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Abstract

We show that repulsive random variables can yield Monte Carlo methods with
faster convergence rates than the typical N−1/2, where N is the number of integrand
evaluations. More precisely, we propose stochastic numerical quadratures involving
determinantal point processes associated with multivariate orthogonal polynomials,
and we obtain root mean square errors that decrease as N−(1+1/d)/2, where d is the
dimension of the ambient space. First, we prove a central limit theorem (CLT) for the
linear statistics of a class of determinantal point processes, when the reference mea-
sure is a product measure supported on a hypercube, which satisfies the Nevai-class
regularity condition; a result which may be of independent interest. Next, we intro-
duce a Monte Carlo method based on these determinantal point processes, and prove
a CLT with explicit limiting variance for the quadrature error, when the reference
measure satisfies a stronger regularity condition. As a corollary, by taking a specific
reference measure and using a construction similar to importance sampling, we ob-
tain a general Monte Carlo method, which applies to any measure with continuously
derivable density. Loosely speaking, our method can be interpreted as a stochastic
counterpart to Gaussian quadrature, which, at the price of some convergence rate, is
easily generalizable to any dimension and has a more explicit error term.
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∗CNRS & CRIStAL, Université de Lille, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France.
Email: remi.bardenet@gmail.com
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1 Introduction

Numerical integration, or quadrature, refers to algorithms that approximate integrals∫
f(x)µ(dx), (1.1)

where µ is a finite positive Borel reference measure, and where f ranges over some class
of test functions C . We assume for convenience that the support of µ is included in
the d-dimensional hypercube Id = [−1, 1]d, since one can recover this setting in most
applications by means of appropriate transformations. For any given N , a quadrature
algorithm outputs N nodes x1, . . . ,xN ∈ Id and weights w1, . . . , wN ∈ R so that the
approximation

N∑
i=1

wif(xi) ≈
∫
f(x)µ(dx) (1.2)

is reasonable for every f ∈ C . The nodes and weights depend on N , µ, and can be
realizations of random variables, but they are not allowed to depend on f . The quality of
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a quadrature algorithm is assessed through the approximation error

EN (f) =
N∑
i=1

wif(xi)−
∫
f(x)µ(dx) (1.3)

and specifically its behaviour as N → ∞. Many quadrature algorithms have been devel-
oped: variations on Riemann summation [Davis and Rabinowitz, 1984], Gaussian quadra-
ture [Gautschi, 2004], Monte Carlo methods [Robert and Casella, 2004], etc. In the re-
maining of Section 1, we quickly review three families of such methods to provide context
for our contribution, which we then introduce in Section 1.4.

1.1 Gaussian quadrature

Let us first assume d = 1, so that µ is supported on I = [−1, 1]. Let (ϕk)k∈N be the
orthonormal polynomials associated with this measure, that is, the family of polynomials
such that ϕk has degree k, positive leading coefficient, and

∫
ϕk(x)ϕ`(x)µ(dx) = δk` for

every k, ` ∈ N. Gaussian quadrature, see e.g. [Davis and Rabinowitz, 1984, Gautschi,
2004, Brass and Petras, 2011] for general references, then corresponds to taking for nodes
x1, . . . ,xN the zeros of the Nth degree orthonormal polynomial ϕN (x), which are real and
simple. As for the weights, Gaussian quadrature corresponds to

wi =
1

KN (xi,xi)
, (1.4)

where we introduced the Nth Christoffel-Darboux kernel associated with µ,

KN (x, y) =
N−1∑
k=0

ϕk(x)ϕk(y). (1.5)

This celebrated method is characterized by the property to be exact, i.e. EN (f) = 0,
for every polynomial function f of degree up to 2N − 1. This is the highest possible
degree such that this holds. Gaussian quadrature is thus particularly suitable when the
test functions f look like polynomials. For instance, EN (f) decays exponentially fast when
f is analytic [Gautschi and Varga, 1983]. However, although Gaussian quadrature is now
two centuries old [Gauss, 1815], optimal rates of decay for the error EN (f) do not seem
to be known for less regular test functions, say f ∈ C 1, in general. By using Jackson’s
approximation theorem for algebraic polynomials, one can see that EN (f) = O(1/N)
when f ∈ C 1. Optimal decays have been recently investigated in the particular case of
the Gauss-Legendre quadrature [Xiang and Bornemann, 2012, Xiang, 2016]. However,
even in the familiar Gauss-Jacobi quadrature, optimal rates are only conjectured.

Efficient computation of the nodes and weights in Gaussian quadrature has been an
active topic of research. Classical approaches are based on the QR algorithm, such as
the Golub-Welsch algorithm, see e.g. [Gautschi, 2004, Section 3.5] for a discussion. The
computational cost of these QR approaches usually scales as O(N2). More recently, O(N)
approaches have been proposed for specific choices of the reference measure [Glaser et al.,
2007, Hale and Townsend, 2013], with parallelizable methods [Bogaert, 2014] further taking
down costs.
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Let us stress that Gaussian quadrature is intrinsically a one-dimensional method. In-
deed, in the higher-dimensional setting where Supp(µ) ⊂ Id, although one may define mul-
tivariate orthonormal polynomials associated with µ, it is not possible to take for nodes the
zeros of a multivariate polynomial. However, if µ is a product measure µ = µ1 ⊗ · · · ⊗ µd
with each µj supported on I, one could build a grid of nodes using d one-dimensional
Gaussian quadratures. But this has for consequence to rise up the one-dimensional error
estimate for EN (f) to a power 1/d, which essentially makes Gaussian quadrature ineffec-
tive in higher dimensions than one or two. In fact, the same phenomenon arises for any
other grid-like product of one-dimensional quadratures; this is commonly referred to as
the curse of dimensionality.

1.2 Monte Carlo methods

Monte Carlo methods [Robert and Casella, 2004] correspond to picking up the N nodes
(xi) in (1.2) as the realizations of random variables in Id. For instance, assuming µ in
(1.2) has a density ω with respect to the Lebesgue measure, importance sampling refers to
taking the (xi) to be i.i.d. realizations with a so-called proposal density q, and the weights
to be

wi =
1

N

ω(xi)

q(xi)
.

That way, EN (f) has mean zero. Provided that

Var

[
f(X)ω(X)

q(X)

]
<∞ (1.6)

where X has density q, EN (f) has a standard deviation decreasing as N−1/2, and satisfies
the classical central limit theorem:

√
NEN (f)

law−−−−→
N→∞

N (0, σ2
f ),

where σ2
f equals (1.6). Let us stress that the cost of importance sampling is virtually O(1),

as draws can be made in parallel.
When the ambient dimension d becomes large, practitioners typically prefer Markov

chain Monte Carlo (MCMC) methods over importance sampling. This means taking wi =
1/N and nodes (xi) to be the realization of a Markov chain with stationary distribution
µ, such as the Metropolis-Hastings chain. Under general conditions on the Markov chain
and for f in L1 of an appropriate measure related to the Markov kernel,

√
NEN (f) then

converges in distribution to a centered Gaussian variable [Douc et al., 2014, Theorem
7.32]. The limiting variance grows more slowly with the dimension d than for importance
sampling, a posteriori justifying the preferential use of MCMC for large d. In any case, the
typical order of magnitude of the error EN (f) for Monte Carlo methods is N−1/2, which
is often deemed a rather slow decay.

Recently, Delyon and Portier [2016] proposed a variant of importance sampling that
takes nodes as independent draws from some proposal density q, but takes weights to be

wi =
1

N

ω(xi)

q̌−i(xi)
,
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where q̌−i is the so-called leave-one-out kernel estimator of the density q of the nodes.
Perhaps surprisingly, for smooth enough products fω and the right tuning of kernel pa-
rameters,

√
NEN (f) then converges in probability to zero. Exact rates are investigated

by Delyon and Portier [2016], and a central limit theorem is proven. We further discuss
their results in Section 7.

1.3 Quasi-Monte Carlo methods

Quasi-Monte Carlo methods (QMC; [Dick and Pilichshammer, 2010, Dick et al., 2013])
are deterministic constructions that focus on the uniform case, µ(dx) = dx in (1.2).
The cornerstone of classical QMC is the Koksma-Hlawka inequality [Dick et al., 2013,
Equation 3.15]. This inequality bounds the error EN (f) in (1.3) by the product of the
star discrepancy of the nodes and the Hardy-Krause variation of f . The star discrepancy
measures the departure of the empirical measure of the N nodes from the uniform measure.
Classical QMC methods aim at proposing efficient node constructions that minimize this
star discrepancy. Some constructions guarantee a star discrepancy that asymptotically
decreases as fast as N−1 logd−1N . This implies the same rate for EN (f) provided f has
finite Hardy-Krause variation. While this seems faster than typical Monte Carlo methods
in Section 1.2, the rate as a function of N does not decrease until N is exponential in d.
Moreover, the Hardy-Krause variation is hard to manipulate in practice.

Modern QMC methods come up with more practical rates [Dick et al., 2013]. For ex-
ample, scrambled nets [Owen, 1997, 2008] are randomized QMC methods, meaning that a
stochastic perturbation is applied to a deterministic QMC construction. The perturbation
is built so that EN (f) has mean 0. Owen [1997] shows that only assuming f is L2, the
standard deviation of EN (f) is o(N−1/2), that is, converges to zero faster than the tradi-
tional Monte Carlo rate. When f is smooth enough, which requires at least that all mixed
partial derivatives of f of order less than d are continuous, Owen [2008] further shows that
the standard deviation is O(N−3/2−1/d log(d−1)/2N). Again, this rate decreases only when
N is exponential in the dimension, but Owen [1997] shows that for finite N , randomized
QMC cannot perform significantly worse than Monte Carlo.

1.4 Our contribution

Our main goal is to leverage repulsive particle systems to build a Monte Carlo method
with standard deviation of the error decaying as o(N−1/2). More precisely, the idea is to
use correlated random variables for the quadrature nodes, interacting as strongly repulsive
particles. Our motivation comes from specific models in random matrix theory (see Sec-
tion 2.2 for references), for which the linear statistic

∑
f(xi) converges in distribution to

a Gaussian, without requiring any normalizing factor. In this work, we focus on determi-
nantal point processes (DPPs), which have received much attention recently in probability
and related fields, see [Hough et al., 2006] for a survey.

In any dimension d, we construct DPPs generating the nodes x1, . . . ,xN and appro-
priate weights wi’s so that the error EN (f) in (1.3) decreases rapidly, as N → ∞. We
obtain precise rates

Var[EN (f)] ∼
σ2
f

N1+1/d
(1.7)
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with explicit σf . In fact, we prove a central limit theorem√
N1+1/d EN (f)

law−−−−→
N→∞

N (0, σ2
f ), (1.8)

for a certain class of measures µ and any f essentially C 1, see Theorems 2.7 and 2.9. We
also provide experimental evidence that convergence in (1.8) happens quite fast.

It turns out that, when d = 1, our method is formally very similar to Gaussian quadra-
ture described in Section 1.1. We basically replace the zeros of orthogonal polynomials
by particles sampled from orthogonal polynomial ensembles (OP Ensembles), DPPs whose
building blocks are orthogonal polynomials. Our contribution also has the advantage
of generalizing more naturally to higher dimensions than Gaussian quadrature through
multivariate OP Ensembles.

Monte Carlo with DPPs is to be classified somewhere between classical Monte Carlo
methods and QMC methods, respectively described in Sections 1.2 and 1.3. It is very much
similar to importance sampling, but with negatively correlated nodes. Simultaneously,
it is more Monte Carlo than scrambled nets, as it does not randomize a posteriori a
low discrepancy deterministic set of points, but rather incorporate the low discrepancy
constraint into the randomization procedure. We further comment on this in Section 7.

The rest of the paper is organized as follows. In Section 2, we state our quadrature
rules and theoretical results on the convergence of its error. In Section 3, we demonstrate
our results in a simple experimental setting. In Section 4, we introduce key notions and
give the outline of our proofs, the technical parts of the proofs being detailed in Sections 5
and 6. We conclude with some perspectives in Section 7.

2 Statement of the results

Notation. All along this work, we write for convenience I = [−1, 1] and Id = [−1, 1]d.
Also, for any 0 < ε < 1, we set Iε = [−1 + ε, 1 − ε] and Idε = [−1 + ε, 1 − ε]d. Finally,
except when specified otherwise, a reference measure is a positive finite Borel measure
with support inside Id.

2.1 Determinantal point processes and multivariate OP Ensembles

In Section 2.1, we introduce the necessary background in order to state the main results.

2.1.1 Point processes and determinantal correlation functions

A simple point process (hereafter point process) on Id is a probability distribution P on
finite subsets S of Id; see [Daley and Vere-Jones, 2003] for a general reference. Given a
reference measure µ, a point process has a n-correlation function ρn if one has

E

 ∑
xi1 6=···6=xin

ϕ(xi1 , . . . ,xin)

 =

∫
(Id)n

ϕ(x1, . . . , xn)ρk(x1, . . . , xn)µ⊗n(dx1, . . . ,dxn)

(2.1)
for every bounded Borel function ϕ : In → R, where the sum in (2.1) ranges over all
pairwise distinct k-uplets of the random finite subset S. The function ρn, provided it
exists, thus encodes the correlations between distinct n-uplets of the random set S.
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A point process is determinantal (DPP) if there exists an appropriate kernel K :
Id × Id → R such that the n-correlation function exists for every n and reads

ρn(x1, . . . , xn) = det
[
K(xi, x`)

]n
i,`=1

, x1, . . . , xn ∈ Id. (2.2)

In particular such a kernel has to be positive definite, in the sense that the right-hand side
of (2.2) is always non-negative. The kernel of a DPP thus encodes how the points in the
random configurations interact.

