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Monte Carlo with Determinantal Point Processes

We show that repulsive random variables can yield Monte Carlo methods with faster convergence rates than the typical N -1/2 , where N is the number of integrand evaluations. More precisely, we propose stochastic numerical quadratures involving determinantal point processes associated with multivariate orthogonal polynomials, and we obtain root mean square errors that decrease as N -(1+1/d)/2 , where d is the dimension of the ambient space. First, we prove a central limit theorem (CLT) for the linear statistics of a class of determinantal point processes, when the reference measure is a product measure supported on a hypercube, which satisfies the Nevai-class regularity condition; a result which may be of independent interest. Next, we introduce a Monte Carlo method based on these determinantal point processes, and prove a CLT with explicit limiting variance for the quadrature error, when the reference measure satisfies a stronger regularity condition. As a corollary, by taking a specific reference measure and using a construction similar to importance sampling, we obtain a general Monte Carlo method, which applies to any measure with continuously derivable density. Loosely speaking, our method can be interpreted as a stochastic counterpart to Gaussian quadrature, which, at the price of some convergence rate, is easily generalizable to any dimension and has a more explicit error term.

Introduction

Numerical integration, or quadrature, refers to algorithms that approximate integrals

f (x)µ(dx), (1.1)
where µ is a finite positive Borel reference measure, and where f ranges over some class of test functions C . We assume for convenience that the support of µ is included in the d-dimensional hypercube I d = [-1, 1] d , since one can recover this setting in most applications by means of appropriate transformations. For any given N , a quadrature algorithm outputs N nodes x 1 , . . . , x N ∈ I d and weights w 1 , . . . , w N ∈ R so that the approximation

N i=1 w i f (x i ) ≈ f (x)µ(dx) (1.2)
is reasonable for every f ∈ C . The nodes and weights depend on N , µ, and can be realizations of random variables, but they are not allowed to depend on f . The quality of a quadrature algorithm is assessed through the approximation error

E N (f ) = N i=1 w i f (x i ) -f (x)µ(dx) (1.3)
and specifically its behaviour as N → ∞. Many quadrature algorithms have been developed: variations on Riemann summation [START_REF] Davis | Methods of numerical integration[END_REF], Gaussian quadrature [START_REF] Gautschi | Orthogonal polynomials: computation and approximation[END_REF], Monte Carlo methods [START_REF] Robert | Monte Carlo Statistical Methods[END_REF], etc. In the remaining of Section 1, we quickly review three families of such methods to provide context for our contribution, which we then introduce in Section 1.4.

Gaussian quadrature

Let us first assume d = 1, so that µ is supported on I = [-1, 1]. Let (ϕ k ) k∈N be the orthonormal polynomials associated with this measure, that is, the family of polynomials such that ϕ k has degree k, positive leading coefficient, and ϕ k (x)ϕ (x)µ(dx) = δ k for every k, ∈ N. Gaussian quadrature, see e.g. [START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Gautschi | Orthogonal polynomials: computation and approximation[END_REF][START_REF] Brass | Quadrature theory[END_REF] for general references, then corresponds to taking for nodes x 1 , . . . , x N the zeros of the N th degree orthonormal polynomial ϕ N (x), which are real and simple. As for the weights, Gaussian quadrature corresponds to

w i = 1 K N (x i , x i ) , (1.4) 
where we introduced the N th Christoffel-Darboux kernel associated with µ, K N (x, y) = N -1 k=0 ϕ k (x)ϕ k (y).

(1.5)

This celebrated method is characterized by the property to be exact, i.e. E N (f ) = 0, for every polynomial function f of degree up to 2N -1. This is the highest possible degree such that this holds. Gaussian quadrature is thus particularly suitable when the test functions f look like polynomials. For instance, E N (f ) decays exponentially fast when f is analytic [START_REF] Gautschi | Error bounds for Gaussian quadrature of analytic functions[END_REF]. However, although Gaussian quadrature is now two centuries old [START_REF] Gauss | Methodus nova integralium valores per approximationem inveniendi[END_REF], optimal rates of decay for the error E N (f ) do not seem to be known for less regular test functions, say f ∈ C 1 , in general. By using Jackson's approximation theorem for algebraic polynomials, one can see that E N (f ) = O(1/N ) when f ∈ C 1 . Optimal decays have been recently investigated in the particular case of the Gauss-Legendre quadrature [START_REF] Xiang | An improved error bound on Gauss quadrature[END_REF]Bornemann, 2012, Xiang, 2016]. However, even in the familiar Gauss-Jacobi quadrature, optimal rates are only conjectured.

Efficient computation of the nodes and weights in Gaussian quadrature has been an active topic of research. Classical approaches are based on the QR algorithm, such as the Golub-Welsch algorithm, see e.g. [Gautschi, 2004, Section 3.5] for a discussion. The computational cost of these QR approaches usually scales as O(N 2 ). More recently, O(N ) approaches have been proposed for specific choices of the reference measure [Glaser et al., 2007, Hale and[START_REF] Hale | Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights[END_REF], with parallelizable methods [START_REF] Bogaert | Iteration-free computation of Gauss-Legendre quadrature nodes and weights[END_REF] further taking down costs.

Let us stress that Gaussian quadrature is intrinsically a one-dimensional method. Indeed, in the higher-dimensional setting where Supp(µ) ⊂ I d , although one may define multivariate orthonormal polynomials associated with µ, it is not possible to take for nodes the zeros of a multivariate polynomial. However, if µ is a product measure µ = µ 1 ⊗ • • • ⊗ µ d with each µ j supported on I, one could build a grid of nodes using d one-dimensional Gaussian quadratures. But this has for consequence to rise up the one-dimensional error estimate for E N (f ) to a power 1/d, which essentially makes Gaussian quadrature ineffective in higher dimensions than one or two. In fact, the same phenomenon arises for any other grid-like product of one-dimensional quadratures; this is commonly referred to as the curse of dimensionality.

Monte Carlo methods

Monte Carlo methods [START_REF] Robert | Monte Carlo Statistical Methods[END_REF] correspond to picking up the N nodes (x i ) in (1.2) as the realizations of random variables in I d . For instance, assuming µ in (1.2) has a density ω with respect to the Lebesgue measure, importance sampling refers to taking the (x i ) to be i.i.d. realizations with a so-called proposal density q, and the weights to be

w i = 1 N ω(x i ) q(x i ) .
That way, E N (f ) has mean zero. Provided that

Var f (X)ω(X) q(X) < ∞ (1.6)
where X has density q, E N (f ) has a standard deviation decreasing as N -1/2 , and satisfies the classical central limit theorem:

√ N E N (f ) law ----→ N →∞ N (0, σ 2 f ),
where σ 2 f equals (1.6). Let us stress that the cost of importance sampling is virtually O(1), as draws can be made in parallel.

When the ambient dimension d becomes large, practitioners typically prefer Markov chain Monte Carlo (MCMC) methods over importance sampling. This means taking w i = 1/N and nodes (x i ) to be the realization of a Markov chain with stationary distribution µ, such as the Metropolis-Hastings chain. Under general conditions on the Markov chain and for f in L 1 of an appropriate measure related to the Markov kernel, √ N E N (f ) then converges in distribution to a centered Gaussian variable [Douc et al., 2014, Theorem 7.32]. The limiting variance grows more slowly with the dimension d than for importance sampling, a posteriori justifying the preferential use of MCMC for large d. In any case, the typical order of magnitude of the error E N (f ) for Monte Carlo methods is N -1/2 , which is often deemed a rather slow decay.

Recently, [START_REF] Delyon | Integral approximation by kernel smoothing[END_REF] proposed a variant of importance sampling that takes nodes as independent draws from some proposal density q, but takes weights to be

w i = 1 N ω(x i ) q-i (x i ) ,
where q-i is the so-called leave-one-out kernel estimator of the density q of the nodes. Perhaps surprisingly, for smooth enough products f ω and the right tuning of kernel parameters, √ N E N (f ) then converges in probability to zero. Exact rates are investigated by [START_REF] Delyon | Integral approximation by kernel smoothing[END_REF], and a central limit theorem is proven. We further discuss their results in Section 7.

Quasi-Monte Carlo methods

Quasi-Monte Carlo methods (QMC; [Dick andPilichshammer, 2010, Dick et al., 2013]) are deterministic constructions that focus on the uniform case, µ(dx) = dx in (1.2). The cornerstone of classical QMC is the Koksma-Hlawka inequality [Dick et al., 2013, Equation 3.15]. This inequality bounds the error E N (f ) in (1.3) by the product of the star discrepancy of the nodes and the Hardy-Krause variation of f . The star discrepancy measures the departure of the empirical measure of the N nodes from the uniform measure. Classical QMC methods aim at proposing efficient node constructions that minimize this star discrepancy. Some constructions guarantee a star discrepancy that asymptotically decreases as fast as N -1 log d-1 N . This implies the same rate for E N (f ) provided f has finite Hardy-Krause variation. While this seems faster than typical Monte Carlo methods in Section 1.2, the rate as a function of N does not decrease until N is exponential in d. Moreover, the Hardy-Krause variation is hard to manipulate in practice.

Modern QMC methods come up with more practical rates [START_REF] Dick | High-dimensional integration: the quasi-Monte Carlo way[END_REF]. For example, scrambled nets [START_REF] Owen | Scrambled net variance for integrals of smooth functions[END_REF][START_REF] Owen | Local antithetic sampling with scrambled nets[END_REF] are randomized QMC methods, meaning that a stochastic perturbation is applied to a deterministic QMC construction. The perturbation is built so that E N (f ) has mean 0. [START_REF] Owen | Scrambled net variance for integrals of smooth functions[END_REF] shows that only assuming f is L 2 , the standard deviation of E N (f ) is o(N -1/2 ), that is, converges to zero faster than the traditional Monte Carlo rate. When f is smooth enough, which requires at least that all mixed partial derivatives of f of order less than d are continuous, [START_REF] Owen | Local antithetic sampling with scrambled nets[END_REF] further shows that the standard deviation is O(N -3/2-1/d log (d-1)/2 N ). Again, this rate decreases only when N is exponential in the dimension, but [START_REF] Owen | Scrambled net variance for integrals of smooth functions[END_REF] shows that for finite N , randomized QMC cannot perform significantly worse than Monte Carlo.

Our contribution

Our main goal is to leverage repulsive particle systems to build a Monte Carlo method with standard deviation of the error decaying as o(N -1/2 ). More precisely, the idea is to use correlated random variables for the quadrature nodes, interacting as strongly repulsive particles. Our motivation comes from specific models in random matrix theory (see Section 2.2 for references), for which the linear statistic f (x i ) converges in distribution to a Gaussian, without requiring any normalizing factor. In this work, we focus on determinantal point processes (DPPs), which have received much attention recently in probability and related fields, see [START_REF] Hough | Determinantal processes and independence[END_REF] for a survey.

In any dimension d, we construct DPPs generating the nodes x 1 , . . . , x N and appropriate weights w i 's so that the error E N (f ) in (1.3) decreases rapidly, as N → ∞. We obtain precise rates

Var[E N (f )] ∼ σ 2 f N 1+1/d
(1.7)

with explicit σ f . In fact, we prove a central limit theorem

N 1+1/d E N (f ) law ----→ N →∞ N (0, σ 2 f ), (1.8)
for a certain class of measures µ and any f essentially C 1 , see Theorems 2.7 and 2.9. We also provide experimental evidence that convergence in (1.8) happens quite fast. It turns out that, when d = 1, our method is formally very similar to Gaussian quadrature described in Section 1.1. We basically replace the zeros of orthogonal polynomials by particles sampled from orthogonal polynomial ensembles (OP Ensembles), DPPs whose building blocks are orthogonal polynomials. Our contribution also has the advantage of generalizing more naturally to higher dimensions than Gaussian quadrature through multivariate OP Ensembles.

Monte Carlo with DPPs is to be classified somewhere between classical Monte Carlo methods and QMC methods, respectively described in Sections 1.2 and 1.3. It is very much similar to importance sampling, but with negatively correlated nodes. Simultaneously, it is more Monte Carlo than scrambled nets, as it does not randomize a posteriori a low discrepancy deterministic set of points, but rather incorporate the low discrepancy constraint into the randomization procedure. We further comment on this in Section 7.

The rest of the paper is organized as follows. In Section 2, we state our quadrature rules and theoretical results on the convergence of its error. In Section 3, we demonstrate our results in a simple experimental setting. In Section 4, we introduce key notions and give the outline of our proofs, the technical parts of the proofs being detailed in Sections 5 and 6. We conclude with some perspectives in Section 7.

Statement of the results

Notation. All along this work, we write for convenience I = [-1, 1] and

I d = [-1, 1] d . Also, for any 0 < ε < 1, we set I ε = [-1 + ε, 1 -ε] and I d ε = [-1 + ε, 1 -ε] d .
Finally, except when specified otherwise, a reference measure is a positive finite Borel measure with support inside I d .

