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Bayesian Estimation of Smooth Altimetric
Parameters: Application to Conventional

and Delay/Doppler Altimetry
Abderrahim Halimi, Member, IEEE, Corinne Mailhes, Member, IEEE,

Jean-Yves Tourneret, Senior Member, IEEE, and Hichem Snoussi

Abstract—This paper proposes a new Bayesian strategy for
the smooth estimation of altimetric parameters. The altimetric
signal is assumed to be corrupted by a thermal and speckle
noise distributed according to an independent and non-identically
Gaussian distribution. We introduce a prior enforcing a smooth
temporal evolution of the altimetric parameters which improves
their physical interpretation. The posterior distribution of the
resulting model is optimized using a gradient descent algorithm
which allows us to compute the maximum a posteriori estimator
of the unknown model parameters. This algorithm has a low
computational cost that is suitable for real-time applications. The
proposed Bayesian strategy and the corresponding estimation
algorithm are evaluated using both synthetic and real data associ-
ated with conventional and delay/Doppler altimetry. The analysis
of real Jason-2 and CryoSat-2 waveforms shows an improvement
in parameter estimation when compared to state-of-the-art esti-
mation algorithms.

Index Terms—Altimetry, Bayesian algorithm, coordinate de-
scent algorithm, delay/Doppler altimetry (DDA), natural gradient,
simultaneous autoregression (SAR) altimetry, smooth estimation.

I. INTRODUCTION

A SATELLITE altimeter is a nadir viewing radar that emits
regular pulses and records the travel time, the magni-

tude, and the shape of each return signal after reflection on
the Earth’s surface. This reflected echo provides information
about some physical parameters such as the range between the
satellite and the observed scene (denoted by τ ), the significant
wave height (denoted by SWH), and the wind speed (related
to the echo’s amplitude Pu). However, altimetric waveforms
are corrupted by speckle noise that reduces the quality of
the retrieved geophysical parameters. Therefore, many recent
studies and missions have been focusing on improving the
quality of these estimated parameters by reducing the noise
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effect. We distinguish between two approaches that have been
focusing on improving the altimetric technology or improving
the processing of the available data. The first approach is based
on reducing the measurement noise of conventional altimeters
(such as TOPEX and Poseidon-3) by increasing the number of
observations (looks). This can be achieved by keeping the same
conventional technology and improving the altimeter character-
istics (as for AltiKa [1]–[3]) or by using a new delay/Doppler
processing [4] that results in a different echo’s shape [5]–[7].
The second approach processes the available data by using
improved models for the altimetric echoes [8]–[11] or improved
estimation algorithms [12]–[14].

Following this second approach, the goal of this paper is to
elaborate a new Bayesian model and its estimation algorithm
accounting for the smooth evolution of altimetric signals. Usual
methods for parameter estimation are based on maximum-
likelihood [15] or weighted [12], [16] and unweighted least
squares (LS) approaches [6], [7], [9]. Most existing algorithms
consider altimetric echoes independently and estimate one set
of parameters per echo. However, it is well known that adjacent
echoes share similar characteristics because of their physical
nature. The correlation between these adjacent echoes has been
analyzed in studies such as [17]–[19]. This correlation has
also been considered in [12] which processed a set of echoes
by imposing a spline evolution for the epoch parameter τ .
However, this method was developed by fixing the significant
wave height for the whole set of echoes. In [13], the authors
proposed a three-step algorithm that reduces the range noise
by first estimating three altimetric parameters (SWH, τ , and
Pu), then filtering the estimated SWH using a Gaussian filter,
and, finally, re-estimating the epoch τ while fixing SWH. This
last algorithm is flexible since it does not enforce the parameter
SWH to be constant. However, it requires us to use a sequential
estimator whose computational cost can be prohibitive. More-
over, the algorithm of [13] requires the characterization of a
Gaussian filter for SWH which has been chosen empirically.
Finally, it is interesting to note that the algorithms developed
in [12] and [13] have shown interesting properties especially
in reducing the variance of the estimated altimetric parameters
which encourages the consideration of the echo’s correlation to
improve parameter estimation.

The first contribution of this paper is the elaboration of a
hierarchical Bayesian model that allows smooth estimation of
altimetric parameters by considering the correlation between



successive altimetric echoes. Each altimetric echo is assumed
to be corrupted by an additive, independent, and non-identically
Gaussian noise [20]. This noise model generalizes the inde-
pendent and identically distributed (i.i.d.) Gaussian noise that
is generally assumed when considering an unweighted LS
approach [6], [9]. The proposed approach allows the estimation
of the noise parameters from the data which brings additional
robustness compared to algorithms requiring a priori known
noise parameters. The parameters of interest of the proposed
model (i.e., SWH, τ , and Pu) are assigned priors enforcing a
smooth evolution between consecutive signals which improves
their estimation. These priors are defined from the discrete
Laplacian of the different parameters. This kind of prior has
shown increasing interest for many problems such as image de-
convolution [21], [22], hyperspectral unmixing [23], and med-
ical imaging [24]. Note that the proposed Bayesian hierarchy is
generic in the sense that it can be applied to both conventional
altimetry (CA) and delay/Doppler altimetry (DDA).

The second contribution of this paper is the derivation of an
estimation algorithm for the altimetric and noise parameters as-
sociated with the proposed hierarchical Bayesian model. How-
ever, the minimum mean square error (MMSE) and maximum
a posteriori (MAP) estimators of these parameters cannot be
easily computed from the obtained joint posterior. This problem
has been solved in [25] by drawing samples distributed ac-
cording to a similar posterior using Markov chain Monte Carlo
(MCMC) methods. More precisely, a Hamiltonian Monte Carlo
(HMC) algorithm was used for its good mixing properties for
high-dimensional vectors [26]. The HMC algorithm provided
good estimation results, and it will be briefly recalled in this
paper. However, the resulting HMC-based estimators have a
high computational complexity which can be penalizing for
real-time applications. In this paper, we propose an algorithm
that significantly reduces this computational cost by using a
gradient descent approach. More precisely, a coordinate descent
algorithm [23], [27] is used to sequentially update the noise and
altimetric parameters. This algorithm uses a natural gradient
approach [28], weighting the gradient direction by using the
Fisher information matrix and leading to a fast convergence.1

The proposed Bayesian model and estimation algorithm are
evaluated using synthetic and real echoes acquired during the
Jason-2 and CryoSat-2 missions. The obtained results are very
promising and confirm the potential of the proposed Bayesian
model and its associated algorithm.