A canonical way to construct DPPs generating configurations of N points P-almost
surely, i.e. S = {x1, . . . ,xN}, is the following. Consider N orthonormal functions
ϕ0, . . . , ϕN−1 in L2(µ), namely satisfying

∫
ϕk(x)ϕ`(x)µ(dx) = δk`, and take for kernel

KN (x, y) =

N−1∑
k=0

ϕk(x)ϕk(y). (2.3)

In this setting, it turns out the (permutation invariant) random variables x1, . . . ,xN with
joint probability distribution

1

N !
det
[
KN (xi, x`)

]N
i,`=1

N∏
i=1

µ(dxi) (2.4)

generate a DPP with kernel KN (x, y). For further information on determinantal point
processes, we refer the reader to [Hough et al., 2006, Johansson, 2006, Soshnikov, 2000,
Lyons, 2003, Lavancier et al., 2014, 2015].

2.1.2 Multivariate OP Ensembles

In the one-dimensional setting, we can for instance build a DPP using (2.4) with ϕ0, . . . , ϕN−1

the N lowest degree orthonormal polynomials associated with the reference measure µ.
Such DPPs are known as OP Ensembles and have been popularized by random matrix
theory, see e.g. [Köning, 2005] for an overview.

Our contribution involves a higher-dimensional generalization of OP Ensembles, relying
on multivariate orthonormal polynomials, which we now introduce. Given a reference
measure µ, assume it has well-defined multivariate orthonormal polynomials, meaning
that

∫
P 2(x)µ(dx) > 0 for every non-trivial polynomial P . This is for instance true if

µ(A) > 0 for some non-empty open set A ⊂ Id. Now choose an ordering for the multi-
indices (α1, . . . , αd) ∈ Nd, that is, pick a bijection b : N → Nd. This gives an ordering
of the monomial functions (x1, . . . , xd) 7→ xα1

1 · · ·xαdd , to which one applies the Gram-
Schmidt algorithm. This yields a sequence of orthonormal polynomial functions (ϕk)k∈N,
the multivariate orthonormal polynomials. In this work, we use a specific bijection b
defined in Section 2.1.3.

Equipped with this sequence (ϕk)k∈N of multivariate orthonormal polynomials, we
finally consider for every N the DPP associated with the associated kernel (2.3), that we
refer to as the multivariate OP Ensemble associated with a reference measure µ. When
d = 1, it reduces to the classical OP Ensemble.
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2.1.3 The graded lexicographic order and the bijection b

We consider the bijection b associated with the graded (with respect to the sup norm)
alphabetic order on Nd. We start with the usual lexicographic order on Nd, defined by
saying that (α1, . . . , αd) <lex (β1, . . . , βd) if there exists j ∈ {1, . . . , d} such that αi = βj
for every i < j and αj < βj . Now we define the graded lexicographic order as follows.
We say that (α1, . . . , αd) < (β1, . . . , βd) if either max{α1, . . . , αd} < max{β1, . . . , βd} or
max{α1, . . . , αd} = max{β1, . . . , βd} and (α1, . . . , αd) <lex (β1, . . . , βd). Moreover, from
now on we specify the bijection b to be the unique bijection N → Nd increasing for this
order. Otherly put, set b(0) = (0, . . . , 0) and b(n) = min Nd \

{
b(0), . . . , b(n − 1)

}
by

induction, where the minimum refers to the graded lexicographic order. An important
feature of this ordering on which our proofs rely is that, for every M > 1, the set of the
first Md indices {b(0), . . . , b(Md − 1)} matches the discrete hypercube

CM =
{
n ∈ Nd : 0 6 n1, . . . , nd 6M − 1

}
. (2.5)

The indices between b(Md−1) and b(Md+1−1) then fill the layer CM+1 \CM by following
the usual lexicographic order.

We are now in position to state our first result on multivariate OP Ensembles, which
is the cornerstone for the Monte Carlo methods we introduce later in Section 2.3.

2.2 A central limit theorem for multivariate OP Ensembles

Several central limit theorems (CLTs) have been obtained for determinantal point pro-
cesses and related models in random matrix theory, but only when the random config-
urations lie in a one- or two-dimensional domain. See for instance [Johansson, 1997,
1998, Diaconis and Evans, 2001, Soshnikov, 2002, Pastur, 2006, Rider and Virág, 2007,
Popescu, 2009, Kriecherbauer and Shcherbina, 2010, Ameur et al., 2011, 2015, Berman,
2012, Shcherbina, 2013, Breuer and Duits, 2013, 2014, Johansson and Lambert, 2015, Lam-
bert, 2015a,b] for a non-exhaustive list. Although DPPs on higher-dimensional supports
have attracted attention in complex geometry [Berman, 2009a,b, 2013, 2014], in statistics
[Lavancier et al., 2014, 2015, Møller et al., 2015], and in physics [Torquato et al., 2008,
Scardicchio et al., 2009], it seems no CLT has been established yet when d > 3.

Our first result for multivariate OP Ensembles is a CLT for C 1 test functions when the
reference measure µ is a product of d Nevai-class probability measures on I. The exact
definition of the Nevai class is postponed until Definition 4.1, but we now give a simple
sufficient condition. As a consequence of Denisov–Rakhmanov’s theorem (see Theorem
4.2), if a measure on I has for Lebesgue decomposition µ(dx) = ω(x)dx + µs (where
µs is orthogonal to the Lebesgue measure) with ω(x) > 0 almost everywhere, then µ is
Nevai-class. Denote by (Tk)k∈N the normalized Chebyshev polynomials, defined on I by

T0 = 1, Tk(cos θ) =
√

2 cos(kθ), k > 1.

Theorem 2.1. Let µ be a reference measure supported inside Id, and assume µ = µ1 ⊗
· · · ⊗ µd where each µj is Nevai class (see Definition 4.1). If x1, . . . ,xN stands for the
associated multivariate OP Ensemble, then for every f ∈ C 1(Id,R), we have

1√
N1−1/d

(
N∑
i=1

f(xi)− E

[
N∑
i=1

f(xi)

])
law−−−−→

N→∞
N (0, σ2

f ),
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where

σ2
f =

1

2

∞∑
k1,...,kd=0

(k1 + · · ·+ kd)f̂(k1, . . . , kd)
2

(2.6)

and

f̂(k1, . . . , kd) =

∫
Id
f(x1, . . . , xd)

d∏
j=1

Tkj (xj)
dxj

π
√

1− x2
j

. (2.7)

When d = 1, Theorem 2.1 was obtained by Breuer and Duits [2013], see also [Lambert,
2015b] for an alternative proof, but the higher-dimensional case d > 2 is novel. We shall
restrict to d > 2 for the proof of the theorem, which is deferred to Section 5. Let us now
make a few remarks concerning the statement of Theorem 2.1.

Remark 2.2. The limiting variance σ2
f does not depend on the reference measure µ.

Remark 2.3. By making the change of variables xj = cos θj , we obtain

f̂(k1, . . . , kd) =
(
√

2)|{j: kj 6=0}|

πd

∫
[0,π]d

f(cos θ1, . . . , cos θd)
d∏
j=1

cos(kjθj)dθj ,

which is, up to a multiplicative factor, a usual Fourier coefficient.

Next, we obtain that the limiting variance in Theorem 2.1 is dominated by a Dirichlet
energy.

Proposition 2.4. For any f ∈ C 1(Id,R), we have the inequality

σ2
f 6

1

2

d∑
α=1

∫
Id

(√
1− x2

α ∂αf(x1, . . . , xd)
)2

d∏
j=1

dxj

π
√

1− x2
j

. (2.8)

It will appear from the proof we provide in Section 4.3 that this inequality is sharp,
since equality holds whenever f is a linear combination of monomials xα1

1 · · ·xαdd with
αj ∈ {0, 1}; see (4.26).

Remark 2.5. After the change of variables xj = cos θj , we see the right hand side of (2.8)
reads

1

2πd

d∑
α=1

∫
[0,π]d

∂αf(cos θ1, . . . , cos θd)
2 sin2 θα

d∏
j=1

dθj . (2.9)

Setting for convenience f̃(θ1, . . . , θd) = f(cos θ1, . . . , cos θd), one can interpret (2.9) as a
Dirichlet energy since it equals

1

2πd

∫
[0,π]d

∥∥∇f̃(θ)
∥∥2

dθ,

where ‖ · ‖ stands for the usual Euclidean norm of Rd.

We now turn to Monte Carlo methods based on Theorem 2.1.
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2.3 Monte Carlo methods based on determinantal point processes

Consider a reference measure µ with support inside Id, having well-defined multivariate
orthonormal polynomials (say, µ(A) > 0 for some open set A ⊂ Id). Let KN (x, y) be the
Nth Christoffel-Darboux kernel for the associated multivariate OP Ensemble, namely

KN (x, y) =
N−1∑
k=0

ϕk(x)ϕk(y), (2.10)

where (ϕk)k∈N is the sequence of multivariate orthonormal polynomials associated with µ
and the graded lexicographic order, see Section 2.1.3. Our quadrature rule is as follows:
take for nodes x1, . . . ,xN the random points coming from the multivariate OP Ensemble,
namely with joint density (2.4), and for weights wi = 1/KN (xi,xi). Thus, for any µ-
integrable function f , our estimator of

∫
f(x)µ(dx) reads

N∑
i=1

f(xi)

KN (xi,xi)
. (2.11)

One can readily see by taking k = 1 in (2.1)–(2.3) that the estimator (2.11) is unbiased,

E

[
N∑
i=1

f(xi)

KN (xi,xi)

]
=

∫
f(x)µ(dx). (2.12)

Remark 2.6. For d = 1, comparing (2.11) to (1.4)–(1.5) yields that our method matches
Gaussian quadrature except for the nodes, since we replace the zeros of the univariate
orthogonal polynomial ϕN by random points drawn from an OP Ensemble. In fact, this
replacement is not aberrant since zeros of orthogonal polynomials and particles of asso-
ciated OP Ensembles get arbitrarily close with high probability as N → ∞, see [Hardy,
2015] for further information and generalizations. Notice however that our quadrature
rule makes sense in any dimension.

Our next result is a CLT for (2.11), thus giving a precise rate of decay for the error
made in the approximation, provided we make regularity assumptions on µ and on the
class C of test functions f . More precisely, recalling the notation Idε = [−1 + ε, 1− ε]d, we
consider

C =
{
f ∈ C 1(Id,R) : Supp(f) ⊂ Idε for some ε > 0

}
. (2.13)

As for the reference measure, we shall assume µ is a product measure with a density which
is C 1 and positive on the open set (−1, 1)d. We also need an extra technical assumption,
Assumption 1, that we introduce and comment in Section 4.4. Set for convenience

ω⊗deq (x) =
d∏
j=1

1

π
√

1− x2
j

, x ∈ Id. (2.14)

Theorem 2.7. Let µ(dx) = ω(x)dx with ω(x) = ω1(x1) · · ·ωd(xd) be a product refer-
ence measure supported inside Id. Assume its density ω is C 1 and positive on the open

10



set (−1, 1)d, and satisfies Assumption 1. If x1, . . . ,xN stands for the multivariate OP
Ensemble associated with µ, then for every f ∈ C ,

√
N1+1/d

(
N∑
i=1

f(xi)

KN (xi,xi)
−
∫
f(x)µ(dx)

)
law−−−−→

N→∞
N
(
0,Ω2

f,ω

)
,

where, see (2.7),

Ω2
f,ω =

1

2

∞∑
k1,...,kd=0

(k1 + · · ·+ kd)

(̂
fω

ω⊗deq

)
(k1, . . . , kd)

2. (2.15)

In particular, we have for the mean square error of the estimator,

lim
N→∞

N1+1/d E

( N∑
i=1

f(xi)

KN (xi,xi)
−
∫
f(x)µ(dx)

)2
 = Ω2

f,ω . (2.16)

We will discuss the assumptions of Theorem 2.7 in Section 4.4, but let us already
state that the condition that µ is a product measure is not imposed by the method,
as it is the case for Gaussian quadrature. However, our particular proof relies on this
factorization. Also, anticipating the discussion on Assumption 1, we prove the following
result in Section 4.4.

Proposition 2.8. Given any parameters α1, β1, . . . , αd, βd > −1, the reference measure

µ(dx) =

d∏
j=1

(1− xj)αj (1 + xj)
βj1I(xj)dxj , (2.17)

satisfies the assumptions of Theorem 2.7.

Hereafter, we call measures of the form (2.17) Jacobi measures. From a practical point
of view, Theorem 2.7 requires knowledge on the measure µ, in particular all its moments
should be known, since we need the corresponding orthonormal polynomials. This is the
case for most applications of Gaussian quadrature, where the reference measure is such
that orthonormal polynomials are computable, like Jacobi measures (2.17) for instance.

To bypass these restrictions on µ, we provide an importance sampling result.

Theorem 2.9. Let µ(dx) = ω(x)dx be a reference measure on Id with a C 1 density
ω on the open set (−1, 1)d. Consider a measure q(x)dx satisfying the assumptions of
Theorem 2.7, let KN (x, y) be the N th Christoffel-Darboux kernel associated with q(x)dx,
and x1, . . . ,xN the associated multivariate OP Ensemble. Then, for every f ∈ C , we have

E

[
N∑
i=1

f(xi)

KN (xi,xi)

ω(xi)

q(xi)

]
=

∫
f(x)µ(dx), (2.18)

and moreover,

√
N1+1/d

(
N∑
i=1

f(xi)

KN (xi,xi)

ω(xi)

q(xi)
−
∫
f(x)µ(dx)

)
law−−−−→

N→∞
N
(
0,Ω2

f,ω

)
, (2.19)
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where Ω2
f,ω is the same as (2.15). In particular, we have for the mean square error of the

estimator,

lim
N→∞

N1+1/d E

( N∑
i=1

f(xi)

KN (xi,xi)

ω(xi)

q(xi)
−
∫
f(x)µ(dx)

)2
 = Ω2

f,ω . (2.20)

Indeed, Theorem 2.9 follows from Theorem 2.7 by taking fω/q for test function with
f ∈ C and q(x)dx for reference measure.

Remark 2.10. From a classical importance sampling perspective, it is surprising that the
limiting variance in (2.19) does not depend on the proposal density q.