Determinantal point processes and multivariate OP Ensembles

In Section 2.1, we introduce the necessary background in order to state the main results.

Point processes and determinantal correlation functions

A simple point process (hereafter point process) on I d is a probability distribution P on finite subsets S of I d ; see [START_REF] Daley | An introduction to the theory of point processes[END_REF] for a general reference. Given a reference measure µ, a point process has a n-correlation function ρ n if one has

E   x i 1 =••• =x in ϕ(x i 1 , . . . , x in )   = (I d ) n ϕ(x 1 , . . . , x n )ρ k (x 1 , . . . , x n )µ ⊗n (dx 1 , . . . , dx n ) (2.1)
for every bounded Borel function ϕ : I n → R, where the sum in (2.1) ranges over all pairwise distinct k-uplets of the random finite subset S. The function ρ n , provided it exists, thus encodes the correlations between distinct n-uplets of the random set S.

A point process is determinantal (DPP) if there exists an appropriate kernel K : I d × I d → R such that the n-correlation function exists for every n and reads

ρ n (x 1 , . . . , x n ) = det K(x i , x ) n i, =1 , x 1 , . . . , x n ∈ I d . (2.2)
In particular such a kernel has to be positive definite, in the sense that the right-hand side of (2.2) is always non-negative. The kernel of a DPP thus encodes how the points in the random configurations interact.

A canonical way to construct DPPs generating configurations of N points P-almost surely, i.e. S = {x 1 , . . . , x N }, is the following. Consider N orthonormal functions ϕ 0 , . . . , ϕ N -1 in L 2 (µ), namely satisfying ϕ k (x)ϕ (x)µ(dx) = δ k , and take for kernel

K N (x, y) = N -1 k=0 ϕ k (x)ϕ k (y).
(2.3)

In this setting, it turns out the (permutation invariant) random variables x 1 , . . . , x N with joint probability distribution

1 N ! det K N (x i , x ) N i, =1 N i=1 µ(dx i ) (2.4)
generate a DPP with kernel K N (x, y). For further information on determinantal point processes, we refer the reader to [START_REF] Hough | Determinantal processes and independence[END_REF][START_REF] Johansson | Random matrices and determinantal processes[END_REF][START_REF] Soshnikov | Determinantal random point fields[END_REF][START_REF] Lyons | Determinantal probability measures[END_REF][START_REF] Lavancier | Determinantal point process models and statistical inference: Extended version[END_REF], 2015].

Multivariate OP Ensembles

In the one-dimensional setting, we can for instance build a DPP using (2.4) with ϕ 0 , . . . , ϕ N -1 the N lowest degree orthonormal polynomials associated with the reference measure µ. Such DPPs are known as OP Ensembles and have been popularized by random matrix theory, see e.g. [START_REF] Köning | Orthogonal polynomial ensembles in probability theory[END_REF] for an overview.

Our contribution involves a higher-dimensional generalization of OP Ensembles, relying on multivariate orthonormal polynomials, which we now introduce. Given a reference measure µ, assume it has well-defined multivariate orthonormal polynomials, meaning that P 2 (x)µ(dx) > 0 for every non-trivial polynomial P . This is for instance true if µ(A) > 0 for some non-empty open set A ⊂ I d . Now choose an ordering for the multiindices (α 1 , . . . , α d ) ∈ N d , that is, pick a bijection b : N → N d . This gives an ordering of the monomial functions (x 1 , . . . ,

x d ) → x α 1 1 • • • x α d d ,
to which one applies the Gram-Schmidt algorithm. This yields a sequence of orthonormal polynomial functions (ϕ k ) k∈N , the multivariate orthonormal polynomials. In this work, we use a specific bijection b defined in Section 2.1.3.

Equipped with this sequence (ϕ k ) k∈N of multivariate orthonormal polynomials, we finally consider for every N the DPP associated with the associated kernel (2.3), that we refer to as the multivariate OP Ensemble associated with a reference measure µ. When d = 1, it reduces to the classical OP Ensemble.

The graded lexicographic order and the bijection b

We consider the bijection b associated with the graded (with respect to the sup norm) alphabetic order on N d . We start with the usual lexicographic order on N d , defined by saying that (α 1 , . . . , α d ) < lex (β 1 , . . . , β d ) if there exists j ∈ {1, . . . , d} such that α i = β j for every i < j and α j < β j . Now we define the graded lexicographic order as follows. We say that (α 1 , . . . , α d ) < (β 1 , . . . , β d ) if either max{α 1 , . . . , α d } < max{β 1 , . . . , β d } or max{α 1 , . . . , α d } = max{β 1 , . . . , β d } and (α 1 , . . . , α d ) < lex (β 1 , . . . , β d ). Moreover, from now on we specify the bijection b to be the unique bijection N → N d increasing for this order. Otherly put, set b(0) = (0, . . . , 0) and b(n) = min N d \ b(0), . . . , b(n -1) by induction, where the minimum refers to the graded lexicographic order. An important feature of this ordering on which our proofs rely is that, for every M 1, the set of the first M d indices {b(0), . . . , b(M d -1)} matches the discrete hypercube

C M = n ∈ N d : 0 n 1 , . . . , n d M -1 .
(2.5)

The indices between b(M d -1) and b(M d+1 -1) then fill the layer C M +1 \ C M by following the usual lexicographic order.

We are now in position to state our first result on multivariate OP Ensembles, which is the cornerstone for the Monte Carlo methods we introduce later in Section 2.3.

A central limit theorem for multivariate OP Ensembles

Several central limit theorems (CLTs) have been obtained for determinantal point processes and related models in random matrix theory, but only when the random configurations lie in a one-or two-dimensional domain. See for instance [START_REF] Johansson | On random matrices from the compact classical groups[END_REF][START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF][START_REF] Diaconis | Linear functionals of eigenvalues of random matrices[END_REF][START_REF] Soshnikov | Gaussian limit for determinantal random point fields[END_REF][START_REF] Pastur | Limiting laws of linear eigenvalue statistics for Hermitian matrix models[END_REF][START_REF] Rider | The noise in the circular law and the Gaussian free field[END_REF][START_REF] Popescu | General tridiagonal random matrix models, limiting distributions and fluctuations[END_REF][START_REF] Kriecherbauer | Fluctuations of eigenvalues of matrix models and their applications[END_REF][START_REF] Ameur | Fluctuations of eigenvalues of random normal matrices[END_REF], 2015[START_REF] Berman | Sharp asymptotics for Toeplitz determinants and convergence towards the Gaussian free field on Riemann surfaces[END_REF][START_REF] Shcherbina | Fluctuations of linear eigenvalue statistics of matrix models in the multicut regime[END_REF][START_REF] Breuer | Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients[END_REF], 2014[START_REF] Johansson | Gaussian and non-Gaussian fluctuations for mesoscopic linear statistics in determinantal processes[END_REF], Lambert, 2015a,b] for a non-exhaustive list. Although DPPs on higher-dimensional supports have attracted attention in complex geometry [Berman, 2009a[Berman, ,b, 2013[START_REF] Berman | Determinantal point processes and fermions on complex manifolds: large deviations and bosonization[END_REF], in statistics [START_REF] Lavancier | Determinantal point process models and statistical inference: Extended version[END_REF], 2015, Møller et al., 2015], and in physics [START_REF] Torquato | Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory[END_REF][START_REF] Scardicchio | Statistical properties of determinantal point processes in high-dimensional euclidean spaces[END_REF], it seems no CLT has been established yet when d 3.

Our first result for multivariate OP Ensembles is a CLT for C 1 test functions when the reference measure µ is a product of d Nevai-class probability measures on I. The exact definition of the Nevai class is postponed until Definition 4.1, but we now give a simple sufficient condition. As a consequence of Denisov-Rakhmanov's theorem (see Theorem 4.2), if a measure on I has for Lebesgue decomposition µ(dx) = ω(x)dx + µ s (where µ s is orthogonal to the Lebesgue measure) with ω(x) > 0 almost everywhere, then µ is Nevai-class. Denote by (T k ) k∈N the normalized Chebyshev polynomials, defined on I by

T 0 = 1, T k (cos θ) = √ 2 cos(kθ), k 1.
Theorem 2.1. Let µ be a reference measure supported inside I d , and assume µ = µ 1 ⊗ • • • ⊗ µ d where each µ j is Nevai class (see Definition 4.1). If x 1 , . . . , x N stands for the associated multivariate OP Ensemble, then for every f ∈ C 1 (I d , R), we have

1 √ N 1-1/d N i=1 f (x i ) -E N i=1 f (x i ) law ----→ N →∞ N (0, σ 2 f ),
where

σ 2 f = 1 2 ∞ k 1 ,...,k d =0 (k 1 + • • • + k d ) f (k 1 , . . . , k d ) 2 (2.6) and f (k 1 , . . . , k d ) = I d f (x 1 , . . . , x d ) d j=1 T k j (x j ) dx j π 1 -x 2 j .
(2.7)

When d = 1, Theorem 2.1 was obtained by [START_REF] Breuer | Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients[END_REF], see also [Lambert, 2015b] for an alternative proof, but the higher-dimensional case d 2 is novel. We shall restrict to d 2 for the proof of the theorem, which is deferred to Section 5. Let us now make a few remarks concerning the statement of Theorem 2.1.

Remark 2.2. The limiting variance σ 2 f does not depend on the reference measure µ.

Remark 2.3. By making the change of variables x j = cos θ j , we obtain

f (k 1 , . . . , k d ) = ( √ 2) |{j: k j =0}| π d [0,π] d f (cos θ 1 , . . . , cos θ d ) d j=1 cos(k j θ j )dθ j ,
which is, up to a multiplicative factor, a usual Fourier coefficient.

Next, we obtain that the limiting variance in Theorem 2.1 is dominated by a Dirichlet energy.

Proposition 2.4. For any f ∈ C 1 (I d , R), we have the inequality

σ 2 f 1 2 d α=1 I d 1 -x 2 α ∂ α f (x 1 , . . . , x d ) 2 d j=1 dx j π 1 -x 2 j .
(2.8)

It will appear from the proof we provide in Section 4.3 that this inequality is sharp, since equality holds whenever f is a linear combination of monomials

x α 1 1 • • • x α d d with α j ∈ {0, 1}; see (4.26).
Remark 2.5. After the change of variables x j = cos θ j , we see the right hand side of (2.8)

reads 1 2π d d α=1 [0,π] d ∂ α f (cos θ 1 , . . . , cos θ d ) 2 sin 2 θ α d j=1 dθ j .
(2.9)

Setting for convenience f (θ 1 , . . . , θ d ) = f (cos θ 1 , . . . , cos θ d ), one can interpret (2.9) as a Dirichlet energy since it equals

1 2π d [0,π] d ∇ f (θ) 2 dθ,
where • stands for the usual Euclidean norm of R d .

We now turn to Monte Carlo methods based on Theorem 2.1.

Monte Carlo methods based on determinantal point processes

Consider a reference measure µ with support inside I d , having well-defined multivariate orthonormal polynomials (say, µ(A) > 0 for some open set A ⊂ I d ). Let K N (x, y) be the N th Christoffel-Darboux kernel for the associated multivariate OP Ensemble, namely

K N (x, y) = N -1 k=0 ϕ k (x)ϕ k (y), (2.10)
where (ϕ k ) k∈N is the sequence of multivariate orthonormal polynomials associated with µ and the graded lexicographic order, see Section 2.1.3. Our quadrature rule is as follows: take for nodes x 1 , . . . , x N the random points coming from the multivariate OP Ensemble, namely with joint density (2.4), and for weights

w i = 1/K N (x i , x i ). Thus, for any µ- integrable function f , our estimator of f (x)µ(dx) reads N i=1 f (x i ) K N (x i , x i )
.

(2.11)

One can readily see by taking k = 1 in (2.1)-( 2.3) that the estimator (2.11) is unbiased,

E N i=1 f (x i ) K N (x i , x i ) = f (x)µ(dx).
(2.12)

Remark 2.6. For d = 1, comparing (2.11) to (1.4)-(1.5) yields that our method matches Gaussian quadrature except for the nodes, since we replace the zeros of the univariate orthogonal polynomial ϕ N by random points drawn from an OP Ensemble. In fact, this replacement is not aberrant since zeros of orthogonal polynomials and particles of associated OP Ensembles get arbitrarily close with high probability as N → ∞, see [START_REF] Hardy | Average characteristic polynomials of determinantal point processes[END_REF] for further information and generalizations. Notice however that our quadrature rule makes sense in any dimension.

