (3.1) the length of the standing wave is maximal: R 2
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. A crystal has some values R (R 100 , R 110 , R 210 etc. depending on the crystal axis) and, thus, some values 1 . Each value
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Where m is the inertial mass of free electron. Not all materials have conduction electrons with short values λ=2R and with its associated
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If the Fermi level of a crystal is low, then λ values are larger than short values 2R and electron energies are lower than corresponding R E 2 ; so the states with short λ=2R are empty and short standing waves don't occur. In some metals

R E 2 is close to F E (it is equivalent that λ F =2R).
Probably in some crystals the formation of pairs is possible at n larger than 1 in Eq. (3.1). For sample at n=2 the length of standing waves is λ 2 =R. Every act of the pairing is energetically favorable; hence the energy 2|∆| is emitted. Thus the momentum of each pair increases from zero to a value p ≤ (2|∆|•2•2m) 0.5 . This momentum p should be added to the momenta of paired electrons in the momentum space. Therefore the kinetic energies of electrons from different pairs are not equal, but distributed into a spectrum with the width ≈ |∆|. For instance, if the kinetic energy of normal electrons was E F before pairing, then after the pairing the kinetic energy becomes ≈ E F + |∆|. So the spectrum of paired electrons is above the spectrum of single electrons in the momentum space. Note: the same conclusion follows from the exchange energy: the exchange term for kinetic energy is positive, i.e. the kinetic energy grows by pairing, whereas the total energy falls (the same relation is valid for all singlet bonds in chemistry). Thus the paired electrons can overlap with normal electrons in the real space. The density of paired electrons is ≈ S(E F )•|∆|, where S(E F ) is the density of states of conduction electrons. The spectrum of normal electrons obtains a corresponding gap (E 2 -E 1 ) ≈ |∆| around the value E λ=2R (E 1 , E 2 are limits of the gap). The gap is not negligible if the thermal energy is insufficient to destroy the pairs. As shown above a necessary condition for SC is that E F is the upper limit of the gap:
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The energy gap is (E F -E 1 ) , where the gap bottom E 1 should be below E λ=2R (otherwise new pairs arise and replace the existing ones, energy dissipates). The density of the singlet electrons N s is limited by the energy gap:
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Thus the energies and states of single electrons below the gap (E F -E 1 ) stay unchanged as assumed for Eq. (2.11) R doesn't change). Thus the doping may lead to SC, T c increases. If the crystal is overdoped, then
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, T c vanishes. This doping effect explains the dome form of phase diagrams of superconductors [START_REF] Md | A Review on Cuprate Based Superconducting Materials Including Characteristics and Applications[END_REF]. A double dome form is possible due to the fact that the crystal has some lattice parameters depending on the crystal structure. Thus a large value
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corresponds to the pairing energy ∆ in Eq. (2.14); however, the doping influences on both F E and ∆, so the T c - maximum is not always pinned exactly to
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We can specify the energy 
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Thus Ck B T c is an energy area between the SC -gap bottom and E λ=2R . A growing T closes continuously the area Ck B T c by putting there single (normal) electrons. At T=T c the area Ck B T c is covered by single electrons. Knowing the density of single states S(E λ ) around the SC-gap, we can calculate T c and C -parameter in Ck B T c . The pairing energy ∆ in Eq. (2.14) is to find by investigating the wave function modifications resulting from the singlet pairing and leading consistently to experimental ∆-values. The SC -gap bottom E 1 is to find from Eqs (3.5), (3.6):
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The single-electron-distribution on the SC-gap bottom E 1 is the Fermi-Dirac function f(E λ , T). The single-electronconcentration N(T c ) at T just below T c is:
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New pairs don't arise at T ≤T c , so N is independent of T. Hence N(0)=N(T c ) and Eq. (3.9) is equal to Eq. (3.10):
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), E λ=2R is known from crystal structure; hence, knowing S(E λ ), we can calculate T c from Eq. (3.11). C parameter in Ck B T c we find from T c and using Ck B T c =(E λ=2R -E 1 ). Calculations with Eq. (3.11) show: A. For Fermi liquids S(E λ ) is proportional to The isotope substitution is a way to tune T c by tuning E F to E λ=2R based on the fact that E F depends on the effective mass of electron m* and electron density N [19], whereas E λ=2R in Eq. (3.2) depends only on the lattice parameter R.
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The isotope effect is a consequence that the energy of phonons is proportional to M -0,5 (M -mass of ion). The decrease in M raises the energy of phonons; therefore the electron-ion interaction and its associated reflection of electrons from ions may intensify. This intensification is equivalent to the increase in the effective mass m* and, thus, to the decrease in E F , whereas R is almost unchanged. If the initial value E F is larger than E λ=2R (it is usual for metals), then the decrease in M pulls E F down closer to E λ=2R ; hence T c grows (the isotope coefficient α>0). If the initial value E F is less than E λ=2R , then the decrease in M pulls E F down away from E λ=2R ; hence T c may vanish (α<0). One can conclude that in case R F E E 2 the isotope effect may be weak (│α│<0,5). Thus the different values and sign of α [START_REF] Manzoor | Isotope Effect as a Probe of the Role of Phonons in Conventional and High Temperature Superconductors[END_REF] are a result of the different initial positions E F to E λ=2R . Other ways to tune T c by tuning E F to E λ=2R are: electric field [21] since E F depends on the electronic density; film thickness [22], [23], [24], [START_REF] Gozar | High Temperature Interface Superconductivity[END_REF] since the mutual E F of layered structures depends on layer thicknesses; the high pressure [START_REF] Hamlin | Superconductivity in the metallic elements at high pressures[END_REF], [START_REF] Kubozono | Superconductivity in aromatic hydrocarbons[END_REF], [START_REF] Debessai | Pressure-induced superconductivity in europium metal[END_REF] since E F depends on the distance between atoms. A further sample of the F E tuning is the alkali metals (Li, Na, K, Rb, Cs). Only Lithium is superconductor at ambient pressure [START_REF] Tuoriniemi | Superconductivity in lithium below 0.4 mK at ambient pressure[END_REF] The described approach explains the combined isotope and high pressure effect in lithium [START_REF] Marie | High pressure superconducting phase diagram of 6Li: anomalous isotope effects in dense lithium[END_REF]. In lithium-6 the high pressure and light isotope pull E F below the level E λ=2R , so T c starts to diminish at a certain pressure p 0 . In heavy lithium-7 E F remains above E λ=2R at p 0 , hence the increasing pressure continues to pull E F down toward E λ=2R ; T c continues to grow. As a result the sign of dT c /dp above the pressure p 0 is different for 6 Li and 7 Li.