Remark 2.11. Proposition 2.4 also yields that

Ω2
f,ω 6

1

2π

d∑
α=1

∫
Id

(√
1− x2

α ∂α

(
fω

ω⊗deq

)
(x1, . . . , xd)

)2
d∏
j=1

dxj

π
√

1− x2
j

(2.21)

or equivalently, see Remark 2.5,

Ω2
f,ω 6

1

2πd+1

∫
[0,π]d

∥∥∥∇[̃ fω
ω⊗deq

]
(θ)
∥∥∥2

dθ. (2.22)

2.4 Sampling a multivariate OP Ensemble

For Monte Carlo with DPPs to be a practical tool, we need to be able to sample realizations
of the random variables x1, . . . ,xN with joint density (2.4). Hough et al. [2006] give a
generic algorithm for sampling DPPs, which we use here; see also [Scardicchio et al., 2009]
and [Lavancier et al., 2014] for more details.

The algorithm is based on the fact that the chain rule for the joint distribution (2.4)
is available as

1

N !
det
[
KN (xi, x`)

]N
i,`=1

N∏
i=1

µ(dxi) =
N∏
i=1

1

N − i+ 1

∥∥∥PHi−1KN (xi, ·)
∥∥∥2

L2(µ)
µ(dxi). (2.23)

In (2.23), PH is the orthogonal projection onto a subspace H of L2(µ),

H0 = Span(ϕ0, . . . , ϕN−1),

and Hi−1 is the orthocomplement in H0 of

Span (KN (x`, ·), 1 6 ` 6 i− 1)

for every i > 1. In particular, all the terms in the product of the RHS of (2.23) are
probability measures [Hough et al., 2006, Proposition 19]. Notice that the factorization
(2.23) is the equivalent of the “base times height” formula that computes the squared
volume of the parallelotope generated by the vectors (ϕ0(xi), . . . , ϕN−1(xi)) for 1 6 i 6 N .
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Using the normal equations, we can also rewrite each term in the product (2.23)

∥∥∥PHi−1KN (xi, ·)
∥∥∥2

L2(µ)
=

{
K(x1, x1) if i = 1,

KN (xi, xi)− k1:i−1(xi)
TK−1

1:i−1k1:i−1(xi) else,
(2.24)

where
k1:i−1(·) = (KN (x1, ·), . . . ,KN (xi−1, ·))T

and
K1:i−1 =

[
KN (xk, x`)

]
16k,`6i−1

.

Remark 2.12. Equation (2.24) will be familiar to users of Gaussian processes (GPs;
Rasmussen and Williams 2006): the unnormalized conditional densities (2.24) are the
incremental posterior variances in a GP model with the same kernel.

Sampling from the joint distribution in (2.23) is achieved by sequentially sampling of
each term in the product, using rejection sampling [Robert and Casella, 2004, Section 2.3].
This requires proposal densities (qi)16i6N and tight bounds on the density ratios∥∥∥PHi−1KN (x, ·)

∥∥∥2

L2(µ)
ω(x)

qi(x)
, 1 6 i 6 N, (2.25)

when µ(dx) = ω(x)dx. Theorem 4.8 suggests choosing

qi(x) = q(x) = ω⊗deq (x) =
d∏
j=1

1

π
√

1− x2
j

1[−1,1](xj), 1 6 i 6 N.

To bound (2.25), it is enough to bound KN (x, x)ω(x)/ω⊗deq (x) since KN is a positive
definite kernel. Obtaining tight bounds is problem-dependent. For Jacobi measures, such
bounds can be found for instance in [Gautschi, 2009].

Overall, the cost of the sampling algorithm described in this section is the Achille’s
heel of Monte Carlo with DPPs for now. Without taking into account the evaluation of
orthogonal polynomials nor rejection sampling, the number of basic operations is as much
as for Gram-Schmidt orthogonalization of N vectors of dimension N , that is of order N3

[Golub and Van Loan, 2012, Section 5.2]. Improving this cost is out of the scope of this
paper, but we further comment on this issue in Section 7.

3 Experimental illustration

In this section, we illustrate Theorem 2.7 with a toy experiment1. In particular, we
investigate how fast the Gaussian limit appears.

We take the reference measure µ(dx) to be the product Jacobi measure in (2.17) with
α1 = β1 = −1/2, and αj , βj drawn i.i.d. uniformly on [−1/2, 1/2] for 1 < j 6 d. As
proposed in Section 2.4, we use ωeq for density proposal in the rejection sampling steps,
and the bounds in [Gautschi, 2009]. Figure 1(a) depicts a weighted sample of the associated

1Pending publication, please email the authors to obtain Python code to reproduce the experiments.
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Figure 1: 1(a) A weighted sample of the DPP in Theorem 2.7 with Jacobi base measure,
see Section 3 for details. 1(b) The test function (3.1) when d = 2.

multivariate OP Ensemble when d = 2 and N = 150. Each disk is centered at a node xi
in the sample, and the area of the disk is proportional to the weight 1/KN (xi,xi). The
marginal plots on each axis depict the marginal histograms of the weighted sample, with
a green curve indicating the density of the marginal Jacobi measures corresponding to
j = 1, 2 in (2.17). Good agreement is observed for the marginals, as expected from the
unbiasedness in (2.12).

We define a simple “bump” test function that is C∞ on Id = [−1, 1]d and vanishes
outside Idε = [−1 + ε, 1− ε]d,

f(x) = 1Idε (x)

d∏
j=1

exp

(
− 1

1− ε− x2
j

)
, (3.1)

so as to satisfy the assumptions of Theorem 2.7. We set ε = 0.05 and plot f for d = 2 in
Figure 1(b).

For various N ∈ [10, 150] and each dimension d ∈ {1, 2, 3, 4}, we sample Nrepeat = 100
independent realizations of {x1, . . . ,xN}. We plot the results for each dimension d in
Figure 2. On each quadrant and for each N , we plot the sample variance of

N∑
i=1

f(xi)

KN (xi,xi)
,

computed over the Nrepeat realizations. Blue and red dots indicate standard confidence
intervals, for indication only.

For a given dimension d, we want to infer the rate of decay of the variance, in order
to confirm the rate in the CLT of Theorem 2.7. We proceed as follows. We first select
the values of N for which the Nrepeat realizations give a p-value larger than 0.05 in a
Kolmogorov-Smirnov test of Gaussianity. This is meant to eliminate the small values of N
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Figure 2: Summary of the results.
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for which the Gaussian in the CLT (2.19) is a bad approximation for our samples. We do
not claim to perform any multiple testing, but rather use the p-value as a loose indicator
of Gaussianity. The bottom plot of each quadrant of Figure 2 shows the p-values as a
function of N . Note how Gaussianity is hinted even for small N in d = 1, 2, while for
larger dimensions, it takes larger N to kick in. Then, we perform a standard Bayesian
linear regression on the selected log variances vs. log(N), with wide Gaussian priors for the
slope and intercept. For visualization, we plot on each quadrant the maximum a posteriori
(MAP) line in green and indicate its slope in the legend. We now summarize the obtained
posteriors by giving central 95%-credible intervals in Table 3, that is an interval such that
the posterior puts 2.5% of its mass to its left and another 2.5% to its right.

d credible interval C theoretical slope sth = −1− 1/d sth ∈ C?

1 [−2.12,−1.93] −2 X
2 [−1.61,−1.38] −1.5 X
3 [−1.55,−1.23] −1.33 X
4 [−1.74,−1.20] −1.25 X

Table 1: Posterior credible intervals for the variance decay.

Table 3 shows very good agreement between experimental results and the CLT in
Theorem 2.7 for each dimension d. As shown by the MAP slope and the credible intervals
in Table 3, the CLT approximation is strikingly accurate for d = 1, 2, even for small N . For
d = 3, 4, the credible intervals are relatively large, and the MAP values are quite off the
theoretical slopes. This larger uncertainty is due to less points satisfying our Gaussianity
requirement, in the bottom panels of Figures 2(c) and 2(d), and a more erratic behaviour
in the top panel of Figure 2(d). Unsurprisingly, convergence to a Gaussian distribution is
slower when the dimension increases.

4 Orthogonal polynomials and outlines for the proofs

In this section, we provide some general background on orthogonal polynomials and out-
lines for the proofs of the main theorems.

4.1 Orthogonal polynomials and the Nevai class

In the following, we use the equilibrium measure µeq of I, defined by

µeq(dx) = ωeq(x)dx, ωeq(x) =
1

π
√

1− x2
1I(x). (4.1)

The name comes from its characterization as the unique minimizer of the logarithmic
energy

∫∫
log |x− y|−1µ(dx)µ(dy) over Borel probability measures µ on I [Saff and Totik,

1997]. It is also the image of the uniform measure on the unit circle through the map
eiθ 7→ x = cos θ. The associated orthonormal polynomials are the normalized Chebyshev
polynomials of the first kind, defined on I by

Tk(cos θ) =

{√
2 cos(kθ) if k > 1

1 if k = 0
, θ ∈ [0, π]. (4.2)
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They satisfy the three-term recurrence relation

xTk(x) = a∗kTk+1(x) + b∗kTk(x) + a∗k−1Tk−1(x), k ∈ N, (4.3)

where

a∗k =


0 if k = −1

1/
√

2 if k = 0

1/2 if k > 1

and b∗k = 0. (4.4)

More generally, given a reference measure µ on I with orthonormal polynomials (ϕk),
we always have the three-term recurrence relation

xϕk(x) = akϕk+1(x) + bkϕk(x) + ak−1ϕk−1(x), k ∈ N, (4.5)

where a−1 = 0 and ak > 0 and bk ∈ R for every k > 0. The existence of the recurrence
coefficients (ak)k∈N and (bk)k∈N follows by decomposing the polynomial xϕk into the or-
thonormal family (ϕ`)

k+1
`=0 of L2(µ) and observing that 〈xϕk, ϕ`〉 = 〈ϕk, xϕ`〉 = 0 as soon

as ` < k − 1 by orthogonality.

Definition 4.1. A measure µ supported on I is Nevai-class if the recurrence coefficients
for the associated orthonormal polynomials satisfy

lim
k→∞

ak = 1/2, lim
k→∞

bk = 0.

Notice the respective limits of the ak’s and bk’s for Nevai class measures are the recur-
rence coefficients (4.4) of the measure µeq when k > 1.

The next theorem gives a sufficient condition for a measure to be Nevai class [Simon,
2011, Theorem 1.4.2].

Theorem 4.2. (Denisov-Rakhmanov) Let µ be a reference measure on I with Lebesgue
decomposition µ(dx) = ω(x)dx+µs. If ω(x) > 0 almost everywhere, then µ is Nevai-class.

Consider now the Christoffel-Darboux kernel

KN (x, y) =
N−1∑
k=0

ϕk(x)ϕk(y), (4.6)

and notice 1
NKN (x, x)µ(dx) is a probability measure. One of the interesting properties of

Nevai-class measures is that this probability measure has µeq for weak limit as N → ∞
[Stahl and Totik, 1992].

Theorem 4.3. Assume µ supported on I is Nevai-class. Then, for every f ∈ C 0(I,R),∫
f(x)

1

N
KN (x, x)µ(dx) −−−−→

N→∞

∫
f(x)µeq(dx).

Now, consider instead a reference measure µ on Id with associated multivariate or-
thogonal polynomials (ϕk)k∈N (see Section 2.1) and Christoffel-Darboux kernel KN (x, y)
defined as in (4.6). Assume further that µ = µ1 ⊗ · · · ⊗ µd is a product of d measures

17



µj on I, and denote by ϕ
(j)
k and K

(j)
N (x, y) the respective orthogonal polynomials and

Christoffel-Darboux kernel associated with µj . Then, we have

ϕk(x) = ϕ
(1)
k1

(x1) · · ·ϕ(d)
kd

(xd) (4.7)

where (k1, . . . , kd) = b(k). Moreover,

KMd(x, y) =
d∏
j=1

K
(j)
M (xj , yj). (4.8)

As a consequence, Theorem 4.3 easily yields the following.

Corollary 4.4. Let µ = µ1 ⊗ · · · ⊗ µd with µj supported on I and Nevai-class. Then, for
every f ∈ C 0(Id,R),∫

f(x)
1

N
KN (x, x)µ(dx) −−−−→

N→∞

∫
f(x)µ⊗deq (dx). (4.9)

Proof. By the Stone-Weierstrass theorem, it is enough to show (4.9) when f(x) =
∏d
j=1 fj(xj)

with fj ∈ C 0(I,R). Without loss of generality, one can further assume the functions fj
are non-negative. Let M = bN1/dc be the unique integer satisfying Md 6 N < (M + 1)d.
Since we have KMd(x, x) 6 KN (x, x) 6 K(M+1)d(x, x) and, by (4.8),

Md

N

d∏
j=1

∫
fj(x)

1

M
K

(j)
M (x, x)µj(dx)

6
∫
f(x)

1

N
KN (x, x)µ(dx) 6

(M + 1)d

N

d∏
j=1

∫
fj(x)

1

M + 1
K

(j)
M+1(x, x)µj(dx), (4.10)

Corollary 4.4 follows from Theorem 4.3.

The next lemma is yet another aspect of Nevai-class measures that is relevant to our
proofs, and may be of independent interest.

Lemma 4.5. Assume µ supported on I is Nevai-class. We have the weak convergence of

QN (dx,dy) = (x− y)2KN (x, y)2µ(dx)µ(dy) (4.11)

towards

L(dx, dy) =
1

2
(1− xy)µeq(dx)µeq(dy). (4.12)

Proof. First, the Christoffel-Darboux formula reads

(x− y)2KN (x, y)2 = a2
N

(
ϕN (x)ϕN−1(y)− ϕN−1(x)ϕN (y)

)2
, (4.13)

and thus, by the orthonormality conditions, we see
∫∫

QN (dx,dy) = 2a2
N . Since µ is

Nevai-class, the former converges to 1/2 =
∫∫

L(dx,dy). This allows us to use the usual
weak topology (i.e. the topology coming by duality with respect to the continuous func-
tions) for bounded Borel measures.
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Step 1. We first prove the lemma when µ = µeq, so that the ϕk’s are the Chebyshev
polynomials Tk, see (4.2). By (4.13), the push-forward of (4.11) by the map (x, y) 7→
(cos θ, cos η), where θ, η ∈ [0, π], reads

1

π2

{
cos(Nθ) cos((N − 1)η)− cos((N − 1)θ cos(Nη)

}2
dθdη. (4.14)

This measure has for Fourier transform

1

π2

∫ π

0

∫ π

0
ei(θu+ηv)

{
cos(Nθ) cos((N − 1)η)− cos((N − 1)θ) cos(Nη)

}2
dθdη

=
1

π2

∫ π

0

∫ π

0
cos(θu+ ηv)

{
cos(Nθ) cos((N − 1)η)− cos((N − 1)θ) cos(Nη)

}2
dθdη.

