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Abstract—Sparse representation has attracted much attention
from researchers in fields of signal processing, image processing,
computer vision and pattern recognition. Sparse representation
also has a good reputation in both theoretical research and practi-
cal applications. Many different algorithms have been proposed
for sparse representation. The main purpose of this article is
to provide a comprehensive study and an updated review on
sparse representation and to supply a guidance for researchers.
The taxonomy of sparse representation methods can be studied
from various viewpoints. For example, in terms of different
norm minimizations used in sparsity constraints, the methods
can be roughly categorized into five groups: sparse representation
with l0-norm minimization, sparse representation with lp-norm
(0<p<1) minimization, sparse representation withl1-norm mini-
mization and sparse representation withl2,1-norm minimization.
In this paper, a comprehensive overview of sparse representation
is provided. The available sparse representation algorithms can
also be empirically categorized into four groups: greedy strategy
approximation, constrained optimization, proximity algorithm-
based optimization, and homotopy algorithm-based sparse rep-
resentation. The rationales of different algorithms in each cat-
egory are analyzed and a wide range of sparse representation
applications are summarized, which could sufficiently reveal the
potential nature of the sparse representation theory. Specifically,
an experimentally comparative study of these sparse represen-
tation algorithms was presented. The Matlab code used in this
paper can be available at: http://www.yongxu.org/lunwen.html.

Index Terms—Sparse representation, compressive sensing,
greedy algorithm, constrained optimization, proximal algorithm,
homotopy algorithm, dictionary learning

I. I NTRODUCTION

W ITH advancements in mathematics, linear represen-
tation methods (LRBM) have been well studied and

have recently received considerable attention [1, 2]. The sparse
representation method is the most representative methodology
of the LRBM and has also been proven to be an extraordi-
nary powerful solution to a wide range of application fields,
especially in signal processing, image processing, machine
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learning, and computer vision, such as image denoising, de-
bluring, inpainting, image restoration, super-resolution, visual
tracking, image classification and image segmentation [3–10].
Sparse representation has shown huge potential capabilities in
handling these problems.

Sparse representation, from the viewpoint of its origin, is
directly related to compressed sensing (CS) [11–13], which is
one of the most popular topics in recent years. Donoho [11]
first proposed the original concept of compressed sensing. CS
theory suggests that if a signal is sparse or compressive, the
original signal can be reconstructed by exploiting a few mea-
sured values, which are much less than the ones suggested by
previously used theories such as Shannon’s sampling theorem
(SST). Candes et al. [13], from the mathematical perspective,
demonstrated the rationale of CS theory, i.e. the original signal
could be precisely reconstructed by utilizing a small portion
of Fourier transformation coefficients. Baraniuk [12] provided
a concrete analysis of compressed sensing and presented a
specific interpretation on some solutions of different signal
reconstruction algorithms. All these literature [11–17] laid the
foundation of CS theory and provided the theoretical basis for
future research. Thus, a large number of algorithms based on
CS theory have been proposed to address different problems in
various fields. Moreover, CS theory always includes the three
basic components: sparse representation, encoding measuring,
and reconstructing algorithm. As an indispensable prerequisite
of CS theory, the sparse representation theory [4, 7–10, 17]
is the most outstanding technique used to conquer difficulties
that appear in many fields. For example, the methodology of
sparse representation is a novel signal sampling method for
the sparse or compressible signal and has been successfully
applied to signal processing [4–6].

Sparse representation has attracted much attention in recent
years and many examples in different fields can be found
where sparse representation is definitely beneficial and fa-
vorable [18, 19]. One example is image classification, where
the basic goal is to classify the given test image into several
predefined categories. It has been demonstrated that natural
images can be sparsely represented from the perspective of
the properties of visual neurons. The sparse representation
based classification (SRC) method [20] first assumes that
the test sample can be sufficiently represented by samples
from the same subject. Specifically, SRC exploits the linear
combination of training samples to represent the test sample
and computes sparse representation coefficients of the linear
representation system, and then calculates the reconstruction
residuals of each class employing the sparse representation
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coefficients and training samples. The test sample will be
classified as a member of the class, which leads to the
minimum reconstruction residual. The literature [20] has also
demonstrated that the SRC method has great superiorities
when addressing the image classification issue on corrupted
or disguised images. In such cases, each natural image can be
sparsely represented and the sparse representation theorycan
be utilized to fulfill the image classification task.

For signal processing, one important task is to extract key
components from a large number of clutter signals or groups of
complex signals in coordination with different requirements.
Before the appearance of sparse representation, SST and
Nyquist sampling law (NSL) were the traditional methods
for signal acquisition and the general procedures included
sampling, coding compression, transmission, and decoding.
Under the frameworks of SST and NSL, the greatest difficulty
of signal processing lies in efficient sampling from mass
data with sufficient memory-saving. In such a case, sparse
representation theory can simultaneously break the bottleneck
of conventional sampling rules, i.e. SST and NSL, so that it has
a very wide application prospect. Sparse representation theory
proposes to integrate the processes of signal sampling and
coding compression. Especially, sparse representation theory
employs a more efficient sampling rate to measure the original
sample by abandoning the pristine measurements of SST and
NSL, and then adopts an optimal reconstruction algorithm to
reconstruct samples. In the context of compressed sensing,it
is first assumed that all the signals are sparse or approximately
sparse enough [4, 6, 7]. Compared to the primary signal
space, the size of the set of possible signals can be largely
decreased under the constraint of sparsity. Thus, massive
algorithms based on the sparse representation theory have
been proposed to effectively tackle signal processing issues
such as signal reconstruction and recovery. To this end, the
sparse representation technique can save a significant amount
of sampling time and sample storage space and it is favorable
and advantageous.

A. Categorization of sparse representation techniques

Sparse representation theory can be categorized from different
viewpoints. Because different methods have their individual
motivations, ideas, and concerns, there are varieties of strate-
gies to separate the existing sparse representation methods
into different categories from the perspective of taxonomy.
For example, from the viewpoint of “atoms”, available sparse
representation methods can be categorized into two general
groups: naive sample based sparse representation and dictio-
nary learning based sparse representation. However, on the
basis of the availability of labels of “atoms”, sparse repre-
sentation and learning methods can be coarsely divided into
three groups: supervised learning, semi-supervised learning,
and unsupervised learning methods. Because of the sparse con-
straint, sparse representation methods can be divided intotwo
communities: structure constraint based sparse representation
and sparse constraint based sparse representation. Moreover,
in the field of image classification, the representation based
classification methods consist of two main categories in terms

of the way of exploiting the “atoms”: the holistic represen-
tation based method and local representation based method
[21]. More specifically, holistic representation based methods
exploit training samples of all classes to represent the test sam-
ple, whereas local representation based methods only employ
training samples (or atoms) of each class or several classes
to represent the test sample. Most of the sparse representation
methods are holistic representation based methods. A typical
and representative local sparse representation methods isthe
two-phase test sample sparse representation (TPTSR) method
[9]. In consideration of different methodologies, the sparse
representation method can be grouped into two aspects: pure
sparse representation and hybrid sparse representation, which
improves the pre-existing sparse representation methods with
the aid of other methods. The literature [22] suggests that
sparse representation algorithms roughly fall into three classes:
convex relaxation, greedy algorithms, and combinational meth-
ods. In the literature [23, 24], from the perspective of sparse
problem modeling and problem solving, sparse decomposition
algorithms are generally divided into two sections: greedy
algorithms and convex relaxation algorithms. On the other
hand, if the viewpoint of optimization is taken into consid-
eration, the problems of sparse representation can be divided
into four optimization problems: the smooth convex problem,
nonsmooth nonconvex problem, smooth nonconvex problem,
and nonsmooth convex problem. Furthermore, Schmidt et al.
[25] reviewed some optimization techniques for solvingl1-
norm regularization problems and roughly divided these ap-
proaches into three optimization strategies: sub-gradient meth-
ods, unconstrained approximation methods, and constrained
optimization methods. The supplementary file attached with
the paper also offers more useful information to make fully
understandings of the ‘taxonomy’ of current sparse represen-
tation techniques in this paper.

In this paper, the available sparse representation methodsare
categorized into four groups, i.e. the greedy strategy approxi-
mation, constrained optimization strategy, proximity algorithm
based optimization strategy, and homotopy algorithm based
sparse representation, with respect to the analytical solution
and optimization viewpoints.

(1) In the greedy strategy approximation for solving sparse
representation problem, the target task is mainly to solve
the sparse representation method withl0-norm minimization.
Because of the fact that this problem is an NP-hard problem
[26], the greedy strategy provides an approximate solutionto
alleviate this difficulty. The greedy strategy searches forthe
best local optimal solution in each iteration with the goal of
achieving the optimal holistic solution [27]. For the sparse
representation method, the greedy strategy approximationonly
chooses the mostk appropriate samples, which are calledk-
sparsity, to approximate the measurement vector.

(2) In the constrained optimization strategy, the core ideais
to explore a suitable way to transform a non-differentiableop-
timization problem into a differentiable optimization problem
by replacing thel1-norm minimization term, which is convex
but nonsmooth, with a differentiable optimization term, which
is convex and smooth. More specifically, the constrained op-
timization strategy substitutes thel1-norm minimization term
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Fig. 1: The structure of this paper. The main body of this paper mainly consists of four parts: basic concepts and frameworks
in Section II-III, representative algorithms in Section IV-VII and extensive applications in Section VIII, massive experimental
evaluations in Section IX. Conclusion is summarized in Section X.

with an equal constraint condition on the original unconstraint
problem. If the original unconstraint problem is reformulated
into a differentiable problem with constraint conditions,it will
become an uncomplicated problem in the consideration of the
fact thatl1-norm minimization is global non-differentiable.

(3) Proximal algorithms can be treated as a powerful tool
for solving nonsmooth, constrained, large-scale, or distributed
versions of the optimization problem [28]. In the proximityal-
gorithm based optimization strategy for sparse representation,
the main task is to reformulate the original problem into the
specific model of the corresponding proximal operator such as
the soft thresholding operator, hard thresholding operator, and
resolvent operator, and then exploits the proximity algorithms
to address the original sparse optimization problem.

(4) The general framework of the homotopy algorithm is
to iteratively trace the final desired solution starting from the
initial point to the optimal point by successively adjusting the
homotopy parameter [29]. In homotopy algorithm based sparse
representation, the homotopy algorithm is used to solve thel1-
norm minimization problem withk-sparse property.

B. Motivation and objectives

In this paper, a survey on sparse representation and overview
available sparse representation algorithms from viewpoints of
the mathematical and theoretical optimization is provided. This
paper is designed to provide foundations of the study on sparse
representation and aims to give a good start to newcomers in
computer vision and pattern recognition communities, who are
interested in sparse representation methodology and its related

fields. Extensive state-of-art sparse representation methods
are summarized and the ideas, algorithms, and wide applica-
tions of sparse representation are comprehensively presented.
Specifically, there is concentration on introducing an up-to-
date review of the existing literature and presenting some
insights into the studies of the latest sparse representation
methods. Moreover, the existing sparse representation methods
are divided into different categories. Subsequently, correspond-
ing typical algorithms in different categories are presented
and their distinctness is explicitly shown. Finally, the wide
applications of these sparse representation methods in different
fields are introduced.

The remainder of this paper is mainly composed of four
parts: basic concepts and frameworks are shown in Section II
and Section III, representative algorithms are presented in Sec-
tion IV-VII and extensive applications are illustrated in Section
VIII, massive experimental evaluations are summarized in Sec-
tion IX. More specifically, the fundamentals and preliminary
mathematic concepts are presented in Section II, and then the
general frameworks of the existing sparse representation with
different norm regularizations are summarized in Section III.
In Section IV, the greedy strategy approximation method is
presented for obtaining a sparse representation solution,and in
Section V, the constrained optimization strategy is introduced
for solving the sparse representation issue. Furthermore,the
proximity algorithm based optimization strategy and Homo-
topy strategy for addressing the sparse representation problem
are outlined in Section VI and Section VII, respectively. Sec-
tion VIII presents extensive applications of sparse represen-
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Fig. 2: Geometric interpretations of different norms in 2-Dspace [7]. (a), (b), (c), (d) are the unit ball of thel0-norm,l1-norm,
l2-norm, lp-norm (0<p<1) in 2-D space, respectively. The two axes of the above coordinate systems arex1 andx2.

tation in widespread and prevalent fields including dictionary
learning methods and real-world applications. Finally, Section
IX offers massive experimental evaluations and conclusions
are drawn and summarized in Section X. The structure of the
this paper has been summarized in Fig. 1.

II. FUNDAMENTALS AND PRELIMINARY CONCEPTS

A. Notations

In this paper, vectors are denoted by lowercase letters with
bold face, e.g.x. Matrices are denoted by uppercase letter,
e.g.X and their elements are denoted with indexes such as
Xi. In this paper, all the data are only real-valued.

Suppose that the sample is from spaceR
d and thus all the

samples are concatenated to form a matrix, denoted asD ∈
R

d×n. If any sample can be approximately represented by
a linear combination of dictionaryD and the number of the
samples is larger than the dimension of samples inD, i.e.n >
d, dictionaryD is referred to as an over-complete dictionary.
A signal is said to be compressible if it is a sparse signal in the
original or transformed domain when there is no information
or energy loss during the process of transformation.

