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LIE THEORY FOR QUASI-SHUFFLE BIALGEBRAS

LOIC FOISSY AND FREDERIC PATRAS

1. INTRODUCTION

Enveloping algebras of Lie algebras are known to be a fundamental no-
tion, for an impressive variety of reasons. Their bialgebra structure allows
to make a natural bridge between Lie algebras and groups. As such they
are a key tool in pure algebra, algebraic and differential geometry, and so
on. Their combinatorial structure is interesting on its own and is the object
of the theory of free Lie algebras. Applications thereof include the theory
of differential equations, numerics, control theory... From the modern point
of view, featured in Reutenauer’s Free Lie algebras [33], the “right” point
of view on enveloping algebras is provided by the descent algebra: most of
their key properties can indeed be obtained and finely described using com-
putations in symmetric group algebras relying on the statistics of descents
of permutations. More recently, finer structures have emerged that refine
this approach. Let us quote, among others, the Malvenuto-Reutenauer Hopf
algebra [25] and its bidendriform structure [12].

Many features of classical Lie theory generalize to the broader context
of algebras over Hopf operads [21]. However, this idea remains largely to
be developed systematically. Quasi-shuffle algebras provide for example an
interesting illustration of these phenomena, but have not been investigated
from this point of view.

The notion of quasi-shuffle algebras can be traced back to the beginings
of the theory of Rota—Baxter algebras, but was developed systematically
only recently, starting essentially with Hoffman’s work, that was motivated
by multizeta values (MZVs) and featured their bialgebra structure. Many
partial results on the fine structure of quasi-shuffle bialgebras have been
obtained since then [20, 24, 27, 26, 15] but, besides the fact that each of these
articles features a particular point of view, they fail to develop systematically
a complete theory.

This article builds on these various results and develops the analog theory,
for quasi-shuffle algebras, of the theory of descent algebras and their relations
to free Lie algebras for classical enveloping algebras.

The plan is as follows. Sections 2 and 3 recall the fundamental defini-
tions. These are fairly standard ideas and materials, excepted for the fact
that bialgebraic structures are introduced from the point of view of Hopf
operads that will guide later developments. The following section shows
how the symmetrization process in the theory of twisted bialgebras (or Hopf
species) can be adapted to define a noncommutative quasi-shuffle bialge-
bra structure on the operad of quasi-shuffle algebras. The properties of its

primitive elements are studied from an operadic and enveloping algebra (left
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adjoint) point of view. Section 5 deals with the algebraic structure of lin-
ear endomorphisms of quasi-shuffle bialgebras and studies from this point
of view the structure of surjections. Section 6 deals with the projection on
the primitives of quasi-shuffle bialgebras -the analog in the present setting
of the canonical projection from an enveloping algebra to the Lie algebra of
primitives. As in classical Lie theory, a structure theorem for quasi-shuffle
algebras follows from the properties of this canonical projection. Section
7 investigates the relations between the shuffle and quasi-shuffle operads
when both are equipped with the Hopf algebra structure inherited from
the Hopf operadic structure of their categories of algebras (as such they
are isomorphic respectively to the Malvenuto-Reutenauer Hopf algebra, or
Hopf algebra of free quasi-symmetric functions, and to the Hopf algebra
of word quasi-symmetric functions). We recover in particular the expo-
nential isomorphism relating shuffle and quasi-shuffle bialgebras. Section 8
studies coalgebra endomorphisms of quasi-shuffle bialgebras and classifies
natural Hopf algebra endomorphisms and morphisms relating shuffle and
quasi-shuffle bialgebras. Section 9 studies coderivations. Quasi-shuffle bial-
gebras are considered classically as filtered objects (the product does not
respect the tensor graduation), however the existence of a natural graded
Hopf algebra structure can be deduced from the general properties of their
coderivations. Section 10 explains briefly how the formalism of operads can
be adapted to take into account graduations by using decorated operads. We
detail then the case of quasi-shuffle algebras and conclude by initiating the
study of the analogue, in this context, of the classical descent algebra. Sec-
tion 11 shows, using the bidendriform rigidity theorem, that the decorated
quasi-shuffle operad is free as a noncommutative shuffle algebra. Section
12 shows that the quasi-shuflle analog of the descent algebra, QDesc, is,
up to a canonical isomorphism, a free noncommutative quasi-shuffle algebra
over the integers. The last section concludes by investigating the quasi-
shuffle analog of the classical sequence of inclusions Desc € PBT C Sh
of the descent algebra into the algebra of planar binary trees, resp. the
operad of shuffle algebras. In the quasi-shufle context, this sequence reads
Desc C ST C QSh, where ST stands for the algebra of Schroder trees and
QSh for the quasi-shuffle operad.

Notations and conventions All the structures in the article (vector spaces,
algebras, tensor products...) are defined over a field k. Algebraic theories
and their categories (Com, As, Sh, QSh ...) are denoted in italic, as well as
the corresponding free algebras over sets or vector spaces (QSh(X),Com(V)...).
Operads (of which we will study underlying algebra structures) and abbrevi-
ations of algebra names are written in bold (QSh, NSh, Com, FQSym. . .).
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2. QUASI-SHUFFLE ALGEBRAS

Quasi-shuffle algebras have mostly their origin in the theory of Rota-
Baxter algebras and related objects such as MZVs (this because the sum-
mation operator of series is an example of a Rota—Baxter operator). As we
just mentioned, this is in often traced back to Cartier’s construction of free
commutative Rota-Baxter algebras [2] but the recent developments really
started with Hoffman’s [20]. Further historical details and references can be
found in the survey article [9].

Another reason for the development of the theory lies in the theory of
combinatorial Hopf algebras and, more specifically, into the developments
originating in the theory of quasi-symmetric functions and the dual theory
of noncommutative symmetric functions. This line of thought is illustrated
in [27, 26, 15].

Still another approach originates in the work of Chapoton on the combi-
natorial and operadic properties of permutohedra and other polytopes (see
e.g. [, 6] and the introduction of [27]). These phenomena lead to the
axiomatic definition of tridendriform algebras (or dendriform trialgebras)
in [24]. Commutative tridendriform algebras (CTAs) identify with quasi-
shuffle algebras (in the sense that the structure axioms of CTAs are the
analog, for quasi-shuffle algebras, of Schiitzenberger’s axioms for shuffle al-
gebras [36]) -we prefer the terminology quasi-shuffle, better established and
more intuitive.

We follow here the Rota—Baxter approach, which is the one underlying at
the moment most of the applications of the theory and the motivations for
its development (besides MZVs and the works initiated by Hoffman in this
area, one can mention the field of stochastic integration [7, 8]).

Definition 1. A Rota—Baxter (RB) algebra of weight 6 is an associative
algebra A equipped with a linear endomorphism R such that

Va,y € A, R(z)R(y) = R(R(z)y + zR(y) + Ozy).
It is a commutative Rota—Baxter algebra if it is commutative as an algebra.

Setting R’ := R/6 when 6 # 0, one gets that the pair (A, R') is a Rota—
Baxter algebra of weight 1. This implies that, in practice, there are only
two interesting cases to be studied abstractly: the weight 0 and weight 1 (or
equivalently any other non zero weight). The others can be deduced easily
from the weight 1 case. The same observation applies for one-parameter
variants of the notion of quasi-shuffle algebras.

From now on in this article, RB algebra will stand for RB algebra of
weight 1. When other RB algebras will be considered, their weight will be
mentioned explicitely.

An important property of RB algebras, whose proof is left to the reader,
is the existence of an associative product, the RB double product x, defined

by:

(1) rxy = R(z)y + 2R(y) + vy
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so that: R(z)R(y) = R(z *y). If one sets, in a RB algebra, z < y :=
zR(y), >y := R(z)y, one gets immediately relations such as

(- y) < z=ayR(z) =z (y < 2),

(z <y) <z=zR(y)R(z) =z < (y*2),

and so on. In the commutative case, * < y = y > z, and all relations
between the products <, >, and x :=< + > +- follow from these two. In
the noncommutative case, the relations duplicate and one has furthermore
(x = y) < z = R(x)yR(z) = x > (y < z). These observations give rise to
the axioms of quasi-shuffle algebras (or CTAs) and noncommutative quasi-
shuffle algebras (NQSh or tridendriform algebras)[24].

From now on, “commutative algebra” without other precision means com-
mutative and associative algebra; “product” on a vector space A means a
bilinear product, that is a linear map from A ® A to A.

Definition 2. A quasi-shuffle (QSh) algebra A is a nonunital commuta-
tive algebra (with product written o) equipped with another product < such
that

(2) (x<y)<z=x<(y*=z2)
(3) (zoy) <z=mze(y<2z).

where xxy = < y+y < x+xzeoy. We also set for further use x >
y:=1vy < x. As the RB double product in a commutative RB algebra, the
product x is automatically associative and commutative and defines another
commutative algebra structure on A.

Recall, for further use, that shuffle algebras correspond to weight 0 com-
mutative RB algebras, that is quasi-shuffle algebras with a null product
e = (. Equivalently:

Definition 3. A shuffle (Sh) algebra is a vector space equipped with a
product < satisfying (2) with x xy :=x <y +y < x, see e.g. [36, 9, 14] for
further details.

It is sometimes convenient to equip quasi-shuffle algebras with a unit.
The phenomenon is exactly similar to the case of shuffle algebras [36]: given
a quasi-shuffle algebra, one sets B := k @& A, and the products <, e have a
partial extension to B defined by, for x € A:

lez=201:=0,1<2:=0, x<1:==z.

The products 1 < 1 and 1 e 1 cannot be defined consistenly, but one sets
1% 1:=1, making B a unital commutative algebra for *.

The categories of quasi-shuffle and of unital quasi-shuffle algebras are
clearly equivalent (under the operation of adding or removing a copy of the
ground field).

Definition 4. A noncommutative quasi-shuffle algebra (NQSh or triden-
driform algebra) is a nonunital associative algebra (with product written e)
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equipped with two other products <, > such that, for all x,y,z € A:
) (x<y)<z=z<(y*=z)

) (x=y)<z=z>(y=<2)

6) (xxy)=z=x> (y > 2)

) (z<y)ez=mze(y>2)

) (z>-y)ez=1z>(yez)

9) (roy)<z==xe(y<2).

where xxy:=x <y+x>y+xeoy.

As the RB double product, the product « is automatically associative and
equips A with another associative algebra structure. Indeed, the associativ-
ity relation
(10) (roey)ez==ze(yez)
and (4) + ...+ (9) imply the associativity of :

(11) (x*xy)*z=x*(y*2).

If A is furthermore a quasi-shuffle algebra, then the product * is commuta-
tive. One can show that these properties are equivalent to the associativity
of the double product * in a Rota-Baxter algebra (this is because the free
NQSh algebras embed into the corresponding free Rota—Baxter algebras).

Noncommutative shuffle algebras correspond to weight 0 RB algebras,
that is NQSh algebras with a null product e = 0. Equivalently:

Definition 5. A noncommutative shuffle (NSh or dendriform) algebra
is a vector space equipped with two products <, > satisfying (4,5,6) with
Txy =rx<y+y<uc.

The most classical example of such a structure is provided by the topol-
ogists’ shuffle product and its splitting into two “half-shuffles” [10].

As in the commutative case, it is sometimes convenient to equip NQSh
algebras with a unit. Given a NQSh algebra, one sets B := k @ A, and the
products <, >, e have a partial extension to B defined by, for x € A:

lex=2x01:=0,1<2:=0,z<1=z, 1>2:=2, x>1:=0.
The products 1 <1, 1 > 1 and 1 e 1 cannot be defined consistenly, but one

sets 1 % 1 := 1, making B a unital commutative algebra for x*.
The categories of NQSh and unital NQSh algebras are clearly equivalent.

The following Lemma encodes the previously described relations between
RB algebras and quasi-shuffle algebras:

Lemma 6. The identities v <y := zR(y), z = y := R(x)y,z oy :=zy
induce a forgetful functor from RB algebras to NQSh algebras, resp. from
commutative RB algebras to QSh algebras.

Remarks. Let A be a NQSh algebra.

(1) If A is a commutative algebra (for the product e) and if for z,y € A:
r <y =1y = x, we say that A is commutative as a NQSh algebra.
Then, (A, e, <) is a quasi-shuffle algebra.
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(2) We put <==< +e. Then (4)+ (7) + (9) + (10), (5) + (9) and (6) give:

(12) (x=y)z=2=(y=z+y> 2),
(13) (z=y)2y=2~(y =2),
(14) (xy+ax=y)=-z=z> (y = 2).

These are the axioms that define a noncommutative shuffle algebra
structure (A, <,>) on A. Similarly, if >=> +e, then (4,<,>) is a
noncommutative shuffle algebra.

Example 7 (Hoffman, [20]). Let V' be an associative, non unitary algebra.
The product of v,w € V is denoted by v.w. The augmentation ideal T (V') =

P VO of the tensor algebra T(V) = @ T,(V) = @ V" (resp. T(V))
neN* neN* neN*
is given a unique (resp. unital) NQSh algebra structure by induction on the

length of tensors such that for all a,b €V, for all v,w € T(V):
(15)
av < bw = a(vHbw), av > bw = blavHw), avebw = (a.b)(vHw),

where .5 =< + = +e is called the quasi-shuffle product on T(V') (by defi-
nition: Yo € T(V),18v =v =vd1).

Definition 8. The four-tuple (T+(V), <, =, e) is the tensor quasi-shuffle
algebra associated to V. It is a NQSh algebra and is a quasi-shuffle algebra
if, and only if, (V,.) is commutative (and then is called simply the quasi-
shuffle algebra associated to V).