By developing the square in the integrand and linearizing the products of cosines, we see
that the non-vanishing contribution as N → ∞ of the Fourier transform are the terms
which are independent on N . Indeed, the N -dependent terms come up with a factor 1/N
after integration. Thus, the Fourier transform equals, up to O(1/N), to

1

2π2

∫ π

0

∫ π

0
cos(θu+ ηv)

(
1− cos θ cos η

)
dθdη.

This yields the weak convergence of (4.14) towards (2π2)−1(1− cos θ cos η)dθdη, and the
lemma follows, in the case where µ = µeq, by taking the image of the measures by the
inverse map (cos θ, cos η) 7→ (x, y).

Step 2. We now prove the lemma for a general Nevai-class measure µ on I. Let us denote
by QµN the measure (4.11) in order to stress the dependence on µ. Thanks to Step 1, it is
enough to prove that for every m,n ∈ N, we have

lim
N→∞

∣∣∣∣∫∫ xmynQµN (dx,dy)−
∫∫

xmynQ
µeq
N (dx,dy)

∣∣∣∣ = 0,

in order to complete the proof of the lemma. Recalling (4.11), (4.13), and that aN → 1/2,
it is enough to show that for every m ∈ N,

lim
N→∞

∣∣∣∣∫ xmϕ2
N (x)µ(dx)−

∫
xmT 2

N (x)µeq(dx)

∣∣∣∣ = 0 (4.15)

and

lim
N→∞

∣∣∣∣∫ xmϕN (x)ϕN−1(x)µ(dx)−
∫
xmTN (x)TN−1(x)µeq(dx)

∣∣∣∣ = 0. (4.16)

To do so, we first complete for convenience the sequences of recurrence coefficients (an)n∈N
and (bn)n∈N introduced in (4.5) as bi-infinite sequences (an)n∈Z, (bn)n∈Z, where we set
an = bn = 0 for every n < 0. It follows inductively from the three-term recurrence relation
(4.5) that for every k, `,m ∈ N,∫

xmϕk(x)ϕ`(x)µ(dx) =
∑

γ:(0,k)→(m,`)

∏
e∈γ

ω(e){(an), (bn)}, (4.17)
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where the sum ranges over all the paths γ lying on the oriented graph with vertices Z2

and edges (i, j)→ (i+ 1, j + 1), (i, j)→ (i+ 1, j) and (i, j)→ (i+ 1, j − 1) for (i, j) ∈ Z2,
starting from (0, k) and ending at (m, `). For every edge e of Z2, we introduced the weight
associated with the sequences (an) = (an)n∈Z, (bn) = (bn)n∈Z defined by

ω(e){(an), (bn)} =


aj if e = (i, j)→ (i+ 1, j + 1)

bj if e = (i, j)→ (i+ 1, j)

aj−1 if e = (i, j)→ (i+ 1, j − 1),

(4.18)

see also [Hardy, 2015]. Now, observe that the set of all paths γ satisfying γ : (0, k)→ (m, `)
only depends on k, ` through |k − `| and is empty as soon as |k − `| > m. Thus it is a
finite set, and moreover, by translation of the indices, for every k, `,m ∈ N we have∫

xmϕk(x)ϕ`(x)µ(dx) = 1|k−`|6m
∑

γ:(0,k−`)→(m,0)

∏
e∈γ

ω(e){(an+`), (bn+`)}. (4.19)

In particular, see (4.3)–(4.4),∫
xmTk(x)T`(x)µeq(dx) = 1|k−`|6m

∑
γ:(0,k−`)→(m,0)

∏
e∈γ

ω(e){(a∗n+`), (b
∗
n+`)}. (4.20)

Finally, by combining (4.19) and (4.20), we obtain∣∣∣∣∫ xmϕk(x)ϕ`(x)µ(dx)−
∫
xmTk(x)T`(x)µeq(dx)

∣∣∣∣
6

∑
γ:(0,k−`)→(m,0)

∣∣∣∏
e∈γ

ω(e){(an+`), (bn+`)} −
∏
e∈γ

ω(e){(a∗n+`), (b
∗
n+`)}

∣∣∣. (4.21)

Together with the Nevai-class assumption for µ, which states that an − a∗n → 0 and
bn − b∗n → 0 as n → ∞, it follows that (4.15) and (4.16) hold true by taking k = ` = N ,
or k = N and ` = N − 1, in (4.21). This completes the proof of Lemma 4.5.

4.2 Sketch of the proof of Theorem 2.1

4.2.1 Reduction to probability reference measures

First, in the statement of Theorem 2.1, we can assume the reference measure µ is a
probability measure without loss of generality. This will simplify notation in the proof of
Theorem 2.1.

Indeed, for any positive measure µ on Id with (multivariate) orthonormal polynomials
ϕk and any α > 0, the orthonormal polynomials associated with αµ are ϕk/

√
α. Thus,

if we momentarily denote by KN (µ;x, y) the Nth Christoffel-Darboux kernel associated
with a measure µ, we have KN (αµ;x, y) = KN (µ;x, y)/α. As a consequence, for every
n > 1, the correlation measures

det
[
KN (µ;xi, x`)

]n
i,`=1

n∏
i=1

µ(dxi),

remain unchanged if we replace µ by αµ for any α > 0. Hence, multivariate OP Ensembles
are invariant under µ 7→ αµ.
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4.2.2 Soshnikov’s key theorem

As stated previously, Theorem 2.1 has already been proven when d = 1 by Breuer and
Duits [2013], as a consequence of a generalized strong Szegő theorem they obtained. The
difficulty in proving Theorem 2.1 when d > 2 turns out to be of different nature than the
one-dimensional setting. Indeed, the next result due to Soshnikov essentially states that
the cumulants of order three and more of the linear statistic

∑
f(xi) decays to zero as

N →∞ as soon as its variance goes to infinity. The latter condition turns out to be true
if and only if d > 2. Thus, a CLT follows easily as soon as one can obtain asymptotic
estimates on the variance. However, if obtaining such variance estimates is relatively easy
when d = 1, the task becomes more involved in higher dimension.

More precisely, the general result [Soshnikov, 2002, Theorem 1] has the following con-
sequence.

Theorem 4.6. (Soshnikov) Let x1, . . . ,xN form a multivariate OP Ensemble with re-
spect to a given reference measure µ on Id. Consider a sequence (fN ) of uniformly bounded
and measurable real-valued functions on Id satisfying, as N →∞,

Var

[
N∑
i=1

fN (xi)

]
−→∞, (4.22)

and, for some δ > 0,

E

[
N∑
i=1

∣∣fN (xi)
∣∣] = O

Var

[
N∑
i=1

fN (xi)

]δ . (4.23)

Then, we have
N∑
i=1

fN (xi)− E

[
N∑
i=1

fN (xi)

]
√√√√Var

[
N∑
i=1

fN (xi)

] law−−−−→
N→∞

N (0, 1).

4.2.3 Variance asymptotics

In order to prove Theorem 2.1 it is enough to show the following asymptotics.

Proposition 4.7. Assume µ and x1, . . . ,xN satisfy the hypothesis of Theorem 2.1. Then,
for every f ∈ C 1(Id,R), we have

lim
N→∞

1

N1−1/d
Var

[
N∑
i=1

f(xi)

]
= σ2

f . (4.24)

Indeed, for any d > 2 and any f ∈ C 1(Id,R), Corollary 4.4 and Proposition 4.7 imply
(4.22) and (4.23) with fN = f and δ = d/(d − 1). Thus, we can apply Theorem 4.6 to
obtain Theorem 2.1.
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Proposition 4.7 is the main technical result of this work. Consider the d-fold product
of the equilibrium measure (4.1), namely the probability measure on Id given by

µ⊗deq (dx) = ω⊗deq (x)dx, ω⊗deq (x) =

d∏
j=1

1

π
√

1− x2
j

1Id(x). (4.25)

In our proof of Proposition 4.7, we start by investigating the limit (4.24) when µ = µ⊗deq ,
since algebraic identities are available for this reference measure. Then, we use comparison
estimates to prove (4.24) in the general case.

4.3 A bound on the limiting variance

As stated in Proposition 2.4, one can bound the limiting variance σ2
f by a Dirichlet energy.

Besides providing some control on the amplitude of σ2
f , we will need this inequality in the

proof of Proposition 4.7. We now give a proof for this proposition.

Proof of Proposition 2.4. Let µsc(dx) = π−1
√

1− x21I(x)dx be the semi-circle measure.
The associated orthonormal polynomials are the so-called Chebyshev polynomials of the
second kind

Uk(cos θ) =
√

2
sin((k + 1)θ)

sin θ
.

For any 1 6 j 6 d, define the measure

νj(dx) = µeq(dx1) · · ·µeq(dxj−1)µsc(dxj)µeq(dxj+1) · · ·µeq(dxd),

so that the RHS of (2.8) becomes

1

2

d∑
j=1

∫
Id

(
∂jf(x)

)2
νj(dx)

For any k = (k1, . . . , kd) ∈ Nd, set Tk(x) = Tk1(x1) · · ·Tkd(xd), where Tk are the Chebyshev
polynomials (4.2), and let

V j
k (x) = Tk1(x1) · · ·Tkj−1

(xj−1)Ukj (xj)Tkj+1
(xj+1) · · ·Tkd(xd).

Thus, (Tk)k∈Nd and (V j
k )k∈Nd respectively form an orthonormal Hilbert basis of L2(µ⊗deq )

and L2(νj). Let f ∈ C 1(Id,R), so that f =
∑

k∈Nd f̂(k)Tk where f̂(k) is as in (2.7). Using
the identity T ′k = kUk−1, it comes

∂jf(x) =
∑
k∈Nd

kj f̂(k)V j
k (x).

Then, Parseval’s identity in L2(νj) yields∫
Id

(
∂jf(x)

)2
νj(dx) =

∑
k∈Nd

k2
j f̂(k)2.
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Summing over 1 6 j 6 d, the RHS of (2.8) equals

1

2

d∑
j=1

∫
Id

(
∂jf(x)

)2
νj(dx) =

1

2

∑
k∈Nd

(k2
1 + · · · + k2

d)f̂(k)2, (4.26)

from which Proposition 2.4 easily follows.

4.4 Assumptions of Theorem 2.7 and outline of the proof

We now discuss the assumptions and proof of Theorem 2.7.
Assume the reference measure µ is a product of d measures on I, and also that µ has

a density ω. Then, Corollary 4.4 suggests that, as N →∞,

N

KN (x, x)
≈ ω(x)

ω⊗deq (x)
. (4.27)

This heuristic would yield for the variance of the estimator (2.11),

Var

[
N∑
i=1

f(xi)

KN (xi,xi)

]
≈ 1

N2
Var

[
N∑
i=1

f(xj)
ω(xj)

ω⊗deq (xj)

]
≈

Ω2
f,ω

N1+1/d
, (4.28)

where for the last approximation we used Proposition 4.7 with test function fω/ω⊗deq ,
recalling Ωf,ω was defined in (2.15). This would essentially yield the CLT in Theorem 2.7
by applying Theorem 4.6 to fN (x) = Nf(x)/KN (x, x). To make the approximation (4.28)
rigorous, we will need extra regularity assumptions on µ.

First, regarding the approximation (4.27), we have the following result.

Theorem 4.8. (Totik) Assume µ(dx) = ω(x)dx with ω(x) = ω1(x1) · · ·ωd(xd), and that
ωj is continuous and positive on I. Then, for every ε > 0, we have

N

KN (x, x)
−−−−→
N→∞

ω(x)

ωeq(x)
(4.29)

uniformly for x ∈ Idε .

For a proof of Theorem 4.8 when d = 1, see [Simon, 2011, Section 3.11] and references
therein. The case d > 2 follows by the same arguments as in the proof of Corollary 4.4.

Remark 4.9. It is because of Theorem 4.8 that we restrict C 1(Id,R) to the class C
defined in (2.13) in the assumptions of Theorem 2.7. Unfortunately, there are examples of
reference measures µ on I such that the convergence (4.29) is not uniform on the whole of
I. However, in order to extend C to C 1(Id,R) in the statement of Theorem 2.7, it would
be enough to have supx∈IdεN

|N/KN (x, x)−ω(x)/ω⊗deq (x)| → 0 for some sequence εN going

to zero as N →∞, but we were not able to locate such a result in the literature.

Next, the first approximation in (4.28) requires a control on the rate of change of
N/KN (x, x). To this end, we introduce an extra assumption on the reference measure µ.
More precisely, let us denote

DN (x, y) =
N/KN (x, x)−N/KN (y, y)

‖x− y‖ , (4.30)

23



and further consider the sequence of measures on Id × Id

QN (dx,dy) =
1

N1−1/d
‖x− y‖2KN (x, y)2µ(dx)µ(dy). (4.31)

Our extra assumption on µ is then the following.

Assumption 1. The measure µ satisfies

lim
C→∞

lim sup
δ→0

lim sup
N→∞

∫∫
Idε×Idε , ‖x−y‖6δ

1|DN (x,y)|>C DN (x, y)2 QN (dx,dy) = 0. (4.32)

In plain words, this means the squared rate of change DN (x, y)2 is uniformly integrable
with respect to the measures QN , at least on the restricted domain where ‖x− y‖ is small
enough and where x and y are not allowed to reach the boundary of Id.

Remark 4.10. When d = 1, Lemma 4.5 states that if µ is Nevai-class then QN converges
weakly as N →∞ towards

L(dx,dy) =
1

2π2

1− xy√
1− x2

√
1− y2

1I×I(x, y)dxdy.