“sparse” or “ sparsity” of a vector means that some ele-
ments of the vector are zero. We use a linear combination of
a basis matrixA ∈ RN×N to represent a signalx ∈ RN×1, i.e.
x = As wheres ∈ RN×1 is the column vector of weighting
coefficients. If onlyk (k ≪ N ) elements ofs are nonzero
and the rest elements ins are zero, we call the signalx is
k-sparse.

B. Basic background

The standard inner product of two vectors,x andy from the
set of realn dimensions, is defined as

〈x,y〉 = xTy = x1y1 + x2y2 + · · ·+ xnyn (II.1)

The standard inner product of two matrixes,X ∈ R
m×n and

Y ∈ R
m×n from the set of realm × n matrixes, is denoted

as the following equation

〈X,Y 〉 = tr(XTY ) =

m∑

i=1

n∑

j=1

XijYij (II.2)

where the operatortr(A) denotes the trace of the matrixA,
i.e. the sum of its diagonal entries.

Suppose thatv = [v1,v2, · · · ,vn] is an n dimensional
vector in Euclidean space, thus

‖v‖p = (

n∑

i=1

|vi|p)1/p (II.3)

is denoted as thep-norm or thelp-norm (1 ≤ p ≤ ∞) of
vectorv.

When p=1, it is called thel1-norm. It means the sum of
absolute values of the elements in vectorv , and its geometric
interpretation is shown in Fig. 2b, which is a square with a
forty-five degree rotation.

When p=2, it is called thel2-norm or Euclidean norm. It is
defined as‖v‖2 = (v2

1 + v2
2 + · · ·+v2

n)
1/2, and its geometric

interpretation in 2-D space is shown in Fig. 2c which is a
circle.

In the literature, the sparsity of a vectorv is always related
to the so-calledl0-norm, which means the number of the
nonzero elements of vectorv. Actually, the l0-norm is the
limit as p → 0 of the lp-norms [8] and the definition of the
l0-norm is formulated as

‖v‖0 = lim
p→0

‖v‖pp = lim
p→0

n∑

i=1

|vi|p (II.4)

We can see that the notion of thel0-norm is very convenient
and intuitive for defining the sparse representation problem.
The property of thel0-norm can also be presented from the
perspective of geometric interpretation in 2-D space, which is
shown in Fig. 2a, and it is a crisscross.

Furthermore, the geometric meaning of thelp-norm
(0<p<1) is also presented, which is a form of similar recessed
pentacle shown in Fig. 2d.

On the other hand, it is assumed thatf(x) is the function
of the lp-norm (p>0) on the parameter vectorx, and then the
following function is obtained:

f(x) = ‖x‖pp = (

n∑

i=1

|xi|p) (II.5)

The relationships between different norms are summarized
in Fig. 3. From the illustration in Fig. 3, the conclusions are
as follows. Thel0-norm function is a nonconvex, nonsmooth,
discontinuity, global nondifferentiable function. Thelp-norm
(0<p<1) is a nonconvex, nonsmooth, global nondifferentiable
function. Thel1-norm function is a convex, nonsmooth, global
nondifferentiable function. Thel2-norm function is a convex,
smooth, global differentiable function.
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Fig. 4: The geometry of the solutions of different norm regularization in 2-D space [7]. (a), (b) and (c) are the geometry of
the solutions of thel0-norm, l1-norm, l2-norm minimization, respectively.
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Fig. 3: Geometric interpretations of different norms in 1-D
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In order to more specifically elucidate the meaning and
solutions of different norm minimizations, the geometry in
2-D space is used to explicitly illustrate the solutions of the
l0-norm minimization in Fig. 4a,l1-norm minimization in Fig.
4b, and l2-norm minimization in Fig. 4c. LetS = {x∗ :
Ax = y} denote the line in 2-D space and a hyperplane
will be formulated in higher dimensions. All possible solution
x∗ must lie on the line ofS. In order to visualize how
to obtain the solution of different norm-based minimization
problems, we take thel1-norm minimization problem as an
example to explicitly interpret. Suppose that we inflate thel1-
ball from an original status until it hits the hyperplaneS at
some point. Thus, the solution of thel1-norm minimization
problem is the aforementioned touched point. If the sparse
solution of the linear system is localized on the coordinate
axis, it will be sparse enough. From the perspective of Fig.
4, it can be seen that the solutions of both thel0-norm
and l1-norm minimization are sparse, whereas for thel2-
norm minimization, it is very difficult to rigidly satisfy the

condition of sparsity. However, it has been demonstrated that
the representation solution of thel2-norm minimization is not
strictly sparse enough but “limitedly-sparse”, which means it
possesses the capability of discriminability [30].

The Frobenius norm,L1-norm of matrixX ∈ R
m×n, and

l2-norm or spectral norm are respectively defined as

‖X‖F = (

n∑

i=1

m∑

j=1

X2
j,i)

1/2, ‖X‖L1
= maxj=1,...,n

m∑

i=1

|xij |,

‖X‖2 = δmax(X) = (λmax(X
TX))1/2

(II.6)

whereδ is the singular value operator and thel2-norm of X
is its maximum singular value [31].

The l2,1-norm orR1-norm is defined on matrix term, that
is

‖X‖2,1 =
n∑

i=1

(

m∑

j=1

X2
j,i)

1/2 (II.7)

As shown above, a norm can be viewed as a measure of
the length of a vectorv. The distance between two vectorsx
andy, or matricesX andY , can be measured by the length
of their differences, i.e.

dist(x,y) = ‖x− y‖22, dist(X,Y ) = ‖X − Y ‖F (II.8)

which are denoted as the distance betweenx and y in the
context of thel2-norm and the distance betweenX andY in
the context of the Frobenius norm, respectively.

Assume thatX ∈ R
m×n and the rank ofX , i.e.rank(X) =

r. The SVD ofX is computed as

X = UΛV T (II.9)

where U ∈ R
m×r with UTU = I and V ∈ R

n×r with
V TV = I. The columns ofU and V are called left and
right singular vectors ofX , respectively. Additionally,Λ is
a diagonal matrix and its elements are composed of the
singular values ofX , i.e. Λ = diag(λ1, λ2, · · · , λr) with
λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Furthermore, the singular value
decomposition can be rewritten as

X =

r∑

i=1

λiuivi (II.10)
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whereλi, ui andvi are thei-th singular value, thei-th column
of U , and thei-th column ofV , respectively [31].

III. SPARSE REPRESENTATION PROBLEM WITH DIFFERENT

NORM REGULARIZATIONS

In this section, sparse representation is summarized and
grouped into different categories in terms of the norm reg-
ularizations used. The general framework of sparse represen-
tation is to exploit the linear combination of some samples
or “atoms” to represent the probe sample, to calculate the
representation solution, i.e. the representation coefficients of
these samples or “atoms”, and then to utilize the representation
solution to reconstruct the desired results. The representa-
tion results in sparse representation, however, can be greatly
dominated by the regularizer (or optimizer) imposed on the
representation solution [32–35]. Thus, in terms of the different
norms used in optimizers, the sparse representation methods
can be roughly grouped into five general categories: sparse
representation with thel0-norm minimization [36, 37], sparse
representation with thelp-norm (0<p<1) minimization [38–
40], sparse representation with thel1-norm minimization [41–
44], sparse representation with thel2,1-norm minimization
[45–49], sparse representation with thel2-norm minimization
[9, 50, 51].

A. Sparse representation withl0-norm minimization

Let x1,x2, · · · ,xn ∈ R
d be all then known samples and

matrix X ∈ R
d×n (d<n), which is constructed by known

samples, is the measurement matrix or the basis dictionary and
should also be an over-completed dictionary. Each column of
X is one sample and the probe sample isy ∈ R

d , which
is a column vector. Thus, if all the known samples are used
to approximately represent the probe sample, it should be
expressed as:

y = x1α1 + x2α2 + · · ·+ xnαn (III.1)

whereαi (i=1,2,· · · ,n) is the coefficient ofxi and Eq. III.1
can be rewritten into the following equation for convenient
description:

y = Xα (III.2)

where matrixX=[x1,x2, · · · ,xn] andα=[α1,α2, · · · ,αn]
T .

However, problem III.2 is an underdetermined linear system
of equations and the main problem is how to solve it. From
the viewpoint of linear algebra, if there is not any prior
knowledge or any constraint imposed on the representation
solution α, problem III.2 is an ill-posed problem and will
never have a unique solution. That is, it is impossible to
utilize equation III.2 to uniquely represent the probe sample y
using the measurement matrixX . To alleviate this difficulty,
it is feasible to impose an appropriate regularizer constraint or
regularizer function on representation solutionα. The sparse
representation method demands that the obtained represen-
tation solution should be sparse. Hereafter, the meaning of
‘sparse’ or ‘sparsity’ refers to the condition that when the
linear combination of measurement matrix is exploited to
represent the probe sample, many of the coefficients should

be zero or very close to zero and few of the entries in the
representation solution are differentially large.

The sparsest representation solution can be acquired by
solving the linear representation system III.2 with thel0-
norm minimization constraint [52]. Thus problem III.2 can
be converted to the following optimization problem:

α̂ = argmin ‖α‖0 s.t. y = Xα (III.3)

where‖ · ‖0 refers to the number of nonzero elements in the
vector and is also viewed as the measure of sparsity. Moreover,
if just k (k < n) atoms from the measurement matrixX are
utilized to represent the probe sample, problem III.3 will be
equivalent to the following optimization problem:

y = Xα s.t. ‖α‖0 ≤ k (III.4)

Problem III.4 is called thek-sparse approximation problem.
Because real data always contains noise, representation noise
is unavoidable in most cases. Thus the original model III.2 can
be revised to a modified model with respect to small possible
noise by denoting

y = Xα+ s (III.5)

wheres ∈ R
d refers to representation noise and is bounded

as‖s‖2 ≤ ε. With the presence of noise, the sparse solutions
of problems III.3 and III.4 can be approximately obtained by
resolving the following optimization problems:

α̂ = argmin ‖α‖0 s.t. ‖y −Xα‖22 ≤ ε (III.6)

or

α̂ = argmin ‖y −Xα‖22 s.t. ‖α‖0 ≤ ε (III.7)

Furthermore, according to the Lagrange multiplier theorem, a
proper constantλ exists such that problems III.6 and III.7
are equivalent to the following unconstrained minimization
problem with a proper value ofλ.

α̂ = L(α, λ) = argmin ‖y −Xα‖22 + λ‖α‖0 (III.8)

where λ refers to the Lagrange multiplier associated with
‖α‖0.

B. Sparse representation withl1-norm minimization

Thel1-norm originates from the Lasso problem [41, 42] and
it has been extensively used to address issues in machine learn-
ing, pattern recognition, and statistics [53–55]. Although the
sparse representation method withl0-norm minimization can
obtain the fundamental sparse solution ofα over the matrixX ,
the problem is still a non-deterministic polynomial-time hard
(NP-hard) problem and the solution is difficult to approximate
[26]. Recent literature [20, 56–58] has demonstrated that when
the representation solution obtained by using thel1-norm
minimization constraint is also content with the conditionof
sparsity and the solution usingl1-norm minimization with
sufficient sparsity can be equivalent to the solution obtained
by l0-norm minimization with full probability. Moreover, the
l1-norm optimization problem has an analytical solution and
can be solved in polynomial time. Thus, extensive sparse
representation methods with thel1-norm minimization have
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been proposed to enrich the sparse representation theory.
The applications of sparse representation with thel1-norm
minimization are extraordinarily and remarkably widespread.
Correspondingly, the main popular structures of sparse rep-
resentation with thel1-norm minimization , similar to sparse
representation withl0-norm minimization, are generally used
to solve the following problems:

α̂ = argmin
α

‖α‖1 s.t. y = Xα (III.9)

α̂ = argmin
α

‖α‖1 s.t. ‖y −Xα‖22 ≤ ε (III.10)

or

α̂ = argmin
α

‖y −Xα‖22 s.t. ‖α‖1 ≤ τ (III.11)

α̂ = L(α, λ) = argmin
α

1

2
‖y −Xα‖22 + λ‖α‖1 (III.12)

whereλ andτ are both small positive constants.

C. Sparse representation withlp-norm (0<p<1) minimization

The general sparse representation method is to solve a linear
representation system with thelp-norm minimization prob-
lem. In addition to thel0-norm minimization andl1-norm
minimization, some researchers are trying to solve the sparse
representation problem with thelp-norm (0<p<1) minimiza-
tion, especiallyp = 0.1, 1

2 , 1
3 , or 0.9 [59–61]. That is,

the sparse representation problem with thelp-norm (0<p<1)
minimization is to solve the following problem:

α̂ = argmin
α

‖α‖pp s.t. ‖y −Xα‖22 ≤ ε (III.13)

or

α̂ = L(α, λ) = argmin
α

‖y −Xα‖22 + λ‖α‖pp (III.14)

In spite of the fact that sparse representation methods with
the lp-norm (0<p<1) minimization are not the mainstream
methods to obtain the sparse representation solution, it tremen-
dously influences the improvements of the sparse representa-
tion theory.