Our next result is a CLT for (2.11), thus giving a precise rate of decay for the error made in the approximation, provided we make regularity assumptions on µ and on the class C of test functions f . More precisely, recalling the notation

I d ε = [-1 + ε, 1 -ε] d , we consider C = f ∈ C 1 (I d , R) : Supp(f ) ⊂ I d ε for some ε > 0 . (2.13)
As for the reference measure, we shall assume µ is a product measure with a density which is C 1 and positive on the open set (-1, 1) d . We also need an extra technical assumption, Assumption 1, that we introduce and comment in Section 4.4. Set for convenience

ω ⊗d eq (x) = d j=1 1 π 1 -x 2 j , x ∈ I d . (2.14) Theorem 2.7. Let µ(dx) = ω(x)dx with ω(x) = ω 1 (x 1 ) • • • ω d (x d
) be a product reference measure supported inside I d . Assume its density ω is C 1 and positive on the open set (-1, 1) d , and satisfies Assumption 1. If x 1 , . . . , x N stands for the multivariate OP Ensemble associated with µ, then for every f ∈ C ,

N 1+1/d N i=1 f (x i ) K N (x i , x i ) -f (x)µ(dx) law ----→ N →∞ N 0, Ω 2 f,ω ,
where, see (2.7),

Ω 2 f,ω = 1 2 ∞ k 1 ,...,k d =0 (k 1 + • • • + k d ) f ω ω ⊗d eq (k 1 , . . . , k d ) 2 .
(2.15)

In particular, we have for the mean square error of the estimator,

lim N →∞ N 1+1/d E   N i=1 f (x i ) K N (x i , x i ) -f (x)µ(dx) 2   = Ω 2 f,ω .
(2.16)

We will discuss the assumptions of Theorem 2.7 in Section 4.4, but let us already state that the condition that µ is a product measure is not imposed by the method, as it is the case for Gaussian quadrature. However, our particular proof relies on this factorization. Also, anticipating the discussion on Assumption 1, we prove the following result in Section 4.4.

Proposition 2.8. Given any parameters α 1 , β 1 , . . . , α d , β d > -1, the reference measure µ(dx) = d j=1 (1 -x j ) α j (1 + x j ) β j 1 I (x j )dx j ,
(2.17)

satisfies the assumptions of Theorem 2.7.

Hereafter, we call measures of the form (2.17) Jacobi measures. From a practical point of view, Theorem 2.7 requires knowledge on the measure µ, in particular all its moments should be known, since we need the corresponding orthonormal polynomials. This is the case for most applications of Gaussian quadrature, where the reference measure is such that orthonormal polynomials are computable, like Jacobi measures (2.17) for instance.

To bypass these restrictions on µ, we provide an importance sampling result.

Theorem 2.9. Let µ(dx) = ω(x)dx be a reference measure on I d with a C 1 density ω on the open set (-1, 1) d . Consider a measure q(x)dx satisfying the assumptions of Theorem 2.7, let K N (x, y) be the N th Christoffel-Darboux kernel associated with q(x)dx, and x 1 , . . . , x N the associated multivariate OP Ensemble. Then, for every f ∈ C , we have

E N i=1 f (x i ) K N (x i , x i ) ω(x i ) q(x i ) = f (x)µ(dx), (2.18)
and moreover,

N 1+1/d N i=1 f (x i ) K N (x i , x i ) ω(x i ) q(x i ) -f (x)µ(dx) law ----→ N →∞ N 0, Ω 2 f,ω , (2.19)
where Ω 2 f,ω is the same as (2.15). In particular, we have for the mean square error of the estimator,

lim N →∞ N 1+1/d E   N i=1 f (x i ) K N (x i , x i ) ω(x i ) q(x i ) -f (x)µ(dx) 2   = Ω 2 f,ω .
(2.20) Indeed, Theorem 2.9 follows from Theorem 2.7 by taking f ω/q for test function with f ∈ C and q(x)dx for reference measure.

Remark 2.10. From a classical importance sampling perspective, it is surprising that the limiting variance in (2.19) does not depend on the proposal density q.

Remark 2.11. Proposition 2.4 also yields that

Ω 2 f,ω 1 2π d α=1 I d 1 -x 2 α ∂ α f ω ω ⊗d eq (x 1 , . . . , x d ) 2 d j=1 dx j π 1 -x 2 j (2.21)
or equivalently, see Remark 2.5,

Ω 2 f,ω 1 2π d+1 [0,π] d ∇ f ω ω ⊗d eq (θ) 2 dθ.
(2.22)

Sampling a multivariate OP Ensemble

For Monte Carlo with DPPs to be a practical tool, we need to be able to sample realizations of the random variables x 1 , . . . , x N with joint density (2.4). [START_REF] Hough | Determinantal processes and independence[END_REF] give a generic algorithm for sampling DPPs, which we use here; see also [START_REF] Scardicchio | Statistical properties of determinantal point processes in high-dimensional euclidean spaces[END_REF] and [START_REF] Lavancier | Determinantal point process models and statistical inference: Extended version[END_REF] for more details.

The algorithm is based on the fact that the chain rule for the joint distribution (2.4) is available as

1 N ! det K N (x i , x ) N i, =1 N i=1 µ(dx i ) = N i=1 1 N -i + 1 P H i-1 K N (x i , •) 2 L 2 (µ) µ(dx i ). (2.23) In (2.23), P H is the orthogonal projection onto a subspace H of L 2 (µ), H 0 = Span(ϕ 0 , . . . , ϕ N -1 ),
and

H i-1 is the orthocomplement in H 0 of Span (K N (x , •), 1 i -1)
for every i > 1. In particular, all the terms in the product of the RHS of (2.23) are probability measures [Hough et al., 2006, Proposition 19]. Notice that the factorization (2.23) is the equivalent of the "base times height" formula that computes the squared volume of the parallelotope generated by the vectors (ϕ 0 (x i ), . . . , ϕ N -1 (x i )) for 1 i N .

Using the normal equations, we can also rewrite each term in the product (2.23)

P H i-1 K N (x i , •) 2 L 2 (µ) = K(x 1 , x 1 ) if i = 1, K N (x i , x i ) -k 1:i-1 (x i ) T K -1 1:i-1 k 1:i-1 (x i ) else, (2.24)
where

k 1:i-1 (•) = (K N (x 1 , •), . . . , K N (x i-1 , •)) T and K 1:i-1 = K N (x k , x ) 1 k, i-1
.

Remark 2.12. Equation (2.24) will be familiar to users of Gaussian processes (GPs; [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF]: the unnormalized conditional densities (2.24) are the incremental posterior variances in a GP model with the same kernel.

Sampling from the joint distribution in (2.23) is achieved by sequentially sampling of each term in the product, using rejection sampling [Robert and Casella, 2004, Section 2.3]. This requires proposal densities (q i ) 1 i N and tight bounds on the density ratios

P H i-1 K N (x, •) 2 L 2 (µ) ω(x) q i (x) , 1 i N, (2.25) 
when µ(dx) = ω(x)dx. Theorem 4.8 suggests choosing

q i (x) = q(x) = ω ⊗d eq (x) = d j=1 1 π 1 -x 2 j 1 [-1,1] (x j ), 1 i N.
To bound (2.25), it is enough to bound K N (x, x)ω(x)/ω ⊗d eq (x) since K N is a positive definite kernel. Obtaining tight bounds is problem-dependent. For Jacobi measures, such bounds can be found for instance in [START_REF] Gautschi | How sharp is Bernstein's inequality for Jacobi polynomials[END_REF].

Overall, the cost of the sampling algorithm described in this section is the Achille's heel of Monte Carlo with DPPs for now. Without taking into account the evaluation of orthogonal polynomials nor rejection sampling, the number of basic operations is as much as for Gram-Schmidt orthogonalization of N vectors of dimension N , that is of order N 3 [Golub and Van Loan, 2012, Section 5.2]. Improving this cost is out of the scope of this paper, but we further comment on this issue in Section 7.

Experimental illustration

In this section, we illustrate Theorem 2.7 with a toy experiment1 . In particular, we investigate how fast the Gaussian limit appears.

We take the reference measure µ(dx) to be the product Jacobi measure in (2.17) with α 1 = β 1 = -1/2, and α j , β j drawn i.i.d. uniformly on [-1/2, 1/2] for 1 < j d. As proposed in Section 2.4, we use ω eq for density proposal in the rejection sampling steps, and the bounds in [START_REF] Gautschi | How sharp is Bernstein's inequality for Jacobi polynomials[END_REF]. Figure 1 multivariate OP Ensemble when d = 2 and N = 150. Each disk is centered at a node x i in the sample, and the area of the disk is proportional to the weight 1/K N (x i , x i ). The marginal plots on each axis depict the marginal histograms of the weighted sample, with a green curve indicating the density of the marginal Jacobi measures corresponding to j = 1, 2 in (2.17). Good agreement is observed for the marginals, as expected from the unbiasedness in (2.12). We define a simple "bump" test function that is

C ∞ on I d = [-1, 1] d and vanishes outside I d ε = [-1 + ε, 1 -ε] d , f (x) = 1 I d ε (x) d j=1 exp - 1 1 -ε -x 2 j ,
(3.1) so as to satisfy the assumptions of Theorem 2.7. We set ε = 0.05 and plot f for d = 2 in Figure 1(b).

For various N ∈ [10, 150] and each dimension d ∈ {1, 2, 3, 4}, we sample N repeat = 100 independent realizations of {x 1 , . . . , x N }. We plot the results for each dimension d in Figure 2. On each quadrant and for each N , we plot the sample variance of

N i=1 f (x i ) K N (x i , x i ) ,
computed over the N repeat realizations. Blue and red dots indicate standard confidence intervals, for indication only.

For a given dimension d, we want to infer the rate of decay of the variance, in order to confirm the rate in the CLT of Theorem 2.7. We proceed as follows. We first select the values of N for which the N repeat realizations give a p-value larger than 0.05 in a Kolmogorov-Smirnov test of Gaussianity. This is meant to eliminate the small values of N for which the Gaussian in the CLT (2.19) is a bad approximation for our samples. We do not claim to perform any multiple testing, but rather use the p-value as a loose indicator of Gaussianity. The bottom plot of each quadrant of Figure 2 shows the p-values as a function of N . Note how Gaussianity is hinted even for small N in d = 1, 2, while for larger dimensions, it takes larger N to kick in. Then, we perform a standard Bayesian linear regression on the selected log variances vs. log(N ), with wide Gaussian priors for the slope and intercept. For visualization, we plot on each quadrant the maximum a posteriori (MAP) line in green and indicate its slope in the legend. We now summarize the obtained posteriors by giving central 95%-credible intervals in Table 3, that is an interval such that the posterior puts 2.5% of its mass to its left and another 2.5% to its right.

d credible interval C theoretical slope s th = -1 -1/d s th ∈ C? 1 [-2.12, -1.93] -2 2 [-1.61, -1.38] -1.5 3 [-1.55, -1.23] -1.33 4 [-1.74, -1.20] -1.25
Table 1: Posterior credible intervals for the variance decay.

Table 3 shows very good agreement between experimental results and the CLT in Theorem 2.7 for each dimension d. As shown by the MAP slope and the credible intervals in Table 3, the CLT approximation is strikingly accurate for d = 1, 2, even for small N . For d = 3, 4, the credible intervals are relatively large, and the MAP values are quite off the theoretical slopes. This larger uncertainty is due to less points satisfying our Gaussianity requirement, in the bottom panels of Figures 2(c) and 2(d), and a more erratic behaviour in the top panel of Figure 2(d). Unsurprisingly, convergence to a Gaussian distribution is slower when the dimension increases.

Orthogonal polynomials and outlines for the proofs

In this section, we provide some general background on orthogonal polynomials and outlines for the proofs of the main theorems.

Orthogonal polynomials and the Nevai class

In the following, we use the equilibrium measure µ eq of I, defined by

µ eq (dx) = ω eq (x)dx, ω eq (x) = 1 π √ 1 -x 2 1 I (x). (4.1)
The name comes from its characterization as the unique minimizer of the logarithmic energy log |x -y| -1 µ(dx)µ(dy) over Borel probability measures µ on I [START_REF] Saff | Logarithmic potentials with external fields[END_REF]. It is also the image of the uniform measure on the unit circle through the map e iθ → x = cos θ. The associated orthonormal polynomials are the normalized Chebyshev polynomials of the first kind, defined on I by

T k (cos θ) = √ 2 cos(kθ) if k 1 1 if k = 0 , θ ∈ [0, π]. (4.2)
They satisfy the three-term recurrence relation

xT k (x) = a * k T k+1 (x) + b * k T k (x) + a * k-1 T k-1 (x), k ∈ N, (4.3)
where

a * k =      0 if k = -1 1/ √ 2 if k = 0 1/2 if k 1 and b * k = 0. (4.4)
More generally, given a reference measure µ on I with orthonormal polynomials (ϕ k ), we always have the three-term recurrence relation Consider now the Christoffel-Darboux kernel

xϕ k (x) = a k ϕ k+1 (x) + b k ϕ k (x) + a k-1 ϕ k-1 (x), k ∈ N, ( 4 
K N (x, y) = N -1 k=0 ϕ k (x)ϕ k (y), (4.6) 
and notice 1 N K N (x, x)µ(dx) is a probability measure. One of the interesting properties of Nevai-class measures is that this probability measure has µ eq for weak limit as N → ∞ [START_REF] Stahl | General orthogonal polynomials[END_REF]].