Because the density of L is smooth within Iε × Iε for every ε > 0, one may at least
heuristically understand that (4.32) reduces to the uniform integrability of DN (x, y)2 with
respect to the Lebesgue measure instead. In higher dimension, a similar guess can be
made, but we do not pursue this reasoning here.

We now discuss sufficient conditions for (4.32) to hold true.

Remark 4.11. Since, for any κ > 0, we have

1|DN (x,y)|>C DN (x, y)2 6
1

Cκ
|DN (x, y)|2+κ ,

we see that condition (4.32) holds true as soon as, for every ε > 0, there exists κ, δ > 0
satisfying

lim sup
N→∞

∫∫
Idε×Idε , ‖x−y‖6δ

|DN (x, y)|2+κ QN (dx, dy) <∞.

Namely, condition (4.32) is satisfied if the L2+κ(QN ) norm of the rate of change of
N/KN (x, x) is bounded, at least on the restricted domain where ‖x− y‖ is small enough
and x, y away from the boundary of Id.

The following assumption is much stronger than Assumption 1, but it is easier to check
in practice.

Assumption 2. The measure µ satisfies

(a) µ(dx) = ω(x)dx with ω positive and continuous on (−1, 1)d.

(b) For every ε > 0, the sequence

1

N
sup
x∈Idε

∥∥∥∇KN (x, x)
∥∥∥

is bounded.
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Indeed, thanks to the rough upper bound

|DN (x, y)| 6 sup
x∈Idε
‖∇(N/KN (x, x))‖ , x, y ∈ 1Idε ,

we see that Assumption 1 holds true as soon as for every ε > 0, supx∈Idε ‖∇(N/KN (x, x))‖
is bounded. Under Assumption 2(a), the latter follows from Assumption 2(b). Indeed,
Theorem 4.8 and Assumption 2(a) together yield that for every ε > 0, there exists c > 0
independent of N such that 1

NKN (x, x) > c for every x ∈ Idε .
We conclude this section by proving that Jacobi measures (2.17) satisfy Assumption 2,

which proves our Proposition 2.8. We start with a general lemma.

Lemma 4.12. Assume the measures µ1, . . . , µd on I satisfy Assumption 2. Then the
measure µ1 ⊗ · · · ⊗ µd on Id satisfies Assumption 2.

Proof. We decompose the set ΓN = {b(0), . . . , b(N − 1)} ⊂ Nd in a convenient way. To do
so, set σj(k) = (k1, . . . , kj−1, kj+1, . . . , kd) and say that k ∼ ` if and only if σj(k) = σj(`),
that is, they have same coordinates except maybe the jth one. We denote by [k] the
equivalence class under this relation. Set Nj([k]) = max{`j : ` ∈ [k] ∩ ΓN}. Using the
notation introduced in (4.7) and (4.8), it comes

∂jKN (x, x) = 2

b(N−1)∑
k=b(0)

ϕ
(j)
kj

(xj)
d

dxj
ϕ

(j)
kj

(xj)
∏
α 6=j

ϕ
(α)
kα

(xα)2

= 2
∑

[k]∈ΓN/∼

∏
α 6=j

ϕ
(α)
kα

(xα)2

Nj([k])∑
kj=0

ϕ
(j)
kj

(xj)
d

dxj
ϕ

(j)
kj

(xj)

=
∑

[k]∈ΓN/∼

∏
α 6=j

ϕ
(α)
kα

(xα)2 d

dxj

[
K

(j)
Nj([k])+1(xj , xj)

]
. (4.33)

Let now ε > 0. Since µj satisfies Assumption 2, there exists C > 0 such that for all x ∈ Iε
and n ∈ N, ∣∣∣∣ d

dx

[
K(j)
n (x, x)

]∣∣∣∣ 6 Cn.

Let M = bN1/dc, so that ΓN ⊂ CM+1, see (2.5). Thus, Nj([k]) 6 M for all k ∈ ΓN . By
(4.33),

|∂jKN (x, x)| 6 C(M + 1)
∑

[k]∈ΓN/∼

∏
α 6=j

ϕ
(α)
kα

(xα)2

6 C(M + 1)
∑

[k]∈CM+1

∏
α 6=j

ϕ
(α)
kα

(xα)2

= C(M + 1)
∏
α 6=j

K
(α)
M+1(xα, xα).

Hence
1

N
|∂jKN (x, x)| 6 C

M + 1

M

∏
α 6=j

1

M
K

(α)
M+1(xα, xα),

and Theorem 4.8 concludes.
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Lemma 4.13. Let α, β > −1, then the measure

(1− x)α(1 + x)β1I(x)dx

satisfies Assumption 2.

Proof. Let ε > 0 be fixed. For convenience, Section 4.2.1 allows us to work with the
probability measure

µ(α,β)(dx) = ω(α,β)(x)dx, ω(α,β)(x) =
1

cα,β
(1− x)α(1 + x)β,

where the normalization constant reads

cα,β = 2α+β+1 Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 1)

and Γ is the Euler Gamma function.
Denote by (ϕ

(α,β)
n )n∈N the associated orthonormal polynomials. They satisfy

ϕ(α,β)
n (x) =

P
(α,β)
n (x)√
h

(α,β)
n

,

where the P
(α,β)
n ’s are the Jacobi polynomials (we refer to [Szegő, 1974] for definitions and

properties) and

h(α,β)
n = ‖P (α,β)

n ‖2
L2(µ(α,β))

=
1

n!(α+ β + 2n+ 1)

Γ(α+ β + 1)Γ(α+ n+ 1)Γ(β + n+ 1)

Γ(α+ 1)Γ(β + 1)Γ(α+ β + n+ 1)
,

and moreover

(ϕ(α,β)
n )′ =

uα,β
2

√
n(n+ α+ β + 1) ϕ

(α+1,β+1)
n−1 , uα,β =

√
(α+ β + 1)(α+ β + 2)

(α+ 1)(β + 1)
.

(4.34)
This yields

d

dx
KN (x, x) = 2

N−1∑
k=1

ϕ
(α,β)
k (x)(ϕ

(α,β)
k )′(x)

= uα,β

N−1∑
k=1

√
k(k + α+ β + 1) ϕ

(α,β)
k (x)ϕ

(α+1,β+1)
k−1 (x). (4.35)

By [Kuijlaars et al., 2004], we have as k →∞, uniformly in x = cos θ ∈ Iε,

ϕ
(α,β)
k (cos θ) =

√
2

ω(α,β)(x)π
√

1− x2
cos

((
k +

1

2
(α+ β + 1)

)
θ − π

2
(α+

1

2
)

)
+O(1/k).

(4.36)
As a consequence, we obtain in the same asymptotic regime,

ϕ
(α+1,β+1)
k−1 (cos θ) =

√
2

ω(α,β)(x)π
√

1− x2
sin

((
k +

1

2
(α+ β + 1)

)
θ − π

2
(α+

1

2
)

)
+O(1/k).

(4.37)
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Now (4.36) implies that the P
(α,β)
k (x)’s are bounded uniformly for x ∈ I and k ∈ N. Using

moreover that 2 sin(u) cos(u) = sin(2u) and combining (4.35)–(4.37), we obtain for some
C1, C2 > 0 that

sup
x∈Iε

∣∣∣∣ d

dx
KN (x, x)

∣∣∣∣ 6 C1 sup
x∈Iε

∣∣∣∣∣
N−1∑
k=1

k sin

((
2k + α+ β + 1

)
θ − π(α+

1

2
)

)∣∣∣∣∣+ C2

where we recall the relation x = cos θ. Next, we write∣∣∣∣∣
N−1∑
k=1

k sin

((
2k + α+ β + 1

)
θ − π(α+

1

2
)

)∣∣∣∣∣ 6
∣∣∣∣∣
N−1∑
k=1

kei((2k+α+β+1)θ−π(α+ 1
2

))

∣∣∣∣∣
1/2

and then

N−1∑
k=1

kei((2k+α+β+1)θ−π(α+ 1
2

)) = ei((α+β+1)θ−π(α+ 1
2

))
N−1∑
k=1

ke2ikθ

=
1

2i
ei((α+β+1)θ−π(α+ 1

2
)) d

dθ

N−1∑
k=0

e2ikθ

=
1

2i
ei((α+β+1)θ−π(α+ 1

2
)) d

dθ

(ei(N−1)θ sin(Nθ)

sin(θ)

)
. (4.38)

Since the absolute value of the right hand side of (4.38) is bounded by CN/ sin2(θ) for
some C > 0 independent on N and θ, the lemma follows.

Lemmas 4.12 and 4.13 combined yield Proposition 2.8.

5 CLT for multivariate OP Ensembles: proof of Theorem 2.1

In this section we prove Proposition 4.7. As explained in Section 4.2, Theorem 2.1 follows
from this proposition.

5.1 A useful representation of the covariance

Lemma 5.1. Let x1, . . . ,xN be random variables drawn from a multivariate OP Ensemble
with reference measure µ. For any multivariate polynomials P,Q, we have

Cov

[
N∑
i=1

P (xi),

N∑
i=1

Q(xi)

]
=

N−1∑
n=0

∞∑
m=N

〈Pϕn, ϕm〉〈Qϕn, ϕm〉,

where 〈 · , · 〉 refers to the scalar product of L2(µ).

Proof. We start from the standard formula

Cov

 N∑
i=1

P (xi),

N∑
j=1

Q(xi)


=

∫
P (x)Q(x)KN (x, x)µ(dx)−

∫∫
P (x)Q(y)KN (x, y)2µ(dx)µ(dy), (5.1)
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which follows from (2.1)–(2.2) with k = 1, 2 and that KN (x, y) is symmetric. One the one
hand, it follows from the definition of KN that∫∫

P (x)Q(y)KN (x, y)2µ(dx)µ(dy) =
N−1∑
n=0

N−1∑
m=0

〈Pϕn, ϕm〉〈Qϕn, ϕm〉. (5.2)

On the other hand, by using the decomposition (where the sum is finite since P is poly-
nomial)

Pϕn =
∞∑
m=0

〈Pϕn, ϕm〉ϕm

together with the identity∫
P (x)Q(x)KN (x, x)µ(dx) =

N−1∑
n=0

〈Pϕn, Qϕn〉,

we obtain ∫
P (x)Q(x)KN (x, x)µ(dx) =

N−1∑
n=0

∞∑
m=0

〈Pϕn, ϕm〉〈Qϕn, ϕm〉. (5.3)

Lemma 5.1 then follows by combining (5.1), (5.2) and (5.3).

5.2 Covariance asymptotics: the Chebyshev case

We first investigate the case of the product measure µ⊗deq , where µeq defined in (4.1) is
the equilibrium measure of I. Recalling the definition (4.2), the multivariate Chebyshev
polynomials

Tk(x1, . . . , xd) = Tk1(x1) · · ·Tkd(xd), k = (k1, . . . kd) ∈ Nd, (5.4)

satisfy the orthonormality conditions∫
Tk(x)T`(x)µ⊗deq (dx) = δk`, k, ` ∈ Nd.

We shall see that the family (Tk)k∈Nd diagonalizes the covariance structure associated with
our point process.

Proposition 5.2. Let x∗1, . . . ,x
∗
N be drawn according to the multivariate OP Ensem-

ble associated with µ⊗deq . Then, given any multi-indices k = (k1, . . . , kd) ∈ Nd and ` =

(`1, . . . , `d) ∈ Nd, we have

lim
N→∞

1

N1−1/d
Cov

[
N∑
i=1

Tk(x∗i ),

N∑
i=1

T`(x
∗
i )

]
=


1

2
(k1 + · · · + kd) if k = `,

0 if k 6= `.

As a warm-up, let us first prove the proposition when d = 1.
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Proof of Proposition 5.2 when d = 1. Throughout this proof, 〈·, ·〉 denotes the inner prod-
uct in L2(µ⊗deq ). For every k, ` ∈ N, Lemma 5.1 provides

Cov

[
N∑
i=1

Tk(x
∗
i ),

N∑
i=1

T`(x
∗
i )

]
=

N−1∑
n=0

∞∑
m=N

〈TkTn, Tm〉〈T`Tn, Tm〉. (5.5)

First, notice that if k or ` is zero, then the right-hand side of (5.5) vanishes because
〈Tn, Tm〉 = δnm, and hence we can assume both k, ` are non-zero. Next, (4.2) yields the
multiplication formula

TkTn =
1√
2
Tn+k 1kn6=0 +

(
1√
2

)1nk 6=01n 6=k

T|n−k|, k, n ∈ N. (5.6)

Combined with the orthonormality relations, this yields for any n,m ∈ N and k > 0

〈TkTn, Tm〉 =
1√
2

1n+k=m1n6=0 +

(
1√
2

)1n 6=01n6=k

1|n−k|=m. (5.7)

Hence, if n,m ∈ N moreover satisfy n < m and m > max(k, `), then we have

〈TkTn, Tm〉〈T`Tn, Tm〉 =
1

2
1n6=01n+k=m1`+n=m. (5.8)

By plugging (5.8) into (5.5), we obtain for every N > max(k, `),

Cov

[
N∑
i=1

Tk(x
∗
i ),

N∑
i=1

T`(x
∗
i )

]
=

1

2

N−1∑
n=1

∞∑
m=N

1k+n=m1`+n=m

=
1

2
k 1k=`,

and the proposition follows when d = 1.

We now provide a proof for the higher-dimensional case. We also use the multiplication
formula (5.6) in an essential way, although the setting is more involved. We recall that
we introduced the bijection b : N→ Nd associated with the graded lexicographic order in
Section 2.1.3.

Proof of Proposition 5.2 when d > 2. Fix multi-indices k = (k1, . . . , kd) ∈ Nd and ` =
(`1, . . . , `d) ∈ Nd, and also set

S =
{
j : kj 6= 0

}
, S′ =

{
j : `j 6= 0

}
.

