
HAL Id: hal-01311502
https://hal.science/hal-01311502v1

Preprint submitted on 4 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A common framework embedding network calculus and
event stream theory

Marc Boyer, Pierre Roux

To cite this version:
Marc Boyer, Pierre Roux. A common framework embedding network calculus and event stream theory.
2016. �hal-01311502�

https://hal.science/hal-01311502v1
https://hal.archives-ouvertes.fr

A common framework embedding network calculus and

event stream theory

Marc Boyer, Pierre Roux
ONERA – The french aerospace lab

F 31055, Toulouse, France

May 4, 2016

Abstract

Network calculus (also known as real-time calculus) and event stream theory are two
theories designed to compute upper bounds on response time for real-time systems. Both
generalise the common periodic request arrival to any kind of workload using cumulative
functions. In network calculus, a data flow is modelled by its cumulative curve, A(t),
representing the amount of data sent by the flow up to time t, whereas the event stream
theory counts the number of packets sent up to t, denoted by E(t). Of course, the size of
packets is a link between both functions. This work presents a formal model embedding
both A, E, the packet functions, and their basic relations.

1 Introduction

The correct behaviour of cyber-physical systems requires some real-time control capabilities,
i.e. the guarantee that some response to some stimulus can be computed and sent to some
actuator within a given latency budget. The engineers need some method to compute the
response time of the computing platform (involving calculators, busses, gateways, etc.) when
designing the system and allocating resources. Several methods target this goal, and among
others, event stream theory and network calculus are compositional methods, i.e. methods
where each component is stimulated by request flows (task releases, message arrivals...), uses
local resources, and where an analytic method computes the flow output and bounds on latency
and memory usage.

In event stream theory [1], a flow is modelled by a function E : R+ → N where E(t)
represents the accumulated number of task activation up to time t, whereas in network calculus
[2], a function A : R+ → R+ represents the accumulated amount of data received up to time t.
Both CPU and network can be generalised as resources, where E(t) represents the number of
requests (task activation, packets...), and A(t) the amount of workload (CPU cycles, number of
bits...).

The response time of a component mostly depends on its workload: number of CPU cycles
to execute, number of bits to send, etc. From this assessment, one may conclude that an
amount-based model is the most adequate one. But in a distributed system, where a component
produces some output that activates some work on a second component, to situations occur: in
network elements (switches, routers), the workload is directly related to the data size, whereas
in computing elements, the reception of a message is an event that will release a task, whose
workload is often independent of the message size. Then, analysing a distributed system requires
to handle both event arrivals and data/workload amount.

In most studies, only one function, E or A is modelled, and the other one is implicit and
deduced from the first one using some model assumption on packets size or task execution time.
For example, considering a flow of packets of size p, the number of packets received up to time t

can be deduced from A, setting E(t) =
⌊
A(t)
p

⌋
. Conversely, if an event sequence E generates, for

each event, a packet of fixed size p, the amount of data generated is simply A(t) = pE(t). This
network-based example can be translated into CPU scheduling, where E counts the number of

1

jobs and A the accumulated CPU workload. In case of variable packet size, one may consider a
minimal and maximal size, p, p, and consider lower and upper bounds: pE(t) ≤ A(d) ≤ pE(t).

In our experience, difficulties arise when considering flows with correlated packets sizes: either
because the flow itself has different sizes (like the I,B,P frames of MPEG video encoding) or,
more often, because a flow is the aggregation of sub-flows with different packet sizes.

A few works tried to generalise the minimal/maximal size approach, introducing a function
capturing this packet size correlation, using either an explicit data amount and an implicit event
count [3, 4] or an explicit event count and an implicit workload amount [5, 6].

This paper presents a model embedding explicitly both aspects, in order to, first, have a
better understanding of each theory, and second, to be able to analyse a system with both event
stream and network calculus, enhancing at each step the result of one theory with the one of
the other.

This paper does not study how an input flow is transformed into an output flow: network
calculus and/or event stream theory are designed for the analyse of each component. This work
targets the interfaces of the components.

The outline of the paper is as follows: first, Section 2 gives an overview of the related work.
Then, Section 3 introduces some basic mathematical tools required to support this framework.
The model itself is presented and discussed in Section 4. Section 5 shows how informations on
two functions can be combined to enhance our knowledge on the third one. Last, Section 6
shows how to model two important elements: the packetizer and the aggregator.

2 Related work

The event stream theory, with the pioneer work of Gresser [7], has been developed to allow a
compositional analyse of real-time systems where several real-time components are hosting tasks,
sharing resources, communicating through data flows. As said in [1], “Compared to the holistic
approach, the compositional models are modularly structured with respect to the architecture”.
This work has been extended by Richter et al. [8, 9]. At this time, the goal was to rely, for
each component, on the analyses of response time already existing and to use the event stream
model to compose them1. But this first goal has been extended, and several specific analyses
have been developed for specific cases [10, 11, 12]. A global overview is presented in [1] whereas
the complete formal model can be found in [13].

In event stream theory, tasks are released by either some internal timing decision (period,
offset, etc.) or by reception of an external packet or signal. Both notions are called events.
An event stream E(t) counts the accumulated number of events received up to time t, and two
functions, called event models, denoted η+(∆) and η−(∆), are respectively an upper and lower
bounds on the number of events received during any interval of length ∆.

The network calculus theory has been developed independently, from the seminal paper on
network calculus [14], using the term “a calculus for network delay”, to compute upper bounds
on network latency. In network calculus, the amount of traffic received up to time t, A(t), is
upper bounded by an arrival curve α [14, 15]. But network calculus theory does not rely on
existing response time analyses, and develops its own analyses methods. A real breakthrough,
from our point of view, is the introduction of the min-plus convolution, independently done
in [16], [17] and [18].

The real-time calculus [19, 20] is an adaptation of network calculus to real-time time sys-
tems. Despite some changes in notations, the formal models are, in fact, equivalents [21]. The
introduction of the lower bound on arrival was done in the real-time calculus community [22],
as well as the main related results [19].

The event stream theory and network/real-time calculus are somehow different in the algo-
rithms used to compute bounds, but they are very close on the way to represent requests: as see
in introduction, in event stream theory, the flows are modelled by the number of events, E(t),
whereas in network/real-time calculus, the flows are modelled by A(t) the amount of the data
or workload2.

1“We don’t necessarily need to develop new local analysis techniques if we can benefit from the host of work
in real-time scheduling analysis.” [8].

2The arrival curve is even defined as a generalisation of even stream model in [19].

2

Both notions are equivalent when considering packets of constant size, but in real systems,
different flows may have different packet sizes, and even in the same flow, the size may vary from
one packet to another. If only upper and lower bound are known, simple approximations are
sufficient, but the sequence of sizes my have some regularity (also known as correlation in [6]),
requiring a more general model.

So, to link both notions, the sizes of a sequence of packets/requests must be captured. This
has be done independently in [5, 6] and in [4, 3].

In [4, 3] a function P is introduced such that P (a) represents the number of packets received
for the amount of data a, i.e. P (A(t)) is the number of packets received up to time t, and two
functions π, π are used to capture the minimal an maximal values of the variation of P on some
interval. In this work, A is explicit and E implicit.

Conversely, in [5, 6], two functions γl, γu are used to bound the workload generated by a
sequence of events: E is explicit and A is implicit.

This paper is a direct continuation of [4, 3]: considering that E(t) is also the number of packets
received up to t, the relation P ◦ A = E is explicitly set and the mathematical implications of
this modelling are studied3.

The results on aggregation of flows or packetizer are the same in [4, 3] and in this paper.
Last, this paper only deals with data flow models, and does not consider how an input flow

is transformed in an output flow by a component. Such results on blind components are given
in [4, 3]. And in [6], a workload-based service curve is derived from the event-based service
curve, and both are used in each component.

3 Mathematical background

After introducing some notations and definitions related to functions, section 3.1 presents the
notion of interval bounding pair (that generalises the notion of arrival curve and event model)
and section 3.2 presents the notion of pseudo-inverse.

The set of natural numbers is N. The set of reals is R and the subset of non-negative reals
is R+. Let us denote ∨,∧ the infix maximum and minimum operators (a ∨ b = max(a, b),
a ∧ b = min(a, b)), and ◦ the composition operator (f ◦ g)(x) = f(g(x)).