Theorem 4.3. Assume µ supported on I is Nevai-class. Then, for every f ∈ C 0 (I, R),

f (x) 1 N K N (x, x)µ(dx) ----→ N →∞ f (x)µ eq (dx).
Now, consider instead a reference measure µ on I d with associated multivariate orthogonal polynomials (ϕ k ) k∈N (see Section 2.1) and Christoffel-Darboux kernel K N (x, y) defined as in (4.6). Assume further that µ = µ 1 ⊗ • • • ⊗ µ d is a product of d measures µ j on I, and denote by ϕ (j) k and K (j) N (x, y) the respective orthogonal polynomials and Christoffel-Darboux kernel associated with µ j . Then, we have

ϕ k (x) = ϕ (1) k 1 (x 1 ) • • • ϕ (d) k d (x d ) (4.7)
where (k 1 , . . . , k d ) = b(k). Moreover,

K M d (x, y) = d j=1 K (j)
M (x j , y j ). 

f (x) 1 N K N (x, x)µ(dx) ----→ N →∞ f (x)µ ⊗d eq (dx).
(4.9)

Proof. By the Stone-Weierstrass theorem, it is enough to show (4.9) when f (x) = d j=1 f j (x j ) with f j ∈ C 0 (I, R). Without loss of generality, one can further assume the functions f j are non-negative. Let M = N 1/d be the unique integer satisfying

M d N < (M + 1) d . Since we have K M d (x, x) K N (x, x) K (M +1) d (x, x) and, by (4.8), M d N d j=1 f j (x) 1 M K (j) M (x, x)µ j (dx) f (x) 1 N K N (x, x)µ(dx) (M + 1) d N d j=1 f j (x) 1 M + 1 K (j)
M +1 (x, x)µ j (dx), (4.10)

Corollary 4.4 follows from Theorem 4.3.

The next lemma is yet another aspect of Nevai-class measures that is relevant to our proofs, and may be of independent interest. Lemma 4.5. Assume µ supported on I is Nevai-class. We have the weak convergence of

Q N (dx, dy) = (x -y) 2 K N (x, y) 2 µ(dx)µ(dy) (4.11) towards L(dx, dy) = 1 2
(1xy)µ eq (dx)µ eq (dy). (4.12)

Proof. First, the Christoffel-Darboux formula reads

(x -y) 2 K N (x, y) 2 = a 2 N ϕ N (x)ϕ N -1 (y) -ϕ N -1 (x)ϕ N (y) 2 , (4.13)
and thus, by the orthonormality conditions, we see Q N (dx, dy) = 2a 2 N . Since µ is Nevai-class, the former converges to 1/2 = L(dx, dy). This allows us to use the usual weak topology (i.e. the topology coming by duality with respect to the continuous functions) for bounded Borel measures.

Step 1. We first prove the lemma when µ = µ eq , so that the ϕ k 's are the Chebyshev polynomials T k , see (4.2). By (4.13), the push-forward of (4.11) by the map (x, y) → (cos θ, cos η), where θ, η ∈ [0, π], reads

1 π 2 cos(N θ) cos((N -1)η) -cos((N -1)θ cos(N η) 2 dθdη. (4.14)
This measure has for Fourier transform

1 π 2 π 0 π 0 e i(θu+ηv) cos(N θ) cos((N -1)η) -cos((N -1)θ) cos(N η) 2 dθdη = 1 π 2 π 0 π 0 cos(θu + ηv) cos(N θ) cos((N -1)η) -cos((N -1)θ) cos(N η) 2 dθdη.
By developing the square in the integrand and linearizing the products of cosines, we see that the non-vanishing contribution as N → ∞ of the Fourier transform are the terms which are independent on N . Indeed, the N -dependent terms come up with a factor 1/N after integration. Thus, the Fourier transform equals, up to O(1/N ), to

1 2π 2 π 0 π 0 cos(θu + ηv) 1 -cos θ cos η dθdη.
This yields the weak convergence of (4.14) towards (2π 2 ) -1 (1cos θ cos η)dθdη, and the lemma follows, in the case where µ = µ eq , by taking the image of the measures by the inverse map (cos θ, cos η) → (x, y).

Step 2. We now prove the lemma for a general Nevai-class measure µ on I. Let us denote by Q µ N the measure (4.11) in order to stress the dependence on µ. Thanks to Step 1, it is enough to prove that for every m, n ∈ N, we have lim

N →∞ x m y n Q µ N (dx, dy) - x m y n Q µeq N (dx, dy) = 0,
in order to complete the proof of the lemma. Recalling (4.11), (4.13), and that a N → 1/2, it is enough to show that for every m ∈ N,

lim N →∞ x m ϕ 2 N (x)µ(dx) -x m T 2 N (x)µ eq (dx) = 0 (4.15) and lim N →∞ x m ϕ N (x)ϕ N -1 (x)µ(dx) -x m T N (x)T N -1 (x)µ eq (dx) = 0. (4.16)
To do so, we first complete for convenience the sequences of recurrence coefficients (a n ) n∈N and (b n ) n∈N introduced in (4.5) as bi-infinite sequences (a n ) n∈Z , (b n ) n∈Z , where we set a n = b n = 0 for every n < 0. It follows inductively from the three-term recurrence relation (4.5) that for every k, , m ∈ N,

x m ϕ k (x)ϕ (x)µ(dx) = γ:(0,k)→(m, ) e∈γ
ω(e) {(an), (bn)} , (4.17)

where the sum ranges over all the paths γ lying on the oriented graph with vertices Z 2 and edges (i, j) → (i + 1, j + 1), (i, j) → (i + 1, j) and (i, j) → (i + 1, j -1) for (i, j) ∈ Z 2 , starting from (0, k) and ending at (m, ). For every edge e of Z 2 , we introduced the weight associated with the sequences

(a n ) = (a n ) n∈Z , (b n ) = (b n ) n∈Z defined by ω(e) {(an), (bn)} =      a j if e = (i, j) → (i + 1, j + 1) b j if e = (i, j) → (i + 1, j) a j-1 if e = (i, j) → (i + 1, j -1), (4.18)
see also [START_REF] Hardy | Average characteristic polynomials of determinantal point processes[END_REF]. Now, observe that the set of all paths γ satisfying γ : (0, k) → (m, ) only depends on k, through |k -| and is empty as soon as |k -| > m. Thus it is a finite set, and moreover, by translation of the indices, for every k, , m ∈ N we have

x m ϕ k (x)ϕ (x)µ(dx) = 1 |k-| m γ:(0,k-)→(m,0) e∈γ ω(e) {(a n+ ), (b n+ )} . (4.19)
In particular, see (4.3)-(4.4),

x m T k (x)T (x)µ eq (dx) = 1 |k-| m γ:(0,k-)→(m,0) e∈γ ω(e) {(a * n+ ), (b * n+ )} . (4.20)
Finally, by combining (4.19) and (4.20), we obtain 4.2 Sketch of the proof of Theorem 2.1

x m ϕ k (x)ϕ (x)µ(dx) -x m T k (x)T (x)µ eq (dx)

Reduction to probability reference measures

First, in the statement of Theorem 2.1, we can assume the reference measure µ is a probability measure without loss of generality. This will simplify notation in the proof of Theorem 2.1.

Indeed, for any positive measure µ on I d with (multivariate) orthonormal polynomials ϕ k and any α > 0, the orthonormal polynomials associated with αµ are ϕ k / √ α. Thus, if we momentarily denote by K N (µ; x, y) the N th Christoffel-Darboux kernel associated with a measure µ, we have K N (αµ; x, y) = K N (µ; x, y)/α. As a consequence, for every n 1, the correlation measures

det K N (µ; x i , x ) n i, =1 n i=1 µ(dx i ),
remain unchanged if we replace µ by αµ for any α > 0. Hence, multivariate OP Ensembles are invariant under µ → αµ.

Soshnikov's key theorem

As stated previously, Theorem 2.1 has already been proven when d = 1 by [START_REF] Breuer | Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients[END_REF], as a consequence of a generalized strong Szegő theorem they obtained. The difficulty in proving Theorem 2.1 when d 2 turns out to be of different nature than the one-dimensional setting. Indeed, the next result due to Soshnikov essentially states that the cumulants of order three and more of the linear statistic f (x i ) decays to zero as N → ∞ as soon as its variance goes to infinity. The latter condition turns out to be true if and only if d 2. Thus, a CLT follows easily as soon as one can obtain asymptotic estimates on the variance. However, if obtaining such variance estimates is relatively easy when d = 1, the task becomes more involved in higher dimension.

More precisely, the general result [START_REF] Soshnikov | Gaussian limit for determinantal random point fields[END_REF] Theorem 1] has the following consequence.

Theorem 4.6. (Soshnikov) Let x 1 , . . . , x N form a multivariate OP Ensemble with respect to a given reference measure µ on I d . Consider a sequence (f N ) of uniformly bounded and measurable real-valued functions on I d satisfying, as N → ∞,

Var N i=1 f N (x i ) -→ ∞, (4.22) 
and, for some δ > 0,

E N i=1 f N (x i ) = O   Var N i=1 f N (x i ) δ   . (4.23)
Then, we have

N i=1 f N (x i ) -E N i=1 f N (x i ) Var N i=1 f N (x i ) law ----→ N →∞
N (0, 1).

Variance asymptotics

In order to prove Theorem 2.1 it is enough to show the following asymptotics.

Proposition 4.7. Assume µ and x 1 , . . . , x N satisfy the hypothesis of Theorem 2.1. Then, for every f ∈ C 1 (I d , R), we have In our proof of Proposition 4.7, we start by investigating the limit (4.24) when µ = µ ⊗d eq , since algebraic identities are available for this reference measure. Then, we use comparison estimates to prove (4.24) in the general case.

lim N →∞ 1 N 1-1/d Var N i=1 f (x i ) = σ 2 f . ( 4 

A bound on the limiting variance

As stated in Proposition 2.4, one can bound the limiting variance σ 2 f by a Dirichlet energy. Besides providing some control on the amplitude of σ 2 f , we will need this inequality in the proof of Proposition 4.7. We now give a proof for this proposition.

Proof of Proposition 2.4. Let µ sc (dx) = π -1 √ 1x 2 1 I (x)dx be the semi-circle measure. The associated orthonormal polynomials are the so-called Chebyshev polynomials of the second kind

U k (cos θ) = √ 2 sin((k + 1)θ) sin θ .
For any 1 j d, define the measure

ν j (dx) = µ eq (dx 1 ) • • • µ eq (dx j-1 )µ sc (dx j )µ eq (dx j+1 ) • • • µ eq (dx d ),
so that the RHS of (2.8) becomes 1 2

d j=1 I d ∂ j f (x) 2 ν j (dx) For any k = (k 1 , . . . , k d ) ∈ N d , set T k (x) = T k 1 (x 1 ) • • • T k d (x d )
, where T k are the Chebyshev polynomials (4.2), and let

V j k (x) = T k 1 (x 1 ) • • • T k j-1 (x j-1 )U k j (x j )T k j+1 (x j+1 ) • • • T k d (x d ).
Thus, (T k ) k∈N d and (V j k ) k∈N d respectively form an orthonormal Hilbert basis of L 2 (µ ⊗d eq ) and

L 2 (ν j ). Let f ∈ C 1 (I d , R), so that f = k∈N d f (k)T k where f (k) is as in (2.7). Using the identity T k = kU k-1 , it comes ∂ j f (x) = k∈N d k j f (k)V j k (x).
Then, Parseval's identity in L 2 (ν j ) yields

I d ∂ j f (x) 2 ν j (dx) = k∈N d k 2 j f (k) 2 .
Summing over 1 j d, the RHS of (2.8) equals 1 2

d j=1 I d ∂ j f (x) 2 ν j (dx) = 1 2 k∈N d (k 2 1 + • • • + k 2 d ) f (k) 2 , (4.26)
from which Proposition 2.4 easily follows.

Assumptions of Theorem 2.7 and outline of the proof

We now discuss the assumptions and proof of Theorem 2.7. Assume the reference measure µ is a product of d measures on I, and also that µ has a density ω. Then, Corollary 4.4 suggests that, as N → ∞,

N K N (x, x) ≈ ω(x) ω ⊗d eq (x)
.