This paper is organized as follows. Section II presents the dif-
ferent models used for CA and DDA. The proposed hierarchical
Bayesian model and its estimation algorithm are introduced
in Sections III and IV. Section V is devoted to testing and
validating the proposed technique using synthetic data with
controlled ground truth. Section VI shows the results obtained
using real data resulting from Jason-2 and CryoSat-2 missions.
Conclusion and future work are finally reported in Section VII.

1This approach is also known as Fisher scoring [10], [29]. It updates the
parameters in a Riemannian space, resulting in a fast convergence to a local
minimum of the cost function of interest [30], [31].

II. ALTIMETRIC MODELS

This section introduces the altimetric models used for CA
and DDA that are characterized by three altimetric parameters:
the significant wave height SWH, the epoch τ , and the ampli-
tude Pu.

A. Conventional and BMs

In CA, the mean power of the altimetric echo s(t) is ex-
pressed by a convolution of three terms that are the probability
density function (pdf) of the heights of the specular scatterers,
the point target response (PTR) of the radar,2 and the flat surface
impulse response (FSIR) as follows [8], [34]:

s(t) = FSIR(t) ∗ PDF(t) ∗ PTRT (t) (1)

with

FSIR(t) =Pu exp

[
− 4c

γh
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]
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where σs = SWH/2c, t is the time, τs = 2τ/c is the epoch
expressed in seconds whereas τ is expressed in meters, c is
the speed of light, T is the time resolution, γ is an antenna
beamwidth parameter, h is the minimum satellite-surface dis-
tance, and U(·) denotes the Heaviside function. This model
has been considered for parameter estimation in many studies
such as [6] and [16]. However, the numerical computation of
the double convolution (1) leads to a high computational cost
when processing a large amount of altimetric data. Therefore, a
simplified analytical model known as the Brown model (BM) is
often considered. The BM is obtained by assuming a centered
Gaussian approximation (with a standard deviation (STD) equal
to σp) for the squared cardinal sine PTRT , leading to [8], [9]

s(t)=
Pu

2

[
1+ erf
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exp
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c
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where

σ2
c =

(
SWH
2c

)2

+ σ2
p (6)

and where erf(t) = (2/
√
π)
∫ t

0 e
−z2

dz stands for the Gaussian
error function and α and σ2

p are two known parameters (de-
pending on the satellite and on the Gaussian approximation of
the PTR). The model (5) is clearly more attractive than (1) for
designing simple estimation algorithms.

2Instead of the considered squared cardinal sine PTR, a measured PTR could
also be used in CA as in [32] and [33].



B. DDA

DDA aims at reducing the measurement noise and increasing
the along-track resolution in comparison with CA. The mean
power of a delay/Doppler echo can be expressed as the convo-
lution of three terms: the time/frequency FSIR, the pdf of the
heights of the specular scatterers, and the time/frequency PTR
as follows [6], [7], [20], [35]:

P (t, f) = FSIR(t, f) ∗ PDF(t) ∗ PTR(t, f) (7)

with

PTR(t, f)=PTRT (t)PTRF (f), PTRF (f)=

∣∣∣∣∣∣
sin
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π f
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)
π f

F

∣∣∣∣∣∣
2

(8)

where F is the frequency resolution. The FSIR is given by [6]

FSIR(t, q) =
Pu

π
exp

[
− 4c

γh
(t− τs)

]
U(t− τs)

×
[
φt,q+1(τs)− φt,q(τs)

]
(9)

with

φt,q(τs) = Re

⎡⎣arctan

⎛⎝ yq√
ρ2(t− τs)− y2q

⎞⎠⎤⎦ (10)

where q = 1, . . . , Q, with Q being the number of Doppler
beams (Q = 64 for CryoSat-2), ρ(t) =

√
hct is the radius of the

propagation circles (iso-range circles), yq = (hλ/2vs)fq is the
ordinate of the qth Doppler beam, fq = (q − 32.5)F is the qth
Doppler frequency (32.5 is introduced to obtain a central beam
when Q = 64), vs is the satellite velocity, λ is the wavelength,
and Re(x) denotes the real part of the complex number x [the
interested reader is invited to consult [6] for more details about
(7)]. The double convolution (7) leads to a 2-D delay/Doppler
map (DDM). The analysis of the DDA waveform is based
on a multilook echo obtained by applying Doppler processing
(slant range correction and multilooking) to the DDM (see [4]
and [5]). The resulting multilook delay/Doppler signal can be
written as

s(t) =

Q∑
q=1

P (t− δtq, fq) (11)

where δtq is the delay compensation expressed in seconds. Note
finally that the discrete altimetric echo (for CA, BM, and DDA)
is gathered in the vector s = (s1, . . . , sK)T , where K = 128
gates and sk = s(kT ).