A perfect conductor cannot form the Cooper pairs, because the electrons pass through the lattice without reflection, the standing waves don't arise, the electronic wave packets are unlimited in the real space, hence a correlation of wave functions in accordance with Eq. (2.1) is impossible because of a finite speed of electron-electron interaction; so the exchange energy and T c tends to zero. Thus the exchange energy and the associated pairing energy should be related with the strength of the electron-ion reflection via the potential energy of electrons in Eq. (2.10). A deeper potential energy of electrons leads to a deeper J in Eq. (2.10) and, thus, to a stronger pairing energy in Eq. (2.14). On the other hand, a deeper potential energy means a deeper potential on each ion, which interacts/reflects conduction electrons more strongly. So the singlet bond is stronger if the reflection of the unpaired electrons is stronger; hence T c may also be larger, but under the condition that R F E E 2 is kept. The described approach is consistent with the fact that the high temperature superconductors are layered structures and poor conductors in the normal state. In some layered structures is possible to combine two poorly compatible things: a large effective mass m* (related to the strong electron-ion interaction/reflection) and a large E F (up to the value E λ=2R ). This is because E F in thin films is larger than in bulk [START_REF] Dymnikov | Fermi energy of electrons in a thin metallic plate[END_REF], whereas the electron reflection and m* in-plane may remain almost unchanged. In a 3-dimensional structure is difficult to combine a large m* (> 5•m) and R F E E 2 (a few eV). Thus T c in quasi 2-dimensional systems can be higher. The pairing energy in the proposed model is related rather to the lattice potential than to the carrier density. This enables SC at relatively low carrier densities. A sample is superconducting bismuth at ambient pressure, a semimetal with a low carrier density, N ≈ 3•10 17 /cm 3 [START_REF] Prakash | Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure[END_REF]. E F of bismuth is ≈ 25 meV, hence corresponding λ F = h•(E F 2m) -0.5 ≈ 0.78•10 -8 m. Thus in bismuth are working the long values of R = 0.5 λ F ≈ 0.39•10 -8 m (i.e. R 810 , R 910 and similar). These long standing waves exist only due to the high crystal purity, where the electronic mean free path is much larger than λ F . Thus SCpairs emerge from the long standing waves on the Fermi level. Since the electron's waves are long range, the mean distance between electrons in one pair may be larger than the electron's wave length λ F ≈10 -8 m, so the pairing is possible at a carrier density less than (λ F ) -3 ≈ 10 18 /cm 3 F BEC E T T For Fermi metals usually E F >>|∆|, hence T BEC >T* and SC depends rather on T* than on T BEC , i.e. T c =T*<T BEC . For strongly correlated systems E F may be order of magnitude |∆|, so BEC may define SC, i.e. T c =T BEC <T*. If the pairing temperature T* is larger than T BEC (i.e. T*>T BEC ), then at T above T BEC the electronic pairs may be permanent but non-superconducting. The non-superconducting pairs are observed in [START_REF] Cheng | Electron Pairing without Superconductivity[END_REF]. Consider E F is close to the SC-gap bottom E 1 and notable below E λ=2R (that is possible, for example, in underdoped cuprates). Then the gap (E F -E 1 ) in Eq. (3.3) is small and the singlet density N s is also small. Hence the corresponding T BEC may be lower than the pairing temperature T*, because T* depends rather on the lattice potential than on N s . If the BEC is a necessary condition for SC and T BEC <T*, then T c = T BEC ; so T c is also lower than T*. Thus at T between T c and T* there are permanent pairs without SC. This may be related with the pseudogap in some superconductors.