Here are examples of products in TT(V). Let a,b,c € V.

a < b=ab, a > b=ba, aeb=a.b,
a < be = abe, a > bc = bac + beca + b(a.c), aebc= (a.b)c,
ab < ¢ = abc + acb + a(b.c), ab = c = cab, ab e c = (a.c)b.

In particular, the restriction of @ to V is the product of V. If the product of
V' is zero, we obtain the usual shuffle product W .

A wvery useful observation, to which we will refer as ”Schiitzenberger’s
trick” (see [36]) is that, in TT(V), for vi,...,v, € V,

(16) V.oUp =01 < (V2 <o (Vo1 < Vp) ).
3. QUASI-SHUFFLE BIALGEBRAS

We recall that graded connected and more generally conilpotent bialge-
bras are automatically equipped with an antipode [4], so that the two notions
of bialgebras and Hopf algebras identify when these conditions are satisfied
—this will be most often the case in the present article.

Quasi-shuffle bialgebras are particular deformations of shuffle bialgebras
associated to the exponential and logarithm maps. They were first intro-
duced by Hoffman in [20] and studied further in [22, 15]. The existence of
a natural isomorphism between the two categories of bialgebras is known as
Hoffman’s isomorphism [20] and has been studied in depth in [15].

We introduce here a theoretical approach to their definition, namely
through the categorical notion of Hopf operads, see [21]. The underlying
ideas are elementary and deserve probably to be better known. We avoid
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using the categorical or operadic langage and present them simply (abstract
definitions and further references on the subject are given in [21]).

Let us consider categories of binary algebras, that is algebras defined by
one or several binary products satisfying homogeneous multilinear relations
(i.e. algebras over binary operads). For example, commutative algebras are
algebras equipped with a binary product - satisfying the relations z-(y-z) =
(x-y)-zand z-y =y x, and so on. Multilinear means that letters should
not be repeated in the defining relations: for example, n-nilpotent algebras
defined by a binary product with 2 = 0, n > 1 are excluded.

The category of algebras will be said non-symmetric if in the defining
relations the letters x,y, z... always appear in the same order. For example,
the category Com of commutative algebras is not non-symmetric because
of the relation z - y = y - x, whereas As, the one of associative algebras
(@-(y-2)=(z-y) 2)Is

Notice that the categories Sh, QSh of shuffle and quasi-shuffle algebras
are not non-symmetric (respectively because of the relation z xy = = <
y+y < z and because of the commutativity of the e product) and are
equipped with a forgetful functor to Com. The categories NSh, NQSh of
noncommutative shuffle and quasi-shuffle algebras are non-symmetric (in
their defining relations the letters z, y, z are not permuted) and are equipped
with a forgetful functor to As.

Definition 9. Let C be a category of binary algebras. The category is
said Hopfian if tensor products of algebras in C' are naturally equipped with
the structure of an algebra in C (i.e. the tensor product can be defined
internally to C).

Classical examples of Hopfian categories are Com and As.

Definition 10. A bialgebra in a Hopfian category of algebras C' (or C-
bialgebra) is an algebra A in C equipped with a coassociative morphism to
A® A in C.

Equivalently, it is a coalgebra in the tensor category of C-algebras.

Further requirements can be made in the definition of bialgebras, for
example when algebras have units. When C' = Com or As, we recover the
usual definition of bialgebras.

Proposition 11. A category of binary algebras equipped with a forgetful
functor to Com is Hopfian. In particular, Pois, Sh, QSh are Hopfian.

Here Pois stands for the category of Poisson algebras, studied in [21] from
this point of view.

Indeed, let C be a category of binary algebras equipped with a forgetful
functor to Com. We write p1, . . ., b, the various binary products on A, B €
C and - the commutative product (which may be one of the p;, or be induced
by these products as the x product is induced by the <, > and e products in
the case of shuffle and quasi-shuffle algebras). Notice that a given category
may be equipped with several distinct forgetful functors to Com: the quasi-
shuffle algebras carry, for example, two commutative products (e and x).
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The Proposition follows by defining properly the C-algebra structure on
the tensor products A ® B:

pila®b,a’ @V) = pia,a’) @b V.

The new products pu; on A ® B clearly satisfy the same relations as the
corresponding products on A, which concludes the proof. Notice that one
could also define a “right-sided” structure by pi(a ® b,a’ @ V') :=a-d ®
Mi(b7 bl)'

A bialgebra (without a unit) in the category of quasi-shuffle algebras
is a bialgebra in the Hopfian category QSh, where the Hopfian structure
is induced by the x product. Concretely, it is a quasi-shuffle algebra A
equipped with a coassociative map A in QQSh to A ® A, where the latter is
equipped with a quasi-shuffle algebra structure by:

(17) (a®b) < (d @)= (a=<d)®(bxb),

(18) (axb)e(d @)= (aed)® (bxb).

The same process defines the notion of shuffle bialgebra (without a unit),
e.g. by taking a null e product in the definition.
Using Sweedler’s shortcut notation A(a) =: o™ @ a(?, one has:

(19) Ala < b) =a < bW @ a® xp?),

(20) Aaeb) =aV e b ©a® x @,

In the unital case, B = k @ A, one requires furthermore that A be a
counital coproduct (with A(1) =1® 1) and, since 1 < 1 and 1 e 1 are not
defined, sets:

1) <1ebd)=1®(0b<1),
(1ebe(lxt)=1x(beb).
Since unital quasi-shuffle and shuffle bialgebras are more important for appli-
cations, we call them simply quasi-shuffle bialgebras and shuffle bialgebras.
In this situation it is convenient to introduce the reduced coproduct on A,

Ala) :==Aa)—a®1-1®a.
Concretely, we get:

Definition 12. The unital QSh algebra k & A equipped with counital
coassociative coproduct A is a quasi-shuffle bialgebra if and only if for all
x,y € A (we introduce for the reduced coproduct the Sweedler-type notation
Alx)=2' ®2"):

(21) A(z < y) =2’ <y @2"xy)"+2'@z"xy+z < y @y +12' <y’ +zey,
(22) A(iﬂ.y) :$/.y/®$//*y//+$/.y®$”+$.y/®y//.

The same constructions and arguments hold in the non-symmetric con-
text. We do not repeat them and only state the conclusions.

Proposition 13. A non-symmetric category of binary algebras equipped
with a forgetful functor to As is Hopfian. In particular, NSh and NQSh are
Hopfian.
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A bialgebra (without a unit) in the category of noncommutative quasi-
shuffle (NQSh) algebras is a bialgebra in the Hopfian category NQSh, where
the Hopfian structure is induced by the x product. Concretely, it is a NQSh
algebra A equipped with a coassociative map A in NQSh to A ® A, where
the latter is equipped with a NQSh algebra structure by:

(23) (a®b) < (d@V)=(a=<d)®(bxl),
(24) (a®b) = (d @) = (a>d)® (bxb),
(25) (axb)e(d @)= (aed)® (bxb).

The same process defines the notion of NSh (or dendriform) bialgebra (with-
out a unit), e.g. by taking a null e product in the definition.

Recall that setting <:=~< +e defines a forgetful functor from NQSh to
NSh algebras. The same definition yields a forgetful functor from NQSh to
NSh bialgebras.

In the unital case, one requires furthermore that A be a counital coprod-
uct (with A(1) =1® 1) and sets

1®b)<(1eb)=1(b=<1b),

and similarly for > and e. Since this case is more important for applications,
we call simply NQSh and NSh bialgebras the ones with a unit.

Definition 14. The unital NQSh algebra k @& A equipped with counital
coassociative coproduct A is a NQSh bialgebra if and only if for all x,y € A:

(26) Az <y) =2 <y @2"xy"+2' 2" xy+x <y @y"+2" < yo2"+2y,

(27) A(x =) =2 =y "%y +y@rxy+ 1 = v @y +2' = yo2"+yx,

(28) A(ﬂ:oy):x'oy'®x”*y"+x'oy®x”+xoy'®y”.
Recall, for later use, that a NQSh bialgebra k & A is connected if the

reduced coproduct is locally conilpotent:

A= U Ker(AM),
n>0
where A is the iterated coproduct of order n (and Ker(A®™) is also
denoted Prim(A), the set of primitive elements) and similarly for the other

unital bialgebras we will consider.
The reason for the importance of the unital case comes from Hoffman’s:

Example 15. Let V' be an associative, non unitary algebra. With the
deconcatenation coproduct A, defined by:

n
Alzy...xpn) = E X1 T @ Tl ... Ty,
i=0

the tensor quasi-shuffle algebra T'(V') is a NQSh bialgebra. When V is com-
mutative, it is a quasi-shuffle bialgebra.
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4. LIE THEORY FOR QUASI-SHUFFLE BIALGEBRAS

The structural part of Lie theory, as developed for example in Bourbaki’s
Groupes et Algébres de Lie [1] and Reutenauer’s monograph on free Lie alge-
bras [33], is largely concerned with the structure of enveloping algebras and
cocommutative Hopf algebras. It was shown in [21] that many phenomena
that might seem characteristic of Lie theory do actually generalize to other
families of bialgebras -precisely the ones studied in the previous section,
that is the ones associated with Hopfian categories of algebras equiped with
a forgetful functor to Com or As.

The most natural way to study these questions is by working with twisted
algebras over operads —algebras in the category of S-modules (families of
representations of all the symmetric groups &,, n > 0) or, equivalently,
of functors from finite sets to vector spaces. However, doing so systemat-
ically requires the introduction of many terms and preliminary definitions
(see [21]), and we prefer to follow here a more direct approach inspired by
the theory of combinatorial Hopf algebras. The structures we are going to
introduce are reminiscent of the Malvenuto—Reutenauer Hopf algebra [25],
whose construction can be deduced from the Hopfian structure of As, see
[30, 31, 32] and [21, Exple 2.3.4]. The same process will allow us to contruct
a combinatorial Hopf algebra structure on the operad QSh of quasi-shuffle
algebras.

Recall that an algebraic theory such as the ones we have been study-
ing (associative, commutative, quasi-shuffle, NQSh... algebras) is entirely
characterized by the behaviour of the corresponding free algebra functor
F: an analytic functor described by a sequence of symmetric group rep-
resentation F,, (i.e. a S-module) so that, for a vector space V, F(V) =
PF, ®s, V. Composition of operations for F-algebras are encoded by
n

natural transformations from F o F' to F'. By a standard process, this de-

fines a monad, and F-algebras are the algebras over this monad. The direct

sum F = @F,, equipped with the previous (multilinear) composition law
n

is called an operad, and F-algebras are algebras over this operad. Con-
versely, the F,, are most easily described as the multilinear part of the free
F-algebras F(X,,) over the vector space spanned by a finite set with n ele-
ments, X, := {x1,...,z,}. Here, multilinear means that F,, is the intersec-
tion of the n eigenspaces associated to the eigenvalue A of the n operations
induced on F(X,,) by the map that scales x; by A (and acts as the identity
on the x;, j #1).

Let X be a finite set, and let us anticipate on the next Lemma and write
QSh(X) := TT(k[X]") for the quasi-shuffle algebra associated to k[X]T,
the (non unital, commutative) algebra of polynomials without constant term
over X. For I a multiset over X, we write x; the associated monomial (e.g.
if I = {x1,73,23}, x; = 2123). The tensors zy, ...z, = 2, ®- - @2y, form
a basis of QSh(X).

There are several ways to show that QSh(X) is the free quasi-shuffle al-
gebra over X: the property can be deduced from the classical constructions
of commutative Rota-Baxter algebras by Cartier [2] or Rota [34, 35] (indeed
the tensor product zj, ...xj, corresponds to the Rota-Baxter monomial

n

n
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xRz, R(xr, ... R(zr,)...))) in the free RB algebra over X). It can be
deduced from the construction of the free shuffle algebra over X by standard
filtration/graduation arguments. It can also be deduced from a Schur func-
tor argument [22]. The simplest proof is but the one due to Schiitzenberger
for shuffle algebras that applies almost without change to quasi-shuffle alge-
bras [36, p. 1-19].

Lemma 16. The quasi-shuffle algebra QSh(X) is the (unique up to iso-
morphism) free quasi-shuffle algebra over X.

Indeed, let A be an arbitrary quasi-shuffle algebra generated by X. Then,
one checks easily by a recursion using the defining relations of quasi-shuffle
algebras that every a € A is a finite sum of “normed terms”, that is terms
of the form

xrr < ($[2 < (IEIS"' <$[n)...).
But, if A = QSh(X), by the Schiitzenberger’s trick, z;, < (x, < (x5 -+ <
xr,)...) = ...x5,; the result follows from the fact that these terms form

a basis of QSh(X).

Corollary 17. The component QSh,, of the operad QSh identifies there-
fore with the linear span of tensors xy, ...xr,, where Iy [T+ [ I, = [n].

Let us introduce useful notations. We write 7 := xr, ..., where Z
denotes an arbitrary ordered sequence of disjoint subsets of N*, Iy,..., I,
and set |Z| := |I1|+- - -+]|Ig|. Recall that the standardization map associated
to a subset I = {iy,...,i,} of N*, where i; < -+ < i, is the map st
from I to [n] defined by: st(ir) := k. The standardization of T is then the
ordered sequence st(Z) := st(Iy,...,1I;), where st is the standardization
map associated to the subset I []---[[Ix of the integers. We also set
st(xz) 1= wg(z). For example, if T = {2,6},{5,9}, st(Z) = {1,3},{2,4}
and st(xz) = z1x3 ® woxy. The shift by k of a subset I = {iy,...,i,} (or
a sequence of subsets, and so on...) of N*| written I + k, is defined by

I+k:={i1+k,...,in+k}

Theorem 18. The operad QSh of quasi-shuffle algebras inherits from
the Hopfian structure of its category of algebras a NQSh bialgebra structure
whose product operations are defined by:

TT R Tg =TT <f TT+n,
T = T g =TT > f TJ+n,
LT L7 =TT Of T Jtn,

where T and J run over ordered partitions of [n] and [m]; the coproduct is
defined by:

A(z) == (st ® st) o Ag(x),
where, on the right-hand sides, <y, >y, o¢, Ay stand for the corresponding
operations on QSh(IN*) (where, as usual, x <py =:y >5 x).