In the remainder of the paper, D and I will each denote either N def
= N ∪ + {∞} or R+ def

=
R+ ∪ {+∞}.
Definition 1 (Non-decreasing function). A function f : D → I is called non-decreasing when
for all x, y ∈ D, if x < y, then f(x) ≤ f(y).

A non-decreasing function f is divergent if lim
x→∞

f(x) =∞.

Definition 2 (Right- and left-continuous extensions). . For any piece-wise continuous function

f : R+ → I, its right- and left-continuous extensions fr and fl are defined respectively as

fr(x) = lim
ε→0+

f(x+ ε) for all x ∈ R+
and fl(0) = f(0) and fl(x) = lim

ε→0+
f(x− ε) for all x ∈ R+

,

x 6= 0.

Definition 3 (2-surjective function). A function f : D→ I is said 2-surjective if

∀y ∈ I,∃x, x′ ∈ D, x 6= x′, f(x) = f(x′) = y. (1)

Proposition 1. A non-decreasing and 2-surjective function f : D→ I satisfies f(0) = 0.

3.1 Min/max-plus and interval bounding pairs

Definition 4 (Convolutions). Let f, g : R+ → I two functions. The min-plus, and max-plus
convolutions are respectively defined as

(f ∗ g)(t)
def
= inf

{
f(u) + g(v)

∣∣∣ u, v ∈ R+
, u+ v = t

}
,

(f ∗ g)(t)
def
= sup

{
f(u) + g(v)

∣∣∣ u, v ∈ R+
, u+ v = t

}
.

3The Section 4.3 will justify why we chose P and not γ.

3

The respective Kleene-star closures, also known as sub-additive and sup-additive closure, are
defined by

f∗
def
= inf {e, f, f ∗ f, f ∗ f ∗ f, . . .}

f∗
def
= sup {−e, f, f ∗ f, f ∗ f ∗ f, . . .}

with e the neutral element of the min-plus convolution, e(0) = 0, e(x) =∞ otherwise.

In [2] is given a comprehensive list of properties of these operators (associativity, commuta-
tivity, isotonicity, etc.)

Proposition 2 (Convolution preserves continuity). If f and g : R+ → R+
are two non-

decreasing and right-continuous functions, then f ∗ g is right-continuous. Similarly, if f and
g are left-continuous, f ∗ g is left-continuous.

The next definition generalises the notions of arrival curves of network calculus and event
model of event stream theory.

Definition 5 (Interval bounding pair (IBP)). Let f : R+ → I and φ, φ : R+ → R+
be three

functions, φ and φ being non-decreasing. Then φ and φ are respectively a lower and upper
interval bounding function of f if

∀t, d ∈ R+, φ(d) ≤ f(t+ d)− f(t) ≤ φ(d). (2)

The pair (φ, φ) is often denoted φ. This pair is called interval bounding pair.
Conversely, the set of functions respecting the constraint φ is denoted

F(φ)
def
=
{
f ∀t, d ∈ R+, φ(d) ≤ f(t+ d)− f(t) ≤ φ(d)

}
.

The condition (2) is equivalent with f ∗φ ≤ f ≤ f ∗φ [2].

Theorem 1 (Tightening interval bounding pair). Let φ, φ, φ′, φ
′

: R+ → R+
be two pairs of

functions. Then

F
(
φ, φ

)
= F

((
φ
)∗
,
(
φ
)∗)

F(φ, φ) ∩ F(φ′, φ
′
) = F(φ ∨ φ′, φ ∧ φ′)

The proof can be found in [2]. A better results, F(φ, φ) = F(φ�φ, φ�φ) involving the min-
deconvolution, � and the max-deconvolution, � can be found in [23, 24], but these operators
are not presented in this article, by lack of space.

3.2 Pseudo inverse

The core of the model presented in this paper is the function P that associate to an amount
of data the related count of events. But the inverse relations is also of interest. And since the
function P is non-decreasing, the inverse functions P−1 may not exist. More generally, event
stream theory and network calculus handle non-decreasing functions. But even if the inverse
does not exist, two pseudo-inverses can be defined, and some of their properties are presented.
This works partially generalises the one presented in [25] or in [2, § 3.1.4]. The intuition is quite

simple, and is illustrated in Figure 1. Only f −1 is plotted. The function f −1 is equal to f −1

except at discontinuity point, where f −1 is right-continuous. The proofs are in Appendix A.1.

Definition 6 (Pseudo inverse). Let f : R+ → R+
be a non-decreasing function. Then, f −1 and

f −1 : R+ → R+
are defined for all y ∈ R+

as

f −1(y) = inf
{
x ∈ R+

f(x) ≥ y
}

f −1(y) = sup
{
x ∈ R+

f(x) ≤ y
}

with the convention that sup ∅ = 0 and inf ∅ =∞.

4

Proposition 3 (Pseudo inverses are non-decreasing). For any non-decreasing function f : R+ →
R+

, the functions f −1 and f −1 are non-decreasing.

Proposition 4 (Alternative definitions). For any non-decreasing function f : R+ → R+
, for all

y ∈ R+

f −1(y) = sup {x f(x) < y} f −1(y) = inf {x f(x) > y} .

Proposition 5 (Continuity of pseudo inverses). For any non-decreasing function f : R+ → R+
,

f −1 is left-continuous and f −1 is right-continuous.

Proposition 6 (Basic properties of pseudo inverses). For any non-decreasing f : R+ → R+
and

for all y, y′ ∈ R+

f(0) = 0 =⇒ f −1(0) = 0 (3)

f −1(y) ≤ f −1(y) (4)

y < y′ =⇒ f −1(y) ≤ f −1(y′) (5)

and for all x ∈ R+

f(x) ≤ y =⇒ x ≤ f −1(y) (6)

f(x) ≥ y =⇒ x ≥ f −1(y) (7)

f(x) < y =⇒ x ≤ f −1(y) (8)

f(x) > y =⇒ x ≥ f −1(y) (9)

x > f −1(y) =⇒ f(x) ≥ y (10)

x < f −1(y) =⇒ f(x) ≤ y (11)

x > f −1(y) =⇒ f(x) > y (12)

x > f −1(y) =⇒ f(x) > y (13)

x < f −1(y) =⇒ f(x) < y. (14)

Moreover, if f is right-continuous at point x

f(x) < y =⇒ x < f −1(y) (15)

x ≥ f −1(y) =⇒ f(x) ≥ y (16)

and when f is left-continuous at point x

f(x) > y =⇒ x > f −1(y) (17)

x ≤ f −1(y) =⇒ f(x) ≤ y. (18)

Proposition 7 (Pseudo inverses and composition). For any non-decreasing functions f, g :

R+ → R+

f −1 ◦ f(x) ≤ x ≤ f −1 ◦ f(x) (19)

Moreover, if f is right-continuous

f ◦ f −1 ◦ f = f (20)

and if it is left-continuous

f ◦ f −1 ◦ f = f. (21)

(f ◦ g)
−1 ≥ g −1 ◦ f −1 (22)

(f ◦ g)
−1 ≤ g −1 ◦ f −1. (23)

5

x

f(x)

y

f −1(y)

y

f −1(y)

Figure 1: Illustration of pseudo-inverse.

Moreover, if f is right-continuous

(f ◦ g)
−1

= g −1 ◦ f −1 (24)

and if it is left-continuous

(f ◦ g)
−1

= g −1 ◦ f −1. (25)

Proposition 8 (Pseudo inverses and IBP). For any non-decreasing function f : R+ → R+
,

if
(
φ, φ

)
is an IBP for f , then

(
φ
−1
, φ −1

)
is an IBP for both f −1 and f −1. That is, for all

y, δ ∈ R+

φ
−1

(δ) ≤ f −1(y + δ)− f −1(y) ≤ φ −1(δ) (26)

φ
−1

(δ) ≤ f −1(y + δ)− f −1(y) ≤ φ −1(δ). (27)

Moreover, for all y, δ ∈ R+

φ
−1

(δ) ≤ f −1(y + δ)− f −1(y) ≤ φ −1(δ). (28)

Proposition 9 (Bound on discontinuities). Let f : R+ → R+
be a function and φ such that

φ(0+) = limε→0 φ(ε), ∀t, d ∈ R+
, f(t + d) − f(t) ≤ φ(d) and let f−1 ∈

{
f −1, f −1

}
be one

pseudo-inverse.