Conclusion and discussion.

The above argumentation shows that the exchange interaction may in itself cause the electronic pairing in a crystal. Thus the non-zero pairing (binding) energy is a result of the Pauli Exclusion Principle. Further necessary conditions for SC: the permanency in time of every electronic pair (provided with pairing of standing waves on the Fermi surface); the non-zero temperature of the BEC ground state of the electronic pairs. The approach of the exchange energy is clearly applicable when the waves ) (  contain s-orbitals, because the s-orbitals envelop each ion and the singlet pairing leads to a convergence of electrons to ions. In case of p-, d-, forbitals the described approach works if the orbitals envelop nearest neighbor ions. In this case the singlet pairing depends on the orbital orientation and on factors influencing the distance between ions (pressure, doping etc.) The approach of standing waves is related with the Bragg-reflection, which may form diffraction patterns in the crystal. This explains why the charge density order pre-exists the superconductivity in cuprates [36], [37], [38]. Following the proposed approach we can define main ways to a higher T c in new superconductors:

A. The value E F should be tunable close to E λ=2R (i.e. λ F is tunable to short 2R). The approach of standing waves is not applicable to systems with heavy fermions, where E F is much smaller than E λ=2R . But in this case the kinetic energy of electrons on the Fermi surface may be smaller than the binding energy in the pair; hence the pair may arise and exist permanently in time causing SC. One can write roughly for narrow band systems: 

  in the real space and contain similar atom orbitals (for sample sorbitals); momenta of e 1 , e 2 along the crystal are equal or zero. In this case as orbitals of the ground state in H 2 -molecule or in Helium atom; hence the overlap integral

  of operators for energies: 1. The kinetic energies of paired and single conduction electrons; 2. The potential energy of repulsion between all conduction electrons (paired and single); 3. The potential energy of attraction to ions of all conduction electrons (paired and single); 4. The potential energy of repulsion between ions. All conclusions from Eqs (2.1)-(2.10) are valid if the electrons e 1 , e 2 are two equal running Bloch waves[START_REF] Sproull | [END_REF]:

  the binding energy 2|∆| ≈ k B T* and excitation energy ≈ k B T BEC , then the pair fluctuates in the field H as a free particle with a charge -2e and zero spin. Consequently there are no obstacles to redistribute the non-dissipative fluctuations of the pairs into non-dissipative currents compensating the additional magnetic energy w (Meissner effect).If the binding energy |∆| per one electron in Eq. (2.14) is larger than the insulating band gap E g of the crystal, then electrons can leave the valence band at a temperature * T T

E 2 ,

 2 a material specific constant) as a minimum thermal energy, which is necessary to scatter single electrons from the bottom of the superconducting gap to the pairing level R where new pairs arise and replace the old ones. So we know about the T c tuning:

5 , 0 E

 50 , then C depends slightly on the level E 1 and T c . Substituting the ranges E 1 =(0.25 -3) eV and T c =(0.1 -50) K into Eq. (3.11) we find E λ=2R and the range C ≈ (4.5 -10) units; B. C depends on the S(E λ )-slope around the level E 1 : the larger dS/dE λ , the smaller C. On the zone edge (λ=2R) dS/dE λ may be larger than the 5 , 0 E -slope, therefore C may be smaller than (4.5 -10) by a few units, i.e. C ≈ (3 -7). These C - values are consistent with experiments.