C. Noise Model

The altimetric echoes are corrupted by a speckle noise whose
influence is reduced by averaging, onboard the satellite, a
sequence of L consecutive echoes. This operation reduces the
noise variance by

√
L when assuming pulse-to-pulse statistical

independence between the averaged echoes3 (see [36] for the
introduction of the Walsh criteria). Considering the central limit
theorem and using the fact that the averaging is conducted on
a large number of echoes, the resulting noise sequence can be
approximated by a Gaussian distribution. This approximation
has been successfully adopted in the altimetric community
[16], [20], [37] and is implicitly used in the well-known LS
estimation algorithms [6], [12], [13], [38]. Therefore, this pa-
per considers that the altimetric waveform is corrupted by an
additive Gaussian noise as follows:

ym = sm(Θm) + em, with em ∼ N (μm1K ,Σm) (12)

where ym (respectively, sm) is a (K × 1) vector representing
the mth observed echo (respectively, altimetric model), Θm =
[θ1(m), θ2(m), θ3(m)] = [SWH(m), τ(m), Pu(m)] is a (1×3)
vector containing the 3 altimetric parameters SWH, τ , and
Pu for the mth echo, em is an independent and non-
identically Gaussian noise with mean vector μm1K represent-
ing the thermal noise (where 1K is a K × 1 vector of 1),
and diagonal covariance matrix Σm = diag(σ2

m), with σ2
m =

(σ2
m1, . . . , σ

2
mK)T a (K × 1) vector containing the noise vari-

ances of the mth echo.4 Note that the thermal noise parameter
is sometimes represented by an additive constant that is added
to the altimetric model sm(Θm). In the proposed model, this
parameter has been included in the noise sequence em of (12),
where it represents the noise mean μm.

III. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model for
estimating the parameters of M successive altimetric echoes.
After defining a statistical model associated with the observed
data, the Bayesian approach consists of determining the dis-
tribution of the observed data (known as the likelihood) and
the priors assigned to the unknown parameters summarizing
the knowledge about these parameters. The Bayes theorem
allows the likelihood and the priors to be combined to build the
posterior distribution of the statistical model. More precisely, if
f(x) denotes the prior distribution assigned to the parameter x,
the Bayesian approach computes the posterior distribution of x
using Bayes rule

f(x|Y ) =
f(Y |x)f(x)

f(Y )
∝ f(Y |x)f(x) (13)

where ∝ means “proportional to” and f(Y |x) is the likelihood
of the observation vector Y . The mean vector and maximum
of this posterior can then be computed in order to estimate the
unknown parameters x. The resulting estimators are referred to
as the MMSE and MAP estimators, respectively. The following
sections introduce the likelihood and the prior distributions con-
sidered in this paper. The unknown parameters of the proposed
model include the thermal noise represented by an (M × 1)

3This assumption is true for CA echoes, while it is not valid for DDA echoes
as explained in [5] and [16].

4Note that the noise variance varies with respect to the time instant k and the
observed echo m.



vector μ, the (K ×M) matrix Λ = [σ2
1, . . . ,σ

2
M ] containing

the noise variances associated with the considered M echoes,
and the (M × 3) matrix gathering the 3 altimetric parameters
(SWH, τ , and Pu) of the M echoes.

A. Likelihood

The observation model defined in (12) and the Gaussian
properties of the noise sequence em yield

f(ym|Θm, μm,Σm)∝
(

1∏K
k=1 σ

2
mk

) 1
2

exp

{
−1

2
xT
mΣ−1

m xm

}
(14)

where xm = ym − sm − μm1K and xm(Θm) [respectively,
sm(Θm)] has been denoted by xm (respectively, sm) for
brevity. Assuming independence between the observed echoes
leads to

f(Y |Θ,μ,Λ) ∝
M∏

m=1

f(ym|Θm, μm,Σm) (15)

where Θ = [θ1, θ2, θ3] is an (M × 3) matrix containing the
altimetric parameters of M echoes, μ = (μ1, . . . , μM )T is an
(M × 1) vector containing the noise means, and Λ = [σ2

1, . . . ,
σ2

M ] is a (K ×M) matrix containing the noise variances.

B. Priors for the Altimetric Parameters

The altimetric parameters are assigned priors enforcing a
smooth evolution for successive waveforms. The considered
priors constrain the derivatives of the altimetric parameters to
have small values. This can be done by assigning a Gaussian
distribution to the second derivative of the altimetric parameter
θi as follows:

f
(
θi|ε2i

)
∝
(

1

ε2i

)M
2

exp

(
− 1

2ε2i
‖Dθi‖2

)
(16)

for i ∈ {1, . . . , 3}, where ε2i is a hyperparameter, ‖ · ‖ denotes
the standard l2 norm such that ‖x‖2 = xTx, and D is the
discrete Laplacian operator. This prior has been referred to as si-
multaneous autoregression (SAR) or conditional autoregression
(CAR) in the image deconvolution context [21], [22]. It has also
been used for different problems such as spectral unmixing of
hyperspectral images [23], medical imaging applications [24],
or spectroscopy [39]. The main originality of this work is to
consider this prior for the parameters of altimetric waveforms.

C. Prior for the Noise Parameters

The noise parameters introduced in (12) are also estimated by
the proposed estimation algorithm. The absence of knowledge
about the noise means (which represent the thermal noise) and
covariances should be considered when choosing the priors

for these parameters. In this paper, we consider the following
conjugate Gaussian prior with a large variance for the noise
mean:

f(μ|ψ2) ∼ N (0M , ψ2IM ) (17)

where∼means “is distributed according to,” IM is the (M×M)
identity matrix, 0M is an (M × 1) vector of 0, and ψ2 is
a fixed large variance (ψ2 = 102 in the rest of this paper).
Considering the noise covariance matrix, we have first to note
that, in the case of speckle noise, these variances depend on
the echo’s shape at each instant, i.e., the variances change from
one echo to the other. However, we are generally interested
in parameters estimated with a frequency of 1 Hz, i.e., we
consider that the physical oceanic parameters do not change
significantly in 1 s. This assumption means that the shapes
of successive oceanic echoes acquired within a time interval
of 1 s do not change significantly5 and thus that the noise
variances are almost the same for these echoes. Therefore, we
consider that the noise variance is constant for each r = 20
successive echoes.6 This means that σ2

(n−1)r+1,k = · · · = σ2
nr,k

for n ∈ {1, . . . , N}, with N = M/r (note that the general
case is obtained by considering r = 1). After assuming prior
independence between the noise variances σ2

nr,k, the noninfor-
mative Jeffreys prior of Λ is defined as

f(Λ) =

N∏
n=1

K∏
k=1

1

σ2
nr,k

IR+

(
σ2
nr,k

)
(18)

where IR+(.) is the indicator of the set R+.