∀y ∈ [f(0), f(+∞)] :
∣∣y − f ◦ f−1(y)

∣∣ ≤ φ(0+) (29)

for f left continuous,∀y ∈ [f(0), f(+∞)] : y − φ(0+) ≤ f ◦ f−1(y) ≤ y (30)

for f right continuous,∀y ∈ [f(0), f(+∞)] : y ≤ f ◦ f−1(y) ≤ y + φ(0+) (31)

Proposition 10 (Pseudo inverses and convolution). For any non-decreasing functions f, g :

R+ → R+

(
f −1 ∗ g −1

) −1
≤ f ∗ g

(
f −1 ∗ g −1

) −1
≥ f ∗ g

4 The linking model

This section presents the data flow model, made of three curves, A,E, P . The definition, pre-
sented in Section 4.1, will be discussed just after.

4.1 A mathematical definition

Before giving a formal definition of the model, a data-flow based interpretation is proposed.
In this model, a data flow is modelled by three curves, A such that A(t) represents the

cumulative amount of data/bits sent by the flow up to time t, E such that E(t) represents the

6

cumulative number of (full) packets sent by the flow up to time t, and P such that P (a) is the
number of (full) packets in the a first bits of the flow. These three functions are linked by the
relation P ◦A = E.

While considering the workload generated by a task, E(t) represents the number of task
instances (often called “jobs”) released up to time t, A(t) represents the total workload associated
to these jobs, and P (a) the number of task instances associated with the global workload a.

On may wonder why not to derive A from E and individual packets sizes or task instance
workload, that uses a more intuitive semantics than the one of P . This will be discussed in
Sections 4.3 and 4.5.

Naming The A function represents the amount of data. In previous network calculus publi-
cations, the A was used for arrival. The P is of course for packet count. The E comes from the
event stream theory.

Definition 7 (Flow tuple). A flow is modelled by a tuple 〈A,E, P 〉 such that

A : R+ → R+
, E : R+ → N, P : R+ → N, P ◦A =E.

The three functions, A,E, P are non-decreasing, piecewise continuous and A(0) = 0. Moreover,
the P function is 2-surjective.

Corollary 1. For any flow 〈A,E, P 〉, P (0) = E(0) = 0.

Proof. By Proposition 1, P (0) = 0, and by definition E(0) = P (A(0)) = 0.

4.2 On function domain

We chose a dense time domain, whereas some other real-time models assume a discrete time
domain, N. Since a computer-based system is driven by a discrete clock, a discrete time domain
is a sound assumption. Nevertheless, while considering a distributed system, made of different
sub-systems, each sub-system may have its own clock, and hence its own clock drift. There is
then no guarantee that a common discrete clock exists. This justifies our choice of a dense time
domain.

We also set R+
as the domain of P . When a flow sends an infinite amount of data, i.e.

limt→∞A(t) = ∞, it is an obvious requirement, but event with a flow sending a finite amount

of data, i.e. limt→∞A(t) = M ∈ R+
, the model requires that P is defined even for values on

[M,∞). The theoretical model may have been defined to weaken this requirement, but it would
imply a more complex definition. Nevertheless, the Definition 10 will later have to restrict some
condition on P on its relevant prefix. This is a trade-off between including the specific case of
finite flow in the flow definition or further.

4.3 On information redundancy

It is clear that the use of an explicit function E creates information redundancy, but one of the
purposes of this model is to build an explicit link between network calculus and event stream
theories. Then, existing results in one theory can be transferred to the other. Moreover, when
dealing with contracts, three interval bounding pairs captures more information than only two,
as will be shown in Section 5.

Note also that even if, obviously, E can be deduced from A and P , the converse is not true.
First, P can not be deduced from A and E, in general: if several packets are received at the same
time (when it exists t such that E(t+)−E(t−) ≥ 2), there is no way to know the individual size
of each packet, it exists an infinite number of P satisfying the relation. Second, neither can A
be deduced from E and P : E represents the instant of the end of packet arrival, and P the size
of individual packets, but the information of bit arrival rate “inside” each packet is lost.

7

t1 2 3 4 5

A(t)

1

2
t

E(t)

1

2
t

E′(t)

1

2
t

E′′(t)

1

2

Figure 2: Continuity and packet sizes.

4.4 On continuity

In classical network calculus theory, the A function is left-continuous, but the handling of packets
is a pity4. Let us illustrate the impact of left- or rigth-continuity on some examples when handling
packets.

As an example, let us consider the A function in Figure 2. To model packets of size 1, the
E function in Figure 2 can be used. This function counts one packet when exactly one unit of
data is received, that is at time t = 1. It then counts the second packet when exactly two units
of data are received, that is at time t = 3. This function E is then right-continuous.

To get a left-continuous function, one could think about E′ = El the left-continuous extension
of E, as depicted in Figure 2. Unfortunately, this function breaks the constraint P ◦ A = E′.
Indeed, for any function P such that P ◦A = E′, we would have 0 = E′(1) = P (A(1)) = P (1) =
P (A(2)) = E′(2) = 1 which is impossible.

The function E′′ in Figure 2 could constitute a valid choice but it then models the time at
which the emission of each packet of size 1 starts. This is not very satisfactory as one usually
expects to count packets only when they are complete.

To sum up, we have presented arguments to use right-continuous functions, but there also
are arguments in favour of left-continuous functions in network calculus theory.

4.5 On the packet function and individual packet sizes

We have justified, while giving the definition of a flow, why it uses the P function, whose
semantics is not obvious at first glance. Here is presented the equivalence between this notion
and the individual packet sizes.

Assume that the data flow is a sequence of packets, the i-th packet having length5 li. Let

L : N → R+
defined as L(n) =

∑n
i=1 li. This cumulative packet size function is equivalent to

the list of individual packets sizes, since li = L(i)−L(i− 1), but easier to handle in our context.

Definition 8 (Cumulative packet length). A function L : N → R+
is a cumulative packet

length function if

1. it is increasing (n < n′ =⇒ L(n) < L(n′)),

4For example, in [2], the remark after the Lemma 1.2.1 states that “we use the convention that the cumulative
functions ... are left continuous”. But on the section of packetizers, § 1.7.2 and Fig. 1.17, right-continuous
functions are used.

5One often uses the term “size” of packet, but the letter “s” is commonly used to denote servers.

8

a

(P(L))(a)

L(1) L(2) L(3)

a

(P ′(L))(a)

Figure 3: The packet function built from cumulative length.

2. it is null at 0 (L(0) = 0),

3. it is divergent (limn→∞ L(n) =∞).

Definition 9 (From packet function to cumulative packet length and back). Let P, P ′ two
operators which maps each cumulative packet length function L to the non-decreasing piecewise
continuous 2-surjective functions defined as

(P(L))(a)
def
= max {n ∈ N L(n) ≤ a} , (32)

(P ′(L))(a)
def
= [min {n ∈ N L(n) ≥ a} − 1]

+
. (33)

Let L the operator which maps each non-decreasing piecewise continuous 2-surjective function
to the cumulative packet length function

(L(P))(n)
def
= inf

{
d ∈ R+

P (d) ≥ n
}
. (34)

Note that eq. 34 is equivalent to L(P) = P −1.
We have to prove that the definition is well formed, that is to say that P(L) is a non-decreasing

piecewise continuous 2-surjective function, and that L(P) is a cumulative packet length function.
To do so, the following Lemma gives the main arguments. The proof itself is in Appendix A.2.

Lemma 1 (Equivalent definitions of P). Let L be a cumulative packet length function, and
n ∈ N, then:

∀a ∈ [L(n), L(n+ 1)) : (P(L))(a) = n (35)

(P(L))(a) = sup
{
x ∈ R+

L(dxe) ≤ a
}

(36)

∀a ∈ (L(n), L(n+ 1)] : (P ′(L))(a) = n (37)

(P ′(L))(0) = 0 (38)

The Figure 3 illustrates the eq. (35) and (37). The eq. 36 is useful since it allows to define

the operator P as a pseudo-inverse: P(L) = (L ◦ d·e) −1.