The link with the Hopfian structure of the category of quasi-shuflle al-
gebras refers to [21, Thm 2.3.3]: any connected Hopf operad is a twisted
Hopf algebra over this operad. The Theorem 18 can be thought of as a
reformulation of this general result in terms of NQSh bialgebras.
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The fact that QSh is a NQSh algebra follows immediately from the fact
that QSh(IN*) is a NQSh algebra for <y, ¢, e¢, together with the fact that
the category of NQSh algebras is non-symmetric. The coalgebraic properties
and their compatibility with the NQSh algebra structure are less obvious
and follow from the following Lemma (itself a direct consequence of the
definitions):

Lemma 19. Let Z = I1,...,I; and J = Ji,...,J; be two ordered se-
quence of disjoint subsets of N* that for any n € I,, p < k and any
m € Jq, ¢ <1 we have n < m. Then:

St(xz <f T7) = Tsyz) =f Tst(T)+|T| = Tst(T) = Tst(T)>
SHTL = f T7) = Tsy(T) = f Tst(T)+|T| = Tst(T) = Tst(T)>
st(rreray) = Tst(T) Of Tst(T)+|Z| = Tst(T) ® Tst(T)-

The Hopf algebra QSh is naturally isomorphic with WQSym, the Chapoton-
Hivert Hopf algebra of word quasi-symmetric functions, that has been stud-
ied in [26, 15], also in relation to quasi-shuffle algebras, but from a different
point of view.

Let us conclude this section by some insights on the ”Lie theoretic” struc-
ture underlying the previous constructions on QSh (where "Lie theoretic”
refers concretely to the behaviour of the functor of primitive elements in a
class of bialgebras associated to an Hopfian category with a forgetful functor
to As or Com). Recall that there is a forgetful functor from quasi-shuffle
algebras to commutative algebras defined by keeping only the e product.
Dualy, the operad Com embeds into the operad QSh: Com,, is the vector
space of dimension 1 generated by the monomial z ... z,, and through the
embedding into QSh this monomial is sent to the monomial (a tensor of
length 1) 3" := z1 e --- ¢ x; in QSh viewed as a NQSh algebra. Let us
write slightly abusively Com for the image of Com in QSh, we have, by
definition of the coproduct on QSh:

Theorem 20. The operad Com embeds into the primitive part of the
operad QSh viewed as a NQSh bialgebra. Moreover, the primitive part of
QSh s stable under the e product.

Only the last sentence needs to be proved. It follows from the relations:
lex=2x01=0

for x € QSh,,, n > 1.

From the point of view of S-modules, the Theorem should be understood
in the light of [21, Thm 2.4.2]: for P a connected Hopf operad, the space of
primitive elements of the twisted Hopf P-algebra P is a sub-operad of P.

As usual in categories of algebras a forgetful functor such as the one from
®QSh to Com induced by e has a left adjoint, see e.g. [17] for the general case
and [22] for quasi-shuffle algebras. This left adjoint, written U (by analogy
with the case of classical enveloping algebras: U(A) € QSh for A € Com
equipped with a product written -) is, up to a canonical isomorphism, the
quotient of the free quasi-shuffle over the vector space A by the relations
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aeb=a-b. When the initial category is Hopfian, such a forgetful functor
to a category of algebras over a naturally defined sub-operad arises from
the properties of the tensor product of algebras in the initial category, see
[21, Thm 2.4.2 and Sect. 3.1.2] —this is exactly what happens with the
pair (A4s, Lie) in the classical situation where the left adjoint is the usual
enveloping algebra functor, and here for the pair (QSh, Com).

Lemma 21 (Quasi-shuffle PBW theorem). The left adjoint U of the
forgetful functor from QSh to Com, or ”"quasi-shuffle enveloping algebra”
functor from Com to QSh, is (up to isomorphism) Hoffman’s quasi-shuffle
algebra functor TT.

An elementary proof follows once again from (a variant of ) Schiitzenberger’s
construction of the free shuffle algebra. Notice first that T+ (A) is generated
by A as a quasi-shuffle algebra, and that, in it, the relations a e b = a - b
hold. Moreover, choosing a basis (a;);cr of A, the tensors a;, ...a;, = a;; <
(aj, < -+ < aj,)...) form a basis of T+(A). On the other hand, by the
definition of the left adjoint U(A) as a quotient of Sh(A) by the relations
a eb=a-b, using the defining relations of quasi-shuffle algebras, any term
in U(A) can be written recursively as a sum of terms in "normed form”
a;, < (ai, <...(a;, , <aj,)...). The Lemma follows.

Notice that the existence of a basis of T (A) of tensors a;, ...a;, = a;; <
(aj, <+ =<a;,)...) is the analog, for quasi-shuffle enveloping algebras, of
the Poincaré-Birkhoff-Witt (PBW) basis for usual enveloping algebras.

5. ENDOMORPHISM ALGEBRAS

We follow once again the analogy with the familiar notion of usual en-
veloping algebras and connected cocommutative Hopf algebras and study,
in this section the analogs of the convolution product of their linear en-
domorphisms. Surjections happen to play, for quasi-shuffle algebras T'(A)
associated to commutative algebras A, the role played by bijections in clas-
sical Lie theory, see [25] and [26, 15].

Proposition 22. Let A be a coassociative (non necessarily counitary)
coalgebra with coproduct A : A — A® A, and B be a NQSh algebra. The
space of linear morphisms Lin(A, B) is given a NQSh algebra structure in
the following way: for all f,g € Lin(A, B),

(29)
f=g==<o(fog)od, frg=ro(f@g)od, feg=eo(f®g)oA.
Proof. The construction follows easily from the fact that NQSh is non-

symmetric and from the coassociativity of the coproduct. As an example,
let us prove (5) using Sweedler’s notation for A. Let f,g,h € Lin(A, B).
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For all x € A,

So (f>=g)<h=f>(g=<h). O

Remark. The induced product x on Lin(A, B) is the usual convolution
product.

Corollary 23. The set of linear endomorphisms of A, where k@& A is a
NQSh bialgebra is naturally equiped with the structure of a NQSh algebra.

Let us turn now to the quasi-shuffle analog of the Malvenuto-Reutenauer
noncommutative shuffle algebra of permutations. The appearance of a non-
commutative shuffle algebra of permutations in Lie theory in [25] can be
understood operadically by noticing that the linear span of the n-th sym-
metric group &,, is As,, the n-th component of the operad of associative
algebras (or also the n-th component of QSh, the quasi-shuffle operad). The
same reason explain why surjections appear naturally in the study of quasi-
shuffle algebras: ordered partitions of initial subsets of the integers (say
{2,4},{5},{1,3}) parametrize a natural basis of QSh,,, and such ordered
partitions are canonically in bijection with surjections (here, the surjection
s from [5] to [3] defined by s(2) = s(4) =1, s(5) =2, s(1) = s(3) = 3). Let
us show how the NQSh algebra structure of QSh can be recovered from the
point of view of the structure of NQSh algebras of linear endomorphisms.
In the process, we also give explicit combinatorial formulas for the corre-
sponding structure maps <, >,e. We also point out that composition of
endomorphisms leads to a new product on QSh (such a product is usually
called “internal product” in the theory of combinatorial Hopf algebras, we
follow the use, see [16, 26]).

Let n > 0. We denote by Surj, the set of maps o : [n] :={1,...,n} —
N* such that o({1,...,n}) = {1,...,k} for a certain k. The corresponding
elements in QSh,, are the ordered partitions o= *({1}),..., 0 1 ({k}) of [n].
The integer k is the maximum of ¢ and denoted by maz(c). The element
o € Surj, will be represented by the packed word (o(1)...0(n)) (recall
that a word ni ...ny over the integers is called packed if the underlying set
S = {ni,...,n} is an initial subset of N*, that is, S = [m] for a certain
m). We identify in this way elements of Surj, with packed words of length
n. For later use, recall also that any word n ...nj over the integers can be
packed: pack(ny...ng) = mq...my is the unique packed word preserving
the natural order of letters (m; < mj & n; < nj, m; =m; & n; = nj, e.g.
pack(6353) = 3121).

We assume that V' is an associative, commutative algebra and work with
the quasi-shuffle algebra T+ (V). Let o € Surj,, n > 1. We define F, €
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Endg(T(V)) in the following way: for all z1,...,z; € V,
II = - I | k=1
F, (561 ce CC[) = o(i)=1 o(i)=max (o)
0 otherwise.

Note that in each parenthesis, the product is the product of V. For example,
ifx,y,z€V,

F(123) (zyz) = 2yz F(132) (zyz) = 22y F(213) (zyz) = yrz

F(231)(xyz) = 2Ty F(312) (zyz) = yzz F(321)(xyz) = zyx

F(122) (zyz) = z(y.2) F(212) (zyz) = y(z.2) F(221)(xyz) = 2(r.y)

F(112) (zyz) = (z.y)z le)(xyz) = (z.2)y F(Qn)(xyz) = (y.2)x
Fany(zyz) = v.y.2

We also define F;, where 1 is the empty word, by Fy(x1...z,) = e(x1...2,)1 =

511...:vn,1-

Notations. Let k,1 > 0.

(1) (a) We denote by QShy,; the set of (k,l) quasi-shuffles, that is to
say elements o € Surjg4; such that o(1) < ... < o(k) and
ok+1)<...<o(k+1).

(b) QSth is the set of (k,1) quasi-shuffles o such that o=!({1}) =
{1}.
(c) @Shy, is the set of (k,1) quasi-shuffles o such that o t{1}) =
{k+1}.
(d) QShy, is the set of (k,l) quasi-shuffles o such that o t{1}) =
{1,k +1}.
Note that QShy; = QSh;}, U QShy U QSh; .

(2) If 0 € Surji and 7 € Surj;, o @ 7 is the element of Surjj; repre-
sented by the packed word o7[max(c)]., where [k] denotes the trans-
lation by k (312[5] = 867).

The subspace of Endg (T(V)) generated by the maps F, is stable under
composition and the products:

Proposition 24. Let o € Surj, and 7 € Surj;.
(1) If max(t) =k, then F, o F, = F,o;. Otherwise, this composition is

equal to 0.
(2)
F, < Fr = Z FCO(O@T)? o = Fr = Z FCO(U@T)’
CeQShE, CEQSh,
FroFr= > Fopen,  FwFr= 3 Fopen

¢eQShy CEQShi
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The same formulas describe the structure of the operad QSh as a
NQSh algebra (i.e., in QSh, using the identification between surjec-
tions and ordered partitions, 0 < T = ZCGQSh,:l Co(oc®T), and so

on).
Proof. The proof of 1. and 2. follows by direct computations. The identifi-

cation with the corresponding formulas for QSh follows from the identities,
for all z1, ...,z € V, in the quasi-shuffle algebra T (A):

T1.. . T < Thgl-- Tkl = Z Fc(xl...xkﬂ),
CEQShE,

T Tfg 7 Thy 1 - - Tl ] = Z Fc(xl...karl),
CEQShy,

XTy...Tp ® Thil...Thoy = Z Fe(xr ... wp4),
CeQShy

T1... TpHTEy1 .. - Ty = Z Fc(xl...karl).
CEQShy,

Moreover:

T1.. . TpWTpa1... Ty = Z Fc(.%'l . xk+l),

CEShk,l

where Shy; is the set of (k,[)-shuffles, that is to say Sy N QShy.
O
Remarks.

(1) F{1..n) is the projection on the space of words of length n. Conse-

quently:
Id = Z Fli. -
n=0

(2) In general, this action of packed words is not faithful. For example,
if A is a trivial algebra, then for any o € Surji \ Sk, F, = 0.

(3) Here is an example where the action is faithful. Let A = K[X; | i >
1]+. Let us assume that > a,F, = 0. Acting on the word X ... X},

we obtain:
Z Qs H X@ ce H X@ =0.
oESurjy, o(i)=1 o(i)=maz(0o)

As the X; are algebraically independent, the words appearing in this
sum are linearly independent, so for all o, a, = 0.

6. CANONICAL PROJECTIONS ON PRIMITIVES

This section studies the analog, for quasi-shuffle bialgebras, of the canoni-
cal projection from a connected cocommutative Hopf algebra to its primitive
part —the logarithm of the identity (see e.g. [33, 28, 29]).

Recall that a coalgebra with a coassociative coproduct A is connected if
and only if the coproduct il locally conilpotent.
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Proposition 25. Let A be a coassociative, non counitary, coalgebra with
a locally conilpotent coproduct

AA— A A, A= ] Ker(A™),
n>0

and let B be a NQSh algebra. Then, for any f € Lin(A, B), there exists a
unique map 7y € Lin(A, B), such that

f=mp+mp <[
Proof. For all n > 1, we put F,, = KeT(A(")): this defines the coradical
filtration of A. In particular, F} =: Prim(A). Moreover, if n > 1:

A(Fn) - Fn—l ® Fn—l-

Let us choose for all n a subspace E, of A such that F,, = F,,_1 & E,. In
particular, F1 = F; = Prim(A). Then, A is the direct sum of the E,,’s and

for all n:
E,) C @ E; ® Ej.
1,j<n
Ezistence. We inductively define a map 7y : £, — B for all m > 1 in
the following way:
e For allaEEl,Wf( a) = f(a).

o Ifac E,, as Aa EB E;®E;, (1;® f)oA(a) is already defined.

i+j<n
We then put:

my(a) = f(a)= < o(ny ® f) 0 A(a) = f(a) — (7f < f)(a)
Unicity. Let py such that f = py + (uy < f). For all a € Ey, f(a) =
pg(a)+0,s0 ps(a) = m¢(a). Let us assume that for all k < n, ug(a) = n¢(a)
if a € Ey. Let a € E,,. Then:

a=pg(a) +ppla’) < a” = ppla) + 7p(a’) < a” = pg(a) +a—my(a),
so pf(a) = m¢(a). Hence, py = my. O
Proposition 26. When A = B =T%(V) and f = Id, the map m := 7y
defined in proposition 25 is equal to the projection F(y).