(4.27)

This heuristic would yield for the variance of the estimator (2.11),

Var N i=1 f (x i ) K N (x i , x i ) ≈ 1 N 2 Var N i=1 f (x j ) ω(x j ) ω ⊗d eq (x j ) ≈ Ω 2 f,ω N 1+1/d , (4.28) 
where for the last approximation we used Proposition 4.7 with test function f ω/ω ⊗d eq , recalling Ω f,ω was defined in (2.15). This would essentially yield the CLT in Theorem 2.7 by applying Theorem 4.6 to f N (x) = N f (x)/K N (x, x). To make the approximation (4.28) rigorous, we will need extra regularity assumptions on µ.

First, regarding the approximation (4.27), we have the following result.

Theorem 4.8. (Totik) Assume µ(dx) = ω(x)dx with ω(x) = ω 1 (x 1 ) • • • ω d (x d ), and that ω j is continuous and positive on I. Then, for every ε > 0, we have

N K N (x, x) ----→ N →∞ ω(x) ω eq (x) (4.29)
uniformly for x ∈ I d ε . For a proof of Theorem 4.8 when d = 1, see [Simon, 2011, Section 3.11] and references therein. The case d 2 follows by the same arguments as in the proof of Corollary 4.4.

Remark 4.9. It is because of Theorem 4.8 that we restrict C 1 (I d , R) to the class C defined in (2.13) in the assumptions of Theorem 2.7. Unfortunately, there are examples of reference measures µ on I such that the convergence (4.29) is not uniform on the whole of I. However, in order to extend C to C 1 (I d , R) in the statement of Theorem 2.7, it would be enough to have sup x∈I d ε N

|N/K N (x, x)ω(x)/ω ⊗d eq (x)| → 0 for some sequence ε N going to zero as N → ∞, but we were not able to locate such a result in the literature.

Next, the first approximation in (4.28) requires a control on the rate of change of N/K N (x, x). To this end, we introduce an extra assumption on the reference measure µ. More precisely, let us denote

D N (x, y) = N/K N (x, x) -N/K N (y, y) x -y , (4.30)
and further consider the sequence of measures on

I d × I d Q N (dx, dy) = 1 N 1-1/d x -y 2 K N (x, y) 2 µ(dx)µ(dy). (4.31)
Our extra assumption on µ is then the following.

Assumption 1. The measure µ satisfies

lim C→∞ lim sup δ→0 lim sup N →∞ I d ε ×I d ε , x-y δ 1 |D N (x,y)|>C D N (x, y) 2 Q N (dx, dy) = 0. (4.32)
In plain words, this means the squared rate of change D N (x, y) 2 is uniformly integrable with respect to the measures Q N , at least on the restricted domain where xy is small enough and where x and y are not allowed to reach the boundary of

I d . Remark 4.10. When d = 1, Lemma 4.5 states that if µ is Nevai-class then Q N converges weakly as N → ∞ towards L(dx, dy) = 1 2π 2 1 -xy √ 1 -x 2 1 -y 2 1 I×I (x, y)dxdy.
Because the density of L is smooth within I ε × I ε for every ε > 0, one may at least heuristically understand that (4.32) reduces to the uniform integrability of D N (x, y) 2 with respect to the Lebesgue measure instead. In higher dimension, a similar guess can be made, but we do not pursue this reasoning here.

We now discuss sufficient conditions for (4.32) to hold true.

Remark 4.11. Since, for any κ > 0, we have

1 |D N (x,y)|>C D N (x, y) 2 1 C κ |D N (x, y)| 2+κ ,
we see that condition (4.32) holds true as soon as, for every ε > 0, there exists κ, δ > 0 satisfying lim sup

N →∞ I d ε ×I d ε , x-y δ |D N (x, y)| 2+κ Q N (dx, dy) < ∞.
Namely, condition (4.32) is satisfied if the L 2+κ (Q N ) norm of the rate of change of N/K N (x, x) is bounded, at least on the restricted domain where xy is small enough and x, y away from the boundary of I d .

The following assumption is much stronger than Assumption 1, but it is easier to check in practice.

Assumption 2. The measure µ satisfies (a) µ(dx) = ω(x)dx with ω positive and continuous on (-1, 1) d .

(b) For every ε > 0, the sequence

1 N sup x∈I d ε ∇K N (x, x) is bounded.
Indeed, thanks to the rough upper bound

|D N (x, y)| sup x∈I d ε ∇(N/K N (x, x)) , x, y ∈ 1 I d ε ,
we see that Assumption 1 holds true as soon as for every ε > 0, sup x∈I d ε ∇(N/K N (x, x)) is bounded. Under Assumption 2(a), the latter follows from Assumption 2(b). Indeed, Theorem 4.8 and Assumption 2(a) together yield that for every ε > 0, there exists c > 0 independent of N such that 1 N K N (x, x) > c for every x ∈ I d ε . We conclude this section by proving that Jacobi measures (2.17) satisfy Assumption 2, which proves our Proposition 2.8. We start with a general lemma.

Lemma 4.12. Assume the measures µ 1 , . . . , µ d on I satisfy Assumption 2. Then the measure

µ 1 ⊗ • • • ⊗ µ d on I d satisfies Assumption 2.
Proof. We decompose the set Γ N = {b(0), . . . , b(N -1)} ⊂ N d in a convenient way. To do so, set σ j (k) = (k 1 , . . . , k j-1 , k j+1 , . . . , k d ) and say that k ∼ if and only if σ j (k) = σ j ( ), that is, they have same coordinates except maybe the jth one. We denote by [k] the equivalence class under this relation. Set

N j ([k]) = max{ j : ∈ [k] ∩ Γ N }.
Using the notation introduced in (4.7) and (4.8), it comes

∂ j K N (x, x) = 2 b(N -1) k=b(0) ϕ (j) k j (x j ) d dx j ϕ (j) k j (x j ) α =j ϕ (α) kα (x α ) 2 = 2 [k]∈Γ N /∼ α =j ϕ (α) kα (x α ) 2 N j ([k]) k j =0 ϕ (j) k j (x j ) d dx j ϕ (j) k j (x j ) = [k]∈Γ N /∼ α =j ϕ (α) kα (x α ) 2 d dx j K (j) N j ([k])+1 (x j , x j ) . (4.33)
Let now ε > 0. Since µ j satisfies Assumption 2, there exists C > 0 such that for all x ∈ I ε and n ∈ N,

d dx K (j) n (x, x) Cn. Let M = N 1/d , so that Γ N ⊂ C M +1 , see (2.5). Thus, N j ([k]) M for all k ∈ Γ N . By (4.33), |∂ j K N (x, x)| C(M + 1) [k]∈Γ N /∼ α =j ϕ (α) kα (x α ) 2 C(M + 1) [k]∈C M +1 α =j ϕ (α) kα (x α ) 2 = C(M + 1) α =j K (α) M +1 (x α , x α ). Hence 1 N |∂ j K N (x, x)| C M + 1 M α =j 1 M K (α) M +1 (x α , x α ),
and Theorem 4.8 concludes.

Lemma 4.13. Let α, β > -1, then the measure

(1 -x) α (1 + x) β 1 I (x)dx
satisfies Assumption 2.

Proof. Let ε > 0 be fixed. For convenience, Section 4.2.1 allows us to work with the probability measure

µ (α,β) (dx) = ω (α,β) (x)dx, ω (α,β) (x) = 1 c α,β (1 -x) α (1 + x) β ,
where the normalization constant reads

c α,β = 2 α+β+1 Γ(α + 1)Γ(β + 1) Γ(α + β + 1)
and Γ is the Euler Gamma function.

Denote by (ϕ

(α,β) n
) n∈N the associated orthonormal polynomials. They satisfy

ϕ (α,β) n (x) = P (α,β) n (x) h (α,β) n ,
where the P (α,β) n 's are the Jacobi polynomials (we refer to [START_REF] Szegő | Orthogonal polynomials[END_REF] for definitions and properties) and

h (α,β) n = P (α,β) n 2 L 2 (µ (α,β) ) = 1 n!(α + β + 2n + 1) Γ(α + β + 1)Γ(α + n + 1)Γ(β + n + 1) Γ(α + 1)Γ(β + 1)Γ(α + β + n + 1) ,
and moreover

(ϕ (α,β) n ) = u α,β 2 n(n + α + β + 1) ϕ (α+1,β+1) n-1 , u α,β = (α + β + 1)(α + β + 2) (α + 1)(β + 1) . (4.34) This yields d dx K N (x, x) = 2 N -1 k=1 ϕ (α,β) k (x)(ϕ (α,β) k ) (x) = u α,β N -1 k=1 k(k + α + β + 1) ϕ (α,β) k (x)ϕ (α+1,β+1) k-1 (x). (4.35)
By [START_REF] Kuijlaars | The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on[END_REF], we have as

k → ∞, uniformly in x = cos θ ∈ I ε , ϕ (α,β) k (cos θ) = 2 ω (α,β) (x)π √ 1 -x 2 cos k + 1 2 (α + β + 1) θ - π 2 (α + 1 2 ) + O(1/k).
(4.36) As a consequence, we obtain in the same asymptotic regime,

ϕ (α+1,β+1) k-1 (cos θ) = 2 ω (α,β) (x)π √ 1 -x 2 sin k + 1 2 (α + β + 1) θ - π 2 (α + 1 2 ) +O(1/k).
(4.37) Now (4.36) implies that the P (α,β) k (x)'s are bounded uniformly for x ∈ I and k ∈ N. Using moreover that 2 sin(u) cos(u) = sin(2u) and combining (4.35)-(4.37), we obtain for some

C 1 , C 2 > 0 that sup x∈Iε d dx K N (x, x) C 1 sup x∈Iε N -1 k=1 k sin 2k + α + β + 1 θ -π(α + 1 2 ) + C 2
where we recall the relation x = cos θ. Next, we write

N -1 k=1 k sin 2k + α + β + 1 θ -π(α + 1 2 ) N -1 k=1 ke i((2k+α+β+1)θ-π(α+ 1 2 )) 1/2
and then

N -1 k=1 ke i((2k+α+β+1)θ-π(α+ 1 2 )) = e i((α+β+1)θ-π(α+ 1 2 )) N -1 k=1 ke 2ikθ = 1 2i e i((α+β+1)θ-π(α+ 1 2 )) d dθ N -1 k=0 e 2ikθ = 1 2i e i((α+β+1)θ-π(α+ 1 2 )) d dθ e i(N -1)θ sin(N θ) sin(θ) . (4.38)
Since the absolute value of the right hand side of (4.38) is bounded by CN/ sin 2 (θ) for some C > 0 independent on N and θ, the lemma follows.

Lemmas 4.12 and 4.13 combined yield Proposition 2.8.

CLT for multivariate OP Ensembles: proof of Theorem 2.1

In this section we prove Proposition 4.7. As explained in Section 4.2, Theorem 2.1 follows from this proposition.

A useful representation of the covariance

Lemma 5.1. Let x 1 , . . . , x N be random variables drawn from a multivariate OP Ensemble with reference measure µ. For any multivariate polynomials P, Q, we have

Cov N i=1 P (x i ), N i=1 Q(x i ) = N -1 n=0 ∞ m=N P ϕ n , ϕ m Qϕ n , ϕ m ,
where • , • refers to the scalar product of L 2 (µ).

Proof. We start from the standard formula

Cov   N i=1 P (x i ), N j=1 Q(x i )   = P (x)Q(x)K N (x, x)µ(dx) - P (x)Q(y)K N (x, y) 2 µ(dx)µ(dy), (5.1)
which follows from (2.1)-(2.2) with k = 1, 2 and that K N (x, y) is symmetric. One the one hand, it follows from the definition of K N that

P (x)Q(y)K N (x, y) 2 µ(dx)µ(dy) = N -1 n=0 N -1 m=0 P ϕ n , ϕ m Qϕ n , ϕ m . (5.2)
On the other hand, by using the decomposition (where the sum is finite since P is polynomial)

P ϕ n = ∞ m=0 P ϕ n , ϕ m ϕ m
together with the identity

P (x)Q(x)K N (x, x)µ(dx) = N -1 n=0 P ϕ n , Qϕ n ,
we obtain

P (x)Q(x)K N (x, x)µ(dx) = N -1 n=0 ∞ m=0 P ϕ n , ϕ m Qϕ n , ϕ m .
(5.3) Lemma 5.1 then follows by combining (5.1), (5.2) and (5.3).

Covariance asymptotics: the Chebyshev case

We first investigate the case of the product measure µ ⊗d eq , where µ eq defined in (4.1) is the equilibrium measure of I. Recalling the definition (4.2), the multivariate Chebyshev polynomials

T k (x 1 , . . . , x d ) = T k 1 (x 1 ) • • • T k d (x d ), k = (k 1 , . . . k d ) ∈ N d , (5.4) 
satisfy the orthonormality conditions

T k (x)T (x)µ ⊗d eq (dx) = δ k , k, ∈ N d .
We shall see that the family (T k ) k∈N d diagonalizes the covariance structure associated with our point process.