D. Sparse representation withl2,1-norm minimization

The representation solution obtained by thel2-norm minimiza-
tion is not rigorously sparse. It can only obtain a ‘limitedly-
sparse’ representation solution, i.e. the solution has theprop-
erty that it is discriminative and distinguishable but is not
really sparse enough [30]. The objective function of the sparse
representation method with thel2-norm minimization is to
solve the following problem:

α̂ = argmin
α

‖α‖22 s.t. ‖y −Xα‖22 ≤ ε (III.15)

or

α̂ = L(α, λ) = argmin
α

‖y −Xα‖22 + λ‖α‖22 (III.16)

On the other hand, thel2,1-norm is also called the rotation
invariantl1-norm, which is proposed to overcome the difficulty
of robustness to outliers [62]. The objective function of the
sparse representation problem with thel2,1-norm minimization
is to solve the following problem:

argmin
A

‖Y −XA‖2,1 + µ‖A‖2,1 (III.17)

whereY = [y1,y2, · · · ,yN ] refers to the matrix composed
of samples,A = [a1,a2, · · · ,aN ] is the corresponding
coefficient matrix ofX , andµ is a small positive constant.
Sparse representation with thel2,1-norm minimization can
be implemented by exploiting the proposed algorithms in
literature [45–47].

IV. GREEDY STRATEGY APPROXIMATION

Greedy algorithms date back to the 1950s. The core idea of
the greedy strategy [7, 23] is to determine the position based
on the relationship between the atom and probe sample, and
then to use the least square to evaluate the amplitude value.
Greedy algorithms can obtain the local optimized solution in
each step in order to address the problem. However, the greedy
algorithm can always produce the global optimal solution or
an approximate overall solution [7, 23]. Addressing sparse
representation withl0-norm regularization, i.e. problem III.3,
is an NP hard problem [20, 56]. The greedy strategy provides
a special way to obtain an approximate sparse representation
solution. The greedy strategy actually can not directly solve
the optimization problem and it only seeks an approximate
solution for problem III.3.

A. Matching pursuit algorithm

The matching pursuit (MP) algorithm [63] is the earliest
and representative method of using the greedy strategy to
approximate problem III.3 or III.4. The main idea of the MP
is to iteratively choose the best atom from the dictionary
based on a certain similarity measurement to approximately
obtain the sparse solution. Taking as an example of the sparse
decomposition with a vector sampley over the over-complete
dictionaryD, the detailed algorithm description is presented
as follows:

Suppose that the initialized representation residual isR0 =
y, D = [d1,d2, · · · ,dN ] ∈ R

d×N and each sample in
dictionary D is an l2-norm unity vector, i.e.‖di‖ = 1. To
approximatey, MP first chooses the best matching atom
from D and the selected atom should satisfy the following
condition:

|〈R0,dl0〉| = sup|〈R0,di〉| (IV.1)

where l0 is a label index from dictionaryD. Thusy can be
decomposed into the following equation:

y = 〈y,dl0〉dl0 +R1 (IV.2)

Soy = 〈R0,dl0〉dl0 +R1 where〈R0,dl0〉dl0 represents the
orthogonal projection ofy ontodl0 , andR1 is the representa-
tion residual by usingdl0 to representy. Considering the fact
thatdl0 is orthogonal toR1, Eq. IV.2 can be rewritten as

‖y‖2 = |〈y,dl0〉|2 + ‖R1‖2 (IV.3)
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To obtain the minimum representation residual, the MP al-
gorithm iteratively figures out the best matching atom from the
over-completed dictionary, and then utilizes the representation
residual as the next approximation target until the termination
condition of iteration is satisfied. For thet-th iteration, the best
matching atom isdlt and the approximation result is found
from the following equation:

Rt = 〈Rt,dlt〉dlt +Rt+1 (IV.4)

where thedlt satisfies the equation:

|〈Rt,dlt〉| = sup|〈Rt,di〉| (IV.5)

Clearly,dlt is orthogonal toRk+1, and then

‖Rk‖2 = |〈Rt,dlt〉|2 + ‖Rt+1‖2 (IV.6)

For then-th iteration, the representation residual‖Rn‖2 ≤
τ whereτ is a very small constant and the probe sampley

can be formulated as:

y =
n−1∑

j=1

〈Rj ,dlj 〉dlj +Rn (IV.7)

If the representation residual is small enough, the probe
sampley can approximately satisfy the following equation:
y ≈ ∑n−1

j=1 〈Rj ,dlj 〉dlj where n ≪ N . Thus, the probe
sample can be represented by a small number of elements from
a large dictionary. In the context of the specific representation
error, the termination condition of sparse representationis that
the representation residual is smaller than the presupposed
value. More detailed analysis on matching pursuit algorithms
can be found in the literature [63].

B. Orthogonal matching pursuit algorithm

The orthogonal matching pursuit (OMP) algorithm [36, 64]
is an improvement of the MP algorithm. The OMP employs
the process of orthogonalization to guarantee the orthogonal
direction of projection in each iteration. It has been verified
that the OMP algorithm can be converged in limited iterations
[36]. The main steps of OMP algorithm have been summarized
in Algorithm 1.

Algorithm 1. Orthogonal matching pursuit algorithm
Task: Approximate the constraint problem:

α̂ = argminα ‖α‖0 s.t. y = Xα

Input: Probe sampley, measurement matrixX, sparse coefficients vector
α
Initialization: t = 1, r0 = y, α = 0, D0 = φ, index setΛ0 = φ where
φ denotes empty set,τ is a small constant.
While ‖rt‖ > τ do

Step 1: Find the best matching sample, i.e. the biggest innerproduct
betweenrt−1 andxj (j 6∈ Λt−1) by exploiting
λt = argmaxj 6∈Λt−1

|〈rt−1,xj〉|.
Step 2: Update the index setΛt = Λt−1

⋃

λt and reconstruct data set
Dt = [Dt−1,xλt

].
Step 3: Compute the sparse coefficient by using the least square algorithm

α̃ = argmin ‖y −Dtα̃‖22.
Step 4: Update the representation residual usingrt = y −Dtα̃.
Step 5:t = t + 1.

End
Output: D, α

C. Series of matching pursuit algorithms

It is an excellent choice to employ the greedy strategy to
approximate the solution of sparse representation with the
l0-norm minimization. These algorithms are typical greedy
iterative algorithms. The earliest algorithms were the matching
pursuit (MP) and orthogonal matching pursuit (OMP). The
basic idea of the MP algorithm is to select the best matching
atom from the overcomplete dictionary to construct sparse
approximation during each iteration, to compute the signal
representation residual, and then to choose the best matching
atom till the stopping criterion of iteration is satisfied. Many
more greedy algorithms based on the MP and OMP algorithm
such as the efficient orthogonal matching pursuit algorithm
[65] subsequently have been proposed to improve the pursuit
algorithm. Needell et al. proposed an regularized version of
orthogonal matching pursuit (ROMP) algorithm [37], which
recovered allk sparse signals based on the Restricted Isometry
Property of random frequency measurements, and then pro-
posed another variant of OMP algorithm called compressive
sampling matching pursuit (CoSaMP) algorithm [66], which
incorporated several existing ideas such as restricted isometry
property (RIP) and pruning technique into a greedy iterative
structure of OMP. Some other algorithms also had an impres-
sive influence on future research on CS. For example, Donoho
et al. proposed an extension of OMP, called stage-wise orthog-
onal matching pursuit (StOMP) algorithm [67], which depicted
an iterative algorithm with three main steps, i.e. threholding,
selecting and projecting. Dai and Milenkovic proposed a
new method for sparse signal reconstruction named subspace
pursuit (SP) algorithm [68], which sampled signals satisfying
the constraints of the RIP with a constant parameter. Do et
al. presented a sparsity adaptive matching pursuit (SAMP)
algorithm [69], which borrowed the idea of the EM algorithm
to alternatively estimate the sparsity and support set. Jost et al.
proposed a tree-based matching pursuit (TMP) algorithm [70],
which constructed a tree structure and employed a structuring
strategy to cluster similar signal atoms from a highly redundant
dictionary as a new dictionary. Subsequently, La and Do pro-
posed a new tree-based orthogonal matching pursuit (TBOMP)
algorithm [71], which treated the sparse tree representation
as an additional prior knowledge for linear inverse systems
by using a small number of samples. Recently, Karahanoglu
and Erdogan conceived a forward-backward pursuit (FBP)
method [72] with two greedy stages, in which the forward
stage enlarged the support estimation and the backward stage
removed some unsatisfied atoms. More detailed treatments of
the greedy pursuit for sparse representation can be found in
the literature [23].

V. CONSTRAINED OPTIMIZATION STRATEGY

Constrained optimization strategy is always utilized to obtain
the solution of sparse representation with thel1-norm reg-
ularization. The methods that address the non-differentiable
unconstrained problem will be presented by reformulating it
as a smooth differentiable constrained optimization problem.
These methods exploit the constrained optimization method
with efficient convergence to obtain the sparse solution. What
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is more, the constrained optimization strategy emphasizes
the equivalent transformation of‖α‖1 in problem III.12 and
employs the new reformulated constrained problem to obtain
a sparse representation solution. Some typical methods that
employ the constrained optimization strategy to solve the
original unconstrained non-smooth problem are introducedin
this section.

A. Gradient Projection Sparse Reconstruction

The core idea of the gradient projection sparse representation
method is to find the sparse representation solution along
with the gradient descent direction. The first key procedureof
gradient projection sparse reconstruction (GPSR) [73] provides
a constrained formulation where each value ofα can be split
into its positive and negative parts. Vectorsα+ andα− are
introduced to denote the positive and negative coefficientsof
α, respectively. The sparse representation solutionα can be
formulated as:

α = α+ −α−, α+ ≥ 0, α− ≥ 0 (V.1)

where the operator(·)+ denotes the positive-part operator,
which is defined as(x)+=max{0, x}. Thus,‖α‖1 = 1

T
dα++

1
T
dα−, where1d = [1, 1, · · · , 1

︸ ︷︷ ︸

d

]T is a d–dimensional vector

with d ones. Accordingly, problem III.12 can be reformulated
as a constrained quadratic problem:

argminL(α) = argmin
1

2
‖y −X [α+ −α−]‖22+

λ(1T
dα+ + 1

T
dα−) s.t. α+ ≥ 0, α− ≥ 0

(V.2)

or

argminL(α) = argmin
1

2
‖y − [X+, X−][α+ −α−]‖22

+λ(1T
d α+ + 1

T
d α−) s.t. α+ ≥ 0, α− ≥ 0

(V.3)

Furthermore, problem V.3 can be rewritten as:

argmin G(z) = cTz +
1

2
zTAz s.t. z ≥ 0 (V.4)

wherez = [α+;α−], c = λ12d + [−XTy;XTy],

12d = [1, · · · , 1
︸ ︷︷ ︸

2d

]T , A =

(
XTX −XTX
−XTX XTX

)

.

The GPSR algorithm employs the gradient descent and
standard line-search method [31] to address problem V.4. The
value ofz can be iteratively obtained by utilizing

argmin zt+1 = zt − σ∇G(zt) (V.5)

where the gradient of∇G(zt) = c + Azt andσ is the step
size of the iteration. For step sizeσ, GPSR updates the step
size by using

σt = argmin
σ

G(zt − σgt) (V.6)

where the functiongt is pre-defined as

gti =

{
(∇G(zt))i, if zt

i > 0 or (∇G(zt))i < 0
0, otherwise.

(V.7)

Problem V.6 can be addressed with the close-form solution

σt =
(gt)T (gt)

(gt)TA(gt)
(V.8)

Furthermore, the basic GPSR algorithm employs the back-
tracking linear search method [31] to ensure that the step size
of gradient descent, in each iteration, is a more proper value.
The stop condition of the backtracking linear search should
satisfy

G((zt − σt∇G(zt))+) > G(zt)− β∇G(zt)T

(zt − (zt − σt∇G(zt))+)
(V.9)

where β is a small constant. The main steps of GPSR are
summarized in Algorithm 2. For more detailed information,
one can refer to the literature [73].

Algorithm 2. Gradient Projection Sparse Reconstruction (GPSR)
Task: To address the unconstraint problem:

α̂ = argminα
1
2
‖y −Xα‖22 + λ‖α‖1

Input: Probe sampley, the measurement matrixX, small constantλ
Initialization: t = 0, β ∈ (0, 0.5), γ ∈ (0, 1), given α so thatz =
[α+,α−].
While not converged do

Step 1: Computeσt exploiting Eq. V.8 andσt ← mid(σmin , σt, σmax),
wheremid(·, ·, ·) denotes the middle value of the three parameters.

Step 2: While Eq. V.9 not satisfied
do σt ← γσt end

Step 3:zt+1 = (zt − σt∇G(zt))+ and t = t+ 1.
End
Output: zt+1, α

B. Interior-point method based sparse representation strategy

The Interior-point method [31] is not an iterative algorithm
but a smooth mathematic model and it always incorporates
the Newton method to efficiently solve unconstrained smooth
problems of modest size [28]. When the Newton method is
used to address the optimization issue, a complex Newton
equation should be solved iteratively which is very time-
consuming. A method named the truncated Newton method
can effectively and efficiently obtain the solution of the
Newton equation. A prominent algorithm called the truncated
Newton based interior-point method (TNIPM) exists, which
can be utilized to solve the large-scalel1-regularized least
squares (i.e.l1 ls) problem [74].