Proof. First, observe that, as QShy 1k = {(1,...,k)}, for all packed words
(a1...ak), F1y = Flay..ap) = F(lal—i—l...ak—i—l) Hence, in A:

Foy+Fuy < Ida = F(1)+Z Foy <= Fa.n) = F(1)+Z Fa.nty = ZF1 n) = 1da.
n=1

n=1 n=1

By unicity in proposition 25, 7y = F{y). O
More generally, we have:

Proposition 27. Let A be a non unital, connected NQSh bialgebra, and
7w the unique solution to

Idg =7m+7m < Idy,

then 7 is a projection on Prim(A), and for all x € Prim(A), y € A,
m(z <y)=0.
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Proof. Let us prove that for all a € E,, w(a) € Prim(A) by induction on
n. As Ey = Prim(A), this is obvious if n = 1. Let us assume the result
for all k < n. Let a € E,,. Then 7(a) = a — 7(a’) < @”. By the induction
hypothesis, we can assume that 7(a’) € Prim(A), so:

A(n(a)) = d@ad"—n(d) < a’"@d" —n(d)@a" = (a/—(7 < Id)(d')—7(a'))@a" = 0.
Hence, for all a € A, w(a) € Prim(a). So m that, by its very definition, acts
as the identity on Prim(A), is a projection on Prim(A).

Let z € Prim(A) and y € E,, let us prove that n(x < y) = 0 by
induction on n. If n = 1, then y € Prim(A), so A(z < y) = z ® y, and
mx<y)=x<y—mn(z)<y=x <y—z <y=0. Let us assume the result
at all rank < n. We have:

Az <y)=z=<y 0y +z2y.
By the induction hypothesis, we can assume that 7(z < y’) = 0, so w(z <
yy=z<y—-0—m(x)<y=xz<y—z<y=0. O
Remark. For all z,y € Prim(A):
(e <y) =0, =y =cry—y<z, w(rey) =sey.

Corollary 28. Let A be a nonunital, connected quasi-shuffle bialgebra.
Then Prim(A) is stable under o and the following map is an isomorphism
of quasi-shuffle bialgebras:

9 TH(Prim(A) — A
’ a...ar —r a1<(a2<(...—<ak)...).

Proof. Let aq,...,ar € Prim(A). An easy induction on k proves that:

[
A(G(a1®...®ak)):Zﬁ(al®...®ai)®0(a,~+1®...®ak).

1=

—

—

So 6 is a coalgebra morphism.

From this coalgebra morphism property and the identity 7(x < y) = 0 for
x € Prim(A), we get for aj,...,ax € Prim(A), (Ida @ 1) o A(f(a1 ® ... ®
ag)) = 0(a1 ® ... @ ap_1) ® O(ag). Since 0 is the identity on its restriction
to Prim(A), its injectivity follows by induction.

Let a = ay...a; and b = by...by € TT(Prim(A)). Let us prove by
induction on k 4 [ that:

O(a<b)=0(a) < 0(b), 0(a=Db) =0(a)=0(b), O(aeb)=0(a)edb).

)

If k=1,thena <by...by =aby...b, sob(a<b)=a=<06(b)==0(a)<0(b).
If Il =1, then a > b=ba,sof(a>b)=>b=<0(a)=20(0b) <60(a)=~0(a) -
0b). Ifk=1=1,,zey = w(vey) € Prim(A), so 0(aeb) = aeb = 6(a)ed(b).
All these remarks give the results for k£ + [ < 2. Let us assume the result at
all ranks < k+ 1. If k = 1, we already proved that 6(a < b) = 6(a) < 6(b).
Ifk>2 a<b=ai(ag...apdb). By the induction hypothesis applied to
as ...a and b:

Ola<b)=a1 < (0(az...ar)x0(b)) = (a1 < O(az...ax)) < 0(b) =0(a) < 6(b).
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Using the commutativity of T (Prim(A)) and A, we obtain f(a = b) =
O(a) = 0(b). Ifl > 1, aeb =ae(by < by...b) = (aeby) < by...b.
Moreover, a e by is a linear span of words of length < k + 1, so, by the
preceding computation and the induction hypothesis:

O(aeb)=0(aeby) <0(ba...b).
The induction hypothesis holds for a and b1, so:
O(aeb) = (0(a)ef(b1)) < e(ba...by) =0(a)e(by <O(ba...by)) =0(a)ed(b).
If Il =1, then k£ > 1 and we conclude with the commutativity of e.

Let us now prove that Prim(A) generates A as a quasi-shuffle algebra.
Let A’ be the quasi-shuffle subalgebra of A generated by Prim(A). Let
a € E,, let us prove that 2 € A’ by induction on n. As E; = Prim(A),
this is obvious if n = 1. Let us assume the result for all ranks < n. Then
a = m(a) + m(a') < a’. By the induction hypothesis, a” € A’. Moreover,
7(a) and 7(a’) € Prim(A),soa € A'.

As a conclusion, 6 is a morphism of quasi-shuffle algebras, whose image
contains Prim(A), which generates A, so 6 is surjective. O

7. RELATING THE SHUFFLE AND QUASI-SHUFFLE OPERADS

A fundamental theorem of the theory of quasi-shuffle algebras relates
quasi-shuffle bialgebras and shuffle bialgebras and, under some hypothesis
(combinatorial and graduation hypothesis on the generators in Hoffman’s
original version of the theorem [20]), shows that the two categories of bial-
gebras are isomorphic. This result allows to understand quasi-shuffle bialge-
bras as deformations of shuffle bialgebras and, as such, can be extended to
other deformations of the shuffle product than the one induced by Hoffman’s
exponential map, see [15]. We will come back to this line of arguments in
the next section.

Here, we stick to the relations between shuffle and quasi-shuffle algebras
and show that Hoffman’s theorem can be better understood and refined in
the light of an Hopf algebra morphism relating the shuffle and quasi-shuffle
operads.

Let us notice first that the same construction that allows to define a NQSh
algebra structure on the operad QSh allows, mutatis mutandis, to define
a noncommutative shuffle algebra structure on Sh, the operad of shuffle
algebras. A natural basis of the latter operad is given by permutations (the
result goes back to Schiitzenberger, who showed that the tensor algebra over
a vector space V' is a model of the free shuffle algebra over V' [36]). Let us
stick here to the underlying Hopf algebra structures.

Recall first that the set of packed words (or surjections, or ordered par-
titions of initial subsets of the integers) Surj is a basis of QSh. As a Hopf
algebra, QSh is isomorphic to WQSym, the Hopf algebra of word symmet-
ric functions, see e.g. [15] for references on the subject. This Hopf algebra
structure is obtained as follows. For all o € Surjy, 7 € Surj;:

O*xT = Z Co(oc®T).

CeEQShy
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For all o € Surj,:
maz (o)
A(U) = Z J{1,...k} ® PGCk(U|{k+1,...,mam(o)})7
k=0

where for all I C {1,...,maz(0)}, o7 is the packed word obtained by keep-
ing only the letters of o which belong to I.

On the other hand, the set of permutations is a basis of the operad Sh. As
a Hopf algebra, the latter identifies with the Malvenuto-Reutenauer Hopf
algebra [25] and with the Hopf algebra of free quasi-symmetric functions
FQSym. Its Hopf structure is obtained as follows. For all o0 € &, 7 € &;:

oOxT = Z Co(oc®T).

¢eShy
For all o € G,,:
mazx (o)
Alo) = D ojp1,my ® Pack(o)(ei1,.. mas(e)})-
k=0

There is an obvious surjective Hopf algebra epimorphism = from QSh
to Sh, sending a packed word o to itself if ¢ is a permutation, and to 0
otherwise. From an operadic point of view, this maps amounts to put to
zero the e product. There is however another, non operadic, transformation,
relating the two structures.

Theorem 29. We use the following notations:
(1) Let 0 € S,, and T € Surj,. We shall say that T x o if:

V1 <i,j <n,(0(i) <o(j) = 7(i) <7(5)).

maz(T)
(2) Let T € Surj,. We put 7! = H L {ap)|n
i=1
We consider the following map:
Sh — QSh
b . KB
ces, — Z o

TXO
Then @ is an injective Hopf algebra morphism. Moreover it is equivariant:
for all o, 7 € &,
P(ocoT)=P(0)oT.
Proof. Let 0,7 € 6,,. Then 7 x ¢ if, and only if, ¢ = 7. So, for all o € &,:

®(0) = o + linear span of packed words which are not permutations.

So Z o0 ® = Idgp, and @ is injective.

1

Let 7 € Surj, and 0 € &,,. Then 7 « o if, and only if, Tooc™" « I,,.

Moreover, |7 oo ! = 7!, as o is a bijection. Hence:

(I)(O'):Z%: 3 po!asz(fn)oa.

TXO poxln P
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More generally, if 0,7 € &,,, ®(co7) = ®([,)o(coT)=(P([,)00)0oT =
®(o)orT.

Let 01 € 6, and 03 € &,,,.

B(01) * B(0a) = ) Con®m)

|71
T1X0O1,T20X02 T1:72:

CeQSh(mazx(r1),mazx(r2))

Let S be the set of elements o € Surjy,+n, such that:

e Forall 1 <i,57 <ny,o01(i) <o1(j) = (i) < a(j).
<

e For all 1 <i,j <mng, 02(i) < 02(j) = o(i +n1) < o(j+ na).

Let 11 o< 01, T2 x 02 and ¢ € QSh(maz(r1), max(r2)). As ( is increasing
on{l,...,max(m)} and {max(m1)+1,...,max(m)+mazx(m)}, (o(r1®7) €
S. Conversely, if o € S, there exists a unique 71 € Surjy,, 7 € Surj,, and
¢ € QShyaw(r)),max(r) such that 0 = (o (71 ® 72): in particular, 7 =
Pack(o(1)...0(n1)) and 7 = Pack(o(n1+1)...0(n1+n2)). Aso € S and
¢ € QShpaz(r))max(rs)s T1 X 01 and 73 o< o2. Hence:

2

B0V * 20D = D Gk o1y ol Pack(o(nr + 1) —-o(m + m))"

On the other hand:
-
(I)(O'l * 0'2) = Z ;

¢eSh(ni,n2)
TxCo(01R®02)

Let ¢ € Sh(ny,n2) and 7 x (o (01 ® 02). If 1 < 4,5 < ny and 01(3) < 01(j),
then:

(o (o1 ®@02)(i) = ((01(i)) < ((o1(j)) = (o (01 ® 02)(4),

so 7(i) < 7(j). If 1 <4,j < ng and 02(i) < 03(j), then:
Co(01®02)(i+n1) = ((o2(i)+max(o1)) < ((02(j)+maz(o1)) = (o(01®02)(j+m),

so 7(i +n1) < 7(j + n2). Hence, 7 € S and finally:

Doy xoa) = > %ﬁ{( € Sh(ny,n2) | T o Co (01 @ 02)}.
res

Let 7€ S. Weput 71 = (7(1)...7(n1)) and 72 = (7(n1 + 1) ... 7(n1 + na)).
Let ¢ € Sh(ni,n2), such that 7 o< ( o (07 ® 02). For all 1 < i < max(7),
C(t7'({i})) = I; is entirely determined and does not depend on (. By the
increasing conditions on (, the determination of such a ( consists of choosing
for all 1 <4 < maz(7) a bijective map ¢; from 771({i}) to I;, such that ¢
is increasing on 7' ({i}) N {1,...,n1} = 7, '({i}) and on 7= 1({i}) N {n1 +
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1,...,n1 +no} = 75 *({i}). Hence, the number of possibilities for ¢ is:

max(T)

1 [T @)
el R S L CERIL
max(T)
IT =i
1=1
- max (1) max(72)
IT e T st dabn
=1 i=1
max(T)
IT = 'dan
i=1
- max(Pack(T1)) max(Pack(T2))
I[I  [Pack)'(inlt JI  [Pack(r)~"({ih))!
=1 i=1
7!

- Pack(ry)!Pack(m)!”

Hence:
- 7!
Pl - ;S’ 71 Pack(r(1)...7(n1))!Pack(r(n +1) ... 7(n1 +n2))!
= (I)(Ul) * (I)(Uz)-

So @ is an algebra morphism.

Let 0 € G,,.

A(®(0))

max(T)

1
=> > ;T\{L...,k}®Pa0k(7\{k+1,...,mam(r)}

TxOo k=0

max(T)

= D

TXO k=0

1

(L, k) PACk(T) (k4 1, . maz(r)}

711k} @ Pack(T)(er1,. maa(r))

n T T
1 2
- 2 i
k=0 T1XO|{1,...,k}
TQO(PCLCIC(UHI@+1 ,,,,, n})

= (@® ) o A0).

Hence, ® is a coalgebra morphism. O
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Examples.
o((1)) = (1),
D((12)) = (12) +

2((123)) = (128) + 1 (112) + 3(122) + (110)

D((1234)) = (1234) + =(1123) + +%(1223) + +%(1233)

1 1

1 1
~(1122) + =(1112) + =(1222) + —(1111).