D. Hyperparameter Priors

The hyperparameters ε2i , i ∈ {1, . . . , 3} are assigned inde-
pendent inverse gamma distributions as follows:

ε2i ∼ IG(ai, bi) (19)

where ai and bi are fixed hyperparameters that depend on
the dynamic magnitude of the ith altimetric parameter [39].
Owing to the fast convergence of the proposed algorithm, these
parameters have been set by cross-validation to improve the
obtained results.

E. Marginalized Posterior Distribution

The proposed Bayesian model includes the parameters Θ,
μ, and Λ and the hyperparameters ε2i , i ∈ {1, . . . , 3}, which is
summarized in the directed acyclic graph (DAG) displayed in
Fig. 1. The joint posterior distribution of this Bayesian model
can be computed from the following hierarchical structure:

f(Θ,μ,Λ, ε|Y ) ∝ f(Y |Θ,μ,Λ)f(Θ,μ,Λ, ε) (20)

5Note that this assumption is not true in coastal zones where contaminated
waveforms are common.

6The pulse repetition frequency of Jason-2 is 2 kHz. The echoes are generally
averaged to deliver a 20-Hz data, i.e., it delivers 20 echoes for each second of
data.



with

f(Θ,μ,Λ, ε)=f(μ|ψ2)f(Λ)
3∏

i=1

f
(
θi|ε2i

)
f
(
ε2i |ai, bi

)
(21)

where we have assumed a priori independence between the
altimetric parameters and hyperparameters. This distribution
can be marginalized with respect to (w.r.t.) ε as follows:

f(Θ,μ,Λ|Y ) ∝ f(Y |Θ,μ,Λ)f(μ|ψ2)f(Λ)

×
3∏

i=1

[∫
f
(
θi|ε2i

)
f
(
ε2i |ai, bi

)
dε2i

]

∝ f(Y |Θ,μ,Λ)f(μ|ψ2)f(Λ)

3∏
i=1

f(θi|ai, bi)

(22)

where

f(θi|ai, bi) ∝
(
‖Dθi‖2

2
+ bi

)−ai−M/2

. (23)

The advantage of this marginalization is to get rid of the
hyperparameter vector ε and thus to make the estimation pro-
cedure more robust. However, even with this simplification, the
MMSE and MAP estimators associated with the marginalized
posterior (22) are not easy to determine mainly because of
the nonlinearities relating the noiseless altimetric waveform
sm and the parameters of interest (τ and SWH). In [25], an
MCMC algorithm was proposed to sample the joint poste-
rior distribution of a similar Bayesian model.7 The generated
samples were then used to compute the MMSE parameter
estimators (see Appendix A for more details). However, this
MCMC algorithm has a high computational complexity which
can be penalizing for real-time applications. In this paper,
we propose an alternative based on an optimization technique
maximizing the marginalized posterior (22) w.r.t. the parame-
ters of interest [or equivalently, minimizing the negative log-
posterior −log[p(Θ,μ,Λ|Y )] defined in (22)]. The mode of
the posterior distribution (22) is classically referred to as the
marginalized MAP estimator of (Θ, μ, Λ).

IV. COORDINATE DESCENT ALGORITHM

This section describes a gradient descent algorithm maximiz-
ing the marginalized posterior (22) w.r.t. the noise and altimet-
ric parameters, i.e., determining the marginal MAP estimator of
(Θ, μ, Λ). As explained before, maximizing (22) w.r.t. (Θ, μ,

7Note that the Bayesian model in [25] differs slightly from the described
model since the parameters εi are not marginalized and the hyperparameter
values are set to ai = bi = 0 corresponding to Jeffreys prior for εi.

Fig. 1. DAG for the parameter and hyperparameter priors (the user-fixed
parameters appear in boxes).

Λ) reduces to minimizing the negative log-posterior defined as
(after removing unnecessary constants)

C(Θ,μ,Λ) =
(r
2
+ 1

) K∑
k=1

N∑
n=1

log σ2
nr,k +

M∑
m=1

μ2
m

2ψ2

+

3∑
i=1

(
ai +

M

2

)
log

(
‖Dθi‖2

2
+ bi

)

+

M∑
m=1

xT
mΣ−1

m xm

2
. (24)

Because of the large number of parameters in (Θ, μ, Λ),
we propose a coordinate descent algorithm [23], [27] that
sequentially updates the different parameters. More precisely,
the algorithm estimates the altimetric and noise parameters
iteratively. In each step, the parameters of interest are estimated
while holding the other parameters fixed. This process is re-
peated until the algorithm has converged to a local minimum of
the cost function C(Θ,μ,Λ). The main steps of the resulting
algorithm are described in Algorithm 1. The next sections
describe the suboptimization procedures maximizing the cost
function C(Θ,μ,Λ) w.r.t. the altimetric and noise parameters.
A convergence diagnosis is also provided to study the conver-
gence of the proposed approach.