Proof. Let L be a cumulative packet length function, P = P(L) and P ′ = P ′(L).
For the eq. (35), if a = L(n), n ∈ {n′ L(n′) ≤ L(n)}, and since L(n) is increasing, given

m > n, L(m) > L(n) and m /∈ {n′ L(n′) ≤ L(n)}.
Otherwise, if a ∈ (L(n), L(n+ 1)) and to ease readability, set N = {n ∈ N L(n) ≤ a}.
Then, L(n) ≤ a, so n ∈ N , and n ≤ maxN = P (a).
Consider m = n+ 1: a < L(m), so m /∈ N , so m > maxN i.e. n+ 1 > P (a).
Combining n+ 1 > P (a) ≥ n leads to P (a) = n.
The eq (37) is done the same way: if a = L(n + 1), n + 1 ∈ {n′ L(n′) ≥ L(n+ 1)}, then

n ≥ P ′(L(n+ 1)). For any m < n+ 1, m /∈ min {n L(n) ≥ a}, so m < min {n L(n) ≥ a}.

9

Otherwise, if a ∈ (L(n), L(n + 1)), n ∈ {n′ L(n′) ≥ L(n)}, then [n− 1]
+ ≥ P ′(L(n)).

If n = 0, the equality holds. If n > 0, for any m < n, m /∈ min {n L(n) ≥ a}, so m <
min {n L(n) ≥ a}.

Last, value of P ′ at 0 is obvious.

For eq (36), pick some a, keep the same definition of N and set X =
{
x ∈ R+

L(dxe) ≤ a
}

.

Given n ∈ N , dne = n so n ∈ X , i.e. N ⊆ X and maxN ≤ supX . Conversely, given x ∈ X , it
exists n ∈ N (consider n = dxe) such that x ≤ n. Then, supX ≤ maxN .

Theorem 2 (Equivalence between cumulative packet length and packet functions). For any
cumulative packet length function L, (L ◦ P)(L) = L, and (L ◦ P ′)(L) = L.

This theorem states that cumulative packet length functions and the non-decreasing piecewise
continuous 2-surjective functions are equivalent, that is to say, in our context, that modelling
the packet sizes either by a P or an L function is equivalent. The proof is in Appendix A.2.

5 Flow contracts

The real behaviour of a data flow, or request sequence, is in general unknown, or too complex
to be handled. Then, some contracts, or patterns, on the behaviour are used, involving often
some period, jitter, minimal or maximal size, etc. Such constraints are called “arrival curves” in
network calculus, or “event model” in event stream theory. Here is defined a notion of contract
that embraces the previous notions.

Definition 10 (Interval bounding tuple of flow). Let 〈A,E, P 〉 be a flow, and α, η, π three
IBP. Then, the flow 〈A,E, P 〉 respect the contract

〈
α, α, η, η, π, π

〉
if the pairs (α, α), (η, η) are

respectively interval bounding pairs for functions A and E, and

∀a, d ∈ R+
, a+ d ≤ lim

x→∞
A(x) :

π(d) ≤ P (a+ d)− P (d) ≤ π(d)
(39)

Conversely, the (possibly empty) set of flow satisfying theses constraints is denoted F(α, η, π).

The semantics of α and η are quite intuitive: they are lower and upper bounds on the amount
of data or event received on some interval. The semantics of π deserves a discussion: π could be
counter-intuitive since a flow with large packets will have a smaller π function than a flow with
small packets. The mathematical reason is that P is the pseudo-inverse of the packet length
function L, as presented in Section 4.5. The semantics of π could be the following: imagine that
there exists a “end of packet” delimiter in the data flow just after each packet. Then, given
any slice of a trace of length a, π(a) and π(a) are respectively lower and upper bounds on the
number of “end of packet” delimiters than can be found in the slice.

Once defined this contract notion, this section will show how to automatically tighten these
contracts using algebraic properties, and using information on some functions to get a better
characterisation of the other ones.

First, the equations (40) and (41) allow to tighten a contract, pair per pair. Second, the The-
orems 4, 5 and 6 allow to transfer information from two contracts on the third one. Combining
all these results with eq. (42) enables to build a sequence of contracts, converging to a fixpoint.

Theorem 3 (Tightening contracts). Let α, α′, η, η′, φ, φ′ three interval bounding pairs functions.
Then

F(α, α, η, η, π, π) = F(α∗, α∗, η∗, η∗, π∗, π∗) (40)

F(α, α, η, η, π, π) = F(α, α,
⌈
η
⌉
, bηc , dπe , bπc) (41)

F(α, α, η, η, π, π) ∩ F(α′, α′, η′, η′, π′, π′) =

F(α ∨ α′, α ∧ α′, η ∨ η′, η ∧ η′, π ∨ π′, π ∧ π′)
(42)

10

The eq. (41) allows to restrict values of bounds on P and E to integer values. We may have
enforced it by setting N as the image of these functions in the definitions, but when implementing
tools, it may be easier to handle functions with real values6. Then, the formal model allows to

use R+
as image and also to restrict it to N.

Proof. The eq. (40) and (42) are a direct application of Theorem 1.

Consider first the restriction to
⌈
η
⌉
, bηc. Let 〈A,E, P 〉 ∈ F(α, α, η, η, π, π) and t, d ∈ R+

.
Since E(t), E(t + d) ∈ N, and E is non-decreasing, then E(t + d) − E(t) ∈ N. So, η(d) ≤
E(t+d)−E(t) ≤ η(d) implies

⌈
η
⌉

(d) ≤ E(t+d)−E(t) ≤ bηc (d). Conversely, since η(d) ≤
⌈
η
⌉

(d)

and η(d) ≥ bηc (d),
⌈
η
⌉

(d) ≤ E(t + d) − E(t) ≤ bηc (d) =⇒ η(d) ≤ E(t + d) − E(t) ≤ η(d).

Then F(α, α, η, η, π, π) ⊆ F(α, α,
⌈
η
⌉
, bηc , π, π). The restriction on dπe , bπc is done the same

way.

Theorem 4 (Bounding event count from data and packet bounds). Let α, π two IBP. Then

F(α, ·, π) ⊆ F (α, (π ◦ α, π ◦ α) , π) . (43)

This theorem allows, for each flow 〈A,E, P 〉, to compute an IBP for E from the ones for A
and P .

Example of event count with linear arrival Consider a flow made of packets of maximal
size 3 and minimal size 1

2 . Then, π(a) =
⌈
a
3

⌉
and π(a) = b2ac. Consider that the flow throughput

is at most 2 and at least 1
5 , leading to α(t) = t

5 and α(t) = 2t. Then, the Theorem 4 states that
b4tc is an upper bound on the number of event: since the maximal rate is 2 per time unit, the
flow can send one packet of size 1

2 every 1
4 time unit. Conversely,

⌈
t
15

⌉
is a lower bound: it may

take 15 time units to send a packet of size 3 with a throughput of 1
5 .

Proof. Let 〈A,E, P 〉 ∈ F(α, ·, π) a flow. Given t,∆ ∈ R+
, by definition of a flow,

E(t+ ∆)− E(t) = P (A(t+ ∆))− P (A(t)).

By definition of α and α

α(∆) ≤ A(t+ ∆)−A(t) ≤ α(∆)

⇐⇒ α(∆) +A(t) ≤ A(t+ ∆) ≤ α(∆) +A(t)

then, since P is a non-decreasing function

P (α(∆) +A(t)) ≤ P (A(t+ ∆)) ≤ P (α(∆) +A(t)).

Now, add −P (A(t)) to each term{
P (α(∆) +A(t))− P (A(t)) ≤ P (A(t+ ∆))− P (A(t)),

P (A(t+ ∆))− P (A(t)) ≤ P (α(∆) +A(t)))− P (A(t)).

Consider now the upper bound, by definition of π

P (α(∆) +A(t)))− P (A(t)) ≤ π(α(∆)).

The same way, for the lower bound:

P (α(∆) +A(t)))− P (A(t)) ≥ π(α(∆)).

Then, E ∈ F(π ◦ α, π ◦ α), and 〈A,E, P 〉 ∈ F (α, (π ◦ α, π ◦ α) , π).

Theorem 5 (Bounding data amount from event and packet bounds). Let η, π two interval
bounding pairs, then

F(·, η, π) ⊆ F
((
π −1 ◦ η, π −1 ◦ η

)
, η, π

)
. (44)

6For example, consider two period flow, one sending one packet every 5 time unit, and the other every 7
time unit. Then, η1 =

⌈ ·
5

⌉
and η1 =

⌈ ·
7

⌉
are two upper bounds on the event number with values in N and

η′1(t) = t
5

+ 1, η′2(t) = t
7

+ 1 are two others, wider, with values in R+
. But the sum of the two last ones is easier

to represent in computer than the sum of the two first ones.