The original problem ofl1 ls is to solve problem III.12 and
the core procedures ofl1 ls are shown below:
(1) Transform the original unconstrained non-smooth problem
to a constrained smooth optimization problem.
(2) Apply the interior-point method to reformulate the con-
strained smooth optimization problem as a new unconstrained
smooth optimization problem.
(3) Employ the truncated Newton method to solve this uncon-
strained smooth problem.

The main idea of thel1 ls will be briefly described.
For simplicity of presentation, the following one-dimensional
problem is used as an example.

|α| = arg min
−σ≤α≤σ

σ (V.10)

whereσ is a proper positive constant.
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Thus, problem III.12 can be rewritten as

α̂ = argmin 1
2‖y −Xα‖22 + λ‖α‖1

= argmin 1
2‖y −Xα‖22 + λ

∑N
i=1 min−σi≤αi≤σi

σi

= argmin 1
2‖y −Xα‖22 + λmin−σi≤αi≤σi

∑N
i=1 σi

= argmin−σi≤αi≤σi

1
2‖y −Xα‖22 + λ

∑N
i=1 σi

(V.11)
Thus problem III.12 is also equivalent to solve the following

problem:

α̂ = arg min
α,σ∈RN

1

2
‖y−Xα‖22+λ

N∑

i=1

σi s.t. −σi ≤ αi ≤ σi

(V.12)
or

α̂ = arg min
α,σ∈RN

1

2
‖y −Xα‖22 + λ

N∑

i=1

σi

s.t. σi + αi ≥ 0, σi −αi ≥ 0

(V.13)

The interior-point strategy can be used to transform problem
V.13 into an unconstrained smooth problem

α̂ = arg min
α,σ∈RN

G(α,σ) =
v

2
‖y−Xα‖22+λv

N∑

i=1

σi−B(α,σ)

(V.14)
whereB(α,σ) =

∑N
i=1 log(σi+αi)+

∑N
i=1 log(σi−αi) is

a barrier function, which forces the algorithm to be performed
within the feasible region in the context of unconstrained
condition.

Subsequently,l1 ls utilizes the truncated Newton method
to solve problem V.14. The main procedures of addressing
problem V.14 are presented as follows:
First, the Newton system is constructed

H

[
△α

△σ

]

= −∇G(α,σ) ∈ R
2N (V.15)

where H = −∇2G(α,σ) ∈ R
2N×2N is the Hessian ma-

trix, which is computed using the preconditioned conjugate
gradient algorithm, and then the direction of linear search
[△α,△σ] is obtained.
Second, the Lagrange dual of problem III.12 is used to
construct the dual feasible point and duality gap:
a) The Lagrangian function and Lagrange dual of problem
III.12 are constructed. The Lagrangian function is reformu-
lated as

L(α, z,u) = zT z + λ‖α‖1 + u(Xα− y − z) (V.16)

where its corresponding Lagrange dual function is

α̂ = argmaxF (u) = −1

4
uTu− uTy s.t.

|(XTu)i| ≤ λi (i = 1, 2, · · · , N)
(V.17)

b) A dual feasible point is constructed

u = 2s(y−Xα), s = min{λ/|2yi−2(XTXα)i|}∀i (V.18)

whereu is a dual feasible point ands is the step size of the
linear search.

c) The duality gap is constructed, which is the gap between
the primary problem and the dual problem:

g = ‖y −Xα‖+ λ‖α‖1 − F (u) (V.19)

Third, the method of backtracking linear search is used to
determine an optimal step size of the Newton linear search.
The stopping condition of the backtracking linear search is

G(α+ηt△α,σ+ηt△σ) > G(α,σ)+ρηt∇G(α,σ)[△α,△σ]
(V.20)

where ρ ∈ (0, 0.5) and ηt ∈ (0, 1) is the step size of the
Newton linear search.
Finally, the termination condition of the Newton linear search
is set to

ζ = min{0.1, βg/‖h‖2} (V.21)

where the functionh = ∇G(α,σ), β is a small constant,
and g is the duality gap. The main steps of algorithml1 ls
are summarized in Algorithm 3. For further description and
analyses, please refer to the literature [74].

Algorithm 3. Truncated Newton based interior-point method (TNIPM) for
l1 ls
Task: To address the unconstraint problem:

α̂ = argminα
1
2
‖y −Xα‖22 + λ‖α‖1

Input: Probe sampley, the measurement matrixX, small constantλ
Initialization: t = 1, v = 1

λ
, ρ ∈ (0, 0.5), σ = 1N

Step 1: Employ preconditioned conjugate gradient algorithm to obtain
the approximation ofH in Eq. V.15, and then obtain the descent direction
of linear search[△αt,△σt].

Step 2: Exploit the algorithm of backtracking linear searchto find the
optimal step size of Newton linear searchηt, which satisfies the Eq. V.20.

Step 3: Update the iteration point utilizing(αt+1,σt+1) = (αt,σt)+
(△αt +△σt).

Step 4: Construct feasible point using eq. V.18 and duality gap in Eq.
V.19, and compute the termination toleranceζ in Eq. V.21.

Step 5: If the conditiong/F (u) > ζ is satisfied, stop; Otherwise, return
to step 1, updatev in Eq. V.14 andt = t+ 1.
Output: α

The truncated Newton based interior-point method (TNIPM)
[75] is a very effective method to solve thel1-norm regu-
larization problems. Koh et al. [76] also utilized the TNIPM
to solve large scale logistic regression problems, which em-
ployed a preconditioned conjugate gradient method to compute
the search step size with warm-start techniques. Mehrotra
proposed to exploit the interior-point method to address the
primal-dual problem [77] and introduced the second-order
derivation of Taylor polynomial to approximate a primal-dual
trajectory. More analyses of interior-point method for sparse
representation can be found in the literature [78].

C. Alternating direction method (ADM) based sparse repre-
sentation strategy

This section shows how the ADM [43] is used to solve primal
and dual problems in III.12. First, an auxiliary variable is
introduced to convert problem in III.12 into a constrained
problem with the form of problem V.22. Subsequently, the
alternative direction method is used to efficiently addressthe
sub-problems of problem V.22. By introducing the auxiliary
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term s ∈ R
d, problem III.12 is equivalent to a constrained

problem

argmin
α,s

1

2τ
‖s‖2 + ‖α‖1 s.t. s = y −Xα (V.22)

The optimization problem of the augmented Lagrangian func-
tion of problem V.22 is considered

arg min
α,s,λ

L(α, s,λ) =
1

2τ
‖s‖2 + ‖α‖1 − λT (s+

Xα− y) +
µ

2
‖s+Xα− y‖22

(V.23)

whereλ ∈ R
d is a Lagrange multiplier vector andµ is a

penalty parameter. The general framework of ADM is used to
solve problem V.23 as follows:







st+1 = argminL(s,αt,λt) (a)
αt+1 = argminL(st+1,α,λt) (b)
λt+1 = λt − µ(st+1 +Xαt+1 − y) (c)

(V.24)

First, the first optimization problem V.24(a) is considered

argminL(s,αt,λt) =
1

2τ
‖s‖2 + ‖αt‖1 − (λt)T (s+Xαt

− y) +
µ

2
‖s+Xαt − y‖22

=
1

2τ
‖s‖2 − (λt)Ts+

µ

2
‖s+Xαt − y‖22+

‖αt‖1 − (λt)T (Xαt − y)
(V.25)

Then, it is known that the solution of problem V.25 with
respect tos is given by

st+1 =
τ

1 + µτ
(λt − µ(y −Xαt)) (V.26)

Second, the optimization problem V.24(b) is considered

argminL(st+1,α, λt) =
1

2τ
‖st+1‖2 + ‖α‖1 − (λ)T (st+1

+Xα− y) +
µ

2
‖st+1 +Xα− y‖22

which is equivalent to

argmin{‖α‖1 − (λt)T (st+1 +Xα− y) +
µ

2
‖st+1+

Xα− y‖22}
= ‖α‖1 +

µ

2
‖st+1 +Xα− y − λt/µ‖22

= ‖α‖1 + f(α)
(V.27)

wheref(α) = µ
2 ‖st+1+Xα−y−λt/µ‖22. If the second order

Taylor expansion is used to approximatef(α), the problem
V.27 can be approximately reformulated as

argmin{‖α‖1 + (α−αt)TXT (st+1 +Xαt − y − λt/µ)

+
1

2τ
‖α−αt‖22}

(V.28)

whereτ is a proximal parameter. The solution of problem V.28
can be obtained by the soft thresholding operator

αt+1 = soft{αt−τXT (st+1+Xαt−y−λt/µ),
τ

µ
} (V.29)

wheresoft(σ, η) = sign(σ)max{|σ| − η, 0}.
Finally, the Lagrange multiplier vectorλ is updated by using
Eq. V.24(c).

The algorithm presented above utilizes the second order
Taylor expansion to approximately solve the sub-problem V.27
and thus the algorithm is denoted as an inexact ADM or
approximate ADM. The main procedures of the inexact ADM
based sparse representation method are summarized in Algo-
rithm 4. More specifically, the inexact ADM described above
is to reformulate the unconstrained problem as a constrained
problem, and then utilizes the alternative strategy to effectively
address the corresponding sub-optimization problem. More-
over, ADM can also efficiently solve the dual problems of
the primal problems III.9-III.12. For more information, please
refer to the literature [43, 79].

Algorithm 4. Alternating direction method (ADM) based sparse represen-
tation strategy
Task: To address the unconstraint problem:

α̂ = argminα
1
2
‖y −Xα‖22 + τ‖α‖1

Input: Probe sampley, the measurement matrixX, small constantλ
Initialization: t = 0, s0 = 0, α0 = 0, λ0 = 0, τ = 1.01, µ is a small
constant.
Step 1: Construct the constraint optimization problem of problem III.12 by
introducing the auxiliary parameter and its augmented Lagrangian function,
i.e. problem (V.22) and (V.23).
While not converged do

Step 2: Update the value of thest+1 by using Eq. (V.25).
Step 2: Update the value of theαt+1 by using Eq. (V.29).
Step 3: Update the value of theλt+1 by using Eq. (V.24(c)).
Step 4:µt+1 = τµt and t = t + 1.

End While
Output: αt+1

VI. PROXIMITY ALGORITHM BASED OPTIMIZATION

STRATEGY

In this section, the methods that exploit the proximity algo-
rithm to solve constrained convex optimization problems are
discussed. The core idea of the proximity algorithm is to utilize
the proximal operator to iteratively solve the sub-problem,
which is much more computationally efficient than the original
problem. The proximity algorithm is frequently employed to
solve nonsmooth, constrained convex optimization problems
[28]. Furthermore, the general problem of sparse represen-
tation with l1-norm regularization is a nonsmooth convex
optimization problem, which can be effectively addressed by
using the proximal algorithm.

Suppose a simple constrained optimization problem is

min{h(x)|x ∈ χ} (VI.1)

whereχ ⊂ R
n. The general framework of addressing the con-

strained convex optimization problem VI.1 using the proximal
algorithm can be reformulated as

x̃t = argmin{h(x) + τ

2
‖x− xt‖2|x ∈ χ} (VI.2)

whereτ andxt are given. For definiteness and without loss
of generality, it is assumed that there is the following linear
constrained convex optimization problem

argmin{F (x) +G(x)|x ∈ χ} (VI.3)
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The solution of problem VI.3 obtained by employing the
proximity algorithm is:

xt+1 =argmin{F (x) + 〈∇G(xt),x− xt〉+ 1

2τ
‖x− xt‖2}

=argmin{F (x) +
1

2τ
‖x− θt‖2}

(VI.4)

whereθ = xt − τ∇G(xt). More specifically, for the sparse
representation problem withl1-norm regularization, the main
problem can be reformulated as:

minP (α) = {λ‖α‖1 | Aα = y}
or minP (α) = {λ‖α‖1 + ‖Aα− y‖22 | α ∈ R

n} (VI.5)

which are considered as the constrained sparse representation
of problem III.12.

A. Soft thresholding or shrinkage operator

First, a simple form of problem III.12 is introduced, which
has a closed-form solution, and it is formulated as:

α∗ = min
α

h(α) =λ‖α‖1 +
1

2
‖α− s‖2

=
N∑

j=1

λ|αj |+
N∑

j=1

1

2
(αj − sj)

2
(VI.6)

whereα∗ is the optimal solution of problem VI.6, and then
there are the following conclusions:
(1) if αj > 0, thenh(α) = λα+ 1

2‖α−s‖2 and its derivative
is h′(αj) = λ+α∗

j − sj .
Let h′(αj) = 0 ⇒ α∗

j = sj − λ, where it indicatessj > λ;
(2) if αj < 0, thenh(α) = −λα+ 1

2‖α−s‖2 and its derivative
is h′(αj) = −λ+α∗

j − sj .
Let h′(αj) = 0 ⇒ α∗

j = sj + λ, where it indicatessj < −λ;
(3) if −λ ≤ sj ≤ λ, and thenα∗

j = 0.
So the solution of problem VI.6 is summarized as

α∗
j =







sj − λ, if sj > λ
sj + λ, if sj < −λ
0, otherwise

(VI.7)

The equivalent expression of the solution isα∗ =
shrink(s, λ), where thej-th component ofshrink(s, λ) is
shrink(s, λ)j = sign(sj)max{|sj | − λ, 0}. The operator
shrink(•) can be regarded as a proximal operator.