More generally:
- 1 i i
k=1i14..+ig=n —

Remark. The map ® is not a morphism of NSh algebras from (Sh, <, >)

to (QSh, =, >), nor to (QSh, <, >). Indeed:
o((1) < (1)) = (12) +

O((1)) < @((1)) = (12),
O((1)) = @((1)) = (12) + (11).

We extend the map o — F, into a linear map from QSh to End(T'(V)).
By proposition 24, F' is an algebra morphism.

(11)’

N | —

Corollary 30 (Exponential isomorphism). Le us consider the following
linear map:
: V) — T(V)
(b ) { 1...Typ — F@(]n)(xl xn)
Then ¢ is a Hopf algebra isomorphism from (T'(V'), w, A) to (T(V), =, A).

Proof. Let x1,...,x51 € V.

Qb(xl---xk'—'—'fk-i-l---xk—f—l) = Z F‘:I’(IkH)OFC(xl“‘xk‘f'l)

ceSh(k,)

= Z FCI)(IIﬁLl)OC(ml Ce i)
ceSh(k,l)

= Z F<1>(C) (X1 ... Ty1)
ceSh(k,l)

= Fo(rer) (1 -+ Th1)
= Fo(r o) (T1 - - - Thtt)

= Fory 8 Foa)(T1 ... 2141)
k+l

= Z Fq)([k)(xl R xi)I:I:IFq)(IZ)(CCZ’Jrl - xk_H)
i=0

= FCP(Ik)(xl ok B Fy ) (Tpg1 - - Thil)
= ¢(z1... o) HP(Tpt1 - .. 21).
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So ¢ is an algebra morphism.

For any packed words o € Surji, 7 € Surj; and all xzq,...,z, € V we
define G,x, by:

Gogr(1...wp) = Fp(x1...25) @ Fr(Tps1 ... 2p)

is k+ 1 =n and = 0 else. Then, for all increasing packed word o, for all
xzeT(V):

A(Fy(2)) = Ga(o) (2)-
Hence, if z1,...,z, € V:

= G(<I>®<I>)0A(1n)(ﬂ:1 C Tp)

- Z G¢(1k)®¢(ln_k)($1 c Tp)
k=0

= ZFcp(lk)(m k) ® P (@htn - )
k=0

= Z d(r1...25) @ O(Thy1 ... Tp)
k=0

=(p®@¢) o A(xy...Tp).

So ¢ is a coalgebra morphism.

As the unique bijection appearing in ®([,,) is I, for all word zy ...z,:
¢(x1...xy) =1 ... 2, + linear span of words of length < n.
So ¢ is a bijection. O

Examples. Let x1,29,23,24 € V.

¢(z1) = z1,
1
(ﬁ(.%’y%’g) = T1T9 + 51‘1..%’2,
1 1 1
gb(xlxgxg) = r129x3 + §($1.$2)$3 + §$1($2.$3) + 6$1.$2.$3,

1 1
d(T1222374) = T1T2T3%4 + §($1-$2)$3ﬂ?4 + §$1($2-$3)ﬂ?4

1 1 1
+ §$1$2($3.$4) + Z(xl.xg)(xg.m;) + 6($1.$2.$3)$4

n 1 ( )+ 1
6$1 T2.X3.74 24$1.$2.$3.$4.
More generally, for all x1,...,x2, € V:

- 1

k=1i14..+ip=n

Remarks.
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(1) This isomorphism is the morphism denoted by exp and obtained in
the graded case by Hoffman in [20].

(2) If V is a trivial algebra, then ¢ = Idp(y).

(3) This morphism is not a NSh algebra morphism, except if V' is a trivial
algebra. In fact, except if the product of V is zero, the NSh algebras
(T(V),=,>) and (T(V),<, ) are not commutative, so cannot be
isomorphic to a shuffle algebra.

8. COALGEBRA AND HOPF ALGEBRA ENDOMORPHISMS

In the previous section, we studied the links between shuffle and quasi-
shuffle operads and obtained as a corollary the exponential isomorphism of
Cor. 30 between the shuffle and quasi-shuffle Hopf algebra structures on
T(V). This section aims at classifying all such possible (natural, i.e. func-
torial in commutative algebras V') morphisms. We refer to our [15] for ap-
plications of natural coalgebra endomorphisms to the study of deformations
of shuffle bialgebras.

Recall that we defined 7 as the unique linear endomorphism of the quasi-
shuffle bialgebra T (V) such that = + 7 < Idp+ny = Idp+yy. By propo-
sition 26, it is equal to F{y), so is the canonical projection on V. This
construction generalizes as follows.

Hereafter, we work in the unital setting and write ¢ for the canonical
projection from T'(V) to the scalars (the augmentation map). It behaves
as a unit w.r.t. the NQSh products on End(T*(V)): for g € End(T*(V)),
e<g=0,g<e=g.

Proposition 31. Let f : T(V) — V be a linear map such that f(1) = 0.
There exists a unique coalgebra endomorphism 1 of T(V') such that oy = f.

This coalgebra endomorphism is the unique linear endomorphism of T(V)
such that e + f < = 1.

Proof. First step. Let us prove the unicity of the coalgebra morphism ¢ such
that oy = f. Let 1,12 be two (non zero) coalgebra endomorphisms such
that movy = wo)y. Let us prove that for all z1,...,2, € V, (21 ...2,) =
Yo(x1...2,) by induction on n. If n = 1, as 11(1) and ¥9(1) are both
nonzero group-like elements, they are both equal to 1. Let us assume the
result at all rank < n. Then:

Aoz/zl(wl...xn):(¢1®¢1)0A(m1...xn)
=Y1(r1...2,) Q1+ 1@ Yy (21 ... 2y)

n—1
+ Z¢1($1 c @) @Y1 (Tigr - Ty,
i—1
Aotg(xy...xn) =o(x1... ) @1+ 1R WYo(x1...24)

4 Zq/;z(xl c ) @Y2(Tigr .. xy).

Applying the induction hypothesis, for all i < 1 < n —1, ¥1(x1...2;) =
Yo(xy ... x;) and Y1 (Tiq1 - .- Tpn) = Yo (Tiqq - . . x,). Consequently, ¥1(xy ... x,)—
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Yo(xq ... xy,) is primitive, so belongs to V' and:

P(z1 . 2p) —o(wy .. wp) =m0ty (21 ... Tp) — O Yo(xy ... y) =0,

Second step. Let us prove the existence of a (necessarily unique) endo-
morphism ¢ such that ¢ = ¢ + f < 1. We construct ¥ (zy...x,) for all
Z1,...,Ty € V by induction on n in the following way: (1) = 1 and, if
n > 1:

n—1
Y(xy .. xp) = f(x1... fa) + Zf(xl con &) < WU(xpg1 - Ty).
=1

Then (e 4+ f <)1) =¢(1) =1 =9(1). If n > 1:
(e+f=<Y)(x1...2p)

n—1
:E(.%'l...xn) —i—f(xlmn)—i—Zf(xlxl) -<¢(1‘2‘+1...1'n)
=1
n—1
=0+ f(z1...20) +Zf(l“1$z) < P(Tig1 ... Tn)
=1

Hence, e + f < ¢ = 1.

Third step. Let 1 such that ¢ + f < ¢ = 1. Let us prove that A o
Y(xy...xn) = (Y @Y) o A(xy...2y,) by induction on n. If n = 0, then
(1) =e(1)+ f(1)=14+0=1,850 Aoyp(l) = (Y @9Y)o A(l) =1® 1. If

n>1l,weputx=x1...2,, Ax) =201+ 1®z+ 2" ®2”. The induction
hypothesis holds for z”. Moreover:

b(z) =e(z) + f(z) + f(2') < ¥(a") = f(2) + f(a") < (")
As f(z), f(2') € V are primitive:

Aotp(z) = f(a') @ (a") + f(2!) < (") @ (2")
= f(2) @ (") + f(z') < (") @ (")
= (") @ (")
= (1 @ 1) o A().

As (1) = 1, we deduce that Aoy(z) = (P ®1) o A(z). So 9 is a coalgebra
morphism. Moreover, wo1)(1) =n(1) =0 = f(1). If e(x) = 0:

mod(z) = 7o f(z) +m(f(a') < f(2")) = f(2),

as f(x),(2") € V (so f(z') < f(2”) is a linear span of words of length > 2,
so vanishes under the action of 7). Hence, mo ¢ = f. (]

Proposition 32. Let A = Z an, X" be a formal series without constant
n>1
term. Let fa be the linear map from T(V) to V defined by fa(zy...xn) =
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apri e ...ex, and let ¢4 be the unique coalgebra endomorphism of T(V)
such that wo¢a = fa. For all x1,...,x, € V:

(30) (bA(.%'l xn) = Z Z (79 alkF(lzlkzk)(xlmn)

k=1i1+...+ig=n

Proof. Note that fa(zi...2,) = anf(in)(z1...2,). Let ¢ be the morphism
defined by the second member of (30). Then (e + fa < ¢)(1) =1+ fa(1) =
1=¢(1). Ifn>1:

(5+fA < ¢)(~Tlxn)

n—1
= fa(zy...2y) + Z falzy...z) < d(@igr...zp)
i=1

= anF(ln)(xl ce .%'n)

n—1 n

+ Z Z Z AiQiy - - - aikF(li) < F(liQ.n(k._l)ik)(xl ... .’En)

i=1 k=2 io+...+ip=n—1
= anF(ln)(xl e xn)

n—1 n

+ Z Z Z QiQiy - - - Ay < F(1i2¢2...kik)(x1 - .%'n)

i=1 k=2 i+ig+...+ig=n

By unicity in proposition 31, ¢ = ¢4. (]

Remark. The morphism ¢ defined in corollary 30 is @epp(x)—1-

Proposition 33. ¢x = Id and for all formal series A, B without constant
terms, ¢4 0 ¢ = PAoB-

Proof. Forall z1,...,xy, € V,mold(xy ... 2y) = 01021 ... Tn = fx(z1...25).
By unicity in proposition 31, ¢x = Id. Moreover:

WO¢A0¢B($1...CCn)

n
= fA Z Z bil v bik (1‘1 e...0 xil) Ce (xi1+---+ik—1+1 ... 0 x1+---+ik)
k=1i1+...+ip=n

:i Z akbil...bikﬁﬂl.---.xn

k=1i1+...+ip=n
= onB(xl e xn)

By unicity in proposition 31, ¢4 0 ¢ = PaoB- O
So the set of all ¢4, where A is a formal series such that A(0) = 0 and

A'(0) # 1, is a subgroup of the group of coalgebra isomorphisms of T(V),
isomorphic to the group of formal diffeomorphisms of the line.
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Corollary 34. The inverse of the isomorphism ¢ defined in corollary 30
IS Prn(14X) -

n _1\n+k
oMy .. .xp) = Z Z %F(lil__kik)(xl...xn).

21 ...12
k=lii4.tig=n L "'k

Proposition 35. Let A € K[[X]]T.

(1) ¢pa = (T(V),w,A) — (T(V),w,A) is a Hopf algebra morphism
for any commutative algebra V' if, and only if, A = aX for a certain
ac K.

(2) ¢pa = (T(V),w,A) — (T'(V),58,A) is a Hopf algebra morphism
for any commutative algebra V' if, and only if, A = exp(aX) —1 for
a certain a € K.

(3) pa: (T(V),5,A) — (T(V),5,A) is a Hopf algebra morphism
for any commutative algebra V if, and only if, A= (1+ X)* —1 for
a certain a € K.

(4) ¢pa = (T(V),d,A) — (T(V),w,A) is a Hopf algebra morphism
for any commutative algebra V' if, and only if, A = aln(1 + X) for
a certain a € K.

Proof. First, note that for any z{,...,zp € V:

Toda(ry... k) = apFy. 1y(z1. .. 2K).

Consequently, for any commutative algebra V', for any x,x1,...,2x € V,
k>1:
mopa(zwzy...xp) =7(xw1. . T+ ... F X1 .. Tpy1T)
= (k) + 1)ak+1m.x1 C L. Tk,
T(pa(z)Woa(zr ... k) =0,
m(pa(x)EHda(zy...xK)) = @rapz.21 - .o\ - T
1. We assume that ¢4 is an algebra morphism for any V for the shuffle

product. Let us choose an algebra V and elements x,x1,...,2x € V such
that x.z1 - ... 2 #0in V. As ¢p(zwzy ... x,) = o(x)we(zy ... xx), ap-
plying 7, we deduce that for all k > 1, (k+1)ag+1 = 0, so ax+1 = 0. Hence,
A = a;X. Conversely, for any x1,...,2, €V, ¢ax(x1...7%) = afxy ... xyp,

SO ¢gx is an endomorphism of the Hopf algebra (T'(V), w, A).

2. We already proved that ¢,,x)—1 is a Hopf algebra morphism from
(T(V),w,A) to (T(V), =,A). By composition:
qse:vp(aX)fl = gbemp(X)flogbaX : (T(V), LU,A) — (T(V), LU,A) — (T(V), H:laA)
is a Hopf algebra morphism.

We assume that ¢4 is an algebra morphism for any V from the shuf-
fle product to the quasi-shuffle product. Let us choose an algebra V', and
x,x1,...,x € V,such that z.x1 - ... -2 #0in V. As ¢(zwizy...2k) =
d(x)Hp(xq ... xk), applying m, we deduce that for all k > 1, (k+ 1)ax1 =

k

a1ak, SO ap = % for all £k > 1. Hence, A = exp(a1 X) — 1.