11

π = η = d·e π = b·c

π −1 π −1 ◦ η

E = P = b·c

A

Figure 4: Example of periodic constant size packet.

Proof. Let 〈A,E, P 〉 ∈ F(α, ·, π) a flow. From relation P ◦ A = E, it comes P −1(E) ≤ A ≤
P −1(E). Then, given t,∆ ∈ R+

:

A(t+ ∆)−A(t) ≤ P −1(E(t+ ∆))− P −1(E(t)) (45)

by definition of η, and monotony of P −1

≤ P −1(E(t) + η(∆))− P −1(E(t)) (46)

and from Prop. 8, eq. (28),

≤ π −1(η(∆)) (47)

The proof for the lower bound is done the same way.

Example of arrival curve with unit model Consider a flow sending one packet of size one
every time instant. That is to say E(t) = btc and P (d) = bdc. It admits IBP η = π = d·e, and
η = π = b·c. What can be the arrival curve of such a flow? One may expect to get no more than
one unit of data per unit of time (A = d·e), but it is not necessarily the case.

Applying Thm. 5 leads to the arrival curve α = π −1 ◦ η = d·e + 1, enabling a burst of one
packets in null time and two packets on any interval of arbitrary small length ε > 0.

Using sub-additive closure, one may enhance slightly the result, and consider (α)
∗

= (d·e +
1) ∧ δ0, but it still allows the arrival of two packets in any interval of arbitrary small length.
This is somehow counter intuitive.

But it may happen, up to some ε. Keep in mind that E is increased when a packet is fully
received. One can build a flow A that send one “full” packet of size 1 each time unit but that
can send 2 − ε data on some interval of width ε: see the A drawn in Figure 4 with some linear
slopes to connect the points A(0) = 0, A(1− ε) = ε, A(1 + ε) = 2− ε, A(3− ε) = 2 + ε, etc.

Theorem 6 (Bounding packet sizes from event and data bounds). Let α, η two interval bounding
pairs, then

F(α, η, ·) ⊆ F
(
α, η,

(
η
l
◦ α −1, ηr ◦ α −1

))
. (48)

Proof. Let 〈A,E, P 〉 a flow. Let u,Γ ∈ R+
, be two values of data amount. The proof has to

bound P (u+ Γ)− P (u) for any u+ Γ ≤ limt→∞A(t).
Since A(0) = 0 and A is non-decreasing, it exists t (for instance t := A −1(u)) such that for

any ε > 0, A((t− ε) ∨ 0) ≤ u ≤ A(t+ ε). Since P is non-decreasing, it leads to

P (u+ Γ)− P (u) ≤ P (A(t+ ε) + Γ)− P (A((t− ε) ∨ 0)).

12

SA,E, P A′, E′, P ′

Figure 5: Packetizer.

A E P

A′ E′ P ′

Figure 6: Example of input 〈A,E, P 〉 and output 〈A′, E′, P ′〉 for a packetizer.

Now, let ∆ = α −1(Γ). By definition of the pseudo inverse, for all ε′ > 0, α(∆ + ε′) > Γ, hence

P (u+ Γ)− P (u) ≤ P (A(t+ ε) + α(∆ + ε′))

− P (A((t− ε) ∨ 0)).

By definition of α, α(∆ + ε′) ≤ A(t+ ε+ ∆ + ε′)−A(t+ ε), so

P (u+ Γ)− P (u)

≤ P (A(t+ ε+ ∆ + ε′))− P (A((t− ε) ∨ 0))

= E(t+ ε+ ∆ + ε′)− E((t− ε) ∨ 0) ≤ η(∆ + 2ε+ ε′)

To sum up, for any u,Γ ∈ R+
, ε > 0 and ε′ > 0,

P (u+ Γ)− P (u) ≤ η(α −1(Γ) + 2ε+ ε′)

And now, letting ε and ε′ tend to 0, by definition of right-continuous extension

P (u+ Γ)− P (u) ≤ ηr(α −1(Γ))

The proof on the lower bound is done the same way.

6 Application: modeling packetizers and aggregation

Once defined the model and its main intrinsic properties, this section presents two basic applica-
tions, the modelling of a packetizer, and its interval bounding tuple, and the same for aggregation
of two flows.

6.1 Packetizer

A packetizer, as in Figure 5, takes as input a flow and outputs another flow with the same
packets but in which data are released only when a full input packet is received. An example of
input and output is displayed in Figure 6.

Definition 11. A packetizer maps any input flow 〈A,E, P 〉 such that P is right-continuous to
an output flow 〈A′, E′, P ′〉 such that

A′ = P −1 ◦ P ◦A, E′ = E, P ′ = P.

13

S
A1, E1, P1

A2, E2, P2

A,E, P

Figure 7: Aggregation.

Proof. We have to prove that 〈A′, E′, P ′〉 defined as above is a flow. In particular, we need to
prove that P ′(A′) = E′, that is P ◦ P −1 ◦ P ◦A = P ◦A. This holds according to Proposition 6
since P is right-continuous.

Remark 1. If P is not right-continuous, the above property may not hold. For instance, for

P = d·e, we have P (1.5) = 2 whereas
(
P ◦ P −1 ◦ P

)
(1.5) =

(
P ◦ P −1

)
(2) = P (1) = 1.

Proposition 11 (Contract at packetizer output). Given a flow 〈A,E, P 〉 ∈ F (α, η, π) entering
a packetizer, and let 〈A′, E′, P ′〉 be the output, then

〈A′, E′, P ′〉 ∈ F
((
π −1 ◦ η, π −1 ◦ η

)
, η, π

)
.

Proof. For any t, δ ∈ R+
, A′(t+δ)−A′(t) = P −1◦E(t+δ)−P −1◦E(t) and since E(t+δ)−E(t) ≤

η(δ) and P −1 is non-decreasing, we then have

A′(t+ δ)−A′(t) ≤ P −1 (E(t) + η(δ))− P −1 (E(t))

≤ π −1 (η(δ))

by Prop. 8, eq (26). The proof for the lower bound is similar.

6.2 Aggregation

Aggregation takes two flows A1, E1, P1 and A2, E2, P2 as input and immediately puts their
packets in a common output flow A,E, P . This is pictured in Figure 7. In network calculus, as
in the event stream theory, the aggregation of two flows is defined as the sum of the modelling
functions, that is A = A1 +A2 and E = E1 + E2.

The definition of P is less obvious. Of course, for A,E, P to be a flow according to Defini-
tion 7, P must satisfy P ◦A = E, that is P (A1 +A2) = E1 +E2 = P1(A1) + P2(A2). However,
this does not precisely define P , particularly when A1 and A2 present discontinuities, which
happens for instance when they are taken as output of packetizers. As we would like to keep the
fact that the packets in the ouput flow are just an interleaving of the one in the two input flows,
we additionally require that L := L (P) is an interleaving of L1 := L (P1) and L2 := L (P2). We
thus end up with the following definition.

Definition 12 (Aggregation). Aggregation maps any two input flows (A1, E1, P1) and (A2, E2, P2)
to an output flow (A,E, P) such that

A = A1 +A2, E = E1 + E2, P (A1 +A2) = P1(A1) + P2(A2)

and there exists ϕ1, ϕ2 : N → N such that for all n ∈ N, 0 ≤ ϕ1(n + 1) − ϕ1(n) ≤ 1, ϕ2(n) =
n− ϕ1(n) and

P = P (L (P1) (ϕ1(n)) + L (P2) (ϕ2(n))) .

Intuitively, ϕ1(n) (resp. ϕ2(n)) denotes the number of packets taken from the first (resp.
second) flow among the first n packets of the output flow.

Remark 2. The input flows should be taken as output of packetizers, otherwise the above con-
ditions usually have no solution.

Proposition 12 (Contract on aggregation output). Given two flows 〈A1, E1, P1〉 ∈ F (α1, η1, π1)
and 〈A2, E2, P2〉 ∈ F (α2, η2, π2), and let 〈A,E, P 〉 be one aggregation, then

〈A,E, P 〉 ∈ F
(
α1 + α2, η1 + η2,

(⌊
π1 ∗ π2

⌋
, dπ1 ∗ π2e

))
.