Proposition 5.2. Let x * 1 , . . . , x * N be drawn according to the multivariate OP Ensemble associated with µ ⊗d eq . Then, given any multi-

indices k = (k 1 , . . . , k d ) ∈ N d and = ( 1 , . . . , d ) ∈ N d , we have lim N →∞ 1 N 1-1/d Cov N i=1 T k (x * i ), N i=1 T (x * i ) =    1 2 (k 1 + • • • + k d ) if k = , 0 if k = .
As a warm-up, let us first prove the proposition when d = 1.

Proof of Proposition 5.2 when d = 1. Throughout this proof, •, • denotes the inner product in L 2 (µ ⊗d eq ). For every k, ∈ N, Lemma 5.1 provides

Cov N i=1 T k (x * i ), N i=1 T (x * i ) = N -1 n=0 ∞ m=N T k T n , T m T T n , T m .
(5.5) First, notice that if k or is zero, then the right-hand side of (5.5) vanishes because T n , T m = δ nm , and hence we can assume both k, are non-zero. Next, (4.2) yields the multiplication formula

T k T n = 1 √ 2 T n+k 1 kn =0 + 1 √ 2 1 nk =0 1 n =k T |n-k| , k, n ∈ N.
(5.6)

Combined with the orthonormality relations, this yields for any n, m ∈ N and k > 0

T k T n , T m = 1 √ 2 1 n+k=m 1 n =0 + 1 √ 2 1 n =0 1 n =k 1 |n-k|=m .
(5.7)

Hence, if n, m ∈ N moreover satisfy n < m and m > max(k, ), then we have

T k T n , T m T T n , T m = 1 2 1 n =0 1 n+k=m 1 +n=m . (5.8) 
By plugging (5.8) into (5.5), we obtain for every N > max(k, ),

Cov N i=1 T k (x * i ), N i=1 T (x * i ) = 1 2 N -1 n=1 ∞ m=N 1 k+n=m 1 +n=m = 1 2 k 1 k= ,
and the proposition follows when d = 1.

We now provide a proof for the higher-dimensional case. We also use the multiplication formula (5.6) in an essential way, although the setting is more involved. We recall that we introduced the bijection b : N → N d associated with the graded lexicographic order in Section 2.1.3.

Proof of Proposition 5.2 when d 2. Fix multi-indices k = (k 1 , . . . , k d ) ∈ N d and = ( 1 , . . . , d ) ∈ N d ,
and also set S = j : k j = 0 , S = j : j = 0 .

Thanks to Lemma 5.1, we can write

Cov N i=1 T k (x * i ), N i=1 T (x * i ) = (n,m)∈A N T k T n , T m T T n , T m , (5.9) 
where we introduced for convenience the set

A N = (n, m) ∈ N d × N d : n b(N -1), m b(N ) .
(5.10) Next, using (5.4), the orthonormality relations for the Chebyshev polynomials and (5.7), we obtain

T k T n , T m = T k 1 T n 1 , T m 1 L 2 (µeq) • • • T k d T n d , T m d L 2 (µeq) (5.11) = j / ∈S 1 n j =m j P ⊂S 1 √ 2 |P |+|{j∈S\P : n j =0, n j =k j }| × j∈P 1 n j +k j =m j 1 n j =0 j∈S\P 1 |n j -k j |=m j , (5.12) 
where |A| stands for the cardinality of the set A.

First, notice that if S = S then the right hand side of (5.9) vanishes. Indeed, if S = S , then there exists α ∈ {1, . . . , d} such that k α = 0 and α = 0 (or the other way around, but the argument is symmetric). It then follows from (5.12) that T k T n , T m vanishes except if n α = m α , and moreover that T T n , T m vanishes except if

|n α ± α | = m α . Since α = 0, it holds T k T n , T m T T n , T m = 0 for every (n, m) ∈ N d × N d ,
and our claim follows. Moreover, because (n, m) ∈ A N yields the existence of α ∈ {1, . . . , d} such that n α < m α , one can see from (5.11) that T k T n , T m vanishes for every (n, m) ∈ A N if k = (0, . . . , 0). We henceforth assume that S = S = ∅, for the covariance not to be trivial.

By combining (5.9) with (5.12), we obtain

Cov N i=1 T k (x * i ), N i=1 T (x * i ) = P,Q⊂S (n,m)∈A N [P,Q] 1 √ 2 σ[P,Q](n)
, where we introduced the subsets (5.13) and set for convenience

A N [P, Q] = (n, m) ∈ A N n j + k j = m j , n j + j = m j , n j = 0, n j = 0, if j ∈ P if j ∈ Q ; |n j -k j | = m j , |n j -j | = m j , if j ∈ S \ P if j ∈ S \ Q ; n j = m j , if j / ∈ S
σ[P, Q](n) = |P | + |Q| + | j ∈ S \ P : n j = 0, n j = k j | + | j ∈ S \ Q : n j = 0, n j = j |. (5.14) Notice from (5.13) if k α = α = 0 and A N [P, Q] = ∅ then necessarily α ∈ P ∩ Q or α ∈ (S \ P ) ∩ (S \ Q). In particular, if k = then A N [P, Q] = ∅ unless P = Q. Thus, Cov N i=1 T k (x * i ), N i=1 T (x * i ) = 1 k = P ⊂S (n,m)∈A N [P,P ] 1 √ 2 σ[P,P ](n) + 1 k = P,Q⊂S (n,m)∈A N [P,Q] 1 √ 2 σ[P,Q](n)
.

(5.15)

Our goal is now to show that for every P, Q ⊂ S the following holds true. As N → ∞, if we assume k = , then

(n,m)∈A N [P,P ] 1 √ 2 σ[P,P ](n) = 1 2 |S| j∈P k j N 1-1/d + o(N 1-1/d ), (5.16) 
and, if instead k = , then

A N [P, Q] = o(N 1-1/d ).
(5.17)

Since an easy rearrangement argument together with the definition of S yield

P ⊂S j∈P k j = 1 2 P ⊂S j∈S k j = j⊂S k j 2 |S|-1 = d j=1 k j 2 |S|-1 ,
Proposition 5.2 would then follow from (5.15)-(5.17).

We now turn to the proof of (5.16) and (5.17).

Truncated sets and consequences. Given distinct α 1 , . . . , α p ∈ {1, . . . , d}, we introduce the truncated sets (5.20)

A N [P, Q; α 1 , . . . , α p ] = A N [P, Q] ∩ n α 1 max(k α 1 , α 1 ) ∩ • • • ∩ n αp max(k αp , αp ) .
In order to restrict ourselves to the easier setting where N is a power of d, we will use the following lemma. Its proof uses in a crucial way the graded lexicographic order we chose to equip N d with, and it is deferred to the end of the present proof. We now provide a proof for (5.16).

The main contribution. Assume k = . As a consequence of Lemma 5.3 (a), if we set M = N 1/d then we have for every N large enough .

Thus, it is enough to prove that, as M → ∞, (5.21) in order to establish (5.16). To do so, for any P ⊂ S and α ∈ S \ P , we set (5.23) and use the following lemma; its proof is deferred to the end of the actual proof.

(n,m)∈A M d [P,P ] 1 √ 2 σ[P,P ](n) = 1 2 |S| j∈P k j M d-1 + o(M d-1 ),
A * M d [P ] = A M d [P, P ] ∩ n j > k j for all j ∈ S \ P , (5.22) A * M d [P ; α] = A M d [P, P ; α] ∩ n j > k j for all j ∈ S \ (P ∪ {α}) ,
Lemma 5.4. Assume k = . For every P ⊂ S and α ∈ S \ P , we have as M → ∞

A * M d [P ] = j∈P k j M d-1 + o(M d-1
), (5.24) 5.24), and the proof of (5.16) is therefore complete.

A * M d [P ; α] = o(M d-1 ). ( 5 
We finally turn to the proof of (5.17).

The remaining contributions. Assume now that k = . Since k and have the same zero components, it follows that neither k α nor α is zero. Thus, (5.13) yields that if k α = α and A N [P, Q] = ∅, then either α ∈ P ∩ (S \ Q) or α ∈ Q ∩ (S \ P ) and moreover, for any (n, m) ∈ A N [P, Q], we have

2n α = |k α -α |, 2m α = k α + α .
In particular

A M d [P, Q] = A M d [P, Q; α].
Thus, by virtue of the rough upper bound (5.20), we can assume in the proof of (5.17 

A * M d [P ] = (n, m) ∈ A M d n j + k j = m j , n j -k j = m j , n j = m j , n j = 0, n j > k j , if j ∈ P if j ∈ S \ P if j / ∈ S .
(5.31)

Recall that A M d = C M × (N d \ C M )
where C M is defined in (5.19). Clearly, if we set

C M [P ] = n ∈ C M : there exists m ∈ N d \ C M , (n, m) ∈ A * M d [P ] (5.32) then (n, m) → n is a bijection from A * M d [P ] to C M [P ]
. We claim that if for any p ∈ P we set 

C (p) M [P ] = n ∈ C M 1 n j M -1 k j < n j M -1 M -k p n p M -1 if j ∈ P if j ∈ S \ P , ( 5 
m j =      n j + k j if j ∈ P, n j -k j if j ∈ S \ P, n j if j / ∈ S,
and observe that m ∈ N d \ C M since m p M and n jk j 0 for every j ∈ S \ P . Thus, since clearly (n, m) ∈ A * M d [P ], we have shown n ∈ C M [P ] and (5.34) is proved. Next, since for every distinct p 1 , . . . , p q ∈ P the definition (5.33) yields

C (p 1 ) M [P ] ∩ • • • ∩ C (pq) M [P ] = k p 1 • • • k pq M d-q + O(M d-q-1 ),
then (a) follows from (5.34) and the inclusion-exclusion principle.

We now turn to (b) and fix α ∈ S \P . Let C

(d)

M be the d-dimensional discrete hypercube of length M defined as in (5.19). We then set

A (d-1) M d-1 = C (d-1) M × (N d-1 \ C (d-1) M ) and introduce A * M d-1 [P ] (d-1) = (n, m) ∈ A (d-1) M d-1 n j + k j = m j , n j -k j = m j , n j = m j , n j = 0, n j > k j , if j ∈ P if j ∈ S \ (P ∪ {α}) if j / ∈ S \ {α} .
The statement (a) of the lemma applied in dimension d -1 then provides

A * M d-1 [P ] (d-1) = o(M d-1
).

(5.35)

Consider the map p : -1) . As a consequence, we have the upper bound

N d → N d-1 defined by p(n 1 , . . . , n d ) = (n 1 , . . . , n α-1 , n α+1 , . . . , n d ). Let (n, m) ∈ A * M d [P ; α]. Since m ∈ N d \ C (d) M and m α k α < M , there exists j = α such that m j M . It follows that (p(n), p(m)) ∈ C (d-1) M × (N d-1 \ C (d-1) M ) and thus (p(n), p(m)) ∈ A * M d-1 [P ] (d
A * M d [P ; α] k α (p × p) A * M d [P ; α] k α A * M d-1 [P ] (d-1)
and thus (b) follows from (5.35).

Covariance asymptotics: the general case

We now extend Proposition 5.2 to the general setting of measures satisfying the assumptions of Theorem 2.1. More precisely, we prove the following.

Proposition 5.5. Let µ = µ 1 ⊗• • •⊗µ d , where the µ j 's are Nevai-class probability measures on I. Let x 1 , . . . , x N and x * 1 , . . . , x * N be random variables drawn from the multivariate OP Ensembles with respective reference measures µ and µ ⊗d eq . Then, given any polynomial functions P, Q on R d , lim

N →∞ 1 N 1-1/d Cov   N i=1 P (x i ), N j=1 Q(x i )   -Cov   N i=1 P (x * i ), N j=1 Q(x * i )   = 0. (5.36)
For the proof of the proposition, we use a few ingredients from the Step 2 of the proof of Lemma 4.5 to which we refer the reader to.