3. The following conditions are equivalent:
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e Forany V, ¢4 : (T(V),2,A) — (T'(V), =,A) is a Hopf algebra
morphism.

e Forany V, ¢ln(1+X)o¢Ao¢e:vp(X)fl : (T(V)’ LU’A) — (T(V)a LU’A)
is a Hopf algebra morphism. For any V, ¢1,(14x)odo(eap(X)-1) °
(T(V),w,A) — (T(V), w1, A) is a Hopf algebra morphism.

e There exists a € K, In(14+ X)o Ao (exp(X) — 1) = aX.

e There exists a € K, A= (1+ X)*

4. Similar proof. U

Remark. The Proposition 35 classifies actually all the Hopf algebra
endomorphisms and morphisms relating shuffle and quasi-shuffle algebras
T(V), that are natural (i.e. functorial) in V. This naturality property
follows formally from the study of nonlinear Schur-Weyl duality in [26, 15].

9. CODERIVATIONS AND GRADUATIONS

The present section complements the previous one that studied coalgebra
endomorphisms. We aim at investigating here coderivations of quasi-shuffle
bialgebras. As an application we recover the existence of a natural graded
structure on the Hopf algebras (T'(V), =2, A) [15].

Notations. Let A be a NQSh algebra, f € Endg(A) and v € A. We
define:

A — A A — A
f<v.{ r — f(z) <o, v<f.{ r — v=f(x).

Proposition 36. Let f : T(V) — V be a linear map. There exists a
unique coderivation D of T(V') such that mo D = f. Moreover, D is the
unique linear endomorphism of T(V') such that D = f+7 < D + f < Id.

Proof. First step. Let us prove that the unicity of the coderivation D such
that moD = f. Let Dy and D5 be two coderivations such that moDy = moDs.
Let us prove that Di(z1...x,) = Da(xy ... x,) by induction on n.

AoDi(1)=D1@Id+Id®@D1)(1®1)=D;(1) ® 1+ 1® D;(1),

so Di(1) € Prim(T(V)) = V. Similarly, Dy(1) € V. Hence, Di(1) =
mo Di(1l) = mo Dy(1l) = Do(1). Let us assume the result at all ranks < n.
Ifp=1or2:

AoD,( Z D,( ;) RTig1 - - xn—|—Z 1 ... 2iQ®@Dp(Tig1 ... xy).

Applying the induction hypothesis at all ranks < k, we obtain by substrac-
tion:

Ao(Dy—Ds)(xy...20) = (D1—D2)(z1...2)R14+1® (D1 — Da)(z1 ... ).
So (D1 — Dy)(x1...2zy) € V. Applying 7:

(D1 — Dg)(xy...2y) =mo (D1 — Do)(x1...2,) =0.
So Di(xy...xy) = Da(x1 ... 2y).
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Second step. Let us prove the existence of a map D such that D = f+7 <
D+ f < Id. We define D(z; ...xy) by induction on n by D(1) = f(1) and:

D(zy...xy) =21 < D(xgxn)—{—Zf(xlxl) < Tip1 .- Tptf(T1...2p).

Then (f+7m <D+ f<Id)(1)=f(1)=D(1). If n > 1:

(f+7r<D+f<Id)( o Zn)

+Z i) < D(Tit1...70)
n—1
+Zf(1’11’2) < Tjgp1..-Tp
=0
n—1
:f( )+$1'<D( $n)+2f($1$2)—<$l+1$n
=0
= D(z1...2).

SoD=f+4+n<D+ f<Id.

Last step. Let D such that D = f+ 7 < D+ f < Id. Let us prove that
AoD(xy...x) = (D®Id+1d® D)o A(xy ...x,) by induction on n. If
n = 0:

Ao D(1) = A(f(1))

=fHel1+1® f(1)

=D(1)®1+1® D(1)
=(D®Id+Id® D)(1®1).

Let us assume the result at all ranks < n.

D(xy...xp) = (f+7 <D+ f<Id)(z1...2,)
—Z ) < D(wi41 .. xn)%—Zf(xl...xi)—<xi+1...xn
+f(x1... )
=21 D(xg... ) + Zf(gc1 T i - T
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:leD(xQ...mj)(X)xj_,_l...mn

—i—le i @ D(xjp1 .. xn) F1@x1D(2 ... 2h)

+ZZf $)Tigl - T D Tjp1 ... Ty

noJ
+ZZf(CC1...$i)CCZ'+1...Cﬂj®$j+1...£ﬂn

j=1i=1

+f(1)®$1...$n+21®f($1...ﬂfi)xi+1...$n

—ZD §)®@Tjy1... Ty + Zﬂfl i @ D(Tjg1. .. 7n)
:(D®Id+fd®D)oA( 1xn)

Moreover, mo D(1) =7 o f(1) = f(1); if n > 1:

oD(xy...xp) = (1 D(x )+ Z i)Tit1 ... Tn)
=0+ f(z1...2p).
SomoD = f. O
Proposition 37. Let A = Z a, X" be a formal series without constant
term. Let D4 be the unique Zozdlerivatz'on of T(V) such that wo ¢a = fa.

For all z1,...,2, € V:

n n—i+1

(31) Da(zy...2n) = Zaz‘ Z Fuao. j-1jij+1.m—it)(T1 ... Tn).
=1 =1
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Proof. Let D be the linear endomorphism defined by the right side of (31).
As f4(1) =0, we get by induction on n:

(f+m <D+ f<1Id)(z;...2,)

n—1
= f(z1...2p) +x1D(22. .. 20) + Zf(xl L) Tig] - Ty
i=1
=x1D(x +Zf $)Tit1 - Tp
n—1 n—i+l n
= Z a; Z F(12...j—1jij+1...n—z‘+1)(551 Tn) + Z aiF(liQ...n—i—i—l)(xl S Tn)
i=1 =2 i=1
n n—i+1
= Zaz‘ Z F(12...j71jij+1...n7i+1)(ml"'xn)
i=1  j=1
=D(z1...2y).

Moreover, mo D(x1...x,) = apzi®...0x, = fa(x1...x,). The unicity in
proposition 36 implies that D = D 4. O

Corollary 38. For all word z1 ...z, Dx(x1...2y) =nx1 ... Tp.

Proof. Indeed, Dx (z ZFlZ =14 L) (T1 - ) = 0Ty T,
U

Remark. Let A and B be two formal series and A € K. As D4 + ADp
is a coderivation and 7w o (D4 + ADp) = fa + Afp = fatrB:

DA + )\DB = DA+)\B.

Moreover, the group of coalgebra automorphims of T(V') acts on the space
of coderivations of T'(V') by conjugacy. Let us precise this action if we work
only with automorphisms and coderivations associated to formal series.

Proposition 39. Let A, B be two formal series without constant terms,
such that A’(0) # 0. Then:

¢a' ©Dpoda= Dpoa.
A/

Proof. By linearity and continuity of the action, it is enough to prove this
formula if B = XP. We denote by C the inverse of A for the composition.

7TO¢21 oDxpopa(xy...zy)

n
:fCODXp Z Z ail...aikF(lil___kik)(xl...xn)

k=1i1+...4ip=n

n
Z Z (k—=p—=1)Chpt1Gi, ... Q5 T1 @ ... @2y,

k=p—1i1+..+ip=n
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Somo¢gu-10Dxp o ¢y is the linear map associated to the formal series:

k—p+ e piXF|oA= ia; X7T1TP ) 0 A
Z ( p )Ck—p+
k=p—1 =0
= (XPC") o A
=APC'0 A
AP
Hence, ¢p4-1 0 Dxpopg = Dar. O
Al

Corollary 40. The eigenspaces of the coderivation D14 x)ym1+x) give a
gradation of the Hopf algebra (T'(V), =, A).

Proof. Let D =¢oDxo¢~t. As ¢ = Peap(X)—1

D = <75l_n1(1+X) °©Dx o gpa+x) = Dasx)in(14-x)-

As Dx is a derivation of the algebra (T'(V), ) and ¢ is an algebra iso-
morphism from (T'(V), w) to (T(V), &), D is is a derivation of the algebra
(T(V), ). As it is conjugated to Dx, its eigenvalues are the elements of
N. O

Remark. As (1+ X)in(1+ X) =1+ Z ﬁ){k:
k=2

Dy xyinsx) (@1 - 2n)
n n—i+1 ;
3 (=1
:nxlxn—{—Z; 2 Z,(Z,_1)$1...$j,1($]’0...0$j+i,1)$j+i...$n.
i=2 j=

The gradation of A = (T'(V'), =) is given by:

n 1 i i1+,
T B oD Sl (1) L | A
A

k=1i1+4...+ix=n t=i1+...+ip_1+1

T1,...,Tp €V
10. DECORATED OPERADS AND GRADED STRUCTURES

In many applications, algebras over operads carry a natural graduation.
This is because geometrical objects (polynomial vector fields, spaces, dif-
ferential forms...), but also combinatorial and algebraic ones carry often
a graduation (or a dimension, a cardinal...) that is better taken into ac-
count in the associated algebra structures. As far as quasi-shuffle algebras
are concerned, they carry often naturally a graduation in their application
domains : think to quasi-symmetric functions and multizeta values (MZVs)
[3]; Ecalle’s mould calculus and dynamical systems [11]; iterated integrals
of It6 type in stochastic calculus [7, 8].

Here, we explain briefly how the formalism of operads can be adapted
to take into account graduations. We detail then the case of quasi-shuffle
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algebras and conclude by studying the analogue, in this context, of the
classical descent algebra of a graded commutative or cocommutative Hopf
algebra [29].
In this section, we denote by A = € A, (where Ag = k, the ground
neN
field), a graded, connected, quasi-shuffle bialgebra. By graded we mean

that all the structure maps (<,e,A) are graded maps. Then Prim(A) =

V= @ V, is an associative, commutative graded algebra for the product
neN*

e and we can identify A and the quasi-shuffle algebra T (V) as graded

tridendriform algebras. Be aware that the graduation of T+ (V) is not the

tensor length: for example, for vi € V,,,...,vp € V,,, the degree of the

tensor vy ... v, € VO is now ny + - - - + ng.

It is an easy exercice to adapt the definition of operads to the graded
case: whereas the component F,, of an operad identifies with the set of
multilinear elements in the n letters xy,...,z, in the free algebra F(X,,),
X, = {x1,...,2,}, the corresponding graded operad F¢ is obtained by
considering the set of multilinear elements in the free algebra F/(X?), where
X4 .= {xf}ign,deN* and where multilinear means now that we consider
the subspace () I';, where T'; is the eigenspace of F(X?) associated to the

i<n

eigenvalue A of the map induced by z¢

)

— Az, x;-l — x;-l else. We call

F¢ = U,Fq the (integer-)decorated operad associated to F-algebras.
The decorated operad QSh? is then spanned by decorated packed words,
where:

Definition 41. A decorated packed word of length k is a pair (o,d),
where o is a packed word of length k and d is a map from {1,... k} into

. . o(l) ... o(k)
N*. We denote it by < (1) ... d(k) >
Notation. Let (o,d) = < ZEB ZEZ)) > be a decorated packed

word. Let m be the maximum of 0. We define F(, 4 € Endg(A) in the
following way: for all z1,...,2z; € V, homogeneous,

ifk = land
deg(x1) = d(1),

o(i)=1 o(i)=m

F(U’d)(ml...ml) = .
deg(zy) = d(k),
0 otherwise.

Note that in each parenthesis, the product is the product e of V. For
example, if x,y,z € V are homogeneous,

Fro 1 9 (zyz) = y(z o 2)
a b c
if deg(x) = a, deg(y) = b, and deg(z) = ¢, and 0 otherwise.

The subspace of Endg (A) generated by these maps is stable under com-
position and the noncommutative quasi-shuffle products:
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Proposition 42. Let

(U’d):<a(1) a(k:)> and(m):<r(1) 5 7(8

ail) ... d(k) e(1) e( )
be two decorated packed words. max(t) = k and for oll 1 < j < k,
Z e(i) = d(j), then:
7(i)=J
Floa)© Flre) = F( 00(751) ao(T)(z) )
e(l e(l
Otherwise, this composition is equal to 0. Moreover:
Flod) = Firey
= > F( w@) . ou(k) w(k+1) .. u(kJrl))?
Pack(u(1)...u(k))=0, d(l) ... d(k) e(1) e(l)
Pack(u(k+1)...u(k+1))=T,
min(u(l)...u(k))<min(u(k+1)...u(k+1))
Foa) = Fire)
= > F( w(l) o ulk) u(k41) .. u(k-i—l))’
Pack(u(1)...u(k))=c, d(1) ... d(k) e(1) e(l)
Pack(u(k+1)...u(k+1))=r,
min(u(l)...u(k))>min(u(k+1)...u(k+1))
Flo,d) ® Fire)
= > F( w@) . ouk) w(k+1) .. u(k‘+l))'
Pack(u(1)...u(k))=0, d(l) ... d(k) e(1) e(l)
Pack(u(k+1)...u(k+1))=r,
min(u(l)..u(k))=min(u(k+1)...u(k+1))
Proof. Direct computations. O

Remarks.
(1) For all packed word (o(1)...0(n)):

FO’ .o(n)) — F n )
e d(l»?d(n)zl (ZEB . %)

(2) In general, this action of decorated packed words is not faithful. For
example, if V' = K[X];, where X is homogeneous of degree n, then
F< 1 2 > = F< 9 1 > Indeed, both sends the word X X on itself

11 11
and all the other words on 0.

(3) Here is an example where the action is faithful. Let V = K[X; |
i > 1];, where X; is homogeneous of degree 1 for all i. Let us
assume that Y a(q.q)F(s,q) = 0. Acting on the word (X{")... (X;*),
we obtain:

Y a o) ... olk) (H Xf)( H ng)o.
length(o)=k ai o a, o(i)=1 o(i)=mazx(o)
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As the X; are algebraically independent, the words appearing in this
sum are linearly independent, so for all (o, d), a(o,q) = 0.