  The tuning is possible by doping, pressure, film thickness, electric field etc. B. The material should have a large value m*, since m* is related to deeper lattice potentials in Eq. (2.10) causing a deeper exchange energy. However, the condition E F = E λ=2R should be kept. A possible way to combine large values E F and m* is the low dimensionality; C. The material should be homogeneous microscopically, because impurities/defects suppress T c by scattering the regular standing waves and values

.

  The exchange energy of e 1 , e 2 in Eq. (2.9) is a sum of the points 1-6:

																										E	2 1 r r  	:			
		1. The kinetic energies of electrons	e and	e ,	K	( e	)	,	K	( e	)	;				
															1				2			1				2							
		2. The potential energy of repulsion of electron	1 e from all conduction electrons in the crystal,	) 1 e , e ( P	;
		3. The potential energy of repulsion of electron	2 e from all conduction electrons in the crystal,	) 2 e , e ( P	;
		4. We must correct double counting the repulsion between e 1 , e 2 , so we subtract the potential energy of repulsion
			between electrons e 1 , e 2 ,		, 1 e 2 e ( P	)	;															
		5. The potential energy of attraction of electron	1 e to all ions in the crystal,	, 1 I e ( P	)	;
		6. The potential energy of attraction of electron	2 e to all ions in the crystal,	, 2 I e ( P	)
	J	E	(	r	,	r	)	K	( e	)	K	( e	)	( e P	,	) e	( e P	,	) e		( e P	,	e	)	( e P	,	I	)	( e P	,	I	)	(	) 10 . 2
				1		2			1			2				1				2					1		2	1				2

  . The electrons (before superconducting pairing) must be close to the Fermi surface, i.e. the value

	R E 2 is significantly larger than	F E , then there are no electrons with	2	R	and the gap doesn't occur. For this
	reason in some structures with a low	E a doping may raise the carrier density and its associated	E up to the level
				F		F
	E	(which is constant, if			
	2	R			
				E	E	significantly [17]) are not superconductors. If
				2	R	F
				6	

R E 2 must be close to F E (i.e. R F 2 ). Really, the energy gap is much less than F E ; therefore if R E 2 is significantly less than F E , then the upper gap limit 2 E is also less than F E ; as shown above this case is not superconducting because the pairs are not permanent in time. For this reason Au, Ag, Cu (where

Table 1 .

 1 and only Lithium has ≈3,2 eV[30] at ambient temperature. The next candidate in superconductors after Lithium is Cesium: Comparison of energies E F and E λ=2R for alkali metals. E λ=2R are calculated by Eq. (3.2) for lattice parameters R 100 and R 111 in bcc crystals. Larger R-values are not considered, since they correspond to smaller E λ=2R values. For Li is used the experimental value E F at ambient temperature; for other alkali metals are used E F values calculated by Eq. (3.12) corresponding roughly to the experimental values.

										E	R 2 =3,09 eV (calculated by Eq. (3.2) in bcc-structure, R 100 =3,49 Å) relatively
	close to									
	E	R 2 =1,33 eV (calculated by Eq. (3.2) in bcc-structure,	111 R	14 , 6	3	2	32 , 5		),	F E ≈1,54 eV calculated by
	Eq. (3.12); Cesium is really superconductor under high pressure [31]. The high pressure increases the density of ions, so
	m* rises and	F E drops to	E	R 2 ; therefore T c grows both in Li and in Cs. The other alkali metals are not
	superconductors and their values	E are larger than	E	more significantly than in Li and in Cs (table 1). We note
										F		2	R
	that	E and	E	are equally proportional to	2 R , hence without the modification of m* an isotropic R-reduction
		F		2	R						
	increases both	F E and	E	R 2 .			
			E			E				E -	E	E	E -	E
			F				2	R			F	2	R	2	R	F	2	R
						for R 100			for R 100	for R 111	for R 111
			eV			eV				eV	eV	eV
	Li		3.2			3.09			0.11	4.12	-0.92
	Na		3.16			2.05			1.11	2.73	0.43
	K		2.04			1.32			0.72	1.76	0.28
	Rb	1.78			1.15			0.63	1.54	0.24
	Cs		1.54			1.0				0.54	1.33	0.21

F E

  . For Fermi metals we can estimate the relation between BEC-temperature and pairing temperature, T BEC /T*.

	Assuming	N	s			S	( F E	)	and	5 . 3	k	B T	*			, using the well-known equations	S	(	E	F	)	2 1	/	2	m	3	/	2	E	F / 1	2	(	2		3	)	for
	Fermi liquid and	T	(	N	)	3	.	3125		2	(	N	/	2	)	2	/	3	(	2	m	k	)	for bosonic gas we obtain:
							BEC				s										s										B		
			1	/	3																												
									(	) 13 . 3																					
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