B. Iterative shrinkage thresholding algorithm (ISTA)

The objective function of ISTA [80] has the form of

argminF (α) =
1

2
‖Xα− y‖22 + λ‖α‖1 = f(α) + λg(α)

(VI.8)
and is usually difficult to solve. Problem VI.8 can be con-
verted to the form of an easy problem VI.6 and the explicit
procedures are presented as follows.

First, Taylor expansion is used to approximatef(α) =
1
2‖Xα − y‖22 at a point of αt. The second order Taylor
expansion is

f(α) = f(αt) + (α−αt)T∇f(αt) +
1

2
(α− αt)T

Hf (α
t)(α−αt) + · · ·

(VI.9)

whereHf (α
t) is the Hessian matrix off(α) at αt. For the

functionf(α), ∇f(α) = XT (Xα− y) andHf (α) = XTX
can be obtained.

f(α) =
1

2
‖Xαt − y‖22 + (α−αt)TXT (Xαt − y)+

1

2
(α−αt)TXTX(α−αt)

(VI.10)

If the Hessian matrixHf (α) is replaced or approximated in
the third term above by using a scalar1

τ I, and then

f(α) ≈ 1

2
‖Xαt − y‖22 + (α−αt)TXT (Xαt − y)

+
1

2τ
(α−αt)T (α−αt) = Qt(α,αt)

(VI.11)

Thus problem VI.8 using the proximal algorithm can be
successively addressed by

αt+1 = argminQt(α,αt) + λ‖α‖1 (VI.12)

Problem VI.12 is reformulated to a simple form of problem
VI.6 by

Qt(α,αt) =
1

2
‖Xαt − y‖22+(α−αt)TXT (Xαt − y)+

1

2τ
‖α−αt‖22

=
1

2
‖Xαt − y‖22 +

1

2τ
‖α−αt + τXT (Xαt − y)‖22

− τ

2
‖XT (Xαt − y)‖22

=
1

2τ
‖α− (αt − τXT (Xαt − y))‖22 +B(αt)

(VI.13)

where the termB(αt) = 1
2‖Xαt−y‖22− τ

2‖XT (Xαt−y)‖2
in problem VI.12 is a constant with respect to variableα, and
it can be omitted. As a result, problem VI.12 is equivalent to
the following problem:

αt+1 = argmin
1

2τ
‖α− θ(αt)‖22 + λ‖α‖1 (VI.14)

whereθ(αt) = αt − τXT (Xαt − y).
The solution of the simple problem VI.6 is applied to

solve problem VI.14 where the parametert is replaced by
the equationθ(αt), and the solution of problem VI.14 is
αt+1 = shrink(θ(αt), λτ). Thus, the solution of ISTA is
reached. The techniques used here are called linearizationor
preconditioning and more detailed information can be found
in the literature [80, 81].
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C. Fast Iterative shrinkage thresholding algorithm (FISTA)

The fast iterative shrinkage thresholding algorithm (FISTA) is
an improvement of ISTA. FISTA [82] not only preserves the
efficiency of the original ISTA but also promotes the effective-
ness of ISTA so that FISTA can obtain global convergence.

Considering that the Hessian matrixHf (α) is approximated
by using a scalar1τ I for ISTA in Eq. VI.9, FISTA utilizes the
minimum Lipschitz constant of the gradient∇f(α) to approx-
imate the Hessian matrix off(α), i.e.L(f) = 2λmax(X

TX).
Thus, the problem VI.8 can be converted to the problem below:

f(α) ≈ 1

2
‖Xαt − y‖22 + (α−αt)TXT (Xαt − y)

+
L

2
(α−αt)T (α−αt) = Pt(α,αt)

(VI.15)

where the solution can be reformulated as

αt+1 = argmin
L

2
‖α− θ(αt)‖22 + λ‖α‖1 (VI.16)

whereθ(αt) = αt − 1
LX

T (Xαt − y).
Moreover, to accelerate the convergence of the algorithm,

FISTA also improves the sequence of iteration points, instead
of employing the previous point it utilizes a specific linear
combinations of the previous two points{αt,αt−1}, i.e.

αt = αt +
µt − 1

µt+1
(αt −αt−1) (VI.17)

whereµt is a positive sequence, which satisfiesµt ≥ (t+1)/2,
and the main steps of FISTA are summarized in Algorithm 5.
The backtracking linear research strategy can also be utilized
to explore a more feasible value ofL and more detailed
analyses on FISTA can be found in the literature [82, 83].

Algorithm 5. Fast Iterative shrinkage thresholding algorithm (FISTA)
Task: To address the problem̂α = argminF (α) = 1

2
‖Xα − y‖22 +

λ‖α‖1
Input: Probe sampley, the measurement matrixX, small constantλ
Initialization: t = 0, µ0 = 1, L = 2Λmax(XTX), i.e. Lipschitz
constant of∇f .
While not converged do

Step 1: Exploit the shrinkage operator in equation VI.7 to solve problem
VI.16.

Step 2: Update the value ofµ usingµt+1 =
1+
√

1+4(µt)2

2
.

Step 3: Update iteration sequenceαt using equation VI.17.
End
Output: α

D. Sparse reconstruction by separable approximation
(SpaRSA)

Sparse reconstruction by separable approximation (SpaRSA)
[84] is another typical proximity algorithm based on sparse
representation, which can be viewed as an accelerated version
of ISTA. SpaRSA provides a general algorithmic framework
for solving the sparse representation problem and here a
simple specific SpaRSA with adaptive continuation on ISTA
is introduced. The main contributions of SpaRSA are trying
to optimize the parameterλ in problem VI.8 by using the
worm-starting technique, i.e. continuation, and choosinga

more reliable approximation ofHf (α) in problem VI.9 using
the Barzilai-Borwein (BB) spectral method [85]. The worm-
starting technique and BB spectral approach are introducedas
follows.
(1) Utilizing the worm-starting technique to optimizeλ

The values ofλ in the sparse representation methods dis-
cussed above are always set to be a specific small constant.
However, Hale et al. [86] concluded that the technique that
exploits a decreasing value ofλ from a warm-starting point
can more efficiently solve the sub-problem VI.14 than ISTA
that is a fixed point iteration scheme. SpaRSA uses an adaptive
continuation technique to update the value ofλ so that it can
lead to the fastest convergence. The procedure regeneratesthe
value ofλ using

λ = max{γ‖XTy‖∞, λ} (VI.18)

whereγ is a small constant.
(2) Utilizing the BB spectral method to approximateHf (α)

ISTA employs1
τ I to approximate the matrixHf (α), which

is the Hessian matrix off(α) in problem VI.9 and FISTA
exploits the Lipschitz constant of∇f(α) to replaceHf (α).
However, SpaRSA utilizes the BB spectral method to choose
the value ofτ to mimic the Hessian matrix. The value ofτ is
required to satisfy the condition:

1

τ t+1
(αt+1 −αt) ≈ ∇f(αt+1)−∇f(αt) (VI.19)

which satisfies the minimization problem

1

τ t+1
=argmin ‖ 1

τ
(αt+1 −αt)− (∇f(αt+1)−∇f(αt))‖22

=
(αt+1 −αt)T (∇f(αt+1)−∇f(αt))

(αt+1 −αt)T (αt+1 −αt)
(VI.20)

For problem VI.14, SpaRSA requires that the value of
λ is a decreasing sequence using the Eq. VI.18 and the
value of τ should meet the condition of Eq. VI.20. The
sparse reconstruction by separable approximation (SpaRSA)
is summarized in Algorithm 6 and more information can be
found in the literature [84].

Algorithm 6. Sparse reconstruction by separable approximation (SpaRSA)
Task: To address the problem

α̂ = argminF (α) = 1
2
‖Xα− y‖22 + λ‖α‖1

Input: Probe sampley, the measurement matrixX, small constantλ
Initialization: t = 0, i = 0, y0 = y, 1

τ0 I ≈ Hf (α) = XTX, tolerance
ε = 10−5.

Step 1:λt = max{γ‖XT yt‖∞, λ}.
Step 2: Exploit shrinkage operator to solve problem VI.14, i.e.

αi+1 = shrink(αi − τ iXT (XTαt − y), λtτ i).
Step 3: Update the value of 1

τi+1 using the Eq. VI.20.

Step 4: If ‖αi+1−αi‖
αi ≤ ε, go to step 5; Otherwise, return to step 2

and i = i+ 1.
Step 5:yt+1 = y −Xαt+1.
Step 6: Ifλt = λ, stop; Otherwise, return to step 1 andt = t+ 1.

Output: αi
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E. l1/2-norm regularization based sparse representation

Sparse representation with thelp-norm (0<p<1) regularization
leads to a nonconvex, nonsmooth, and non-Lipschitz optimiza-
tion problem and its general forms are described as problems
III.13 and III.14. Thelp-norm (0<p<1) regularization problem
is always difficult to be efficiently addressed and it has also
attracted wide interests from large numbers of research groups.
However, the research group led by Zongben Xu summarizes
the conclusion that the most impressive and representative
algorithm of thelp-norm (0<p<1) regularization is sparse rep-
resentation with thel1/2-norm regularization [87]. Moreover,
they have proposed some effective methods to solve thel1/2-
norm regularization problem [60, 88].

In this section, a half proximal algorithm is introduced
to solve the l1/2-norm regularization problem [60], which
matches the iterative shrinkage thresholding algorithm for the
l1-norm regularization discussed above and the iterative hard
thresholding algorithm for thel0-norm regularization. Sparse
representation with thel1/2-norm regularization is explicitly
to solve the problem as follows:

α̂ = argmin{F (α) = ‖Xα− y‖22 + λ‖α‖1/21/2} (VI.21)

where the first-order optimality condition ofF (α) on α can
be formulated as

∇F (α) = XT (Xα− y) +
λ

2
∇(‖α‖1/21/2) = 0 (VI.22)

which admits the following equation:

XT (y −Xα) =
λ

2
∇(‖α‖1/21/2) (VI.23)

where∇(‖α‖1/21/2) denotes the gradient of the regularization

term ‖α‖1/21/2. Subsequently, an equivalent transformation of
Eq. VI.23 is made by multiplying a positive constantτ and
adding a parameterα to both sides. That is,

α+ τXT (y −Xα) = α+ τ
λ

2
∇(‖α‖1/21/2) (VI.24)

To this end, the resolvent operator [60] is introduced to
compute the resolvent solution of the right part of Eq. VI.24,
and the resolvent operator is defined as

Rλ, 1
2
(•) =

(

I +
λτ

2
∇(‖ • ‖1/21/2)

)−1

(VI.25)

which is very similar to the inverse function of the right part
of Eq. VI.24. The resolvent operator is always satisfied no
matter whether the resolvent solution of∇(‖ • ‖1/21/2) exists
or not [60]. Applying the resolvent operator to solve problem
VI.24

α = (I +
λτ

2
∇(‖ • ‖1/21/2))

−1(α+ τXt(y −Xα))

= Rλ,1/2(α+ τXT (y −Xα))
(VI.26)

can be obtained which is well-defined.θ(α) = α+ τXT (y−
Xα) is denoted and the resolvent operator can be explicitly
expressed as:

Rλ, 1
2
(x) = (fλ, 1

2
(x1), fλ, 1

2
(x2), · · · , fλ, 1

2
(xN ))T (VI.27)

where

fλ, 1
2
(xi) =

2

3
xi(1 + cos(

2π

3
− 2

3
gλ(xi)),

gλ(xi) = arg cos(
λ

8
(
|xi|
3

)−
3
2 )

(VI.28)

which have been demonstrated in the literature [60].
Thus the half proximal thresholding function for thel1/2-

norm regularization is defined as below:

hλτ, 1
2
(xi) =

{

fλτ, 1
2
(xi), if |xi| >

3
√
54
4 (λτ)

2
3

0, otherwise
(VI.29)

where the threshold
3
√
54
4 (λτ)

2
3 has been conceived and

demonstrated in the literature [60].
Therefore, if Eq. VI.29 is applied to Eq. VI.27, the half

proximal thresholding function, instead of the resolvent oper-
ator, for thel1/2-norm regularization problem VI.25 can be
explicitly reformulated as:

α = Hλτ, 1
2
(θ(α)) (VI.30)

where the half proximal thresholding operatorH [60] is
deductively constituted by Eq. VI.29.

Up to now, the half proximal thresholding algorithm has
been completely structured by Eq. VI.30. However, the options
of the regularization parameterλ in Eq. VI.24 can seriously
dominate the quality of the representation solution in problem
VI.21, and the values ofλ andτ can be specifically fixed by

τ =
1− ε

‖X‖2 and λ =

√
96

9τ
|[θ(α)]k+1 |

3
2 (VI.31)

where ε is a very small constant, which is very close to
zero, thek denotes the limit of sparsity (i.e.k-sparsity), and
[•]k refers to thek-th largest component of[•]. The half
proximal thresholding algorithm forl1/2-norm regularization
based sparse representation is summarized in Algorithm 7 and
more detailed inferences and analyses can be found in the
literature [60, 88].

Algorithm 7. The half proximal thresholding algorithm forl1/2-norm
regularization
Task: To address the problem

α̂ = argminF (α) = ‖Xα− y‖22 + λ‖α‖1/2
1/2

Input: Probe sampley, the measurement matrixX
Initialization: t = 0, ε = 0.01, τ = 1−ε

‖X‖2 .

While not converged do
Step 1: Computeθ(αt) = αt + τXT (y −Xαt).