Algorithm 1 Gradient Descent Algorithm

1: Initialization
2: Initialize parameters θ

(0)
i , for i ∈ {1, . . . , 3}, μ(0), Λ(0)

and t = 1
3: conv = 0,
4: Parameter update
5: while conv = 0 do
6: Update θ(t)

i , for i ∈ {1, . . . , 3} according to (25)
7: Update μ(t) according to (31)
8: Update Λ(t) according to (34)
9: Set conv = 1 if the convergence criteria are satisfied
10: t = t+ 1
11: end while

1) Natural Gradient for Altimetric Parameters: In order
to ensure a fast estimation of the altimetric parameters, we



propose to use the natural gradient algorithm to minimize C
w.r.t. Θ [28]. This gradient algorithm is also known as Fisher
scoring approach since it weights the gradient direction by
the Fisher information matrix of the parameters [10], [29].
The resulting descent algorithm updates the parameters in a
Riemannian space, resulting in a fast convergence to a local
minimum of the objective function [30], [31]. Denote as γ =
(θT

1 , θ
T
2 , θ

T
3 )

T the (3M × 1) vector gathering the altimetric
parameters. The proposed algorithm updates this vector as
follows:

γ(t+1) = γ(t) − F −1
(
γ(t)

)
∇C(γ(t)) (25)

where ∇C(γ(t)) denotes the gradient of the cost function C
given by

∇C =
∂C
∂γ

=

[(
∂C
∂θ1

)T

,

(
∂C
∂θ2

)T

,

(
∂C
∂θ3

)T
]T

(26)

with

∂C
∂θi

= −
(
∂sT1
∂θ1i

Σ−1
1 x1, . . . ,

∂sTM
∂θMi

Σ−1
M xM

)T

+

(
ai +

M

2

)(
DTDθi

‖Dθi‖2
2 + bi

)
. (27)

The Fisher information matrix F (γ(t)) can be decomposed as
the following block matrix:

F =

⎡⎣F 1 F 12 F 13

F 12 F 2 F 23

F 13 F 23 F 3

⎤⎦ (28)

with

F ij =diag

(
∂sT1
∂θ1i

Σ−1
1

∂s1
∂θ1j

, . . . ,
∂sTM
∂θMi

Σ−1
M

∂sM
∂θMj

)

F i =F ii+

(
ai+

M

2

)⎡⎢⎣DTD − (DTDθi)(D
TDθi)

T(
‖Dθi‖2

2 + bi

)2

⎤⎥⎦ .

(29)

Note that the derivatives required to compute the elements of F
are the same as those required to compute ∇C. Therefore, the
only additional computation w.r.t. a steepest descent approach
is the matrix inversion in (25). Note also that this matrix
inversion is faster than a new evaluation of the altimetric model
and its derivatives8 that are necessary for a new update of γ in
a steepest descent algorithm. Therefore, it is better to add this
inversion and reduce the number of iterations, instead of using
a simple steepest descent approach that usually requires a lot of
iterations to converge, resulting in a high computational cost.

8The evaluation of the altimetric models and their derivatives requires a lot
of computations mainly because of the involved nonlinear functions (such as
the Gauss error or the exponential functions) and the numerical convolutions
for CA and DDA.

2) Updating the Noise Parameters: Maximizing the mar-
ginalized posterior distribution (22) w.r.t. the noise parame-
ters (means and variances) can be achieved by considering a
coordinate descent algorithm. This approach maximizes the
conditional distributions associated with each noise parameter.
Using (15) and (17), it can be easily shown that the conditional
distribution of the noise mean is the following Gaussian distri-
bution:

μm|ym,Θm,Σm, ψ2 ∼ N
(
μm,

1

ψ−2 +
∑K

k=1 σ
−2
mk

)
(30)

with

μm =

∑K
k=1

ymk−smk

σ2
mk

ψ−2 +
∑K

k=1 σ
−2
mk

. (31)

Therefore, the parameter vector μ can be updated using (31),
which is the maximum of the Gaussian distribution (30). Simi-
larly, it can be shown using (15) and (18) that

f(Λ|Y ,Θ,μ) =

N∏
n=1

K∏
k=1

f
(
σ2
nr,k|Y :k,Θk:,μ

)
(32)

and that σ2
nr,k|Y :k,Θk:,μ is distributed according to the fol-

lowing inverse-gamma distribution:

σ2
nr,k|Y :k,Θk:,μ ∼ IG

(r
2
, β
)

(33)

with β =
∑nr

m=(n−1)r+1 (x
2
mk/2). Thus, the mode of the in-

verse gamma distribution (33) is

σ2
nk =

β
r
2 + 1

. (34)

3) Stopping Criteria: Algorithm 1 is an iterative algorithm
that requires the definition of some stopping criteria. In this
paper, we have considered three criteria, and the algorithm is
stopped if one of them is satisfied. The first criterion compares
the new value of the cost function to the previous one and stops
the algorithm if the relative error between these two values is
smaller than a given threshold, i.e.,∣∣∣C(t+1) − C(t)

∣∣∣ ≤ ξ1C(t) (35)

where | · | denotes the absolute value. The second criterion
evaluates the new parameter values and stops the algorithm if
the following condition is satisfied [40]:∥∥∥γ(t+1) − γ(t)

∥∥∥ ≤ ξ2

(∥∥∥γ(t)
∥∥∥+ ξ2

)
. (36)

The last criterion is based on a maximum number of iterations
Tmax. Note that the proposed algorithm can be used when
considering different altimetric models. Indeed, it just needs
the definition of the altimetric model and its derivatives w.r.t.



the altimetric parameters (the altimetric model can be given
by a closed-form expression as for BM or by a numerical
computation as for CA and DDA). This model flexibility is
highlighted in Section VI that considers the BM, CA, and DDA
models for processing real data.

It is also interesting to note that the coordinate gradient
algorithm converges to a stationary point if the minimum of
the cost function (24) w.r.t. (Θ, μ, Λ) along each coordinate
is uniquely reached [27]. This is easily checked for the mean
vector μ since the posterior distribution (22) viewed as a
function of μ is proportional to the Gaussian distribution (30)
that has a unique mode. Similarly, the posterior distribution (22)
viewed as a function of σ2

nr,k is proportional to the inverse
gamma distribution (33) that has a unique mode. Considering
the altimetric parameters, the convexity of the cost function
cannot be theoretically demonstrated mainly because of the
nonlinearity of the altimetric models. Therefore, the solution
obtained by the considered local estimator might depend on
the initial values of the parameters. Thus, we have considered
the same realistic values as for [9] and [15] to initialize the
parameters (SWH = 2.9 m, τ = 14.97 m, and Pu = 140) in all
what follows (see [41] for more details regarding the initializa-
tion of the parameters). Using this initialization, the proposed
algorithm always converges to the actual parameters in all of
our synthetic simulations (see Section V).