Notations.

(1) For all n > 1, we put:

m=2 Z(k)nF( o)

k=1d(1)+...+d )y ... d(k)

The map p,, is the projection on the space of words of degree n, so
an =1Ida.
n>1

(2) For all n > 1, we put:

"=y

The map ¢, is the projection on the space of letters of degree n, so, by
proposition 26, ¢ = an = F{y) is the projection 7 of proposition 25. It
n>1
is not difficult to deduce, in the same way as proposition 12 of [14], the
following result:

Theorem 43. The NQSh subalgebra QDesc(A) of Endg (A) generated by
the homogeneous components p, of Id 4 is also generated by the homogeneous
components q, of the projection on Prim(A) of proposition 25. Moroever,
for alln > 1:

n

Gn = Z(_l)kﬂ Z Pay < (Pay B - .. EHpg, ).

k=1 ai+...+ap=n

Remark. This result is the quasi-shuffle analog of the statement that the
descent algebra of a graded connected cocommutative Hopf algebra H (the
convolution subalgebra of End(H) generated by the graded projections) is
equivalently generated by the graded components of the convolution loga-
rithm of the identity [29].

11. FREENESS OF THE DECORATED QUASI-SHUFFLE OPERAD

In this section, we show that the decorated quasi-shuffle operad QSh? is
free as a NSh algebra using the bidendriform techniques developed in [12].

We denote by QShflF the subspace of the decorated quasi-shuffle operad
generated by nonempty decorated packed words. As for a well-chosen graded
quasi-shuffle bialgebra A the action of packed words is faithful, we deduce
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that QShflF inherits a NQSh algebra structure by:
(0,d) < (7€)

_ Z (u(l) oo u(k) wk+1) ... u(k+l)>
a1y ... d(k) e(1) . e(l) ’
Pack(u(1)...u(k))=0,
Pack(u(k+1)...u(k+1))=,

min(u(l)..u(k))<min(u(k+1)...u(k+1))
(0,d) = (7€)
_ Z (u(l) oo u(k) uk+1) ... u(k—l—l))
dil) ... d(k) e(1) e(l) )
Pack(u(1)...u(k))=o,

Pack(u(k+1)...u(k+1))=r,
min (u(L)...u(k)) > min (u(h+1)...u(k-+1))

(0,d) (7€)
_ Z (u(l) oo u(k) wk+1) ... u(k+l)>
d1) ... d(k) e(1) . e(l) :
Pack(u(1)...u(k))=0,

Pack(u(k+1).. u(k+1))=r,
min(u(l)..u(k))=min(u(k+1)...u(k+1))

Notations. Let (0,d) be a decorated packed word of length k£ and let
IC{1,...,max(c)}. We put o= *(I) = {iy,...,4}, with i1 < ... <4;. The
decorated packed word (o, d)|; is (Pack(c(i1),...,0(ir)), (d(i1),...,d(i))).

Definition 44. We define two coproducts on QShi in the following way:
for all nonempty packed word (o, d),

max(o)—1

AL(o,d) = Z (o,d)1(1,....it @ (0, d)|({it1,....maz (o)}
1=0(1)
o(1)—1

A, (o,d) = Z (o,d)11,....iy @ (0, d) | {{it1,...,maz (o)} -
i=1

Then QShi is a NSh coalgebra, that is to say:

(32) (A ®@Id)o AL =(ld® (A +Ay)) o A,
(33) (A @ Id)o Ay = (Id® AL) o Ay,
(34) (Ax+ A )@ Id)oAr = (Id@ AL) o A,

d
For all a,b € QSh{ :

(35) Asla=<b)=d, <b@d, %t +ad, <b®d, +d, @d" b
+a<V b +a®b,

(36) As(a=b)=d =t @d *b"+a-b 0 +d,-bxd",

(37) Az(aeb)=d et @ad’, xV' +d eb®d, +aeb @1,

(38) Ac(a=<b)=dal <b @al xb"+a <b®al +al ®al xb,

(39) A(a=b)=al =b'®@al xb"+al »b@al +0 @axb"+b®a,

(40) Ay (aeb)=al eb' @al xV" +al_ eb®al.
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Proof. Let (0,d) be a decorated packed word. Then:

(A.< ® Id) o A.<(0'7 d) = (Id ® (A.< + A})) (o) A.<(0'7 d)
= Z (o, d)q1,....5y @ (0,d)fix1,....53 @ (0,d) {41, .maz(0)}

o(1)<i<j<maz(c)—1

(A- @ Id)o As(o,d) = (Id® Ag) o Ay (0,d)
= Z (Ua d)|{1,,z} ® (O-’ d)\{i—l—l,...,j} ® (Ua d)|{j+1,...,maaﬂ(a)}’

1<i<o(1)<j<mazx(o)—1

(Ac+ A ) ®Td)o A (o,d) = (Id® Ay ) o Ay (0, d)

= Z (o,d)11,....iy @ (0, )| {it1,... 5} @ (0, d)|{j41,.... maz(0)} -
1<i<j<a(1)

Let us prove (35), for a = (o0,d) and b = (7,e) two decorated packed
words of respective length k and [. We put:

.. o(k) (1) +maz(o) ... T(l)—{—maﬂ:(T))
d(1) ... d(k) e(1) e(l)

Then a < b is the sum of all decorated packed words obtained by quasi-
shuffling in all possible ways the values of the letters in the first row of a ®b,
in such a way that 1 occurs only in the first k£ columns; A-(a ® b) is then
given by separating the letters of the first row of these decorated packed
words in such a way that the first letter appears in the left side. So at least
one of the k first letters appears on the left side. This gives five possible
cases:

(1) All the k first letters are on the left and all the [ last letters are on
the right. Necessarily, this case comes from the decorated packed
word a ® b, and this gives the term a ® b.

(2) All the k first letters are on the left and at least one of the [ last
letters is on the left. This gives the term a < b’ ® b”.

(3) At least one of the k first letters is on the right and all the [ last
letters are on the left. This gives the term o', < b® a”,.

(4) At least one of the k first letters is on the right and all the [ last
letters are on the right. This gives the term a’, ® a”, x b.

(5) At least one of the k first letters is on the right and there are some of
the [ last letters on both sides. This gives the term o/, < ¥’ ®a”, xb".

Summing all these terms, we obtain (35). The other compatibilities can be
proved similarly. O
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Remark. We also obtain, by addition:

(41) Ac(a=b)=a 2V @l x0" +ad5 2b@d’ +a ®al xb
+a=b @b +axb,
=b)=al =V @di k0" +ar b @b +a = bead,
(43) Ar(a=b)=al =V @al xb" +a_ <b®al +al ®al xb,
mb)=a. = b @al %0 +al mb@al +b @axb'+b®@q;

(45) Ala<b)=d <V @d"*xb"+d <b@d +d @ad" xb
+a<V b +axb,

(46) Ala=b)=d =V @d"*xb"+d ~bd +a~t b
+V@axb'+b®a,

(47)  A(aeb)=d et/ @d" xb' +d eb@ad +aet V"

(48) A(a=<b)=d <V @d" *xV' +d <b®d" +d @d" *b
+a=V b +axb,

(49) Ala=b)=d =V @d"*xb"+d =bd" +a=t b
+b @axb’ +b®a.

Consequently, (QSh?, = <P AP A%) and (QSh%, =P, <P AP A%?)
are bidendriform bialgebras [12]. By the bidendriform rigidity theorem,
(QSh%,<,>) and (QSh?, <, >) are free NSh algebras. Forgetting the dec-
oration, we get back theorem 2.5 of [27], up to a permutation of maximum
and minimum, and first and last letters.

Forgeting the decorations, we obtain a NQSh algebra structure on QSh
and a NSh coalgebra structure, with compatibilities (35)-(40). Let us de-
scribe, for completeness sake, the dual (half-)products and coproducts. The
elements of the dual basis of packed words are denoted by IV,,.

Proposition 45. (1) For all nonempty packed words o, T, of respec-
tive lengths k and [:

No < Nr = Z N(0®T)Oofl’ No = Ny = Z N(0®T)°O‘71'

aESh:l aeSth

(2) For any nonempty packed word o of length n, denoting by f(o) the
index of the first appearance of 1 in o and by l(c) the index of the
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last appearance of 1 in o:

Z pack(o(1)...o(k)) @ Npack(o(k+1)...0(n))

f(U
Z pack(o(1)...0(k)) ® Npack(a(k-{—l)...a(n))a

l(a)—l

Ae(Ny) = Z Npack(o(1)...o(k)) © Npack(o(k+1)...0(n))-
k=f(o)

12. THE QUASI-SHUFFLE ANALOG OF THE DESCENT ALGEBRA

Recall that, given a graded NQSh bialgebra A, we introduced QDesc(A),
the quasi-shuffle analogue of the descent algebra defined as the NQSh sub-
algebra of End(A) generated by the graded projections or, equivalently, by
the graded components of the projection on Prim(A). We write QDesc for
the corresponding NQSh subalgebra of QSh? (the subalgebra generated by
the (cll))

Recall first some properties of NSh algebras.

Notations. Let n > 1.

(1) (a) Let Tgen(n) be the set of Schroder trees of degree n, that is to
say reduced planar rooted trees with n + 1 leaves.
(b) For any set D, let TL, (n) be the set of reduced planar rooted
trees ¢ with n + 1 leaves, such that the n spaces between the
leaves of t are decorated by elements of D.

Sch - |_| TSch
n>1
(2) Let ty,...,t € ngh and let dy,...,d;_; € N*. The element t; Vg4,
.. Va,_, tx is obtained by grafting ¢1,...,¢; on a common root; for

all 1 <4 <k, the space between the right leaf of ¢; and the left leaf
of ;41 is decorated by d;.

Following [24], ']I‘g ., 1s a basis of the free NQSh algebra generated by D
NQSh(D). The three products are inductively defined: ift = t;Vg,...Vg,_,
tp and t’ = t/l \/d/1 e \/dL1 t; € Tgen(D), then

t-t = (t*t/l) \/d/1 t/2 \/d/2 o vd;—l t;,
t<t = t4Vay - - ViIg_1Va, 5 - Vd,_, (tk *t/),
tet' =t1 Vg, ... Va,_, (tkxth) Vg ... Va_ 1.

-1

Sending any non binary tree to 0, we obtain the free NSh algebra N Sh(D)
generated by D. A basis is given by the set of planar binary trees Ty, (D) C
Tgsern(D) whose spaces between the leaves are decorated by elements of D.
The products are given in the following way: if t = t1 Vgte and ¢’ =t} Vg th,
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then:
t=t = (txt)) Va ts,
t <t =t Vg (taxt).

We denote by NQSh(1) and by NSh(1) the free NQSh and the free NSh

algebra on one generator. The set Tg.;, is a basis of NQSh(1), and Ty;;, is
a basis of NSh(1).

Examples.

Tsen(0) = Thin(0) = {1}, Tsen(1) = Thin(1) = { Y},

Tsen(2) = {V V Y}, Thin(2) = {V \y}

\ARE
Tsen(3) = VWYVVV , Toim(3) = y%$y\¥/

V.Y~

We define now inductively a surjective map ¢ from the set of packed words
decorated by D into Tgch in the following way:

(1) o(1) = 1.

(2) If w = (0,d), let c=4(1) = {i1,...,ix}, i1 < ... < ix. We put:

o) ... o(i1—1
w1=PaCk<d§1§ dEii—1§>7
ofir+1) ... o(iz—1)
“’QZPGCk<d(z’i+1) d“j‘l))’
o(ip+1 oin
e = pact ( TN o)

Then:

0(0,d) = o(w1) Vi) - - V(i) 0(Wkt1)-

If w = (0,d) is a decorated packed word of length n, o(w) is an element
of TZ, (n) such that the spaces between the leaves are decorated from left

to right by d(1),...,d(n). In particular Q((li) is the tree Y d-decorated.
For any t € ngh, we put:
Q)= > oeQshi.
o€Surj,o(o)=t

We extend Q : NQSh(N*) — QShi by linearity map. It is clearly injec-
tive.
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Examples.

oY) = (), Q(% = (21), Q % = (12),
QYY) = @11), Q(Yg/):(321), Q(%):(Q?,l),

Q( &) = (132), y) = (123), QW) = (212) + (312) + (213),
9(%) = (221), Q(V )= (211), Y ) = (121),
O Vy) = (112), % = (122), QYY) = (111).

Theorem 46. The map ) is an injective morphism of NQSh algebras.
Consequently, QDesc, the NQSh subalgebra of QShi generated by the ele-

ments (é), d > 1, is free and isomorphic to NQSh(N*).

Proof. Let w = (0,d) be a packed word of length n and let i1,...,4; be
integers such that i1 + ...+ 4, =n. For all dq,...,d;_1 > 1, we put:

. diyendp g
ins) i (w)
. o(l)+1 ... o(i1)+1 1 ... 1 o(i1+...+ig—1+1)+1 ... on)+1

It is not difficult to show that:

T
Qt1 Vay - Vd, 4 tp) = Zns|t11\,...,ﬁk|l (Q(tl) * .k Q(tk))

Hence, if t =1 Vg, ... Va,_, ty and ' =1} Vgr ... Va,_, t):

Cdnd

Q) = Q') = zns|t1‘+|t,1|l7__i|t“(Q(t) * Qt]) * ... xQ(t)),
dy ey

Q) < Q) = znsltll‘7___ﬁk|1+‘t|(Q(tl) * .ok Q) * Q)

d17"'7dk717dl17"'7d2_1
[tl‘7---7‘tk|+‘t,1|7---7|t“

Qt) e Q') = ins (Qt1) * ... % Qb)) * QE)) * ... xQ(1)).