Thanks to Lemma 5.1, we can write

Cov

[
N∑
i=1

Tk(x∗i ),

N∑
i=1

T`(x
∗
i )

]
=

∑
(n,m)∈AN

〈TkTn, Tm〉〈T`Tn, Tm〉, (5.9)

where we introduced for convenience the set

AN =
{

(n,m) ∈ Nd × Nd : n 6 b(N − 1), m > b(N)
}
. (5.10)
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Next, using (5.4), the orthonormality relations for the Chebyshev polynomials and (5.7),
we obtain

〈TkTn, Tm〉 = 〈Tk1Tn1 , Tm1〉L2(µeq) · · · 〈TkdTnd , Tmd〉L2(µeq) (5.11)

=
(∏
j /∈S

1nj=mj

)∑
P⊂S

(
1√
2

)|P |+|{j∈S\P : nj 6=0, nj 6=kj}|

×
(∏
j∈P

1nj+kj=mj1nj 6=0

)( ∏
j∈S\P

1|nj−kj |=mj

)
, (5.12)

where |A| stands for the cardinality of the set A.
First, notice that if S 6= S′ then the right hand side of (5.9) vanishes. Indeed, if S 6= S′,

then there exists α ∈ {1, . . . , d} such that kα = 0 and `α 6= 0 (or the other way around,
but the argument is symmetric). It then follows from (5.12) that 〈TkTn, Tm〉 vanishes
except if nα = mα, and moreover that 〈T`Tn, Tm〉 vanishes except if |nα ± `α| = mα.
Since `α 6= 0, it holds 〈TkTn, Tm〉〈T`Tn, Tm〉 = 0 for every (n,m) ∈ Nd × Nd, and our
claim follows. Moreover, because (n,m) ∈ AN yields the existence of α ∈ {1, . . . , d} such
that nα < mα, one can see from (5.11) that 〈TkTn, Tm〉 vanishes for every (n,m) ∈ AN
if k = (0, . . . , 0). We henceforth assume that S = S′ 6= ∅, for the covariance not to be
trivial.

By combining (5.9) with (5.12), we obtain

Cov

[
N∑
i=1

Tk(x∗i ),
N∑
i=1

T`(x
∗
i )

]
=
∑
P,Q⊂S

∑
(n,m)∈AN [P,Q]

(
1√
2

)σ[P,Q](n)

,

where we introduced the subsets

AN [P,Q] =

{
(n,m) ∈ AN

∣∣∣∣∣ nj + kj = mj ,
nj + `j = mj ,

nj 6= 0,
nj 6= 0,

if j ∈ P
if j ∈ Q ;

|nj − kj | = mj ,
|nj − `j | = mj ,

if j ∈ S \ P
if j ∈ S \Q ; nj = mj , if j /∈ S

}
(5.13)

and set for convenience

σ[P,Q](n) = |P |+ |Q|+ |
{
j ∈ S \ P : nj 6= 0, nj 6= kj

}
|

+ |
{
j ∈ S \Q : nj 6= 0, nj 6= `j

}
|. (5.14)

Notice from (5.13) if kα = `α 6= 0 and AN [P,Q] 6= ∅ then necessarily α ∈ P ∩ Q or
α ∈ (S \ P ) ∩ (S \Q). In particular, if k = ` then AN [P,Q] = ∅ unless P = Q. Thus,

Cov

[
N∑
i=1

Tk(x∗i ),

N∑
i=1

T`(x
∗
i )

]
= 1k= `

∑
P⊂S

∑
(n,m)∈AN [P,P ]

(
1√
2

)σ[P,P ](n)

+ 1k 6= `

∑
P,Q⊂S

∑
(n,m)∈AN [P,Q]

(
1√
2

)σ[P,Q](n)

. (5.15)
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Our goal is now to show that for every P,Q ⊂ S the following holds true. As N →∞, if
we assume k = `, then∑

(n,m)∈AN [P,P ]

(
1√
2

)σ[P,P ](n)

=

(
1

2

)|S| (∑
j∈P

kj

)
N1−1/d + o(N1−1/d), (5.16)

and, if instead k 6= `, then ∣∣AN [P,Q]
∣∣ = o(N1−1/d). (5.17)

Since an easy rearrangement argument together with the definition of S yield∑
P⊂S

(∑
j∈P

kj

)
=

1

2

∑
P⊂S

(∑
j∈S

kj

)

=
(∑
j⊂S

kj

)
2|S|−1 =

( d∑
j=1

kj

)
2|S|−1,

Proposition 5.2 would then follow from (5.15)–(5.17).
We now turn to the proof of (5.16) and (5.17).

Truncated sets and consequences. Given distinct α1, . . . , αp ∈ {1, . . . , d}, we intro-
duce the truncated sets

AN [P,Q;α1, . . . , αp]

= AN [P,Q] ∩
{
nα1 6 max(kα1 , `α1)

}
∩ · · · ∩

{
nαp 6 max(kαp , `αp)

}
. (5.18)

By definition of b and AN , if N = Md then AMd = CM × (Nd \ CM ) where we recall

CM =
{
n ∈ Nd : 0 6 n1, . . . , nd 6M − 1

}
. (5.19)

Moreover, if for an arbitrary N we denote by M = bN1/dc the integer satisfying Md 6
N < (M+1)d, then b(N) ∈ CM+1 and thus, for any (n,m) ∈ AN , we have n ∈ CM+1. As a
consequence, for every P,Q ⊂ S, we have the rough upper bound |AN [P,Q;α1, . . . , αp]| =
O(Md−p). In particular,∣∣AN [P,Q;α1, . . . , αp]

∣∣ = o(N1−1/d) for every p > 2. (5.20)

In order to restrict ourselves to the easier setting where N is a power of d, we will use
the following lemma. Its proof uses in a crucial way the graded lexicographic order we
chose to equip Nd with, and it is deferred to the end of the present proof.

Lemma 5.3. Assume k = `. For every P ⊂ S, α ∈ S \ P and for every N >
max(kd1 , . . . , k

d
d), we have

(a)
∣∣AN [P, P ]

∣∣ 6 ∣∣AN+1[P, P ]
∣∣,

(b)
∣∣AN [P, P ;α]

∣∣ 6 ∣∣AN+1[P, P ;α]
∣∣.

We now provide a proof for (5.16).
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The main contribution. Assume k = `. As a consequence of Lemma 5.3 (a), if we set
M = bN1/dc then we have for every N large enough

∑
(n,m)∈A

Md [P,P ]

(
1√
2

)σ[P,P ](n)

6
∑

(n,m)∈AN [P,P ]

(
1√
2

)σ[P,P ](n)

6
∑

(n,m)∈A
(M+1)d

[P,P ]

(
1√
2

)σ[P,P ](n)

.

Thus, it is enough to prove that, as M →∞,

∑
(n,m)∈A

Md [P,P ]

(
1√
2

)σ[P,P ](n)

=

(
1

2

)|S| (∑
j∈P

kj

)
Md−1 + o(Md−1), (5.21)

in order to establish (5.16). To do so, for any P ⊂ S and α ∈ S \ P , we set

A∗Md [P ] = AMd [P, P ] ∩
{
nj > kj for all j ∈ S \ P

}
, (5.22)

A∗Md [P ;α] = AMd [P, P ;α] ∩
{
nj > kj for all j ∈ S \ (P ∪ {α})

}
, (5.23)

and use the following lemma; its proof is deferred to the end of the actual proof.

Lemma 5.4. Assume k = `. For every P ⊂ S and α ∈ S \ P , we have as M →∞∣∣A∗Md [P ]
∣∣ =

(∑
j∈P

kj

)
Md−1 + o(Md−1), (5.24)

∣∣A∗Md [P ;α]
∣∣ = o(Md−1). (5.25)

Next, as a consequence of the rough upper bound (5.20) and (5.25), we can write∣∣AMd [P, P ]
∣∣ =

∣∣AMd [P, P ] ∩
{
nα > kα for all α ∈ S \ P

}∣∣
+
∣∣AMd [P, P ] ∩

{
nα 6 kα for at least one α ∈ S \ P

}∣∣
=
∣∣A∗Md [P ]

∣∣+
∑

α∈S\P

∣∣A∗Md [P ;α]
∣∣+ o(Md−1)

=
∣∣A∗Md [P ]

∣∣+ o(Md−1). (5.26)

Since for any (n,m) ∈ A∗
Md [P ] we have σ[P, P ](n) = 2|S|, see (5.14) and (5.22), the

estimate (5.21) follows from (5.26) and (5.24), and the proof of (5.16) is therefore complete.
We finally turn to the proof of (5.17).

The remaining contributions. Assume now that k 6= `. Since k and ` have the same
zero components, it follows that neither kα nor `α is zero. Thus, (5.13) yields that if
kα 6= `α and AN [P,Q] 6= ∅, then either α ∈ P ∩ (S \Q) or α ∈ Q∩ (S \P ) and moreover,
for any (n,m) ∈ AN [P,Q], we have

2nα = |kα − `α|, 2mα = kα + `α.

In particular AMd [P,Q] = AMd [P,Q;α]. Thus, by virtue of the rough upper bound (5.20),
we can assume in the proof of (5.17) that k and ` differ by exactly one coordinate, namely
there exists α ∈ {1, . . . , d} such that kα 6= `α and kj = `j for every j 6= α. In this setting,
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AN [P,Q] 6= ∅ then yields P \ {α} = Q \ {α} and, if (n,m) ∈ AN [P,Q], then (nα,mα)
satisfies the equations{

nα + kα = mα, `α − nα = mα, nα 6= 0, if α ∈ P
nα + `α = mα, kα − nα = mα, nα 6= 0, if α ∈ Q

.

By weakening these constraints to{
|`α − nα| = mα, nα 6 `α, if α ∈ P
|kα − nα| = mα, nα 6 kα, if α ∈ Q

,

we obtain the upper bound

∣∣AN [P,Q]
∣∣ 6 {∣∣A(`,`)

N [Q,Q;α]
∣∣ if α ∈ P∣∣A(k,k)

N [P, P ;α]
∣∣ if α ∈ Q

(5.27)

where A(k,`)
N [P,Q;α] is defined as in (5.13),(5.18) but we emphasized the multi-indices k, `

which are involved. By setting M = bN1/dc+1, we obtain from Lemma 5.3 (b), the rough
upper bound (5.20) and (5.23),(5.25) that, as N →∞,∣∣A(k,k)

N [P, P ;α]
∣∣

6
∣∣A(k,k)

Md [P, P ;α]
∣∣

=
∣∣A(k,k)

Md [P, P ;α] ∩
{
nj > kj for all j ∈ S \ (P ∪ {α})

}∣∣+ o(N1−1/d)

= o(N1−1/d), (5.28)

and similarly ∣∣A(`,`)
N [Q,Q;α]

∣∣ = o(N1−1/d). (5.29)

By combining (5.27)–(5.29), we have finally proved (5.17) and the proof of Proposition 5.2
is thus complete, up to the proof of Lemmas 5.3 and 5.4.

We now provide proofs for the remaining lemmas.

Proof of Lemma 5.3. Let (n,m) ∈ AN [P, P ]. Then (n,m) /∈ AN+1[P, P ] if and only if
m = b(N). Since b(N) ∈ CM+1 \ CM , where M = bN1/dc and CM has been introduced in
(5.19), there exists j ∈ {1, . . . , d} such that b(N)j = M ; let j∗ be the smallest j satisfying
this property. Notice also n ∈ CM+1 and m ∈ Nd \ CM . As soon as M > max(k1, . . . , kd),
that we assume from now, the equality m = b(N) can only happen if j∗ /∈ S \ P . Indeed,
if j∗ ∈ S \ P , then mj∗ = |nj∗ − kj∗ | 6 max(nj∗ − 1, kj∗) 6M − 1. As a consequence,∣∣AN [P, P ]

∣∣ 6 ∣∣AN+1[P, P ]
∣∣ if j∗ ∈ S \ P.

Next, assume that j∗ ∈ P or j∗ /∈ S. We claim that if we set

m̃j =


mj + kj if j ∈ P,
|mj − kj | if j ∈ S \ P,
mj if j /∈ S,

(5.30)
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then (m, m̃) ∈ AN+1[P, P ] \ AN [P, P ]. This would show in particular that∣∣AN [P, P ]
∣∣ 6 ∣∣AN+1[P, P ]

∣∣ if either j∗ ∈ P or j∗ /∈ S,

and thus complete the proof of (a). That (m, m̃) ∈ AN+1[P, P ] \AN [P, P ] is by construc-
tion obvious provided one can show m̃ > b(N + 1).

If j∗ ∈ P , then we have

m̃j∗ = mj∗ + kj∗ = M + kj∗ > M

and thus m̃ ∈ Nd\CM+1. As a consequence, there exists m > (M+1)d such that m̃ = b(m)
and, since N + 1 6 (M + 1)d, we have shown m̃ > b(N + 1).

If j∗ /∈ S, we argue by contradiction and assume m̃ 6 b(N) = m. We shall see
this is not compatible with the graded lexicographic order. Indeed, since by construction
m̃ 6= m and n 6= m (because k 6= (0, . . . , 0) by assumption), we actually have m̃ < m
and n < m. Because j∗ /∈ S by assumption, we moreover have nj∗ = mj∗ = m̃j∗ = M
and thus n,m, m̃ ∈ CM+1 \ CM . As a consequence, n <lex m and m̃ <lex m in the
lexicographic order. This means there exists γ ∈ {1, . . . , d} such that ni = mi for every
i < γ and nγ < mγ , and equivalently i /∈ S when i < γ and γ ∈ P . Similarly, there exists
η ∈ {1, . . . , d} such that m̃i = mi for every i < η and m̃η < mη, and thus i /∈ S when
i < η and η ∈ S \ P . But this is impossible and thus m̃ > b(N + 1), which completes the
proof of (a).

Part (b) is proved by following the exact same line of arguments; in this setting one
should also check that if (n,m) ∈ AN [P, P ;α] thenmα 6 kα in order to show (m, m̃) (with
m̃ defined in (5.30)) actually belongs to AN+1[P, P ;α]. Recalling α ∈ S \P by assumption
this is clear, indeed mα = |nα − kα| together with nα 6 kα yield mα = kα − nα 6 kα.

