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LOWER BOUNDS FOR THE HEIGHT IN GALOIS

EXTENSIONS

F. AMOROSO AND D. MASSER

1. Introduction

For an algebraic number α denote by h(α) ≥ 0 the absolute logarithmic Weil
height; recall that h(α) = 0 if and only if α = 0 or α is a root of unity. The
well-known Lehmer Problem from 1933 asks if there is a positive constant c such
that

h(α) ≥ cd−1

whenever α 6= 0 has degree d and is not a root of unity. This is still unknown, but
the celebrated result of Dobrowolski [8] implies that for any ε > 0 there is c(ε) > 0
such that h(α) ≥ c(ε)d−1−ε (we will not worry about logarithmic refinements in
this note).

The inequality in the Lehmer Problem has been established for various classes
of α. Thus Smyth [14] proved it for non-reciprocal α (in particular whenever d
is odd), and David with the first author [1] (see Corollaire 1.7) proved it when
Q(α)/Q is a Galois extension. See also their Corollaire 1.8 for a generalization to
extensions that are “almost Galois”.

In this note we improve the result in the Galois case, and we even show that for
any ε > 0 there is c(ε) > 0 such that

h(α) ≥ c(ε)d−ε

when Q(α)/Q is a Galois extension. This is related to a problem posed by Smyth
during a recent BIRS workshop (see [12], problem (21) at page 17), who asks for
small positive values of h(α) for α ∈ Q with Q(α)/Q Galois.

2. A lemma

We start with a result whose proof is implicit in Corollaire 6.1 of [1].

Lemma 2.1. Let F/Q be a Galois extension and α ∈ F∗. Let ρ be the multiplicative
rank of the conjugates α1, . . . , αd of α over Q, and suppose ρ ≥ 1. Then there exists
a subfield L ⊆ F which is Galois over Q of degree [L : Q] = n ≤ n(ρ) and an integer
e ≥ 1 such that Q(ζe) ⊆ F (for a primitive eth root of unity ζe) and αe ∈ L.

Proof. Let e be the order of the group of roots of unity in F, so that F contains
Q(ζe). Define βi = αei and L = Q(β1, . . . , βd). The Z-module

M = {βa11 · · ·β
ad
d , | a1, . . . , ad ∈ Z}

is free (by the choice of e) and of rank ρ. This shows that the action of Gal(L/Q)
over M defines an injective representation Gal(L/Q)→ GLρ(Z). Thus Gal(L/Q)
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identifies to a finite subgroup of GLρ(Z). But, by well-known results (see Re-
mark 2.2 below), the cardinality of the finite subgroups of GLρ(Z) is uniformly
bounded by, say, n = n(ρ).

�

Remark 2.2. To quickly see that the order of a finite subgroup of GLρ(Z) is
uniformly bounded by some n(ρ) <∞, apply Serre’s result [13] which asserts that
the reduction mod 3 is injective on the finite subgroups of GLρ(Z). This gives the

bound n(ρ) ≤ 3ρ
2
. More precise results are known. Feit [9] (unpublished) shows

that the orthogonal group (of order 2ρρ!) has maximal order for ρ = 1, 3, 5 and for
ρ > 10. For the seven remaining values of ρ, Feit characterizes the corresponding
maximal groups. See [10] for more details and for a proof of the weaker statement
n(ρ) ≤ 2ρρ! for large ρ.

3. Main results

We now state two results about α which merely lie in Galois extensions, so are
not necessarily generators.

Theorem 3.1. For any integer r ≥ 1 and any ε > 0 there is a positive effective
constant c(r, ε) with the following property. Let F/Q be a Galois extension of
degree D and α ∈ F∗. We assume that there are r conjugates of α over Q which
are multiplicatively independent1. Then

h(α) ≥ c(r, ε)D−1/(r+1)−ε.

Proof. The new ingredient with respect to Corollaire 1.7 of [1] is the main
result of Delsinne [7], which was not available at that time. We use standard
abbreviations like �ε,�r,ε.