V. VALIDATION ON SYNTHETIC DATA

This section first introduces the criteria used to evaluate the
performances of the proposed estimation algorithm. The second
part defines the effective number of looks (ENL) used to exploit
the estimated noise covariance. The third part of this section
compares the performance of the proposed algorithm with those
obtained with state-of-the-art approaches for synthetic data
with controlled ground truth.

A. Evaluation Criteria

For synthetic echoes, the true parameters are supposed to be
known and can be used to evaluate the estimation performance.
More precisely, the bias and STD of the estimator θ̂i are defined
as follows:

Bias
(
θ̂i

)
=

1

M

M∑
m=1

[
θ̂i(m)− θi(m)

]
(37)

STD
(
θ̂i

)
=

√√√√ 1

M

M∑
m=1

[
θ̂i(m)− θi(m)

]2
(38)

for i ∈ {1, . . . , 3}, where θi(m) (respectively, θ̂i(m)) is the true
(respectively, estimated) parameter for the mth waveform and
M is the number of simulated waveforms.

B. ENL

The proposed algorithm estimates the noise covariance Λ̂
which is used to compute the ENL defined in [5], [16].

TABLE I
PERFORMANCE ON SYNTHETIC BM DATA (500 ECHOES)

This number represents the equivalent number of independent
echoes that were averaged to reduce the noise and is defined by

Neff(n, k) =
E2 [y(k)]

E
{
[y(k)− E (y(k))]2

}

=

[
1/r

∑nr
m=(n−1)r+1 ym(k)

]2
σ̂2

nr,k

(39)

for k ∈ {1, . . . ,K} and n ∈ {1, . . . , N}. Note that Neff(n, k)
differs from one temporal gate to another and thus depends on
k. In order to avoid this dependence, the following averaged
number of looks is considered in this paper:

ENL(n) =
1

K

K∑
k=1

Neff(n, k) (40)

for n ∈ {1, . . . , N}. In the case of synthetic data, this estima-
tion will be compared to the number L of averaged echoes in
terms of bias and STD.

C. Simulation Results on Synthetic Data

The proposed strategy (denoted by CD for coordinate de-
scent) is first investigated when considering M = 500 corre-
lated altimetric echoes generated according to the BM defined
in (5). The correlation between successive echoes is introduced
by considering a smooth evolution of the altimetric parameters.
More precisely, we have considered a dynamic evolution of
the altimetric parameters defined as follows: SWH(m) = 2.5 +
2 cos(0.07 m), τ(m) = 27 + 0.02 m if m < 250 and τ(m) =
32− 0.02 m if m ≥ 250 (in unit of gates), and Pu(m) = 158 +
0.05 sin(0.1 m), where m denotes the echo number. The syn-
thetic echoes are then generated by plugging the values of the
altimetric parameters in the BM and by corrupting the resulting
echo by a thermal noise μm = 0.025 ∀m and a speckle noise
resulting from the averaging of L = 90 echoes. The proposed
CD strategy is compared to the state-of-the-art LS algorithm
described in [6], [9], and [10] and to the Bayesian approach
HMC [25] detailed in Appendix A. Table I reports the obtained



biases and STDs when estimating the three parameters of
interest and ENL when possible. The considered algorithms are
denoted by their names (CD, HMC, and LS), followed by the
considered altimetric model (BM, CA, and DDA). For instance,
CD-BM represents the CD algorithm when considering BM
echoes. Table I shows the reduced biases for τ and SWH when
considering the Bayesian CD and HMC methods. Indeed, these
two algorithms estimate the non-identically distributed noise,
while the LS estimator only estimates the thermal noise and
assumes an i.i.d. speckle noise. Thus, the Bayesian algorithms
involve a more precise model and provide a lower bias for the
altimetric parameters (except for Pu). Note that all algorithms
provide a good estimate of the thermal noise μ as shown in
Table I. Moreover, from an STD point of view, both Bayesian
CD and HMC approaches lead to lower STDs than when using
an LS-based method since they are using the smooth prior
defined in (16). Note that CD-BM improves the LS-BM STDs
by a factor of 16 for SWH, 5 for τ , and 3 for Pu. Table I also
highlights the additional interest of both Bayesian algorithms
that are able to estimate the number of averaged independent
echoes with a good precision (small bias and STD). Last but
not least, Table I gives the averaged computational cost of
the three algorithms, for a MATLAB implementation on a
2.4-GHz Intel-i7 personal computer. As expected, the HMC
algorithm is highly computationally expensive due to its sam-
pling procedure, while the proposed CD algorithm is the fastest
one, which is three times faster than the LS one. Results similar
to Table I have been obtained when considering CA and DDA
models, but these results are not provided in this section for
brevity (these models are investigated in the next section when
considering CryoSat-2 echoes). Finally, in the case of synthetic
data, the proposed CD approach outperforms the classical LS
one, both in terms of bias and STD for the estimated parameters
but also in terms of computational cost, allowing, at the same
time, the estimation of additional noise parameters. Fig. 2 illus-
trates the clear improvement of the proposed algorithm when
compared to the LS one, in terms of bias and STD. Subfigures
(a-top), (c-top), and (e-top) present the actual parameter values
(black line) and the estimated ones by considering the LS (red
line) and the CD (blue line, almost confused with the black
one) algorithms for 500 echoes. When plotting the difference
between the actual and estimated parameters in subfigures (a-
bottom), (b-bottom), and (c-bottom), the interest of the pro-
posed CD strategy is clearly highlighted.

VI. RESULTS ON REAL DATA

In order to evaluate the performance of the proposed algo-
rithm on real data, we first present our comparison criteria.
Then, two kinds of real data are considered: Jason-2 echoes for
which BM is applied and CryoSat-2 for which CA and DDA
models are more appropriate. Note that the objective of this
section is to show the potential of the proposed approach when
considering example echoes from CA and DDA. More involved
studies should be conducted in the future to better understand
the behavior of this algorithm when considering more real data
with different ocean characteristics and possible ground truth.