Proof of Proposition 5.5. By linearity, it is enough to prove the proposition with P

(x) = x α 1 1 • • • x α d d and Q(x) = x β 1 1 • • • x β d d for any fixed α 1 , β 1 , . . . , α d , β d ∈ N. Lemma 5.1 then provides Cov   N i=1 P (x i ), N j=1 Q(x i )   = N -1 n=0 ∞ m=N x α 1 1 • • • x α d d ϕ n , ϕ m L 2 (µ) x β 1 1 • • • x β d d ϕ n , ϕ m L 2 (µ) = (n,m)∈A N d j=1 x α j ϕ (j) n j , ϕ (j) m j L 2 (µ j ) x β j ϕ (j) n j , ϕ (j) m j L 2 (µ j )
(5.37)

where we recall that

A N = b(n), b(m) : n N -1, m N ⊂ N d × N d .
In particular, by choosing µ = µ ⊗d eq in (5.37), we obtain

Cov   N i=1 P (x * i ), N j=1 Q(x * i )   = (n,m)∈A N d j=1 x α j T n j , T m j L 2 (µeq) x β j T n j , T m j L 2 (µeq) .
(5.38) Thus, by combining (5.37) and (5.38), we see that, if we set for convenience

E(n, m) = d j=1 x α j ϕ (j) n j , ϕ (j) m j L 2 (µ j ) x β j ϕ (j) n j , ϕ (j) m j L 2 (µ j ) - d j=1 x α j T n j , T m j L 2 (µeq) x β j T n j , T m j L 2 (µeq) , (5.39)
then proving the proposition amounts to showing that lim

N →∞ 1 N 1-1/d (n,m)∈A N E(n, m) = 0.
(5.40)

Next, for every j ∈ {1, . . . , d}, the three-term recurrence relation reads (5.41) where we set a (j)

xϕ (j) n = a (j) n ϕ (j) n+1 + b (j) n ϕ (j) n + a (j) n-1 ϕ (j) n-1 , n 0, 
-1 = 0. As in Step 2 of the proof of Lemma 4.5, we complete the sequences of recurrence coefficients (a

(j) n ) n∈N and (b (j) n ) n∈N introduced into sequences (a (j) n ) n∈Z , (b (j) n ) n∈Z ,
where we set a (j) n = b (j) n = 0 for every n < 0. We thus obtain the representations

x α ϕ (j) n j , ϕ (j) m j L 2 (µ j ) = 1 |n j -m j | α γ:(0,n j -m j )→(α,0) e∈γ ω(e) {(a (j) n+m j
), (b

(j) n+m j
)} , (5.42) and

x α T n j , T m j L 2 (µeq) = 1 |n j -m j | α γ:(0,n j -m j )→(α,0) e∈γ ω(e) {(a * n+m j
), (b * n+m j

)} .

(5.43)

Since the measures µ j are Nevai-class by assumption, we have a

(j) n -a * n → 0 and b (j)
n -b * n → 0 as n → ∞ for every j ∈ {1, . . . , d}. Notice that for every n j , the right-hand side of (5.42) is a polynomial function of a (j)

m j -α , b (j) m j -α , . . . , a (j) m j +α , b (j) 
m j +α and does not depend on any other recurrence coefficients. Thus, we obtain for every fixed α ∈ N,

sup n j ∈N x α ϕ (j) n j , ϕ (j) m j L 2 (µ j ) -x α T n j , T m j L 2 (µeq) ----→ m j →∞ 0.
(5.44)

Moreover, we see from (5.39), (5.42) and (5.43) that E(n, m) = 0 except when |n jm j | min(α j , β j ) for every j ∈ {1, . . . , d}. We then split the set of contributing indices into two subsets,

A * N = (n, m) ∈ A N : |n j -m j | min(α j , β j ) ∩ m j N 1/2d for every j , A 0 N = (n, m) ∈ A N : |n j -m j | min(α j , β j ) ∩ m j < N 1/2d
for at least one j . (5.46)

Next, we write .47) and claim that we have lim sup

1 N 1-1/d (n,m)∈A N E(n, m) = 1 N 1-1/d (n,m)∈A * N E(n, m) + 1 N 1-1/d (n,m)∈A 0 N E(n, m) A * N N 1-1/d sup (n,m)∈A * N E(n, m) + A 0 N N 1-1/d sup (n,m)∈A 0 N E(n, m) . ( 5 
N →∞ A * N N 1-1/d < ∞, (5.48) 
Therefore, we have proven Proposition 4.7 provided we restrict the test functions to polynomials. We finally extend this result to C 1 test functions, and thus complete the proof of this proposition, by means of a density argument. First, a standard computation yields 

Var N i=1 f (x i ) = 1 2 (f (x) -f (y)) 2 K N (x,
N i=1 f (x i ) = 1 2 (f (x) -f (y)) 2 K N (x, y) 2 µ(dx)µ(dy) f 2 Lip d j=1 1 2 (e j (x) -e j (y)) 2 K N (x, y) 2 µ(dx)µ(dy) = f 2 Lip d j=1 Var N i=1 e j (x i )
and, as a consequence of (5.53), lim sup

N →∞ 1 N 1-1/d Var N i=1 f (x i ) C f 2 Lip , C = d j=1
σ 2 e j .

(5.57) Proposition 2.4 also provides the upper bound

σ 2 f 1 2 f 2 Lip .
(5.58)

Next, Theorem 5 of [START_REF] Peet | Exponentially stable nonlinear systems have polynomial Lyapunov functions on bounded regions[END_REF] yields the existence of a sequence of multivariate polynomials (P ε ) ε>0 such that P εf Lip ε, and hence lim sup

N →∞ 1 N 1-1/d Var N i=1 f (x i ) - N i=1 P ε (x i ) Cε 2 , and σ 2 f -Pε ε 2 2 . (5.59) Since (X, Y ) → Cov(X, Y
) is a symmetric positive bilinear form, it satisfies the Cauchy-Schwartz inequality, and thus the triangle inequality Var(X +Y ) 1/2 Var(X) 1/2 + Var(Y ) 1/2 holds true, which in turn yields the inequality

Var(X) 1/2 -Var(Y ) 1/2
Var(X -Y ) 1/2 .

(5.60)

For the same reason, the limiting variance satisfies |σ fσ g | σ f -g . As a consequence, by taking X = f (x i ) and Y = P ε (x i ) in (5.60), and using these two inequalities together with (5.53) and (5.59), we obtain by letting N → ∞ and then ε → 0 that lim

N →∞ 1 N 1-1/d Var N i=1 f (x i ) = lim ε→0 lim N →∞ 1 N 1-1/d Var N i=1 P ε (x i ) = lim ε→0 σ 2 Pε = σ 2 f
and the proof of Proposition 4.7 is therefore complete.

6 Monte Carlo with DPPs: proof of Theorem 2.7

The aim of this section is to prove the following variance decay. Proposition 6.1. Assume µ(dx) = ω(x)dx with ω positive and C 1 on (-1, 1) d . Assume further that µ satisfies Assumption 1. For every f ∈ C , we have

lim N →∞ 1 N 1-1/d Var N i=1 N f (x i ) K N (x i , x i ) - N i=1 ω(x)f (x i ) ω ⊗d eq (x i ) = 0.
Before proving Proposition 6.1, we argue that it implies Theorem 2.7. Indeed, (5.60) then implies that lim

N →∞ 1 N 1-1/d Var N i=1 N f (x i ) K N (x i , x i ) = lim N →∞ 1 N 1-1/d Var N i=1 ω(x)f (x i ) ω ⊗d eq (x i ) = Ω 2 f,ω ,
the last equality following from Theorem 2.1. Now Theorem 4.6 applies with f N (x) = N f (x)/K N (x, x) to yield Theorem 2.7.

From now on, we fix f ∈ C . It is thus a C 1 function and there exists ε > 0 so that Supp(f ) ⊂ I d ε . If we set for convenience

E N (x) = N K N (x, x) - N i=1 ω(x) ω ⊗d eq (x) , x ∈ I d , then Theorem 4.8 yields f E N ∞ = sup I d |f E N | → 0 as N → ∞.
In order to prove Proposition 6.1, we start with the formula coming from (5.54),

Var N i=1 f (x i )E N (x i ) = 1 2 f E N (x) -f E N (y) 2 K N (x, y) 2 µ(dx)µ(dy)
and split the integral in several terms that we shall analyse separately.

The off-diagonal contribution

Given any δ > 0, we first consider the contribution 1 2

x-y >δ f E N (x)f E N (y) 2 K N (x, y) 2 µ(dx)µ(dy). (6.1)

By rough estimates, we obtain (6.1)

f E N 2 ∞
x-y >δ K N (x, y) 2 µ(dx)µ(dy)

1 δ 2 f E N 2 ∞ d j=1
(x jy j ) 2 K N (x, y) 2 µ(dx)µ(dy)

2 δ 2 f E N 2 ∞ d j=1
Var N i=1 e j (x i ) ,

where the monomials e j were defined in (5.56). As a consequence, using Proposition 4.7 and that f E N ∞ → 0 as N → ∞, we get lim

N →∞ 1 N 1-1/d x-y >δ f E N (x) -f E N (y)
2 K N (x, y) 2 µ(dx)µ(dy) = 0 (6.2)

for every δ > 0.

The diagonal contribution

By (6.2), it is sufficient to show lim sup δ→0 lim sup

N →∞ 1 N 1-1/d
x-y δ f E N (x)f E N (y)

2 K N (x, y) 2 µ(dx)µ(dy) = 0 (6.3) in order to complete the proof of Proposition 6.1. Set for convenience D g (x, y) = g(x)g(y)

xy , x, y ∈ I d , (6.4) so that, |D g (x, y)| g Lip . For every δ > 0 small enough, we have for any x, y satisfying xy δ,

D f E N (x, y) 2 = (D f (x, y)E N (x) + D E N (x, y)f (y)) 2 2D f (x, y) 2 E N (x) 2 + 2D E N (x, y) 2 f (y) 2 2 f 2 Lip 1 I d ε/2 E N 2 ∞ + 2 f 2 ∞ D E N (x, y) 2 1 I d ε/2 ×I d ε/2 (x, y).
Indeed, notice that if x ∈ I d ε or y ∈ I d ε , then x, y ∈ I d ε/2 for every δ > 0 small enough. Since f is by assumption supported on I d ε , we know that D f E N (x, y) vanishes outside of I d ε/2 × I d ε/2 . This is the reason for the presence of 1

I d ε/2
in the last inequality.

With the notation Q N introduced in (4.31), we thus obtain 1 2N 1-1/d

x-y δ f E N (x)f E N (y) 2 K N (x, y) 2 µ(dx)µ(dy) = 1 2

x-y δ D f E N (x, y) 2 Q N (dx, dy)

f 2 Lip 1 I d ε/2 E N 2 ∞ x-y δ
Q N (dx, dy) (6.5)

+ f 2 ∞ I d ε/2 ×I d ε/2 , x-y δ D E N (x, y) 2 Q N (dx, dy).
Moreover, because ω is C 1 on I d ε/2 by assumption, and because ω ⊗d eq is also C 1 and positive there, one similarly has, for every x, y ∈ I d ε/2 , D E N (x, y) 2 2D N (x, y) 2 + 2D ω/ω ⊗d eq (x, y) 2 2D N (x, y) 2 + 2 ω/ω ⊗d eq Lip , (6.6)

where D N is defined in (4.30).

Next, we have for every C > 0, We now make use of the following lemma, the proof of which is deferred to Section 6.3. As a consequence, (6.5), (6.6), and (6.7) together yield, for every C > 0, lim sup δ→0 lim sup |x j -y j | δ (x jy j ) 2 K N (x, y) 2 µ(dx)µ(dy). (6.10)

N →∞ 1 2N 1-1/d x-y δ f E N (x) -f E N (y) 2 K N (x,
We fix j ∈ {1, . . . , d} and use the notation of the proof of Lemma 4.12. It comes

K N (x, y) = [k]∈Γ N /∼ K (j)
N j ([k])+1 (x j , y j ) α =j ϕ kα (x α )ϕ kα (y α ).

Squaring, integrating and using the orthonormality relations, |x j -y j | δ (x jy j ) 2 K N (x, y) 2 µ(dx)µ(dy)

= [k],[ ]∈Γ N /∼ 1 σ(k)=σ( ) × |x j -y j | δ (x j -y j ) 2 K (j)
N j ([k])+1 (x j , y j )K

(j)

N j ([ ])+1 (x j , y j )µ j (dx j )µ j (dy j ) =

[k]∈Γ N /∼ |x j -y j | δ (x jy j ) 2 K (j)

N j ([k])+1 (x j , y j ) 2 µ j (dx j )µ j (dy j ). Notice also that (4.13) yields (x jy j ) 2 K (j) m (x j , y j ) 2 µ j (dx j )µ j (dy j ) = 2a 2 m , which is bounded for every m since a m → 1/2 by assumption. Now N j ([k])+1 (x j , y j ) 2 µ j (dx j )µ j (dy j )

O(M d-2+1/2 ) +M d-1 max √ M m M |x j -y j | δ (x j -y j ) 2 K (j)
m+1 (x j , y j ) 2 µ j (dx j )µ j (dy j ). (6.12)

Moreover, Lemma 4.5 yields max

√ M m M |x j -y j | δ (x j -y j ) 2 K (j)
m+1 (x j , y j ) 2 µ j (dx j )µ j (dy j ) → Finally, since L is integrable, the lemma follows by letting δ → 0.

The proof of Proposition 6.1 is therefore complete.