Step 2: Computeλt =
√
96

9τ
|[θ(αt)]k+1|

3
2 in Eq. VI.31.

Step 3: Apply the half proximal thresholding operator to obtain
the representation solutionαt+1 = Hλtτ,

1
2

(θ(αt)).

Step 4:t = t+ 1.
End
Output: α

F. Augmented Lagrange Multiplier based optimization strat-
egy

The Lagrange multiplier is a widely used tool to eliminate
the equality constrained problem and convert it to address the
unconstrained problem with an appropriate penalty function.
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Specifically, the sparse representation problem III.9 can be
viewed as an equality constrained problem and the equivalent
problem III.12 is an unconstrained problem, which augments
the objective function of problem III.9 with a weighted con-
straint function. In this section, the augmented Lagrangian
method (ALM) is introduced to solve the sparse representation
problem III.9.

First, the augmented Lagrangian function of problem III.9
is conceived by introducing an additional equality constrained
function, which is enforced on the Lagrange function in
problem III.12. That is,

L(α, λ) = ‖α‖1+
λ

2
‖y−Xα‖22 s.t. y−Xα = 0 (VI.32)

Then, a new optimization problem VI.32 with the form of the
Lagrangain function is reformulated as

argminLλ(α, z) = ‖α‖1 +
λ

2
‖y −Xα‖22 + zT (y −Xα)

(VI.33)
wherez ∈ R

d is called the Lagrange multiplier vector or dual
variable andLλ(α, z) is denoted as the augmented Lagrangian
function of problem III.9. The optimization problem VI.33
is a joint optimization problem of the sparse representation
coefficientα and the Lagrange multiplier vectorz. Problem
VI.33 is solved by optimizingα andz alternatively as follows:

αt+1 = argminLλ(α, zt)

= argmin(‖α‖1 +
λ

2
‖y −Xα‖22 + (zt)TXα)

(VI.34)

zt+1 = zt + λ(y −Xαt+1) (VI.35)

where problem VI.34 can be solved by exploiting the FISTA
algorithm. Problem VI.34 is iteratively solved and the parame-
ter z is updated using Eq. VI.35 until the termination condition
is satisfied. Furthermore, if the method of employing ALM
to solve problem VI.33 is denoted as the primal augmented
Lagrangian method (PALM) [89], the dual function of problem
III.9 can also be addressed by the ALM algorithm, which is
denoted as the dual augmented Lagrangian method (DALM)
[89]. Subsequently, the dual optimization problem III.9 is
discussed and the ALM algorithm is utilized to solve it.

First, consider the following equation:

‖α‖1 = max
‖θ‖∞≤1

〈θ,α〉 (VI.36)

which can be rewritten as

‖α‖1 = max{〈θ,α〉 − IB1
∞

}
or ‖α‖1 = sup{〈θ,α〉 − IB1

∞

} (VI.37)

whereBλ
p = {x ∈ RN | ‖x‖p ≤ λ} andIΩ(x) is a indicator

function, which is defined asIΩ(x) =

{
0 ,x ∈ Ω
∞ ,x 6∈ Ω

.

Hence,

‖α‖1 = max{〈θ,α〉 : θ ∈ B1
∞} (VI.38)

Second, consider the Lagrange dual problem of problem
III.9 and its dual function is

g(λ) = inf
α
{‖α‖1+λT (y−Xα)} = λTy−sup

α
{λTXα−‖α‖1}

(VI.39)
whereλ ∈ R

d is a Lagrangian multiplier. If the definition of
conjugate function is applied to Eq. VI.37, it can be verified
that the conjugate function ofIB1

∞

(θ) is ‖α‖1. Thus Eq. VI.39
can be equivalently reformulated as

g(λ) = λTy − IB1
∞

(XTλ) (VI.40)

The Lagrange dual problem, which is associated with the
primal problem III.9, is an optimization problem:

max
λ

λTy s.t. (XTλ) ∈ B1
∞ (VI.41)

Accordingly,

min
λ,z

−λTy s.t. z −XTλ = 0, z ∈ B1
∞ (VI.42)

Then, the optimization problem VI.42 can be reconstructed as

arg min
λ,z,µ

L(λ, z,µ) = −λTy − µT (z −XTλ)

+
τ

2
‖z −XTλ‖22 s.t. z ∈ B1

∞
(VI.43)

whereµ ∈ R
d is a Lagrangian multiplier andτ is a penalty

parameter.
Finally, the dual optimization problem VI.43 is solved and

a similar alternating minimization idea of PALM can also be
applied to problem VI.43, that is,

zt+1 = arg min
z∈B1

∞

Lτ (λ
t, z,µt)

= arg min
z∈B1

∞

{−µT (z −XTλt) +
τ

2
‖z −XTλt‖22}

= arg min
z∈B1

∞

{τ
2
‖z − (XTλt +

2

τ
µT )‖22}

= PB1
∞

(XTλt +
1

τ
µT )

(VI.44)

wherePB1
∞

(u) is a projection, or called a proximal operator,
onto B1

∞ and it is also called group-wise soft-thresholding.
For example, letx = PB1

∞

(u), then thei-th component of
solutionx satisfiesxi = sign(ui)min{|ui|, 1}
λt+1 = argmin

λ
Lτ (λ, z

t+1,µt)

= argmin
λ

{−λTy + (µt)TXTλ+
τ

2
‖zt+1 −XTλ‖22}

= Q(λ)
(VI.45)

Take the derivative ofQ(λ) with respect toλ and obtain

λt+1 = (τXXT )−1(τXzt+1 + y −Xµt) (VI.46)

µt+1 = µt − τ(zt+1 −XTλt+1) (VI.47)

The DALM for sparse representation withl1-norm regu-
larization mainly exploits the augmented Lagrange method
to address the dual optimization problem of problem III.9
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and a proximal operator, the projection operator, is utilized
to efficiently solve the subproblem. The algorithm of DALM
is summarized in Algorithm 8. For more detailed description,
please refer to the literature [89].

Algorithm 8. Dual augmented Lagrangian method forl1-norm regulariza-
tion
Task: To address the dual problem of̂α = argminα ‖α‖1 s.t. y =
Xα

Input: Probe sampley, the measurement matrixX, a small constantλ0.
Initialization: t = 0, ε = 0.01, τ = 1−ε

‖X‖2 , µ0 = 0.

While not converged do
Step 1: Apply the projection operator to compute

zt+1 = PB1
∞

(XTλt + 1
τ
µT ).

Step 2: Update the value ofλt+1 = (τXXT )−1(τXzt+1+y−Xµt).
Step 3: Update the value ofµt+1 = µt − τ(zt+1 −XTλt+1).
Step 4:t = t + 1.

End While
Output: α = µ[1 : N ]

G. Other proximity algorithm based optimization methods

The theoretical basis of the proximity algorithm is to first
construct a proximal operator, and then utilize the proximal
operator to solve the convex optimization problem. Massive
proximity algorithms have followed up with improved tech-
niques to improve the effectiveness and efficiency of proximity
algorithm based optimization methods. For example, Elad et
al. proposed an iterative method named parallel coordinate
descent algorithm (PCDA) [90] by introducing the element-
wise optimization algorithm to solve the regularized linear
least squares with non-quadratic regularization problem.

Inspired by belief propagation in graphical models, Donoho
et al. developed a modified version of the iterative thresholding
method, called approximate message passing (AMP) method
[91], to satisfy the requirement that the sparsity undersampling
tradeoff of the new algorithm is equivalent to the correspond-
ing convex optimization approach. Based on the develop-
ment of the first-order method called Nesterov’s smoothing
framework in convex optimization, Becker et al. proposed a
generalized Nesterov’s algorithm (NESTA) [92] by employing
the continuation-like scheme to accelerate the efficiency and
flexibility. Subsequently, Becker et al. [93] further constructed
a general framework, i.e. templates for convex cone solvers
(TFOCS), for solving massive certain types of compressed
sensing reconstruction problems by employing the optimal
first-order method to solve the smoothed dual problem of
the equivalent conic formulation of the original optimization
problem. Further detailed analyses and inference information
related to proximity algorithms can be found in the literature
[28, 83].

VII. H OMOTOPY ALGORITHM BASED SPARSE

REPRESENTATION

The concept of homotopy derives from topology and the
homotopy technique is mainly applied to address a nonlinear
system of equations problem. The homotopy method was
originally proposed to solve the least square problem with
the l1-penalty [94]. The main idea of homotopy is to solve

the original optimization problems by tracing a continuous
parameterized path of solutions along with varying parameters.
Having a highly intimate relationship with the conventional
sparse representation method such as least angle regression
(LAR) [42], OMP [64] and polytope faces pursuit (PFP)
[95], the homotopy algorithm has been successfully employed
to solve thel1-norm minimization problems. In contrast to
LAR and OMP, the homotopy method is more favorable
for sequentially updating the sparse solution by adding or
removing elements from the active set. Some representative
methods that exploit the homotopy-based strategy to solve the
sparse representation problem with thel1-norm regularization
are explicitly presented in the following parts of this section.

A. LASSO homotopy

Because of the significance of parameters inl1-norm min-
imization, the well-known LASSO homotopy algorithm is
proposed to solve the LASSO problem in III.9 by tracing
the whole homotopy solution path in a range of decreasing
values of parameterλ. It is demonstrated that problem III.12
with an appropriate parameter value is equivalent to problem
III.9 [29]. Moreover, it is apparent that as we changeλ from
a very large value to zero, the solution of problem III.12 is
converging to the solution of problem III.9 [29]. The set of
varying valueλ conceives the solution path and any point on
the solution path is the optimality condition of problem III.12.
More specifically, the LASSO homotopy algorithm starts at
an large initial value of parameterλ and terminates at a
point of λ, which approximates zero, along the homotopy
solution path so that the optimal solution converges to the
solution of problem III.9. The fundamental of the homotopy
algorithm is that the homotopy solution path is a piecewise
linear path with a discrete number of operations while the
value of the homotopy parameter changes, and the direction
of each segment and the step size are absolutely determined
by the sign sequence and the support of the solution on the
corresponding segment, respectively [96].

Based on the basic ideas in a convex optimization problem,
it is a necessary condition that the zero vector should be a
solution of the subgradient of the objective function of problem
III.12. Thus, we can obtain the subgradiential of the objective
function with respect toα for any given value ofλ, that is,

∂L

∂α
= −XT (y −Xα) + λ∂‖α‖1 (VII.1)

where the first termr = XT (y −Xα) is called the vector of
residual correlations, and∂‖α‖1 is the subgradient obtained
by

∂‖α‖1 =
{

θ ∈ RN

∣
∣
∣
∣

θi = sgn(αi), αi 6= 0
θi ∈ [−1, 1], αi = 0

}

Let Λ andu denote the support ofα and the sign sequence
of α on its supportΛ, respectively.XΛ denotes that the indices
of all the samples inXΛ are all included in the support set
Λ. If we analyze the KKT optimality condition for problem
III.12, we can obtain the following two equivalent conditions
of problem VII.1, i.e.

XΛ(y −Xα) = λu; ‖XT
Λc(y −Xα)‖∞ ≤ λ (VII.2)
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whereΛc denotes the complementary set of the setΛ. Thus,
the optimality conditions in VII.2 can be divided intoN
constraints and the homotopy algorithm maintains both of the
conditions along the optimal homotopy solution path for any
λ ≥ 0. As we decrease the value ofλ to λ − τ , for a small
value ofτ , the following conditions should be satisfied

XT
Λ (y −Xα) + τXT

ΛXδ = (λ− τ)u (a)
‖p+ τq‖∞ ≤ λ− τ (b)

(VII.3)

wherep = XT (y−Xα), q = XTXδ andδ is the update
direction.

Generally, the homotopy algorithm is implemented itera-
tively and it follows the homotopy solution path by updating
the support set by decreasing parameterλ from a large value
to the desired value. The support set of the solution will be
updated and changed only at a critical point ofλ, where
either an existing nonzero element shrinks to zero or a new
nonzero element will be added into the support set. The
two most important parameters are the step sizeτ and the
update directionδ. At the l-th stage (if(XT

ΛXΛ)
−1 exists),

the homotopy algorithm first calculates the update direction,
which can be obtained by solving

XT
ΛXΛδl = u (VII.4)

Thus, the solution of problem VII.4 can be written as

δl =

{
(XT

ΛXΛ)
−1u, on Λ

0, otherwise
(VII.5)

Subsequently, the homotopy algorithm computes the step
size τ to the next critical point by tracing the homotopy
solution path. i.e. the homotopy algorithm moves along the
update direction until one of constraints in VII.3 is not
satisfied. At this critical point, a new nonzero element must
enter the supportΛ, or one of the nonzero elements inα
will be shrink to zero, i.e. this element must be removed
from the support setΛ. Two typical cases may lead to a new
critical point, where either condition of VII.3 is violated. The
minimum step size which leads to a critical point can be easily
obtained by computingτ∗l = min(τ+l , τ−l ), and τ+l and τ−l
are computed by

τ+l = mini∈Λc

(
λ− pi

1− xT
i XΛδl

,
λ+ pi

1 + xT
i XΛδl

)

+

(VII.6)

τ−l = mini∈Λ

(−αi
l

δil

)

+

(VII.7)

where pi = xT
i (y − xiα

i
l) and min(·)+ denotes that the

minimum is operated over only positive arguments.τ+l is the
minimum step size that turns an inactive element at the index
i+ in to an active element, i.e. the indexi+ should be added
into the support set.τ−l is the minimum step size that shrinks
the value of a nonzero active element to zero at the indexi−

and the indexi− should be removed from the support set. The
solution is updated byαl+1 = αl + τ∗l δ, and its support and
sign sequence are renewed correspondingly.