Let α1, . . . , αd (with d ≤ D) be the conjugates of α over Q (so lie in F). Their
multiplicative rank is at least r. If it is strictly bigger, then the main result
Théorème 1.6 of [1] applied to r + 1 independent conjugates gives

h(α)�r,ε D
−1/(r+1)−ε .

Thus we may assume that the rank is exactly r.
By Lemma 2.1 there exists a number field L ⊆ F of degree [L : Q] = n ≤ n(r)

and an integer e ≥ 1 such that Q(ζe) ⊆ F and αe ∈ L.
Let now ε > 0. Since αe ∈ L and [L : Q] ≤ n,

(3.1) h(α) =
1

e
h(αe)�r

1

e
.

On the other hand, the degree of F over the cyclotomic extension Q(ζe) is D/φ(e)
and α1, . . . , αr ∈ F are multiplicatively independent. By the main result Théorème
1.6 of [7] (for α = (α1, . . . , αr) and recalling that B has positive codimension) we
have

(3.2) h(α)�r,ε (D/φ(e))−1/r−ε �r,ε e
1/rD−1/r−ε .

Combining (3.1) and (3.2) we get

h(α)r+1 = h(α)h(α)r �r,ε D
−1−rε.

�

1which implies that α is not a root of unity.
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Taking r = 1 we get

Corollary 3.2. For any ε > 0 there is a positive effective constant c(ε) with the
following property. Let F/Q be a Galois extension of degree D. Then for any
α ∈ F∗ which is not a root of unity we have

h(α) ≥ c(ε)D−1/2−ε .

For a direct proof of this corollary, which uses [5] instead of the more deep result
of [7], see [11] exercise 16.23.

We remark that Corollary 3.2 is optimal: take for F the splitting field of xd− 2,
with D = dφ(d), and α = 21/d. Nevertheless, as mentioned above, this result can
be strengthened for a generator α of a Galois extension.

Theorem 3.3. For any ε > 0 there is a positive effective constant c(ε) with the

following property. Let α ∈ Q∗ be of degree d, not a root of unity, such that Q(α)/Q
is Galois. Then we have

h(α) ≥ c(ε)d−ε .

Proof. Let r be the smallest integer > 1/ε. If r ≥ d then d < 1/ε and h(α)�ε 1.
So we can assume r < d. If r among the conjugates of α are multiplicatively
independent, by [1] we have

h(α)�ε D
−1/r−ε �ε D

−2ε .

Otherwise, the multiplicative rank ρ ≥ 1 of the conjugates of α is at most r− 1 ≤
1/ε. By Lemma 2.1 there exists a number field L ⊆ Q(α) of degree [L : Q] = n ≤
n(ε) and an integer e ≥ 1 such that Q(ζe) ⊆ Q(α) and αe ∈ L. As a consequence
L(α)/L is of degree e′ ≤ e. The diagram

Q

k := L ∩Q(ζe)

L Q(ζe)

L(ζe)

Q(α) = L(α)

shows that the degree of α over Q(ζe) is

[Q(α) : L(ζe)] · [L(ζe) : Q(ζe)] = e′
[L(ζe) : Q(ζe)]

[L(ζe) : L]

which is

e′
[L : k]

[Q(ζe) : k]
= e′

[L : Q]

[Q(ζe) : Q]
=

e′

φ(e)
n ≤ e

φ(e)
n�ε d

ε.
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By the relative Dobrowolski lower bound of [5] we get

h(α)�ε d
−2ε .

�

Remark 3.4. The proof above may be made completely explicit using [4] and [2]
respectively instead of [1] and [5]. This would of course lead to a lower bound
depending only on d.

We note that Theorem 3.3 is best possible in the sense that an inequality h(α)�
dδ would be false for any fixed δ > 0. For example α = 1 + ζe with d = φ(e) has

h(α) ≤ log 2. Or α = 21/e + ζe, whose degree is easily seen to be eφ(e), with
h(α) ≤ 2 log 2. But Smyth in [12] quoted above asked if even h(α) � 1 is true,
a kind of “Galois-Lehmer Problem”. We do not know, but it would imply the
main result of Amoroso-Dvornicich [3] on abelian, and a slightly weaker result of
Amoroso-Zannier [6] (Corollary 1.3) on dihedral.
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