Discussion and perspectives

As detailed in Remark 2.6, Monte Carlo with DPPs is a stochastic counterpart to Gaussian quadrature, introduced in Section 1.1. Compared to the Monte Carlo methods introduced in Section 1.2, and 1.3, Theorem 2.9 is an importance sampling procedure, with negatively correlated importance samples. This negative correlation results in a variance reduction that impacts the decay rate of the variance. Loosely speaking, this is reminiscent of the interesting kernel density approach to importance sampling of [START_REF] Delyon | Integral approximation by kernel smoothing[END_REF] described in Section 1.2. Our rates are better for equivalent smoothness in d = 1, but for d > 1, the comparison is less clear. Further investigation is thus needed to properly compare our methods. In terms of sampling cost, parallelizable approaches such as [START_REF] Delyon | Integral approximation by kernel smoothing[END_REF] scale very well with N , while tackling the cost of sampling DPPs is a priority for future research, see Section 2.4. Monte Carlo with DPPs is also reminiscent of randomized quasi-Monte Carlo methods such as scrambled nets, introduced in Section 1.3. The important difference is that randomness and discrepancy are tied in our DPP proposal. The similarities with QMC are an interesting lead for future research. In particular, fast constructions of nets in QMC [START_REF] Dick | High-dimensional integration: the quasi-Monte Carlo way[END_REF] could yield fast sampling algorithms for DPPs.

Although not traditionally known as QMC methods, Bayesian quadrature is also familiar with our contribution. O'Hagan [1991] remarked that if we put a Gaussian process prior [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF] over the integrand, then the conditional of its integral given N evaluations is a univariate Gaussian, with a closed-form mean and variance. Sequentially minimizing this posterior variance by picking up nodes yields kernel herding [START_REF] Chen | Super-samples from kernel herding[END_REF] or Bayesian quadrature [START_REF] Huszár | Optimally-weighted herding is Bayesian quadrature[END_REF]. The biggest downside of such algorithms is the requirement for some key closed-form integrals [Bach et al., 2012, Section 4.3], and the absence of a general proof that the convergence rate is better than Monte Carlo [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF][START_REF] Briol | Frank-Wolfe Bayesian quadrature: Probabilistic integration with theoretical guarantees[END_REF]. As pointed out in Section 2.4, sampling DPPs is related to sequentially maximizing the variance of a Gaussian process. If a detailed connection is made with kernel herding, our results could potentially lead to better understanding of the behaviour of kernel herding. Conversely, the efficient Frank-Wolfe optimization procedures given for herding by [START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF], [START_REF] Briol | Frank-Wolfe Bayesian quadrature: Probabilistic integration with theoretical guarantees[END_REF] could influence fast sampling algorithms for DPPs.
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Figure 1

 1 Figure 1: 1(a) A weighted sample of the DPP in Theorem 2.7 with Jacobi base measure, see Section 3 for details. 1(b) The test function (3.1) when d = 2.

Figure 2 :

 2 Figure 2: Summary of the results.

  .5) where a -1 = 0 and a k > 0 and b k ∈ R for every k 0. The existence of the recurrence coefficients (a k ) k∈N and (b k ) k∈N follows by decomposing the polynomial xϕ k into the orthonormal family (ϕ ) k+1 =0 of L 2 (µ) and observing that xϕ k , ϕ = ϕ k , xϕ = 0 as soon as < k -1 by orthogonality. Definition 4.1. A measure µ supported on I is Nevai-class if the recurrence coefficients for the associated orthonormal polynomials satisfy lim k→∞ a k = 1/2, lim k→∞ b k = 0.Notice the respective limits of the a k 's and b k 's for Nevai class measures are the recurrence coefficients (4.4) of the measure µ eq when k 1.The next theorem gives a sufficient condition for a measure to be Nevai class[Simon, 2011, Theorem 1.4.2].Theorem 4.2. (Denisov-Rakhmanov) Let µ be a reference measure on I with Lebesgue decomposition µ(dx) = ω(x)dx+µ s . If ω(x) > 0 almost everywhere, then µ is Nevai-class.

  , Theorem 4.3 easily yields the following. Corollary 4.4. Let µ = µ 1 ⊗ • • • ⊗ µ d with µ j supported on I and Nevai-class. Then, for every f ∈ C 0 (I d , R),

  γ:(0,k-)→(m,0) e∈γ ω(e) {(a n+ ), (b n+ )} -e∈γ ω(e) {(a * n+ ), (b * n+ )} . (4.21) Together with the Nevai-class assumption for µ, which states that a na * n → 0 and b nb * n → 0 as n → ∞, it follows that (4.15) and (4.16) hold true by taking k = = N , or k = N and = N -1, in (4.21). This completes the proof of Lemma 4.5.

  .24) Indeed, for any d 2 and any f ∈ C 1 (I d , R), Corollary 4.4 and Proposition 4.7 imply (4.22) and (4.23) with f N = f and δ = d/(d -1). Thus, we can apply Theorem 4.6 to obtain Theorem 2.1.Proposition 4.7 is the main technical result of this work. Consider the d-fold product of the equilibrium measure (4.1), namely the probability measure on I d given by µ ⊗d eq (dx) = ω ⊗d eq (x)dx,

  (5.18) By definition of b and A N , if N = M d then A M d = C M × (N d \ C M ) where we recall C M = n ∈ N d : 0 n 1 , . . . , n d M -1 . (5.19) Moreover, if for an arbitrary N we denote by M = N 1/d the integer satisfying M d N < (M +1) d , then b(N ) ∈ C M +1 and thus, for any (n, m) ∈ A N , we have n ∈ C M +1 . As a consequence, for every P, Q ⊂ S, we have the rough upper bound |A N [P, Q; α 1 , . . . , α p ]| = O(M d-p ). In particular, A N [P, Q; α 1 , . . . , α p ] = o(N 1-1/d ) for every p 2.

Lemma 5. 3 .

 3 Assume k = . For every P ⊂ S, α ∈ S \ P and for every N > max(k d 1 , . . . , k d d ), we have (a) A N [P, P ] A N +1 [P, P ] , (b) A N [P, P ; α] A N +1 [P, P ; α] .

  .25) Next, as a consequence of the rough upper bound (5.20) and (5.25), we can writeA M d [P, P ] = A M d [P, P ] ∩ n α > k α for all α ∈ S \ P + A M d [P, P ] ∩ n α k α for at least one α ∈ S \ P = A * M d [P ] + α∈S\P A * M d [P ; α] + o(M d-1 ) = A * M d [P ] + o(M d-1). (5.26) Since for any (n, m) ∈ A * M d [P ] we have σ[P, P ](n) = 2|S|, see (5.14) and (5.22), the estimate (5.21) follows from (5.26) and (

  ) that k and differ by exactly one coordinate, namely there exists α ∈ {1, . . . , d} such that k α = α and k j = j for every j = α. In this setting, then (m, m) ∈ A N +1 [P, P ] \ A N [P, P ]. This would show in particular that A N [P, P ] A N +1 [P, P ] if either j * ∈ P or j * / ∈ S, and thus complete the proof of (a). That (m, m) ∈ A N +1 [P, P ] \ A N [P, P ] is by construction obvious provided one can show m b(N + 1). If j * ∈ P , then we have mj * = m j * + k j * = M + k j * > M and thus m ∈ N d \C M +1 . As a consequence, there exists m (M +1) d such that m = b(m) and, since N + 1 (M + 1) d , we have shown m b(N + 1). If j * / ∈ S, we argue by contradiction and assume m b(N ) = m. We shall see this is not compatible with the graded lexicographic order. Indeed, since by construction m = m and n = m (because k = (0, . . . , 0) by assumption), we actually have m < m and n < m. Because j * / ∈ S by assumption, we moreover have n j * = m j * = mj * = M and thus n, m, m ∈ C M +1 \ C M .As a consequence, n < lex m and m < lex m in the lexicographic order. This means there exists γ ∈ {1, . . . , d} such that n i = m i for every i < γ and n γ < m γ , and equivalently i / ∈ S when i < γ and γ ∈ P . Similarly, there exists η ∈ {1, . . . , d} such that mi = m i for every i < η and mη < m η , and thus i / ∈ S when i < η and η ∈ S \ P . But this is impossible and thus m b(N + 1), which completes the proof of (a).Part (b) is proved by following the exact same line of arguments; in this setting one should also check that if (n, m) ∈ A N [P, P ; α] then m α k α in order to show (m, m) (with m defined in (5.30)) actually belongs to A N +1 [P, P ; α]. Recalling α ∈ S \P by assumption this is clear, indeed m α = |n αk α | together with n α k α yield m α = k αn α k α . Proof of Lemma 5.4. To prove (a), fix P ⊂ S and assume M > max(k 1 , . . . , k d ). It follows from the definitions (5.13),(5.22) that

  n ∈ C M [P ]. By definition there exists m ∈ N d \C M such that (n, m) ∈ A * M d [P ].This provides, see (5.31), that 1n j M -1 if j ∈ P , that k j < n j M -1 if j ∈ S \ P ,and the existence of p ∈ {1, . . . , d} satisfying m p M . Since n ∈ C M then n p M -1 and thus p ∈ P because otherwise m p n p . Together with the equation n p + k p = m p this finally yields that Mk p n p M -1, namely n ∈ C (p) M [P ] for some p ∈ P . As for the reverse inclusion, if n ∈ C (α) M [P ] for some α ∈ P then set

1

  |D N (x,y)|>C D N (x, y) 2 Q N (dx, dy). (6.7)

D

  N (x, y) 2 1 |D N (x,y)|>C Q N (dx, dy). (6.9) Assumption 1 allows us to conclude the proof of Proposition 6.1, up to the proof of Lemma 6.2.6.3 Proof of Lemma 6.2Proof. First,x-y δ Q N (dx, dy) 1 N 1-1/d d j=1

  (6.11)Recall M = N 1/d and C M ⊂ Γ N ⊂ C M +1 . By definition of b we have, for every 1 m M -2, |{[k] ∈ Γ N / ∼ : N j ([k]) = m}| dM d-2 .

  j -y j | δ (x jy j ) 2 K (j)

  Lip xy for every x = y. If we consider the monomials defined by e j (x 1 , . . . , x d ) = x j ,

			y) 2 µ(dx)µ(dy).	(5.54)
	This indeed follows from (2.1)-(2.2) with k = 1, 2, and that K N (x, y) is a symmetric
	reproducing kernel.		
	Now, for any f ∈ C 1 (I d , R), we set	
		f Lip = sup x∈I d	∇f (x) ,	(5.55)
	so that |f (x) -f (y)|	f (5.56)
	then formula (5.54) yields		
	Var		
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A N [P, Q] = ∅ then yields P \ {α} = Q \ {α} and, if (n, m) ∈ A N [P, Q], then (n α , m α ) satisfies the equations

By weakening these constraints to

we obtain the upper bound

where

N [P, Q; α] is defined as in (5.13),(5.18) but we emphasized the multi-indices k, which are involved. By setting M = N 1/d + 1, we obtain from Lemma 5.3 (b), the rough upper bound (5.20) and (5.23),(5.25) that, as N → ∞,

(5.28) and similarly

(5.29)

By combining (5.27)-(5.29), we have finally proved (5.17) and the proof of Proposition 5.2 is thus complete, up to the proof of Lemmas 5.3 and 5.4.

We now provide proofs for the remaining lemmas.

Proof of Lemma 5.3.

Next, assume that j * ∈ P or j * / ∈ S. We claim that if we set

(5.30) and, moreover, lim

(5.49)

Together with (5.45)-(5.46), this would prove (5.40) and thus the proposition. We finally prove (5.48) and (5.49) in order to complete the proof of the proposition. Let us set κ j = max(α j , β j ) for convenience. Clearly,

(5.50)

First, since |n jm j | κ j for every j as soon as (n, m) ∈ A * N , we have the upper bound max

where C M has been introduced in (5.19). Namely, it holds that 0 n j M for every j and there exists j 0 such that m j 0 M . Together with |n j 0m j 0 | κ j 0 , this yields Mκ j 0 n j 0 M and thus provides the upper bound

(5.52)

By combining (5.50)-(5.52), we have proved (5.48). The proof of (5.49) is similar. More precisely, the only difference is that if (n, m) ∈ A (0)

N , then there exists j 1 such that m j 1 < √ N 1 d < √ M + 1. Notice that necessarily j 1 = j 0 . Using moreover that |n j 1m j 1 | κ j 1 , we obtain the upper bound

in place of (5.52), and (5.49) follows.

Extension to C 1 functions and conclusion

We consider a reference measure µ satisfying the assumptions of Theorem 2.1 and let x 1 , . . . , x N be the associated multivariate OP Ensemble. For any d-multivariate polynomial P , we can write P = k∈N d P (k)T k , where the latter sum is finite. As a consequence of Propositions 5.2 and 5.5, we then obtain (5.53)