14

Proof. In the output A and E are defined as sums of the input, hence the result for α and η.
The result for π is slightly more involved. For all i ∈ {1, 2}, by definition πi is an IBP for Pi,
hence, by Prop. 8, eq. (26), for all n′,m′ ∈ N

πi
−1(m′) ≤ Li(n′ +m′)− Li(n′) ≤ πi −1(m′)

where Li := L (Pi) = Pi
−1. Thus, for any n,m ∈ N and ϕi satisfying the constraints in

Definition 12
πi

−1(ϕi(n+m)− ϕi(n)) ≤ Li (ϕi(n+m))− Li (ϕi(n))

and
Li (ϕi(n+m))− Li (ϕi(n)) ≤ πi −1(ϕi(n+m)− ϕi(n)).

By definition of ϕ2 : n 7→ n − ϕ1(n), we have for all n,m ∈ N, (ϕ1(n+m)− ϕ1(n)) +
(ϕ2(n+m)− ϕ2(n)) = m, hence for L := L1 ◦ ϕ1 + L2 ◦ ϕ2(

π1
−1 ∗ π2 −1

)
(m) ≤ L(n+m)− L(n) ≤

(
π1

−1 ∗ π2 −1
)

(m).

Then, for all y, δ ∈ R+

(
π1

−1 ∗ π2 −1
)

(bδc) ≤ L(dy + δe)− L(dye)

and
L(dy + δe)− L(dye) ≤

(
π1

−1 ∗ π2 −1
)

(dδe).

Thus, for P := P (L) = (L ◦ d.e) −1, by applying Prop. 8, eq. (27), we have for all u,Γ ∈ R+

((
π1

−1 ∗ π2 −1
)
◦ d.e

) −1
(Γ) ≤ P (u+ Γ)− P (u)

and

P (u+ Γ)− P (u) ≤
((
π1

−1 ∗ π2 −1
)
◦ b.c

) −1
(Γ).

Since, by Proposition 5, π1
−1 and π1

−1 are right-continuous, π1
−1 ∗ π2 −1 is right continuous,

according to Proposition 2, and by Proposition 7((
π1

−1 ∗ π2 −1
)
◦ b.c

) −1
= b.c −1 ◦

(
π1

−1 ∗ π2 −1
) −1

=

⌈(
π1

−1 ∗ π2 −1
) −1⌉

.

Hence the upper bound, according to Proposition 10. The proof for the lower bound is completed
in the same way.

7 Conclusion

This work presents a common model that embeds the flow models of network calculus, based on
data amount, and event stream theory, based on event count. As presented in the introduction,
the expected benefits are: first, a better understanding of each theory; second, the ability to
analyse a component with one theory or the other, or even both, and to re-inject the results
from one of the flow model into the other ; last, the ability to model systems that are coarsely
modelled up to now .

In distributed system, the tightness of the bounds relies on the ability to model what is called
serialisation [?], grouping [?], shaping [2], or flow correlation [1], i.e. the fact that when several
flows share the same resource (a bus, a data link, a CPU), at the output, some serialisation
exists, since not all packets/requests can have been served at the same time. Some (dynamic)
offset exists between the packets/requests, and modelling this aspects may have an important

15

impact on performance evaluation. From the point of view of methods based on arrival curves,
this requires to compute an upper bound on the packets/requests of a set of flows that is tighter
than the sum of the individual upper bounds. And in the case of network, this shaping is related
to the throughput, then, to the amount of data, independently of the packet boundaries. On
the opposite, when a task is released by a message, the workload may be independent of the
packet size. Then, one have to extract the number of messages from the data amount: this is
quite easy if all messages have the same size, but if each flow may have its own message size,
our model can capture it.

This first work defines the model and its basic properties, inside a robust mathematical
framework. The results involve compositions, convolutions, and pseudo-inverses on functions.
Such operations have been implemented for the ultimately pseudo-periodic class of functions
[26], except the composition, which is a on-going work.

We then plan to test the accuracy of this model on some realistic examples, and especially
some where the resource consumption is a function of both the workload and the number of
requests: for example, some switch where the memory allocation is done by block of size b,
i.e. the memory used to store a packet of size s is b

⌈
s
b

⌉
. An accurate bound requires both

packet sizes and the number of packets. Another example is a gateway that performs some data
format conversion: in this case, the task workload is a constant, plus a part proportional to
the packet size. Moreover, such a gateway often extracts some payload, removing some header,
and forwards the payload with a new header. This model is also designed to model such header
change.

Last, two technical remarks on the model.

• First, the choice was made to define a flow as a tuple 〈A,E, P 〉, but once the work done,
we wonder whether P does not over specify the model, since it imposes some continuity
choice, whereas the sequence L contains as much useful information. Then, in a future
work, we may chose to define a flow as a tuple 〈A,E,L〉.

• Second, we gave arguments to consider only right-continuous functions (see Section 4.4
and Definition 11). But, the proofs in network calculus are simpler with left-continuous
assumption, even if the results still hold without, as shown in [?]. The continuity choice is
postponed to further studies.

Thanks

We would like to thank Anne Bouillard, for the pioneer work done in [4, 3], and some informal
discussions on the subject, and Sophie Quinton, for her great interest on this thematic that gave
us the energy to formalise it.

References

[1] J. Rox and R. Ernst, “Compositional performance analysis with improved analysis tech-
niques for obtaining viable end-to-end latencies in distributed embedded systems,” Inter-
national Journal on Software Tools for Technology Transfer, vol. 15, no. 3, pp. 171–187,
2013.

[2] J.-Y. Le Boudec and P. Thiran, Network Calculus, ser. LNCS. Springer Verlag, 2001, vol.
2050, http://lrcwww.epfl.ch/PS files/NetCal.htm.

[3] A. Bouillard, N. Farhi, and B. Gaujal, “Packetization and aggregate scheduling,” INRIA,
Tech. Rep. 7685, 2011.

[4] ——, “Packetization and packet curves in network calculus,” in Proc. of the 6th Int. Conf.
on Performance Evaluation Methodologies and Tools (ValueTools 2012), France, Oct. 2012,
invited Paper.

16

[5] E. Wandeler, A. Maxiaguine, and L. Thiele, “Quantitative characterization of event streams
in analysis of hard real-time applications,” Real-Time Systems, vol. 29, no. 2-3, pp. 205–225,
2005.

[6] E. Wandeler and L. Thiele, “Characterizing workload correlations in multi processor hard
real-time systems.” in Proc. of the 11th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2005), 2005, pp. 46–55.

[7] K. Gresser, “An event model for deadline verification of hard real-time systems,” in Proc.
of the Fifth Euromicro Workshop on Real-Time Systems., 1993, pp. 118–123.

[8] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, “System level per-
formance analysis - the SymTA/S approach,” IEEE Proc. on Computers and Digital Tech-
niques, vol. 152, march 2005.

[9] K. Richter, “Compositional scheduling analysis using standard event model – the SymTA/S
approach,” Ph.D. dissertation, Technical university Carolo-Wilhelmina of Braunschweig,
2005.

[10] J. Rox and R. Ernst, “Exploiting inter-event stream correlations between output event
streams of non-preemptively scheduled tasks,” in Proc. of Int. Conf. on the Design, Au-
tomation and Test in Europe (DATE 2010), march 2010, pp. 226 –231.

[11] ——, “Formal timing analysis of full duplex switched based ethernet network architectures,”
in Proc. of the SAE 2010 AeroTech Congress and Exhibition. SAE International, 2010.

[12] P. Axer, D. Thiele, R. Ernst, and J. Diemer, “Exploiting shaper context to improve perfor-
mance bounds of Ethernet AVB networks,” in Proc. of the 51st Annual Design Automation
Conf. (DAC’14). ACM, 2014.

[13] S. Schliecke, “Performance analysis of multiprocessor real-time systems with shared re-
sources,” Ph.D. dissertation, TU Braunschweig, 2011.

[14] R. L. Cruz, “A calculus for network delay, part I: Network elements in isolation,” IEEE
Transactions on information theory, vol. 37, no. 1, pp. 114–131, January 1991.

[15] C.-S. Chang, “Stability, queue length, and delay of deterministic and stochastic queueing
networks,” IEEE Transactions on Automatic Control, vol. 39, no. 5, pp. 913–931, May 1994.