Proof of Lemma 5.4. To prove (a), fix P ⊂ S and assume M > max(k1, . . . , kd). It follows
from the definitions (5.13),(5.22) that

A∗Md [P ] =

{
(n,m) ∈ AMd

∣∣∣∣∣
nj + kj = mj ,
nj − kj = mj ,

nj = mj ,

nj 6= 0,
nj > kj ,

if j ∈ P
if j ∈ S \ P
if j /∈ S

}
. (5.31)

Recall that AMd = CM × (Nd \ CM ) where CM is defined in (5.19). Clearly, if we set

CM [P ] =
{
n ∈ CM : there exists m ∈ Nd \ CM , (n,m) ∈ A∗Md [P ]

}
(5.32)

then (n,m) 7→ n is a bijection from A∗
Md [P ] to CM [P ].

We claim that if for any p ∈ P we set

C(p)
M [P ] =

{
n ∈ CM

∣∣∣∣∣
1 6 nj 6M − 1
kj < nj 6M − 1

M − kp 6 np 6M − 1

if j ∈ P
if j ∈ S \ P

}
, (5.33)

then we have
CM [P ] =

⋃
p∈P
C(p)
M [P ]. (5.34)

Indeed, let n ∈ CM [P ]. By definition there exists m ∈ Nd\CM such that (n,m) ∈ A∗
Md [P ].

This provides, see (5.31), that 1 6 nj 6M −1 if j ∈ P , that kj < nj 6M −1 if j ∈ S \P ,
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and the existence of p ∈ {1, . . . , d} satisfying mp > M . Since n ∈ CM then np 6 M − 1
and thus p ∈ P because otherwise mp 6 np. Together with the equation np + kp = mp

this finally yields that M − kp 6 np 6M − 1, namely n ∈ C(p)
M [P ] for some p ∈ P . As for

the reverse inclusion, if n ∈ C(α)
M [P ] for some α ∈ P then set

mj =


nj + kj if j ∈ P,
nj − kj if j ∈ S \ P,
nj if j /∈ S,

and observe that m ∈ Nd \ CM since mp >M and nj − kj > 0 for every j ∈ S \ P . Thus,
since clearly (n,m) ∈ A∗

Md [P ], we have shown n ∈ CM [P ] and (5.34) is proved.
Next, since for every distinct p1, . . . , pq ∈ P the definition (5.33) yields∣∣C(p1)

M [P ] ∩ · · · ∩ C(pq)
M [P ]

∣∣ = kp1 · · · kpqMd−q +O(Md−q−1),

then (a) follows from (5.34) and the inclusion-exclusion principle.

We now turn to (b) and fix α ∈ S\P . Let C(d)
M be the d-dimensional discrete hypercube

of length M defined as in (5.19). We then set

A(d−1)

Md−1 = C(d−1)
M × (Nd−1 \ C(d−1)

M )

and introduce

A∗Md−1 [P ](d−1) =

{
(n,m) ∈ A(d−1)

Md−1

∣∣∣∣∣
nj + kj = mj ,
nj − kj = mj ,

nj = mj ,

nj 6= 0,
nj > kj ,

if j ∈ P
if j ∈ S \ (P ∪ {α})
if j /∈ S \ {α}

}
.

The statement (a) of the lemma applied in dimension d− 1 then provides∣∣A∗Md−1 [P ](d−1)
∣∣ = o(Md−1). (5.35)

Consider the map p : Nd → Nd−1 defined by

p(n1, . . . , nd) = (n1, . . . , nα−1, nα+1, . . . , nd).

Let (n,m) ∈ A∗
Md [P ;α]. Since m ∈ Nd \ C(d)

M and mα 6 kα < M , there exists j 6= α

such that mj > M . It follows that (p(n), p(m)) ∈ C(d−1)
M × (Nd−1 \ C(d−1)

M ) and thus
(p(n), p(m)) ∈ A∗

Md−1 [P ](d−1). As a consequence, we have the upper bound∣∣A∗Md [P ;α]
∣∣ 6 kα

∣∣(p× p)
(
A∗Md [P ;α]

)∣∣ 6 kα
∣∣A∗Md−1 [P ](d−1)

∣∣
and thus (b) follows from (5.35).

5.3 Covariance asymptotics: the general case

We now extend Proposition 5.2 to the general setting of measures satisfying the assump-
tions of Theorem 2.1. More precisely, we prove the following.
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Proposition 5.5. Let µ = µ1⊗· · ·⊗µd, where the µj’s are Nevai-class probability measures
on I. Let x1, . . . ,xN and x∗1, . . . ,x

∗
N be random variables drawn from the multivariate OP

Ensembles with respective reference measures µ and µ⊗deq . Then, given any polynomial

functions P,Q on Rd,

lim
N→∞

1

N1−1/d

∣∣∣∣∣Cov

 N∑
i=1

P (xi),
N∑
j=1

Q(xi)

− Cov

 N∑
i=1

P (x∗i ),
N∑
j=1

Q(x∗i )

 ∣∣∣∣∣ = 0. (5.36)

For the proof of the proposition, we use a few ingredients from the Step 2 of the proof
of Lemma 4.5 to which we refer the reader to.

Proof of Proposition 5.5. By linearity, it is enough to prove the proposition with P (x) =

xα1
1 · · ·xαdd and Q(x) = xβ1

1 · · ·xβdd for any fixed α1, β1, . . . , αd, βd ∈ N. Lemma 5.1 then
provides

Cov

 N∑
i=1

P (xi),
N∑
j=1

Q(xi)

 =
N−1∑
n=0

∞∑
m=N

〈xα1
1 · · ·xαdd ϕn, ϕm〉L2(µ)〈xβ1

1 · · ·xβdd ϕn, ϕm〉L2(µ)

=
∑

(n,m)∈AN

d∏
j=1

〈xαjϕ(j)
nj , ϕ

(j)
mj 〉L2(µj)〈xβjϕ(j)

nj , ϕ
(j)
mj 〉L2(µj)

(5.37)

where we recall that

AN =
{(

b(n), b(m)
)

: n 6 N − 1, m > N
}
⊂ Nd × Nd.

In particular, by choosing µ = µ⊗deq in (5.37), we obtain

Cov

 N∑
i=1

P (x∗i ),
N∑
j=1

Q(x∗i )

 =
∑

(n,m)∈AN

d∏
j=1

〈xαjTnj , Tmj 〉L2(µeq)〈xβjTnj , Tmj 〉L2(µeq).

(5.38)
Thus, by combining (5.37) and (5.38), we see that, if we set for convenience

E(n,m) =

∣∣∣∣∣
d∏
j=1

〈xαjϕ(j)
nj , ϕ

(j)
mj 〉L2(µj)〈xβjϕ(j)

nj , ϕ
(j)
mj 〉L2(µj)

−
d∏
j=1

〈xαjTnj , Tmj 〉L2(µeq)〈xβjTnj , Tmj 〉L2(µeq)

∣∣∣∣∣, (5.39)

then proving the proposition amounts to showing that

lim
N→∞

1

N1−1/d

∑
(n,m)∈AN

E(n,m) = 0. (5.40)

Next, for every j ∈ {1, . . . , d}, the three-term recurrence relation reads

xϕ(j)
n = a(j)

n ϕ
(j)
n+1 + b(j)n ϕ(j)

n + a
(j)
n−1ϕ

(j)
n−1, n > 0, (5.41)
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where we set a
(j)
−1 = 0. As in Step 2 of the proof of Lemma 4.5, we complete the sequences of

recurrence coefficients (a
(j)
n )n∈N and (b

(j)
n )n∈N introduced into sequences (a

(j)
n )n∈Z, (b

(j)
n )n∈Z,

where we set a
(j)
n = b

(j)
n = 0 for every n < 0. We thus obtain the representations

〈xαϕ(j)
nj , ϕ

(j)
mj 〉L2(µj) = 1|nj−mj |6α

∑
γ:(0,nj−mj)→(α,0)

∏
e∈γ

ω(e){(a(j)
n+mj

), (b
(j)
n+mj

)}, (5.42)

and

〈xαTnj , Tmj 〉L2(µeq) = 1|nj−mj |6α
∑

γ:(0,nj−mj)→(α,0)

∏
e∈γ

ω(e){(a∗n+mj
), (b∗n+mj

)}. (5.43)

Since the measures µj are Nevai-class by assumption, we have a
(j)
n −a∗n → 0 and b

(j)
n −b∗n →

0 as n→∞ for every j ∈ {1, . . . , d}. Notice that for every nj , the right-hand side of (5.42)

is a polynomial function of a
(j)
mj−α, b

(j)
mj−α, . . . , a

(j)
mj+α

, b
(j)
mj+α

and does not depend on any
other recurrence coefficients. Thus, we obtain for every fixed α ∈ N,

sup
nj∈N

∣∣∣〈xαϕ(j)
nj , ϕ

(j)
mj 〉L2(µj) − 〈xαTnj , Tmj 〉L2(µeq)

∣∣∣ −−−−→
mj→∞

0. (5.44)

Moreover, we see from (5.39), (5.42) and (5.43) that E(n,m) = 0 except when |nj −
mj | 6 min(αj , βj) for every j ∈ {1, . . . , d}. We then split the set of contributing indices
into two subsets,

A∗N =
{

(n,m) ∈ AN : |nj −mj | 6 min(αj , βj)
}
∩
{
mj > N1/2d for every j

}
,

A0
N =

{
(n,m) ∈ AN : |nj −mj | 6 min(αj , βj)

}
∩
{
mj < N1/2d for at least one j

}
.

It then follows from (5.44) that

lim
N→∞

sup
(n,m)∈A∗N

∣∣E(n,m)
∣∣ = 0 (5.45)

and that there exists C > 0 independent on N satisfying

sup
(n,m)∈A0

N

∣∣E(n,m)
∣∣ 6 sup

(n,m)∈AN

∣∣E(n,m)
∣∣ 6 C. (5.46)

Next, we write

1

N1−1/d

∑
(n,m)∈AN

E(n,m)

=
1

N1−1/d

∑
(n,m)∈A∗N

E(n,m) +
1

N1−1/d

∑
(n,m)∈A0

N

E(n,m)

6

∣∣A∗N ∣∣
N1−1/d

sup
(n,m)∈A∗N

∣∣E(n,m)
∣∣+

∣∣A0
N

∣∣
N1−1/d

sup
(n,m)∈A0

N

∣∣E(n,m)
∣∣. (5.47)

and claim that we have

lim sup
N→∞

∣∣A∗N ∣∣
N1−1/d

<∞, (5.48)

37



and, moreover,

lim
N→∞

∣∣A0
N

∣∣
N1−1/d

= 0. (5.49)

Together with (5.45)–(5.46), this would prove (5.40) and thus the proposition.
We finally prove (5.48) and (5.49) in order to complete the proof of the proposition.

Let us set κj = max(αj , βj) for convenience. Clearly,∣∣A∗N ∣∣ =
∣∣∣ ⋃
n∈Nd

{
m ∈ Nd : (n,m) ∈ A∗N

}∣∣∣
6 max

n∈Nd

∣∣∣{m ∈ Nd : (n,m) ∈ A∗N
}∣∣∣× ∣∣∣{n ∈ Nd : (n,m) ∈ A∗N for some m ∈ Nd

}∣∣∣.
(5.50)

First, since |nj −mj | 6 κj for every j as soon as (n,m) ∈ A∗N , we have the upper bound

max
n∈Nd

∣∣∣{m ∈ Nd : (n,m) ∈ A∗N
}∣∣∣ 6 d∏

j=1

(2κj + 1). (5.51)

Next, set M = bN1/dc so that Md 6 N < (M + 1)d. If (n,m) ∈ A∗N , then it satisfies
n ∈ CM+1 and m ∈ Nd \ CM , where CM has been introduced in (5.19). Namely, it holds
that 0 6 nj 6 M for every j and there exists j0 such that mj0 > M . Together with
|nj0 −mj0 | 6 κj0 , this yields M − κj0 6 nj0 6M and thus provides the upper bound∣∣∣{n ∈ Nd : (n,m) ∈ A∗N for some m ∈ Nd

}∣∣∣ 6 (
d

max
j0=1

κj0 + 1)(M + 1)d−1. (5.52)

By combining (5.50)–(5.52), we have proved (5.48). The proof of (5.49) is similar. More

precisely, the only difference is that if (n,m) ∈ A(0)
N , then there exists j1 such that mj1 <√

N
1
d <
√
M + 1. Notice that necessarily j1 6= j0. Using moreover that |nj1 −mj1 | 6 κj1 ,

we obtain the upper bound∣∣∣{n ∈ Nd : (n,m) ∈ A(0)
N for some m ∈ Nd

}∣∣∣ 6 (
d

max
j0=1
j0 6=j1

κj0 + 1)(κj1 +
√
M + 1 )(M + 1)d−2

in place of (5.52), and (5.49) follows.

5.4 Extension to C 1 functions and conclusion

We consider a reference measure µ satisfying the assumptions of Theorem 2.1 and let
x1, . . . ,xN be the associated multivariate OP Ensemble. For any d-multivariate polyno-
mial P , we can write P =

∑
k∈Nd P̂ (k)Tk, where the latter sum is finite. As a consequence

of Propositions 5.2 and 5.5, we then obtain

lim
N→∞

1

N1−1/d
Var

[
N∑
i=1

P (xi)

]

=
∑

k,`∈Nd
P̂ (k)P̂ (`) lim

N→∞

1

N1−1/d
Cov

[
N∑
i=1

Tk(xi),
N∑
i=1

T`(xi)

]

=
1

2

∑
k=(k1,...,kd)∈Nd

(k1 + · · ·+ kd)P̂ (k)2 = σ2
P . (5.53)
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Therefore, we have proven Proposition 4.7 provided we restrict the test functions to poly-
nomials. We finally extend this result to C 1 test functions, and thus complete the proof
of this proposition, by means of a density argument.

First, a standard computation yields

Var

[
N∑
i=1

f(xi)

]
=

1

2

∫∫
(f(x)− f(y))2KN (x, y)2µ(dx)µ(dy). (5.54)

This indeed follows from (2.1)–(2.2) with k = 1, 2, and that KN (x, y) is a symmetric
reproducing kernel.