Fig. 2. Actual (black line) and estimated parameters using the LS algorithm
(red line) and the proposed CD-BM algorithm (blue line). (a) SWH. (b) τ .
(c) Pu. The bottom subfigures show the difference between the estimated and
real parameters.



A. Evaluation Criteria

When processing real data without ground truth, it is not
possible to compare the performance of the different parameter
estimation algorithms using the bias and STD defined in (37)
and (38) since the true parameter values are not known. In the
case of real waveforms, it is usual to compare the different
parameter estimations along a pass by plotting the different
obtained results [9], [13] and by considering a modified STD.
The modified STD is computed using (38), in which the true
parameter value is approached by the mean of the estimated
parameters along 20 successive echoes. This modified STD is
called “STD at 20 Hz” [6], [42], [43].

B. Analysis of Jason-2 Data With the Brown Model

This section illustrates the performance of the proposed CD
algorithm when applied to a real oceanic Jason-2 data set.
The considered data last 36 min and consist of 43 000 real
echoes that were extracted from the pass 30 of cycle 35. Fig. 3
shows the parameters estimated on 700 successive echoes along
the pass when considering the LS-BM (in red), HMC-BM
(in green), and CD-BM (in blue) algorithms. As observed for
synthetic data in Section V, the LS-BM estimates present a
high estimation noise, while both CD and HMC algorithms
provide smoother estimates which are physically more con-
sistent. Moreover, the CD and HMC algorithms appear to be
more robust to outliers as illustrated for the estimate #890 of
Pu (see [41] for more examples). Note that the estimated SWH
is slightly larger for the Bayesian algorithms when compared
to LS. This difference can be explained by the i.i.d. noise
assumption used in the LS algorithm which is not in adequation
with the considered data as already discussed in [13] and [16].
The reduction of estimation variance provided by the Bayesian
algorithms is particularly noticeable when plotting the spectral
power density of SWH and τ as in Fig. 4. This figure shows
a clear noise reduction especially for ocean scales smaller
than 100 km for SWH and 10 km for τ (note that we have
not applied atmospheric and instrumental corrections on the
estimated epoch τ ) which improves the observation of these
scales. More quantitative results are provided in Table II. This
table shows a good agreement between the means of the esti-
mated parameters for the LS, HMC, and CD algorithms (except
for SWH as explained previously). Bayesian algorithms also
estimate the ENL which provides an indication about the noise
level corrupting the data. The estimated ENL ranges between
70 and 80 echoes, which is close to the actual value (around 90
or 100 echoes). As for synthetic data, the estimated STDs ob-
tained with the CD algorithm are smaller than those for LS and
HMC, which is of great importance for many practical applica-
tions related to oceanography such as bathymetry. Indeed, the
CD algorithm improves the LS-BM STDs by a factor of about
20 for SWH, 2 for τ , and 3 for Pu. The improvement obtained
with the CD algorithm with respect to the HMC algorithm is
mainly due to robustness introduced by the marginalization step
(that has not been considered for HMC) and to the optimization
(by cross-validation) of the hyperparameters ai and bi for the
CD algorithm (while set to ai = bi = 0 for HMC). Note that
the proposed CD algorithm requires a reduced computational

Fig. 3. Estimated parameters using the LS-BM algorithm (red line), the HMC-
BM algorithm (green line), and the CD-BM algorithm (blue line) for Jason-2
echoes. (a) SWH. (b) τ . (c) Pu.



Fig. 4. Estimated spectra of SWH and τ using 43 000 Jason-2 echoes with the
LS algorithm (red line), the HMC-BM algorithm (green line), and the CD-BM
algorithm (blue line).

TABLE II
PERFORMANCE ON REAL JASON-2 DATA (43 000 ECHOES)

cost that is two times lower than that of the LS algorithm. As
previously explained, this time reduction is due to the parallel
scheme considered by the CD algorithm which is more efficient
than the independent processing of echoes performed in the LS
algorithm. Note finally that one of the main recent concerns in
radar altimetry is the retrieval of accurate information near the
coast. This goal can be achieved by the proposed CD algorithm
when considering a dedicated coastal model such as [10] and
[44], which is an interesting issue that will be studied in
future works (see [41] for more details regarding the parameter
estimation of coastal echoes using the CD-BM algorithm).

C. Comparison Between CA and DDA for CryoSat-2 Data

This section evaluates the performance of the proposed CD al-
gorithm for real oceanic CryoSat-2 waveforms. The CryoSat-2
altimeter called SIRAL presents three modes, which are the
following: the low-resolution mode (LRM), the synthetic aper-
ture radar mode (SARM), and the synthetic aperture radar
interferometric mode [45]. This paper considers data from the
SARM that are used to generate CA9 and DDA echoes (see
[6] for more details about these echoes). The considered data
set lasts approximately 100 s (i.e., 2000 echoes), and it was

9These echoes are known under different names: LRM-like [35], pseudo-
LRM [18], [46], [47], reduced-SAR [46], [47], or CA-SARM in [6]. These
echoes are used to compare the parameters of CA with those of DDA.