[16] R. Cruz and C. Okino, “Service guarantees for window flow control,” in Proc. of the annual
Allerton Conf. on communication control and computing, vol. 34, 1996, pp. 10–21.

[17] J.-y. Le Boudec, “Network calculus made easy,” Ecole Polytechnique Fdrale de Lausanne
(EPFL), Tech. Rep. EPFL-DI 96/218, Dec. 1996.

[18] C.-S. Chang, “A filtering theory for deterministic traffic regulation,” in INFOCOM ’97.
Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
Driving the Information Revolution., Proceedings IEEE, vol. 2, Apr 1997, pp. 436–443 vol.2.

[19] E. Wandeler, “Modular performance analysis and interface-based design for embedded real-
time systems,” Ph.D. dissertation, ETH Zurich, September 2006.

[20] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for scheduling hard real-
time systems.” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS),
2000, pp. 101–104.

[21] A. Bouillard, L. Jouhet, and E. Thierry, “Service curves in Network Calculus: dos and
don’ts,” INRIA, Research Report RR-7094, 2009.

[22] S. Chakraborty, S. Knzli, L. Thiele, A. Herkersdorf, and P. Sagmeister, “Performance evalu-
ation of network processor architectures: Combining simulation with analytical estimation,”
Computer Networks, vol. 41, no. 5, pp. 641—-665, 2003.

17

[23] M. Moy and K. Altisen, “Arrival curves for real-time calculus: The causality problem and
its solutions,” pp. 358–372, 2010, 10.1007/978-3-642-12002-2 31.

[24] ——, “Arrival curves for real-time calculus: the causality problem and its solutions,” Ver-
imag, Tech. Rep. TR-2009-15, 2009.

[25] P. Embrechts and M. Hofert, “A note on generalized inverses,” Mathematical Methods of
Operations Research, vol. 77, no. 3, 2013.

[26] A. Bouillard and E. Thierry, “An algorithmic toolbox for network calculus,” INRIA, Rap-
port de recherche 6094, January 2007.

A Proof of equivalence between cumulative packet length
and packet functions

Here are gathered proofs whose details are not essential to the understanding of the paper.

A.1 Mathematical background

Proof of Proposition 1. f being 2-surjective, there exists x ∈ D such that f(x) = 0. Since f is non-
decreasing, f(0) ≤ f(x) = 0.

Proof of Proposition 2. We have to prove that for any x ∈ R+
, lim
ε→0+

(f ∗ g) (x + ε) = (f ∗ g) (x). Since

f and g are non-decreasing, f ∗ g is also non decreasing and lim
ε→0+

(f ∗ g) (x + ε) ≥ (f ∗ g) (x). It then

remains to show the other inequality, that is that for all ε′, there exists η such that for all ε ∈ (0, η]

(f ∗ g) (x+ ε) ≤ (f ∗ g) (x) + ε′.

By definition of ∗, there are u, v ∈ R+
such that u + v = x and f(u) + g(v) ≤ (f ∗ g) (x) + ε′

2
. Then,

by right-continuity of f and g, there exists η such that for all ε ∈ (0, η], f(u + ε
2
) ≤ f(u) + ε′

4
and

g(v + ε
2
) ≤ g(v) + ε′

4
. Thus

(f ∗ g) (x+ ε) ≤ f(u) +
ε′

4
+ g(v) +

ε′

4

≤ (f ∗ g) (x) + ε′.

The proof of the second property is similar.

Proof of Proposition 3. Let y, y′ ∈ I such that y < y′. Then ∀x ∈ D, f(x) ≥ y′ =⇒ f(x) ≥ y, so

{x f(x) ≥ y′} ⊆ {x f(x) ≥ y}, and inf {x f(x) ≥ y′} ≥ inf {x f(x) ≥ y} i.e. f −1(y′) ≥ f −1(y).

The proof on f −1 is done the same way.

Proof of Proposition 4. Given f , for any with] ∈ {≤, <,>,≥}, let us introduce the notation S]y =

{x f(x)] y}, and do the proof for f −1. The goal is to prove that inf S≥y = supS<y .
For any x ∈ S≥y , f(x) ≥ y and for any x′ ∈ S<y , y > f(x′), leading to f(x) > f(x′), and, since f is

non-decreasing, to x > x′. Then, inf S≥y ≥ supS<y . The second step of the proof is done by contradiction.
Assume that inf S≥y > supS<y , then, it exists x such that inf S≥y > x > supS<y . If x < inf S≥y , then
x /∈ S≥y , i.e. f(x) < y, that implies x ∈ S<y and x ≤ supS<y .

The proof for f −1 is done the same way.

Proof of Proposition 5. Only left-continuity of f −1 is given. The right-continuity of f −1 can be done
the same way.

Given y ∈ R+
, and set X = {x f(x) < y} and x = supX. Then f −1(y) = x (equivalent definition,

Proposition 4).
Now consider f(x−) = limε→0 f(x− ε) the limits to the left of f at x.
First, consider the case where y 6= f(x−), and let ε > 0.
In this case, for any y′ ∈ (f(x−), y], it does not exists any x′ such that y > f(x′) > y′ (otherwise,

such x′ would be an element of X), meaning that {x f(x) < y} = {x f(x) < y′}, leading to f −1(y′) =

f −1(y). That is to says, it exists interval (f(x−), y] such than, for any y′ ∈ (f(x−), y], f −1(y)−f −1(y′) =
0 ≤ ε.

18

Second, consider the case where y = f(x−).
Note that, this implies that is exists an interval [x− η, x) such that f is strictly increasing on that

interval (by contradiction, if is exists x′ < x such that f(x′) = f(x−), then f −1(y) ≤ x′ < x).
Let (yk)k∈N an increasing sequence converging to y (yk → y), and define the sequence (xp)p∈N defined

by xp = x − 1
p
. For any p such that xp ∈ [x − η, x). Then it exists yk such that f(xp) < yk ≤ y. By

definition of pseudo-inverse, xp ≤ f −1(yk). So, to sum up xp ≤ f −1(yk) ≤ f −1(y). Substitute xp by

its definition, xp = f −1(y)− 1
p
, to finish. Then, for any increasing sequence yk → y, f −1(yk) converges

from below to f −1(y).

Proof of Proposition 6. Like in previous proof, we denote S] = {x f(x)] y}, and keep in mind that

f −1(y) = inf S≥ = supS<, and that f −1(y) = supS≤ = inf S>.

Eq. (3): f(0) = 0 so 0 ∈ {x | f(x) ≤ 0} and f −1(0) = inf {x | f(x) ≤ 0} = 0.
Eq. (4): Just uses equivalent definitions. f(x) < y =⇒ f(x) ≤ y, so S< ⊆ S≤, and supS< ≤ supS≤.

Eq. (5) From the equivalent definition f −1(y) = inf S>. Assuming y < y′, we have {x | f(x) ≥ y′} ⊆ S>,

hence f −1(y) ≤ inf {x | f(x) ≥ y′} = f −1(y′).

Eq. (6): f(x) ≤ y =⇒ x ∈ S≤ =⇒ x ≤ supS≤ = f −1(y).

Eq. (7): f(x) ≥ y =⇒ x ∈ S≥ =⇒ x ≥ inf S≥ = f −1(y).

Eq. (8): f(x) < y =⇒ x ∈ S< =⇒ x ≤ supS< = f −1(y). Eq. (9): f(x) > y =⇒ x ∈ S> =⇒ x ≥
inf S> = f −1(y).

Eq. (10): f −1(y) < x =⇒ inf S≥ < x =⇒ x ∈ S≥ =⇒ f(x) ≥ y.

Eq. (11): f −1(y) > x =⇒ supS≤ > x =⇒ x ∈ S≤ =⇒ f(x) ≤ y.

Eq. (13): f −1(y) < x =⇒ inf S> < x =⇒ x ∈ S> =⇒ f(x) > y.

Eq. (14): f −1(y) > x =⇒ supS< < x =⇒ x ∈ S< =⇒ f(x) < y.
Eq. (15): since f is right-continuous, lim

ε→0+
f(x + ε) = f(x) < y and there exists x′ > x such that

f(x) < y. From (8), we get x′ ≤ f −1(y), hence x < f −1(y).

Eq. (16): if x > f −1(y), (10) concludes. If x = f −1(y) = inf S≥ then for all x′ > x, f(x′) ≥ y and by
right-continuity f(x) ≥ y.
Eq. (17): similar to eq. (15).
Eq. (18): similar to eq. (16).