Now, for any f ∈ C 1(Id,R), we set

‖f‖Lip = sup
x∈Id
‖∇f(x)‖, (5.55)

so that |f(x) − f(y)| 6 ‖f‖Lip‖x − y‖ for every x 6= y. If we consider the monomials
defined by

ej(x1, . . . , xd) = xj , (5.56)

then formula (5.54) yields

Var

[
N∑
i=1

f(xi)

]
=

1

2

∫∫
(f(x)− f(y))2KN (x, y)2µ(dx)µ(dy)

6 ‖f‖2Lip

d∑
j=1

1

2

∫∫
(ej(x)− ej(y))2KN (x, y)2µ(dx)µ(dy)

= ‖f‖2Lip

d∑
j=1

Var

[
N∑
i=1

ej(xi)

]

and, as a consequence of (5.53),

lim sup
N→∞

1

N1−1/d
Var

[
N∑
i=1

f(xi)

]
6 C‖f‖2Lip, C =

d∑
j=1

σ2
ej . (5.57)

Proposition 2.4 also provides the upper bound

σ2
f 6

1

2
‖f‖2Lip. (5.58)

Next, Theorem 5 of Peet [2009] yields the existence of a sequence of multivariate polyno-
mials (Pε)ε>0 such that ‖Pε − f‖Lip 6 ε, and hence

lim sup
N→∞

1

N1−1/d
Var

[
N∑
i=1

f(xi)−
N∑
i=1

Pε(xi)

]
6 Cε2, and σ2

f−Pε 6
ε2

2
. (5.59)

Since (X,Y ) 7→ Cov(X,Y ) is a symmetric positive bilinear form, it satisfies the
Cauchy-Schwartz inequality, and thus the triangle inequality Var(X+Y )1/2 6 Var(X)1/2+
Var(Y )1/2 holds true, which in turn yields the inequality∣∣∣Var(X)1/2 − Var(Y )1/2

∣∣∣ 6 Var(X − Y )1/2. (5.60)
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For the same reason, the limiting variance satisfies |σf − σg| 6 σf−g. As a consequence,
by taking X =

∑
f(xi) and Y =

∑
Pε(xi) in (5.60), and using these two inequalities

together with (5.53) and (5.59), we obtain by letting N →∞ and then ε→ 0 that

lim
N→∞

1

N1−1/d
Var

[
N∑
i=1

f(xi)

]
= lim

ε→0
lim
N→∞

1

N1−1/d
Var

[
N∑
i=1

Pε(xi)

]
= lim

ε→0
σ2
Pε

= σ2
f

and the proof of Proposition 4.7 is therefore complete.

6 Monte Carlo with DPPs: proof of Theorem 2.7

The aim of this section is to prove the following variance decay.

Proposition 6.1. Assume µ(dx) = ω(x)dx with ω positive and C 1 on (−1, 1)d. Assume
further that µ satisfies Assumption 1. For every f ∈ C , we have

lim
N→∞

1

N1−1/d
Var

[
N∑
i=1

Nf(xi)

KN (xi,xi)
−

N∑
i=1

ω(x)f(xi)

ω⊗deq (xi)

]
= 0.

Before proving Proposition 6.1, we argue that it implies Theorem 2.7. Indeed, (5.60)
then implies that

lim
N→∞

1

N1−1/d
Var

[
N∑
i=1

Nf(xi)

KN (xi,xi)

]
= lim

N→∞

1

N1−1/d
Var

[
N∑
i=1

ω(x)f(xi)

ω⊗deq (xi)

]
= Ω2

f,ω ,

the last equality following from Theorem 2.1. Now Theorem 4.6 applies with fN (x) =
Nf(x)/KN (x, x) to yield Theorem 2.7.

From now on, we fix f ∈ C . It is thus a C 1 function and there exists ε > 0 so that
Supp(f) ⊂ Idε . If we set for convenience

EN (x) =
N

KN (x, x)
−

N∑
i=1

ω(x)

ω⊗deq (x)
, x ∈ Id,

then Theorem 4.8 yields ‖fEN‖∞ = supId |fEN | → 0 as N →∞.
In order to prove Proposition 6.1, we start with the formula coming from (5.54),

Var

[
N∑
i=1

f(xi)EN (xi)

]
=

1

2

∫∫ (
fEN (x)− fEN (y)

)2
KN (x, y)2µ(dx)µ(dy)

and split the integral in several terms that we shall analyse separately.
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6.1 The off-diagonal contribution

Given any δ > 0, we first consider the contribution

1

2

∫∫
‖x−y‖>δ

(
fEN (x)− fEN (y)

)2
KN (x, y)2µ(dx)µ(dy). (6.1)

By rough estimates, we obtain

(6.1) 6 ‖fEN‖2∞
∫∫
‖x−y‖>δ

KN (x, y)2µ(dx)µ(dy)

6
1

δ2
‖fEN‖2∞

d∑
j=1

∫∫
(xj − yj)2KN (x, y)2µ(dx)µ(dy)

6
2

δ2
‖fEN‖2∞

d∑
j=1

Var

[
N∑
i=1

ej(xi)

]
,

where the monomials ej were defined in (5.56). As a consequence, using Proposition 4.7
and that ‖fEN‖∞ → 0 as N →∞, we get

lim
N→∞

1

N1−1/d

∫∫
‖x−y‖>δ

(
fEN (x)− fEN (y)

)2
KN (x, y)2µ(dx)µ(dy) = 0 (6.2)

for every δ > 0.

6.2 The diagonal contribution

By (6.2), it is sufficient to show

lim sup
δ→0

lim sup
N→∞

1

N1−1/d

∫∫
‖x−y‖6δ

(
fEN (x)− fEN (y)

)2
KN (x, y)2µ(dx)µ(dy) = 0 (6.3)

in order to complete the proof of Proposition 6.1.
Set for convenience

Dg(x, y) =
g(x)− g(y)

‖x− y‖ , x, y ∈ Id, (6.4)

so that, |Dg(x, y)| 6 ‖g‖Lip. For every δ > 0 small enough, we have for any x, y satisfying
‖x− y‖ 6 δ,

DfEN (x, y)2 = (Df (x, y)EN (x) + DEN (x, y)f(y))2

6 2Df (x, y)2EN (x)2 + 2DEN (x, y)2f(y)2

6 2‖f‖2Lip‖1Id
ε/2
EN‖2∞ + 2‖f‖2∞DEN (x, y)2 1Id

ε/2
×Id

ε/2
(x, y).

Indeed, notice that if x ∈ Idε or y ∈ Idε , then x, y ∈ Idε/2 for every δ > 0 small enough.

Since f is by assumption supported on Idε , we know that DfEN (x, y) vanishes outside of
Idε/2 × Idε/2. This is the reason for the presence of 1Id

ε/2
in the last inequality.
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With the notation QN introduced in (4.31), we thus obtain

1

2N1−1/d

∫∫
‖x−y‖6δ

(
fEN (x)− fEN (y)

)2
KN (x, y)2µ(dx)µ(dy)

=
1

2

∫∫
‖x−y‖6δ

DfEN (x, y)2QN (dx,dy)

6 ‖f‖2Lip‖1Id
ε/2
EN‖2∞

∫∫
‖x−y‖6δ

QN (dx,dy) (6.5)

+ ‖f‖2∞
∫∫

Id
ε/2
×Id

ε/2
, ‖x−y‖6δ

DEN (x, y)2QN (dx,dy).

Moreover, because ω is C 1 on Idε/2 by assumption, and because ω⊗deq is also C 1 and positive

there, one similarly has, for every x, y ∈ Idε/2,

DEN (x, y)2 6 2DN (x, y)2 + 2Dω/ω⊗deq
(x, y)2 6 2DN (x, y)2 + 2‖ω/ω⊗deq ‖Lip, (6.6)

where DN is defined in (4.30).
Next, we have for every C > 0,∫∫

Id
ε/2
×Id

ε/2
, ‖x−y‖6δ

DN (x, y)2QN (dx, dy)

6 C2

∫∫
‖x−y‖6δ

QN (dx, dy)

+

∫∫
Id
ε/2
×Id

ε/2
, ‖x−y‖6δ

1|DN (x,y)|>C DN (x, y)2QN (dx,dy). (6.7)

We now make use of the following lemma, the proof of which is deferred to Section 6.3.

Lemma 6.2.

lim
δ→0

lim sup
N→∞

∫∫
‖x−y‖6δ

QN (dx,dy) = 0. (6.8)

As a consequence, (6.5), (6.6), and (6.7) together yield, for every C > 0,

lim sup
δ→0

lim sup
N→∞

1

2N1−1/d

∫∫
‖x−y‖6δ

(
fEN (x)− fEN (y)

)2
KN (x, y)2µ(dx)µ(dy)

6 2‖f‖2∞ lim sup
δ→0

lim sup
N→∞

∫∫
Id
ε/2
×Id

ε/2
, ‖x−y‖6δ

DN (x, y)21|DN (x,y)|>C QN (dx,dy). (6.9)

Assumption 1 allows us to conclude the proof of Proposition 6.1, up to the proof of
Lemma 6.2.

6.3 Proof of Lemma 6.2

Proof. First,∫∫
‖x−y‖6δ

QN (dx, dy) 6
1

N1−1/d

d∑
j=1

∫∫
|xj−yj |6δ

(xj − yj)2KN (x, y)2µ(dx)µ(dy). (6.10)
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We fix j ∈ {1, . . . , d} and use the notation of the proof of Lemma 4.12. It comes

KN (x, y) =
∑

[k]∈ΓN/∼

K
(j)
Nj([k])+1(xj , yj)

∏
α 6=j

ϕkα(xα)ϕkα(yα).

Squaring, integrating and using the orthonormality relations,∫∫
|xj−yj |6δ

(xj − yj)2KN (x, y)2µ(dx)µ(dy)

=
∑

[k],[`]∈ΓN/∼

1σ(k)=σ(`)

×
∫∫
|xj−yj |6δ

(xj − yj)2K
(j)
Nj([k])+1(xj , yj)K

(j)
Nj([`])+1(xj , yj)µj(dxj)µj(dyj)

=
∑

[k]∈ΓN/∼

∫∫
|xj−yj |6δ

(xj − yj)2K
(j)
Nj([k])+1(xj , yj)

2µj(dxj)µj(dyj). (6.11)

Recall M = bN1/dc and CM ⊂ ΓN ⊂ CM+1. By definition of b we have, for every
1 6 m 6M − 2,

|{[k] ∈ ΓN/ ∼ : Nj([k]) = m}| 6 dMd−2.

Notice also that (4.13) yields∫∫
(xj − yj)2K(j)

m (xj , yj)
2µj(dxj)µj(dyj) = 2a2

m,

which is bounded for every m since am → 1/2 by assumption. Now

(6.11) =

 ∑
[k]∈ΓN/∼
Nj([k])<

√
M

+
∑

[k]∈ΓN/∼
Nj([k])>

√
M

∫∫
|xj−yj |6δ

(xj − yj)2K
(j)
Nj([k])+1(xj , yj)

2µj(dxj)µj(dyj)

6 O(Md−2+1/2)

+Md−1 max√
M6m6M

∫∫
|xj−yj |6δ

(xj − yj)2K
(j)
m+1(xj , yj)

2µj(dxj)µj(dyj). (6.12)

Moreover, Lemma 4.5 yields

max√
M6m6M

∫∫
|xj−yj |6δ

(xj − yj)2K
(j)
m+1(xj , yj)

2µj(dxj)µj(dyj)→
∫∫
|x−y|6δ

L(x, y)dxdy

as M →∞. Combined with (6.10)–(6.12), we obtain

lim sup
N→∞

∫∫
‖x−y‖6δ

QN (dx, dy) 6 d

∫∫
|x−y|6δ

L(x, y)dxdy.

Finally, since L is integrable, the lemma follows by letting δ → 0.

The proof of Proposition 6.1 is therefore complete.

43



7 Discussion and perspectives

As detailed in Remark 2.6, Monte Carlo with DPPs is a stochastic counterpart to Gaussian
quadrature, introduced in Section 1.1. Compared to the Monte Carlo methods introduced
in Section 1.2, and 1.3, Theorem 2.9 is an importance sampling procedure, with negatively
correlated importance samples. This negative correlation results in a variance reduction
that impacts the decay rate of the variance. Loosely speaking, this is reminiscent of the
interesting kernel density approach to importance sampling of Delyon and Portier [2016]
described in Section 1.2. Our rates are better for equivalent smoothness in d = 1, but
for d > 1, the comparison is less clear. Further investigation is thus needed to properly
compare our methods. In terms of sampling cost, parallelizable approaches such as [Delyon
and Portier, 2016] scale very well with N , while tackling the cost of sampling DPPs is a
priority for future research, see Section 2.4.

Monte Carlo with DPPs is also reminiscent of randomized quasi-Monte Carlo methods
such as scrambled nets, introduced in Section 1.3. The important difference is that ran-
domness and discrepancy are tied in our DPP proposal. The similarities with QMC are
an interesting lead for future research. In particular, fast constructions of nets in QMC
[Dick et al., 2013] could yield fast sampling algorithms for DPPs.

Although not traditionally known as QMC methods, Bayesian quadrature is also fa-
miliar with our contribution. O’Hagan [1991] remarked that if we put a Gaussian process
prior [Rasmussen and Williams, 2006] over the integrand, then the conditional of its inte-
gral given N evaluations is a univariate Gaussian, with a closed-form mean and variance.
Sequentially minimizing this posterior variance by picking up nodes yields kernel herding
[Chen et al., 2010] or Bayesian quadrature [Huszár and Duvenaud, 2012]. The biggest
downside of such algorithms is the requirement for some key closed-form integrals [Bach
et al., 2012, Section 4.3], and the absence of a general proof that the convergence rate is
better than Monte Carlo [Bach et al., 2012, Briol et al., 2015]. As pointed out in Sec-
tion 2.4, sampling DPPs is related to sequentially maximizing the variance of a Gaussian
process. If a detailed connection is made with kernel herding, our results could potentially
lead to better understanding of the behaviour of kernel herding. Conversely, the efficient
Frank-Wolfe optimization procedures given for herding by Bach et al. [2012], Briol et al.
[2015] could influence fast sampling algorithms for DPPs.
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