The homotopy algorithm iteratively computes the step size
and the update direction, and updates the homotopy solution
and its corresponding support and sign sequence till the

condition‖p‖∞ = 0 is satisfied so that the solution of problem
III.9 is reached. The principal steps of the LASSO homotopy
algorithm have been summarized in Algorithm 9. For further
description and analyses, please refer to the literature [29, 96].

Algorithm 9. Lasso homotopy algorithm
Task: To addrss the Lasso problem:

α̂ = argminα ‖y −Xα‖22 s.t. ‖α‖1 ≤ ε

Input: Probe sampley, measurement matrixX.
Initialization: l = 1, initial solutionαl and its support setΛl.
Repeat:

Step 1: Compute update directionδl by using Eq. (VII.5).
Step 2: Computeτ+l andτ−l by using Eq. (VII.6) and Eq. (VII.7).
Step 3: Compute the optimal minimum step sizeτ∗l by using

τ∗l = min{τ+l , τ−l }.
Step 4: Update the solutionαl+1 by usingαl+1 = αl + τ∗l δl.
Step 5: Update the support set:

If τ+l == τ−l then
Remove thei− from the support set, i.e.Λl+1 = Λl\i−.

else
Add the i+ into the support set, i.e.Λl+1 = Λl

⋃

i+

End if
Step 6:l = l+ 1.

Until ‖XT (y −Xα)‖∞ = 0
Output: αl+1

B. BPDN homotopy

Problem III.11, which is called basis pursuit denoising
(BPDN) in signal processing, is the unconstrained Lagrangian
function of the LASSO problem III.9, which is an uncon-
strained problem. The BPDN homotopy algorithm is very
similar to the LASSO homotopy algorithm. If we consider the
KKT optimality condition for problem III.12, the following
condition should be satisfied for the solutionα

‖XT (y −Xα)‖∞ ≤ λ (VII.8)

As for any given value ofλ and the support setΛ, the
following two conditions also need to be satisfied

XT
Λ (y −Xα) = λu; ‖XT

Λc(y −Xα)‖∞ ≤ λ (VII.9)

The BPDN homotopy algorithm directly computes the ho-
motopy solution by

α =

{
(XT

ΛXΛ)
−1(XT

Λy − λu), on Λ
0, otherwise

(VII.10)

which is somewhat similar to the soft-thresholding operator.
The value of the homotopy parameterλ is initialized with a
large value, which satisfiesλ0 > ‖XTy‖∞. As the value of
the homotopy parameterλ decreases, the BPDN homotopy
algorithm traces the solution in the direction of(XT

ΛXΛ)
−1u

till the critical point is obtained. Each critical point is reached
when either an inactive element is transferred into an active
element, i.e. its corresponding index should be added into
the support set, or an nonzero active element value inα

shrinks to zero, i.e. its corresponding index should be removed
from the support set. Thus, at each critical point, only one
element is updated, i.e. one element being either removed
from or added into the active set, and each operation is very
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computationally efficient. The algorithm is terminated when
the value of the homotopy parameter is lower than its desired
value. The BPDN homotopy algorithm has been summarized
in Algorithm 10. For further detail description and analyses,
please refer to the literature [42].

Algorithm 10. BPDN homotopy algorithm
Task: To address the Lasso problem:

α̂ = argminα ‖y −Xα‖22 + λ‖α‖1
Input: Probe sampley, measurement matrixX.
Initialization: l = 0, initial solution α0 and its support setΛ0, a large
valueλ0, step sizeτ , toleranceε.
Repeat:

Step 1: Compute update directionδl+1 by using
δl+1 = (XT

ΛXΛ)
−1ul .

Step 2: Update the solutionαl+1 by using Eq. (VII.10).
Step 3: Update the support set and the sign sequence set.
Step 6:λl+1 = λl − τ , l = l+ 1.

Until λ ≤ ε
Output: αl+1

C. Iterative Reweightingl1-norm minimization via homotopy

Based on the homotopy algorithm, Asif and Romberg [96]
presented a enhanced sparse representation objective function,
a weightedl1-norm minimization, and then provided two fast
and accurate solutions, i.e. the iterative reweighting algorithm,
which updated the weights with a new ones, and the adaptive
reweighting algorithm, which adaptively selected the weights
in each iteration. Here the iterative reweighting algorithm
via homotopy is introduced. The objective function of the
weightedl1-norm minimization is formulated as

argmin
1

2
‖Xα− y‖22 + ‖Wα‖1 (VII.11)

where W = diag[w1, w2, · · · , wN ] is the weight of the
l1-norm and also is a diagonal matrix. For more explicit
description, problem VII.11 can be rewritten as

argmin
1

2
‖Xα− y‖22 +

N∑

i=1

wi|αi| (VII.12)

A common method [42, 73] to update the weightW is
achieved by exploiting the solution of problem VII.12, i.e.α,
at the previous iteration, and for thei-th element of the weight
wi is updated by

wi =
λ

|αi|+ σ
(VII.13)

where parametersλ andσ are both small constants. In order to
efficiently update the solution of problem (7-9), the homotopy
algorithm introduces a new weight of thel1-norm and a
new homotopy based reweighting minimization problem is
reformulated as

argmin
1

2
‖Xα−y‖22+

N∑

i=1

((1−σ)ŵi +σŵi)|αi| (VII.14)

whereŵi denotes the new obtained weight by the homotopy
algorithm, parameterτ is denoted as the homotopy parameter
varying from 0 to 1. Apparently, problem VII.14 can be
evolved to problem VII.12 with the increasing value of the

homotopy parameter by tracing the homotopy solution path.
Similar to the LASSO homotopy algorithm, problem VII.14
is also piecewise linear along the homotopy path, and for any
value ofσ, the following conditions should be satisfied

xT
i (Xα− y) = −((1− σ)wi + σŵi)ui for i ∈ Λ (a)

|xT
i (Xα− y)| < (1 − σ)wi + σŵi for i ∈ Λc (b)

(VII.15)
wherexi is thei-th column of the measurementX , wi and

ŵi are the given weight and new obtained weight, respectively.
Moreover, for the optimal step sizeσ, when the homotopy
parameter changes fromσ to σ+ τ in the update directionδ,
the following optimality conditions also should be satisfied

XT
Λ (Xα− y) + τXT

ΛXδ =

−((1− σ)W + σŴ )u + τ(W − Ŵ )u (a)
|p− τq| ≤ r + τs (b)

(VII.16)

whereu is the sign sequence ofα on its supportΛ, pi =
xT
i (Xα − y), qi = xT

i Xδ, ri = (1 − σ)wi + σŵi and si =
ŵi − wi. Thus, at thel-th stage (if (XT

i Xi)
−1 exists), the

update direction of the homotopy algorithm can be computed
by

δl =

{

(XT
ΛXΛ)

−1(W − Ŵ )u, on Λ
0, otherwise

(VII.17)

The step size which can lead to a critical point can be com-
puted byτ∗l = min(τ+l , τ−l ), and τ+l and τ−l are computed
by

τ+l = mini∈Λc

(
ri − pi
qi − si

,
−ri − pi
qi + si

)

+

(VII.18)

τ−l = mini∈Λ

(−αi
l

δil

)

+

(VII.19)

where τ+l is the minimum step size so that the indexi+

should be added into the support set andτ−l is the minimum
step size that shrinks the value of a nonzero active element to
zero at the indexi−. The solution and homotopy parameter
are updated byαl+1 = αl + τ∗l δ, and σl+1 = σl + τ∗l ,
respectively. The homotopy algorithm updates its support set
and sign sequence accordingly until the new critical point
of the homotopy parameterσl+1 = 1. The main steps of
this algorithm are summarized in Algorithm 11 and more
information can be found in literature [96].

D. Other homotopy algorithms for sparse representation

The general principle of the homotopy method is to reach the
optimal solution along with the homotopy solution path by
evolving the homotopy parameter from a known initial value
to the final expected value. There are extensive hotomopy
algorithms, which are related to the sparse representationwith
the l1-norm regularization. Malioutov et al. first exploited the
homotopy method to choose a suitable parameter forl1-norm
regularization with a noisy term in an underdetermined system
and employed the homotopy continuation-based method to
solve BPDN for sparse signal processing [97]. Garrigues and
Ghaoui [98] proposed a modified homotopy algorithm to solve
the Lasso problem with online observations by optimizing the
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Algorithm 11. Iterative reweighting homotopy algorithm for weightedl1-
norm minimization
Task: To addrss the weightedl1-norm minimization:

α̂ = argmin 1
2
‖Xα− y‖22 +W‖α‖1

Input: Probe sampley, measurement matrixX.
Initialization: l = 1, initial solutionαl and its support setΛl, σ1 = 0.
Repeat:

Step 1: Compute update directionδl by using Eq. (VII.17).
Step 2: Computep, q, r ands by using Eq. (VII.16).
Step 2: Computeτ+l andτ−l by using Eq. (VII.18) and Eq. (VII.19).
Step 3: Compute the step sizeτ∗l by using

τ∗l = min{τ+l , τ−l }.
Step 4: Update the solutionαl+1 by usingαl+1 = αl + τ∗l δl.
Step 5: Update the support set:

If τ+l == τ−l then
Shrink the value to zero at the indexi− and removei−,
i.e. Λl+1 = Λl\i−.

else
Add the i+ into the support set, i.e.Λl+1 = Λl

⋃

i+

End if
Step 6:σl+1 = σl + τl and l = l + 1.

Until σl+1 = 1
Output: αl+1

homotopy parameter from the current solution to the solution
after obtaining the next new data point. Efron et al. [42] pro-
posed a basic pursuit denoising (BPDN) homotopy algorithm,
which shrinked the parameter to a final value with series
of efficient optimization steps. Similar to BPDN homotopy,
Asif [99] presented a homotopy algorithm for the Dantzing
selector (DS) under the consideration of primal and dual
solution. Asif and Romberg [100] proposed a framework of
dynamic updating solutions for solvingl1-norm minimization
programs based on homotopy algorithm and demonstrated its
effectiveness in addressing the decoding issue. More recent
literature related to homotopy algorithms can be found in the
streaming recovery framework [101] and a summary [102].

VIII. T HE APPLICATIONS OF THE SPARSE

REPRESENTATION METHOD

Sparse representation technique has been successfully im-
plemented to numerous applications, especially in the fields
of computer vision, image processing, pattern recognition
and machine learning. More specifically, sparse representation
has also been successfully applied to extensive real-world
applications, such as image denoising, deblurring, inpainting,
super-resolution, restoration, quality assessment, classification,
segmentation, signal processing, object tracking, texture clas-
sification, image retrieval, bioinformatics, biometrics and other
artificial intelligence systems. Moreover, dictionary learning is
one of the most typical representative examples of sparse rep-
resentation for realizing the sparse representation of a signal.
In this paper, we only concentrate on the three applicationsof
sparse representation, i.e. sparse representation in dictionary
learning, image processing, image classification and visual
tracking.

A. Sparse representation in dictionary learning

The history of modeling dictionary could be traced back to
1960s, such as the fast Fourier transform (FFT) [103]. An

over-complete dictionary that can lead to sparse representation
is usually achieved by exploiting pre-specified set of trans-
formation functions, i.e. transform domain method [5], or is
devised based on learning, i.e. dictionary learning methods
[104]. Both of the transform domain and dictionary learning
based methods transform image samples into other domains
and the similarity of transformation coefficients are exploited
[105]. The difference between them is that the transform
domain methods usually utilize a group of fixed transfor-
mation functions to represent the image samples, whereas
the dictionary learning methods apply sparse representations
on a over-complete dictionary with redundant information.
Moreover, exploiting the pre-specified transform matrix in
transform domain methods is attractive because of its fast and
simplicity. Specifically, the transform domain methods usually
represent the image patches by using the orthonormal basis
such as over-complete wavelets transform [106], super-wavelet
transform [107], bandelets [108], curvelets transform [109],
contourlets transform [110] and steerable wavelet filters [111].
However, the dictionary learning methods exploiting sparse
representation have the potential capabilities of outperforming
the pre-determined dictionaries based on transformation func-
tions. Thus, in this subsection we only focus on the modern
over-complete dictionary learning methods.

An effective dictionary can lead to excellent reconstruction
results and satisfactory applications, and the choice of dictio-
nary is also significant to the success of sparse representation
technique. Different tasks have different dictionary learning
rules. For example, image classification requires that the
dictionary contains discriminative information such thatthe
solution of sparse representation possesses the capability of
distinctiveness. The purpose of dictionary learning is moti-
vated from sparse representation and aims to learn a faithful
and effective dictionary to largely approximate or simulate the
specific data. In this section, some parameters are defined as
matrix Y = [y1,y2, · · · ,yN ], matrix X = [x1,x2, · · · ,xt]

T ,
and dictionaryD = [d1,d2, · · · ,dM ].