Proof of Proposition 7. Eq. (19): by simple look on the definitions: inf {x′ f(x′) ≥ f(x)} ≤ x ≤
sup {x′ f(x′) ≤ f(x)}
Eq. (20): By eq. (19), f −1 ◦ f(x) ≤ x, hence by monotonicity of f , f ◦ f −1 ◦ f(x) ≤ f(x). Let’s consider

the other inequality. For any y, f −1(y) = inf {x | f(x) ≥ y}, hence for any x′ > f −1(y), f(x′) ≥ y and

by right continuity of f , f
(
f −1(y)

)
≥ y. This gives the result for y

def
= f(x).

Eq. (21): similar to eq. (20).

Eq. (22): For any y ∈ R+
, for any x ∈ {x | f(g(x)) ≥ y}, by applying (7) twice, x ≥ g −1(f −1(y)), hence

the result by definition of (f ◦ g) −1.
Eq. (23): similar to eq. (22).

Eq. (24): for any y ∈ R+
, for any x ∈ {x | f(g(x)) < y}, by applying (15) and (8), x ≤ g −1(f −1(y)),

hence, according to Proposition 4, (f ◦ g) −1 ≤ g −1 ◦ f −1. Eq. (25): similar to eq. (24).

Proof of Proposition 8. We will only prove the last inequality f −1(y + δ) − f −1(y) ≤ φ −1(δ), the other

proofs being similar. Given y, δ ∈ R+
, for any x ∈ {x | f(x) ≤ y + δ} and x′ ∈ {x′ | f(x′) ≥ y}, if x′ ≤ x,

then φ(x− x′) ≤ f(x)− f(x′) ≤ δ by hypothesis. Thus

x− x′ ≤ sup
{

∆ ϕ(∆) ≤ δ
}

= φ −1(δ)

by definition of φ −1. This also holds when x < x′ since then

x− x′ < 0 ≤ φ −1(δ),

hence

sup {x f(x) ≤ y + δ} − inf {x f(x) ≥ y} ≤ φ −1(δ)

which concludes by definitions of f −1 and f −1.

19

Proof of Proposition 9. • Inequality 29:

– If f−1 = f −1, for y ∈ [f(0), f(+∞)]:

∗ If f −1(y) = 0, then by hypothesis and definition of f −1, for all ε > 0,

f(0) ≤ y ≤ f(ε).

By monotonicity of f , f(0) = f ◦ f −1(y) ≤ f
(
f −1(y) + ε

)
= f(ε). Since both y and

f ◦ f −1(y) are in [f(0), f(ε)], we have
∣∣∣y − f ◦ f −1(y)

∣∣∣ ≤ f(ε) − f(0) ≤ φ(ε), hence the

result.

∗ If f −1(y) > 0, denoting x := f −1(y), by definition of x and since y ≤ f(+∞), we have
for all ε ∈ (0, x],

f (x− ε) ≤ y ≤ f(x+ ε).

By monotonicity of f , f(x−ε) ≤ f(x) = f◦f −1(y) ≤ f(x+ε). Since both y and f◦f −1(y)

are in [f(x− ε), f(x+ ε)], we have
∣∣∣y − f ◦ f −1(y)

∣∣∣ ≤ f(x+ ε)− f(x− ε) ≤ φ(2ε), hence

the result.

– If f−1 = f −1, the proof is very similar.

• Inequality 30 and 31: proof uses the previous inequality and the continuity hypothesis.

Proof of Proposition 10. We have to prove that, for any t ∈ R+

(
f −1 ∗ g −1

) −1
(t) ≤ (f ∗ g) (t)

that is, by Proposition 4 and definition of ∗

sup
{
x
∣∣∣ (f −1 ∗ g −1) (x) < t

}
≤ sup

{
f(u) + g(v)

∣∣∣ u, v ∈ R+
, u+ v = t

}
.

This amounts to prove that for any x ∈ R+
, if
(
f −1 ∗ g −1

)
(x) < t, then

x ≤ sup
{
f(u) + g(v)

∣∣∣ u, v ∈ R+
, u+ v = t

}
(49)

which, by definition of ∗ amount to prove that, if inf
{
f −1(u′) + g −1(v′)

∣∣∣ u′, v′ = x
}
< t, then (49)

which again amounts to prove that, if there exist u′, v′ such that u′ + v′ = x and f −1(u′) + g −1(v′) < t,
then (49).

Since f −1(u′) + g −1(v′) < t, there exist u and v such that f −1(u′) < u, g −1(v′) < v and u + v = t.
By Proposition 6, we have u′ < f(u) and v < g(v), hence

x = u′ + v′ < f(u) + g(v)

and eventually (49) since u+ v = t.
The proof of the second inequality is similar.

A.2 On the packet function and individual packet sizes

Proof that the P operator of Def. 9 returns a packet function. Let L a cumulative packet length func-
tion. Let Pr = (P)(L), Pl = (P ′)(L). We have to show that Pr, Pl are piecewise continuous, non-
decreasing, 2-surjective.

• Non-decreasing, continuity : The fact that Pr and Pl are non-decreasing and piecewise linear is
obvious from equivalent definition of Thm. 1. It also proves that PLl is left-continuous and PLr is
right-continuous.

• 2-surjective: The property 2-surjective is also simple: for any n ∈ N, consider the interval
(L(n), L(n + 1)). Since L(n) < L(n + 1), it exists two different elements, a, a′ such that L(n) <
a < a′ < L(n+ 1) and L(a) = L(a′) = n.

20

• lima→∞ Pr(a) =∞: set some m ∈ R+
, the goal is to prove that it exists a such that Pr(a) ≥ m.

From Prop. 1, for any a ∈ (L(m), L(m+ 1), Pr(a) = m, so it exists a such that Pr(a) ≥ m. The
proof for Pl is the same.

Proof that the L operator of Def. 9 returns a cumulative packet length function. Let P be a piecewise
continuous, non-decreasing, 2-surjective function, and L = L(P).

To show that L is a cumulative packet length function, the three sub-objectives are: L is increasing,
L(0) = 0 and L diverges.

• L(0) = 0: By definition of L, L(0) = inf
{
d ∈ R+

P (d) > −1
}

= inf
{
d ∈ R+

}
= 0.

• L is increasing : Let n, n′ ∈ N such that n < n′. Since P is 2-surjective, it exists x, y such that x < y,
P (x) = P (y) = n.

The equality P (x) = n implies x ∈ {d P (d) > n− 1}, so x ≥ inf {d P (d) > n− 1} i.e. x ≥ L(n).

Conversely, P (y) = n implies y /∈ {d P (d) > n′ − 1}, so y ≤ inf {d P (d) > n′ − 1} i.e. y ≤ L(n′).

Combining both yields L(n) ≤ x < y ≤ L(n′).

This part of the proof requires that P is 2-surjective. Otherwise, PL can be only non-decreasing, not
increasing i.e. it can exists a packet of null size.

• L is divergent: let M ∈ R+
, and show that it exists n such that L(n) ≥M .

Letm = P (M), andDm+1 =
{
d ∈ R+

P (d) ≥ m+ 1
}

=
{
d ∈ R+

P (d) > m
}

. Since P is increasing,

M ≤ inf Dm+1 = L(m+ 1).

Proof of Theorem 2. Let L a cumulative packet sequence, P = P(L) or P = P ′(L) (the properties used
hold bot both) and L′ = L(P) = (L ◦ P)(L).

Let n ∈ N: if n = 0, since L and L′ are cumulative packet length function, L′(0) = L(n). If n > 0,
the equality is done in two steps:
• L′ ≥ L(n): Consider the interval In−1 = ((L(n − 1), L(n)). For any a ∈ In−1, P (a) = n − 1, so
In−1 ∩ {a P (a) > n− 1} = ∅, leading to inf {a P (a) > n− 1} ≥ L(n), i.e. L′(n) ≥ L(n).

• L′(n) ≤ L(n): Consider the interval In = ((L(n), L(n + 1)). For any a ∈ In−1, P (a) = n, and
since P is non-decreasing, for any ε > 0, L(n) + ε ∈ {a P (a) > n− 1}, leading to L(n) + ε ≥
inf {a P (a) > n− 1} = L′(n), which implies L(n) ≥ L′(n).

21