An induction on m + n proves that for t € TY,, (m), t' € TS, (n):
Qt =) =Q@) = Qt), Qt=<t)=Q@t)<Q{), Qtet)=0Q(t) e Q).
So € is an injective morphism of NQSh algebras. O

13. LIE THEORY, CONTINUED

In classical Lie theory, it has been realized progressively that many ap-
plications of the combinatorial part of the theory rely on the freeness of
the Malvenuto-Reutenauer algebra of permutations (for us, the operad Sh
or, equivalently, the algebra of free quasi-symmetric functions FQSym) as
a noncommutative shuffle bialgebra (and more precisely, as a bidendriform
bialgebra [12]). As such, Sh has two remarquable subalgebras. The first is
PBT, the noncommutative shuffle sub-bialgebra freely generated as a non-
commutative shuffle algebra by the identity permutation in &; (in particular
PBT is isomorphic to NSH(1), the free NQSh algebra on one generator).
Its elements can be understood as linear combinations of planar binary trees
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(PBT can be constructed directly as a subspace of the direct sum of the
symmetric group algebras is by using a construction going back to Viennot:
a natural partition of the symmetric groups parametrized by planar binary
trees), see [18, 19, 23]. The second, Desc, is known as the descent algebra
[33], is isomorphic to Sym, the Hopf algebra of noncommutative symmetric
functions, and is the sub Hopf algebra of PBT and Sh freely generated as an
associative algebra by (all) the identity permutations using the convolution
product x. We get:

Desc = Sym € PBT = NSH(1) € Sh = FQSym.

The situation is similar when moving to surjections, that is to QSh.
As we already saw, the noncommutative quasi-shuffle sub-bialgebra freely
generated by the identity permutation in &; (i.e. the packed word 1) is the
free NQS algebra on one generator, identified with ST, the linear span of
Schroder trees. The sub Hopf algebra of ST and QSh freely generated as an
associative algebra by (all) the identity permutations using the convolution
product * is isomorphic (using e.g. that it is a free associative algebra over
a countable set of generators) to Desc. We get:

Desc = Sym € ST = NQSH(1) C QSh = WQSym.

The aim of the present and last section is to compare explicitely the
two sequences of inclusions. The existence of a Hopf algebra map from
Sh = FQSym to QSh = WQSym was obtained in [15, Cor. 18]. The
existence of a map comparing the two copies of the descent algebra follows,
a simple direct proof was given in [7, Lemma 7.1]. We aim here at refining
these results and extend the constructions to planar and Schroder trees.

We start by showing how planar trees (PBT) can be embedded into
Schroder trees (ST).

Definition 47. Let t,t' € Tg.p,.

(1) We denote by R(t) the set of internal edges of t which are right, that
is to say edges e such that:
e both extremities of e are internal vertices.
e c is the edge which is at most on the right among all the egdes
with the same origin as e.
(2) Let I C R(T'). We denote by t/I the planar reduced tree obtained by
contracting all the edges e € I.
(3) We shall say that t' <t if there exists I C R(t), such thatt' =t/I.

Remarks. If I C R(t), then R(t/I) = R(t) \ I. Moreover, if I,J C R(t)
are disjoint, then (¢/I)/J =t/(I U J). This implies that < is a partial order
on Tgep.
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Examples. Here are the Hasse graphs of Tg.(2) and Tgen(3).
LA R T A /V\
Y A2 T \ /V
V

e For any ¢t € Tg,p, there exists a unique b(t) € Ty, such that ¢ <
b(t). We denote by I(t) the unique subset I C R(b(t)), such that
t=0b(t)/1.

e For any t,t' € Tgep, t < t'if, and only if, b(t) = b(t') and I(t) D I(t').

It is possible to prove the following points:

Theorem 48. The following map is an injective morphism of bidendri-
form bialgebras:
(PBT, <, -, AL, A.) — (ST, =X, =, AL AL)
1/}: te Tym — Zt/.
<t
Proof. By universal properties of free objects, there exists a unique mor-
phism of noncommutative shuffle algebras ¢’ from (NSh(1) = PBT, <, >)

to (NQSh(1) = ST, <,>), sending Y to Y. As Y is a primitive element

) —

(in the bidendriform sense) for both sides, ¥’ is a morphism of bidendriform
bialgebras. We shall prove that ¢ = 1)/.
Let us show that for all ¢1,ts € Ty,

Wt Vig) = (1) = Y = (t).
and
Pt Vita) =p(t) = Y < ab(ta).

The identity ¢ = ' will follow by induction.
The identity involving v’ follows immediately from the identity, in Tp;,:

t1 Vig =11 > Y-<t2.

Let us consider the action of ¥. We put t = t; V to. We first consider
the case where to = 1. In this case, R(t) = R(t1) and for any I C R(t1),
t/I = (t1/I)V 1. Hence:

)= > @/Dvi=| > t/T| =Y =yt)= Y =1

ICR(t1) ICR(t1)

We now consider the case where to # 1. Let r be the internal edge of ¢
relating the root of ¢ to the root of to. Then R(t) = R(t1) U R(t2) L {r}. Let
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Il g R(tl), IQ g R(tQ). Then:

t/LUTy = (b /I V (ta/Is) = (/1)) = Y < (t2/ ).
We put to/io =t3V ...V tr. Then:
t/LuLU{r}=t/Ii VtsV ...Vt
=(t1/I1Vi)e(t3V... Vi)

= ((t1/I1) = V) e (t2/]5)
= (t1/11) = Y o (t3/15).

Hence:
Y(t) = (t1/I) = Y = (t2/ ) + (t1/11) = Y o (t2/I)
I1CR(t1),I2CR(t2)
= > (ti/0) = Y < (ta)I)
I CR(t1),I2CR(t2)
=p(t1) = Y 2 0(ta).
So ¢ ='. As < is an order, 1 is injective. O

We investigate now how the injection of PBT into ST behaves with
respect to the respective embeddings into Sh and QSh. We consider the
morphism:

ST = NQSh(1) — QSh

Q: t — Z o.
o,0(0)=t
There exists a unique map from PBT = NSh(1) to Sh, denoted by €,
making the following diagram commuting;:

ST —. QSh

L

PBT —— Sh
Q/

where the vertical arrows are the canonical projection. For any ¢ € Ty;,:

Q) = Z o.

c€G,p(0)=t

Examples.
oY) = (), Q’&)Z(?l), Q’(\Y)Z(l?), Q’(y)=(321),

Q’(%):(Q?)l), Q/(y):(liﬁ), Q( ?y):(123), Q'Y = (312) + (213)

Proposition 49. [13] Let 0,7 be two packed words of the same length n.
We shall say that o < T if:

(1) Ifi,5 € [n] and o(i) < o(j), then 7(i) < 7(j).



46 LOIC FOISSY AND FREDERIC PATRAS

(2) Ifi,j €n], 1 <j and (i) > o(j), then 7(i) > 7(5).
Then < is a partial order. Moreover, the following map is a Hopf algebra
morphism:

Sh — QSh
v o — Z T.
<o
Here are the Hasse graphs of Surjs and Surjs:
(12) (21) 5
(11)

(132)  (213)  (231)  (312)  (321)

(123)
N L R
) (112)  (121)  (212)  (221)  (211)
\()/

Lemma 50. For any packed word o, we put t(o0) = min{i | o(i) = 1}. If
o <, then (o) = (7).

123
(122

111

Proof. We put i = «(7). For any j, 7(j) > 7(i), so o(j) > o(i) as o0 < 7. So
o(i) = 1, and by definition ¢(o) < i. Let us assume that j < i. By definition
of u(1), 7(4) > 7(3). As o <7, 0(j) > (i), so o(j) # 1, and (o) # j. So
o) =1. O

Proposition 51. The map o : Surj —> Tgep is a morphism of posets:
for any packed words o, T,

o <1=0(0) < o).

We define a map w : Tgep, —> Surj by:
e w(l)=1,
e w(t1 V... Vitr) = (w(t)[1])1... Lw(tg)[1]).
Then pow = Idr,,,, and w is a morphism of posets: for any t,t' € Tgep,

t <t = w(t) <w().

Proof. Let us prove that ¢ is a morphism. Let 0,7 be two packed words,
such that o < 7; let us prove that o(o) < o(7). We proceed by induction on
the common length n of o and 7. If n = 0 or 1, the result is obvious. Let us
assume the result at all rank < n. As «(0) = «(7), we can write o = o'10”
and 7 = 7'17”, where ¢’ and 7’ have the same length and do not contain
any 1. By restriction, Pack(c’) < Pack(r") and Pack(c") < Pack(r"). By
the induction hypothesis, sg = 0(c’) < o(7') = tp and s1 V... Vs, = o(c”) <
o(7") =t1 V...Vt Then:

o) =soVs1V...V...sp <toVt1 V...Vt = o(7).
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Let us now prove that w is a morphism. Let ¢, ¢’ € Tg.p, such that ¢t < ¢'.

By transitivity, we can assume that there exists e € R(t'), such that ¢t = t"e.

Let us prove that w(t) < w(t’). We proceed by induction on the common
degree n of t and t. The result is obvious if n = 0 or 1. Let us assume the
result at all ranks < n. We put ¢’ =t} V... V.. If e is an edge of ¢}, then

t=t V...V () V...Vt Weput o; =w(t)) and 0; = w(t;) for all j. If

Jj # 1, 0, = 0j; by the induction hypothesis, 0; < o;. Then:

If e is the edge relation the root of t to the root of t,, putting t =
t1V...VitgV...Vt, thent), =t;if i < k and ¢}, = t; V...V ;. Putting
o; = w(t;), we obtain:

w(t) = (o1[1])1... L(ok[ID1... L(oy[1]),
w(t) = (o111 ... L(ox[2]))2. .. 2(ay[2]).

It is not difficult to prove that w(t) < w(t). O

Remark. There are similar results for decorated packed words, replacing

NSh(1) and NQSh(1) by NSh(N*") and NQSh(N).

Examples.
w(Y) = (1), W(w) =21, W % =(12), w(Y)=q1),

w(\<</ ) = (321), w(% )= (231), ol &) — (132), Wl y) — (123),
w(Y) = (212), w(WY):(221), w(YV ) = (211), w(%:(ml),
W(V):(nz), w(\y):(122), w7 = (111).

Proposition 52. The map V¥ is a bidendriform bialgebra morphism from
(Sh, <, =, A, Ay) to (QSh, =X, A_,A,). Moreover, the following dia-

gram commutes:

PBT Y - ST

A

Proof. Let o be a packed word. We put:

A={(k,7) |7 <0,k € [max(7)]},
B={(k,7,7") | k € [max(c)],7 < a‘[k],T" < Pack(0|max(o)\[K])-
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As V¥ is a coalgebra morphism,

max(7)
NoW(o) =" Y 7 ® Pack(T|max(r))\l)
7<o k=0
= Z T‘ k] & PG/CI{:(THmaX(T)}\[k])

(k,T)EA

max(o)

= (VW) olAlr)= ) > rer
k=0 7' <ok

' SPack(|[max(o)]\[k])
(lvT,7T”)eB
Hence, there exists a bijection F' : A — B, such that, if F(k,7) = (I,7,7"),
then:

o T/ = THk] and T” = Pack(T”maX(T)]\[k]);
e [ is the unique integer such that 7/ < o[-

If K > 7(1), then the first letter of 7 appears in 7, so the first letter of
o appears also in oy;. Consequently [ > o(1). Similarly, if I > o(1), then
k > 7(1). We obtain:

AL oV(o) =

= > 7w ® Pack(Tmax(r)\#)
(k,7)eAk>T(1)

_ Z Q"
(7", m")eB>0(1)
~ (T ®¥)oA(o)

So ¥ is a morphism of dendriform coalgebras.

Let 0,7 be two permutations. We put:
C ={(a,¢) | @ € Sh(max (o), max(7)),{ < ao(c®7)},
D={(B,0',7)| o <o,7 <7, 8¢€QSh(max(c'), max(7"))},
Then:

U(owr) = Z Z ¢

acSh(max(o),max(7)) (<ao(c®T)

:Zg

(a,¢)eC

= V(o) W(r) = ) > Bo(o @)
o' <o BEQSh(max(c’),max(1’))

T'<r

= Z Bo(oc®T.

(670/7T/)€D
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Hence, there exists a bijection G : D — C|, such that if G(8,0’,7") = (o, (),
then:

(1) (=Bo(d®1);

(2) « is the unique (max(o), maz(7))-shuffle such that ( < o (o ® 7).
Let us assume that «(1) = 1, and let us prove that 5(1) = 1. Denoting by
k the length of o, 1 appears in the k first letters of (' = ao (0 ® 7). Let
i € [K], such that ¢'(i) = 1. For any 7, (i) < C'(j). As ¢ < ¢, ¢(3) < C(j),
so (i) = 1: 1 appears among the k first letters of ¢, so 5(1) = 1.

Let us assume that «(1) # 1. Then 1 does not appear in the first k letters
of ¢’. Let j > k, such that ¢’(j) = 1. For all i € [k], ¢'(i) > ¢'(j) and i < j.
As ¢ < ', C(i) > C(j), so ¢(i) # 1: 1 does not appear among the first k
letters of ¢, so B(1) # 1. Finally, a(1) =1 if, and only if, (1) = 1. Hence:

U(o<7)= Z ¢ = Z Bo(od@7)=V(o) = U(r).
(a,¢)eC,a(1)=1 (B,0',7")eD,B(1)=1
By composition, Qo and ¥o) are both noncommutative shuffle algebra

morphisms, sending Y to (1), so, since PBT is a free NSh algebra, they are

equal. O
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