TABLE III
INSTRUMENTAL PARAMETERS

obtained in August 2011 by the CryoSat processing prototype
(CPP) developed by CNES [47] (which is doing the level 1
processing). Note that the CNES-CPP uses data preprocessed
to full bit rate provided by ESA [45]. For all algorithms, we
have considered the same instrumental parameters as in [6]
and [7], which are given in Table III. Table IV compares the
estimated parameters using the LS algorithm with the CD and
HMC algorithms when considering both CA and DDA echoes.
To compare with [6], we only present the estimation results of
SWH and of the sea surface height anomaly (SSHA) which are
the most important parameters (SSHA is obtained by applying
the same environmental corrections as in [6] on the estimated
epoch τ ).10 Figs. 5 and 6 show the evolution of the estimated
SWH and SSHA parameters when considering the three studied
algorithms. These figures show a good agreement between the
estimated parameters especially between the CD and HMC
algorithms, which is confirmed by the mean of the estimated
parameters provided in Table IV. Note that, as for Jason-2, a
bias seems to appear between the estimated SWH parameter
for Bayesian algorithms and the LS approach, which can be
explained similarly. Considering the STDs and to compare the
results of Table IV with [6], one has to note that the results of
[6] were obtained when using the LS algorithm for both CA and
DDA. The processing of the CryoSat-2 data further highlights
the main advantage of the proposed CD approach which is to
reduce drastically the STDs of the estimated parameters. For
example, STDs(SWH) [respectively, STD(SSHA)] goes from
91 cm (respectively, 14 cm) for LS-CA to 3 cm (respectively,
4 cm) for CD-CA, which represents a great improvement. The
same behavior is observed when considering DDA echoes
showing the interest of smoothing the altimetric parameters.
The second advantage of the CD algorithm is the reduction of
the computational cost especially for the DDA echoes. Indeed,
Table IV highlights a time reduction by a factor of 20 w.r.t. LS-
DDA that processed the echoes independently while CD-DDA
uses a parallel scheme. For the CA echoes, the CD approach
shows a time improvement by a factor of 1.5, which is an
interesting result. Note finally that the HMC algorithm shows a
similar performance with that of the CD algorithm but at a price
of a higher computational cost. These results confirm the good
performance of the proposed algorithm and show its flexibility
w.r.t. the considered altimetric models.

10We have considered the SSHA instead of τ since different corrections
should be applied to CA and DDA. The reader is invited to consult [11] and
[48] for more details regarding SSHA computation. The SSB have not been
considered for both CA and DDA.



TABLE IV
COMPARISON BETWEEN THE LS, CD, AND HMC ALGORITHMS WHEN CONSIDERING REAL CA AND DDA DATA (2000 CRYOSAT-2 ECHOES)

Fig. 5. Estimated SWH using 2000 CryoSat-2 echoes with the LS algorithm
(red line), the HMC algorithm (green line), and the CD algorithm (blue line).
(Top) CA echoes. (Bottom) DDA echoes.

Fig. 6. Estimated SSHA using 2000 CryoSat-2 echoes with the LS algorithm
(red line), the HMC algorithm (green line), and the CD algorithm (blue line).
(Top) CA echoes. (Bottom) DDA echoes.

VII. CONCLUSION

This paper has proposed a new Bayesian strategy for a
smooth parameter estimation of the noise and altimetric param-
eters. The altimetric parameters were assigned a prior distri-
bution enforcing a smooth temporal evolution. The altimetric
signal was assumed to be corrupted by a thermal and speckle
noise distributed according to an independent and noniden-
tically Gaussian distribution. The parameter estimation was

achieved using a coordinate descent algorithm that presents
a low computational cost which is suitable for real-time ap-
plications. The proposed CD algorithm showed good perfor-
mance and improved the quality of the estimated parameters
when applied to both synthetic and real altimetric echoes from
conventional and DDA. More precisely, it provided reduced
parameter STDs and presented a lower computational cost
when compared to the state-of-the-art LS algorithm. Moreover,
the CD algorithm is generic, and it showed its efficiency
when considering three altimetric models. Future work in-
cludes the consideration of other altimetric models such as the
DDA-SAMOSA model [49], [50], the coastal models [10],
[44], and the CA model based on the true PTR [32], [33].
Considering antenna mispointing is also an interesting issue
that is currently under investigation.

APPENDIX

MATHEMATICAL DERIVATIONS

A. Hybrid Gibbs Algorithm

The principle of the Gibbs sampler is to sample according
to the conditional distributions of the posterior of interest
[51]. The MCMC-based algorithm proposed in [25] uses this
principle to sequentially sample the parameters Θ, μ, Λ, and
ε. When a conditional distribution cannot be sampled directly,
sampling techniques such as the HMC algorithm can be applied
(see [26] and [52] for more details about this algorithm). This
algorithm has shown better mixing property than independent
or random walk Metropolis–Hasting moves especially in high-
dimensional problems [26], [52]. Therefore, it has been consid-
ered in [25] since the vectors to sample are of size (M × 1).
The Gibbs sampler (including the HMC procedures) used to
sample according to the posterior (20) consists of the four steps
summarized in Algorithm 2.

Algorithm 2 Hybrid Gibbs Sampler

1: Initialization
2: Initialize parameters θ

(0)
i , for i ∈ {1, . . . , 3}, μ(0), Λ(0)

and ε(0)

3: Update parameters/hyperparameters
4: for t = 1 : Nbi +Nr do
5: Sample θ

(t)
i , for i ∈ {1, 2, 3} according to (41) using

HMC
6: Sample μ(t) according to (30)
7: Sample Λ(t) according to (33)
8: Sample ε(t) according to (42)
9: end for



This algorithm uses the conditional distribution associated
with the altimetric parameters and the hyperparameters that are
obtained by considering the likelihood (15) and the priors (16)
and (19), leading to

f
(
θi|Y ,Θ\i,μ,Λ, ε2i

)
∝exp

(
− 1

2ε2i
‖Dθi‖2−

M∑
m=1

xT
mΣ−1

m xm

2

)
(41)

ε2i |Y ,Θ,μ,Σ ∼ IG
(
M

2
+ ai,

‖Dθi‖2
2

+ bi

)
(42)

for i∈{1, . . . , 3}. Note that Algorithm 2 drawsNMC=Nbi+Nr

samples that are used to approximate the MMSE estimator
of the parameters after removing the first Nbi burn-in sam-
ples. This algorithm benefits from the robust properties of the
MCMC methods and allows the estimation of the hyperparam-
eters. However, it presents a high computational cost that
prevents its use for real-time applications.
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