From the notations of the literature [22, 112], the framework
of dictionary learning can be generally formulated as an
optimization problem

arg min
D∈Ω,xi

{

1

N

N∑

i=1

(
1

2
‖yi −Dxi‖22 + λP (xi))

}

(VIII.1)

where Ω = {D = [d1,d2, · · · ,dM ] : dT
i di = 1, i =

1, 2, · · · ,M} (M here may not be equal toN ), N denotes
the number of the known data set (eg. training samples in
image classification),yi is the i-th sample vector from a
known set,D is the learned dictionary andxi is the sparsity
vector. P (xi) and λ are the penalty or regularization term
and a tuning parameter, respectively. The regularization term
of problem VIII.1 controls the degree of sparsity. That is,
different kinds of the regularization terms can immensely
dominate the dictionary learning results.

One spontaneous idea of defining the penalty termP (xi)
is to introduce thel0-norm regularization, which leads to
the sparsest solution of problem VIII.1. As a result, the
theory of sparse representation can be applied to dictionary
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learning. The most representative dictionary learning based
on the l0-norm penalty is the K-SVD algorithm [8], which
is widely used in image denoising. Because the solution of
l0-norm regularization is usually a NP-hard problem, utilizing
a convex relaxation strategy to replacel0-norm regularization
is an advisable choice for dictionary learning. As a convex
relaxation method ofl0-norm regularization, thel1-norm reg-
ularization based dictionary learning has been proposed in
large numbers of dictionary learning schemes. In the stage
of convex relaxation methods, there are three optimal forms
for updating a dictionary: the one by one atom updating
method, group atoms updating method, and all atoms updating
method [112]. Furthermore, because of over-penalization in l1-
norm regularization, non-convex relaxation strategies also have
been employed to address dictionary learning problems. For
example, Fan and Li proposed a smoothly clipped absolution
deviation (SCAD) penalty [113], which employed an iterative
approximate Newton-Raphson method for penalizing least
sequences and exploited the penalized likelihood approaches
for variable selection in linear regression models. Zhang
introduced and studied the non-convex minimax concave (MC)
family [114] of non-convex piecewise quadratic penalties to
make unbiased variable selection for the estimation of regres-
sion coefficients, which was demonstrated its effectiveness
by employing an oracle inequality. Friedman proposed to
use the logarithmic penalty for a model selection [115] and
used it to solve the minimization problems with non-convex
regularization terms. From the viewpoint of updating strategy,
most of the dictionary learning methods always iteratively
update the sparse approximation or representation solution
and the dictionary alternatively, and more dictionary learning
theoretical results and analyses can be found in the literature
[116, 117].

Recently, varieties of dictionary learning methods have been
proposed and researchers have attempted to exploit different
strategies for implementing dictionary learning tasks based on
sparse representation. There are several means to categorize
these dictionary learning algorithms into various groups.For
example, dictionary learning methods can be divided into
three groups in the context of different norms utilized in the
penalty term, that is,l0-norm regularization based methods,
convex relaxation methods and non-convex relaxation methods
[118]. Moreover, dictionary learning algorithms can also be
divided into three other categories in the presence of different
structures. The first category is dictionary learning underthe
probabilistic framework such as maximum likelihood methods
[119], the method of optimal directions (MOD) [120], and the
maximum a posteriori probability method [121]. The second
category is clustering based dictionary learning approaches
such as KSVD [122], which can be viewed as a generalization
of K-means. The third category is dictionary learning with
certain structures, which are grouped into two significative
aspects, i.e. directly modeling the relationship between each
atom and structuring the corrections between each atom with
purposive sparsity penalty functions. There are two typical
models for these kinds of dictionary learning algorithms,
sparse and shift-invariant representation of dictionary learning
and structure sparse regularization based dictionary learning,

such as hierarchical sparse dictionary learning [123] and group
or block sparse dictionary learning [124]. Recently, some
researchers [22] categorized the latest methods of dictionary
learning into four groups, online dictionary learning [125],
joint dictionary learning [126], discriminative dictionary learn-
ing [127], and supervised dictionary learning [128].

Although there are extensive strategies to divide the avail-
able sparse representation based dictionary learning methods
into different categories, the strategy used here is to categorize
the current prevailing dictionary learning approaches into two
main classes: supervised dictionary learning and unsupervised
dictionary learning, and then specific representative algorithms
are explicitly introduced.

1) Unsupervised dictionary learning:From the viewpoint
of theoretical basis, the main difference of unsupervised and
supervised dictionary learning relies on whether the class
label is exploited in the process of learning for obtaining
the dictionary. Unsupervised dictionary learning methodshave
been widely implemented to solve image processing problems,
such as image compression, and feature coding of image
representation [129, 130].
(1) KSVD for unsupervised dictionary learning

One of the most representative unsupervised dictionary
learning algorithms is the KSVD method [122], which is a
modification or an extension of method of directions (MOD)
algorithm. The objective function of KSVD is

argmin
D,X

{‖Y −DX‖2F} s.t. ‖xi‖0 ≤ k, i = 1, 2, · · · , N
(VIII.2)

whereY ∈ R
d×N is the matrix composed of all the known

examples,D ∈ R
d×N is the learned dictionary,X ∈ R

N×N

is the matrix of coefficients,k is the limit of sparsity andxi

denotes thei-th row vector of the matrixX . Problem VIII.2
is a joint optimization problem with respect toD andX , and
the natural method is to alternatively optimize theD andX
iteratively.

Algorithm 12. The K-SVD algorithm for dictionary learning
Task: Learning a dictionaryD: argminD,X ‖Y −DX‖2F s.t. ‖xi‖0 ≤
k, i = 1, 2, · · · , N
Input: The matrix composed of given samplesY = [y1,y2, · · · ,ym].
Initialization: Set the initial dictionaryD to the l2–norm unit matrix,
i = 1.
While not converged do

Step 1: For each given exampleyi, employing the classical sparse
representation withl0-norm regularization to solve problem VIII.3
for further estimatingXi,setl = 1.

While l is not equal tok do
Step 2: Compute the overall representation residual

El = Y −
∑

j 6=l djx
T
j .

Step 3: Extract the column items ofEl which corresponds
to the nonzero elements ofxT

l and obtainEP
l .

Step 4: SVD decomposesEP
l into EP

l = UΛV T .
Step 5: Updatedl to the first column ofU and update

corresponding coefficients inxT
l by Λ(1, 1) times the

first column ofV .
Step 6:l = l+ 1.

End While
Step 7:i = i+ 1.

End While
Output: dictionaryD

More specifically, when fixing dictionaryD, problem VIII.2
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is converted to

argmin
X

‖Y −DX‖2F s.t. ‖xi‖0 ≤ k, i = 1, 2, · · · , N
(VIII.3)

which is called sparse coding andk is the limit of sparsity.
Then, its subproblem is considered as follows:

argmin
xi

‖yi −Dxi‖22 s.t. ‖xi‖0 ≤ k, i = 1, 2, · · · , N

where we can iteratively resort to the classical sparse repre-
sentation withl0 -norm regularization such as MP and OMP,
for estimatingxi.

When fixingX , problem VIII.3 becomes a simple regres-
sion model for obtainingD, that is

D̂ = argmin
D

‖Y −DX‖2F (VIII.4)

whereD̂ = Y X† = Y XT (XXT )−1 and the method is called
MOD. Considering that the computational complexity of the
inverse problem in solving problem VIII.4 isO(n3), it is
favorable, for further improvement, to update dictionaryD by
fixing the other variables. The strategy of the KSVD algorithm
rewrites the problem VIII.4 into

D̂ =argmin
D

‖Y −DX‖2F = argmin
D

‖Y −
N∑

j=1

djx
T
j ‖2F

=argmin
D

‖(Y −
∑

j 6=l

djx
T
j )− dlx

T
l ‖2F

(VIII.5)

where xj is the j-th row vector of the matrixX . First
the overall representation residualEl = Y −

∑

j 6=l djx
T
j

is computed, and thendl and xl are updated. In order to
maintain the sparsity ofxT

l in this step, only the nonzero
elements ofxT

l should be preserved and only the nonzero
items of El should be reserved, i.e.EP

l , from dlx
T
l . Then,

SVD decomposesEP
l into EP

l = UΛV T , and then updates
dictionary dl. The specific KSVD algorithm for dictionary
learning is summarized to Algorithm 12 and more information
can be found in the literature [122].
(2) Locality constrained linear coding for unsupervised dictio-
nary learning

The locality constrained linear coding (LLC) algorithm
[130] is an efficient local coordinate linear coding method,
which projects each descriptor into a local constraint system
to obtain an effective codebook or dictionary. It has been
demonstrated that the property of locality is more essential
than sparsity, because the locality must lead to sparsity but
not vice-versa, that is, a necessary condition of sparsity is
locality, but not the reverse [130].

Assume thatY = [y1,y2, · · · ,yN ] ∈ R
d×N is a matrix

composed of local descriptors extracted from examples and
the objective dictionaryD = [d1,d2, · · · ,dN ] ∈ R

d×N . The
objective function of LLC is formulated as

argmin
xi,D

N∑

i=1

‖yi −Dxi‖22 + µ‖b⊙ xi‖22

s.t. 1
Txi = 1, i = 1, 2, · · · , N

(VIII.6)

whereµ is a small constant as a regularization parameter for
adjusting the weighting decay speed,⊙ is the operator of the
element-wise multiplication,xi is the code foryi, 1 ∈ R

N×1

is defined as a vector with all elements as 1 and vectorb is
the locality adaptor, which is, more specifically, set as

b = exp

(
dist(yi, D)

σ

)

(VIII.7)

where dist(yi, D) = [dist(yi,d1), · · · , dist(yi,dN)] and
dist(yi,dj) denotes the distance betweenyi and dj with
different distance metrics, such as Euclidean distance and
Chebyshev distance. Specifically, thei-th value of vectorb
is defined asbi = exp

(
dist(yi,di)

σ

)

.
TheK-Means clustering algorithm is applied to generate the

codebookD, and then the solution of LLC can be deduced
as:

x̂i = (Ci + µ diag2(b))\1 (VIII.8)

xi = x̂i/ 1
T x̂i (VIII.9)

where the operatora\b denotesa−1b, and Ci = (DT −
1yT

i )(D
T − 1yT

i )
T is the covariance matrix with respect

to yi. This is called the LLC algorithm. Furthermore, the
incremental codebook optimization algorithm has also been
proposed to obtain a more effective and optimal codebook,
and the objective function is reformulated as

argmin
xi,D

N∑

i=1

‖yi −Dxi‖22 + µ‖b⊙ xi‖22

s.t. 1
Txi = 1, ∀i; ‖dj‖22 ≤ 1, ∀j

(VIII.10)

Actually, the problem VIII.10 is a process of feature extrac-
tion and the property of ‘locality’ is achieved by constructing
a local coordinate system by exploiting the local bases for
each descriptor, and the local bases in the algorithm are
simply obtained by using theK nearest neighbors ofyi.
The incremental codebook optimization algorithm in problem
VIII.10 is a joint optimization problem with respect toD
and xi, and it can be solved by iteratively optimizing one
when fixing the other alternatively. The main steps of the
incremental codebook optimization algorithm are summarized
in Algorithm 13 and more information can be found in the
literature [130].
(3) Other unsupervised dictionary learning methods

A large number of different unsupervised dictionary learn-
ing methods have been proposed. The KSVD algorithm and
LLC algorithm are only two typical unsupervised dictio-
nary learning algorithms based on sparse representation. Ad-
ditionally, Jenatton et al. [123] proposed a tree-structured
dictionary learning problem, which exploited tree-structured
sparse regularization to model the relationship between each
atom and defined a proximal operator to solve the primal-
dual problem. Zhou et al. [131] developed a nonparametric
Bayesian dictionary learning algorithm, which utilized hierar-
chical Bayesian to model parameters and employed the trun-
cated beta-Bernoulli process to learn the dictionary. Ramirez
and Shapiro [132] employed minimum description length to
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Algorithm 13. The incremental codebook optimization algorithm
Task: Learning a dictionaryD: argminxi,D

∑N
i=1 ‖yi−Dxi‖22+µ‖b⊙

xi‖22 s.t. 1
Txi = 1, ∀i; ‖dj‖22 ≤ 1, ∀j

Input: The matrix composed of given samplesY = [y1,y2, · · · ,yN ].
Initialization: i = 1, ε = 0.01, D initialized by K-Means clustering
algorithm.
While i is not equal toN do

Step 1: Initializeb with 1×N zero vector.
Step 2: Update locality constraint parameterb with

bj = exp
(

− dist(yi,dj)

σ

)

for ∀j.

Step 3: Normalizeb using the equationb = b−bmin

bmax−bmin
.

Step 4: Exploit the LLC coding algorithm to obtainxi.
Step 5: Keep the set ofDi, whose corresponding entries of the codexi

are greater thanε, and drop out other elements, i.e.
index← {j | abs{xi(j)} > ε} ∀j andDi ← D(:, index).

Step 6: Updatexi exploitingargmax ‖yi−Dixi‖22 s.t. 1
Txi = 1.

Step 7: Update dictionaryD using a classical gradient descent method
with respect to problem VIII.6.

Step 8:i = i+ 1.
End While
Output: dictionaryD

model an effective framework of sparse representation and
dictionary learning, and this framework could conveniently
incorporate prior information into the process of sparse rep-
resentation and dictionary learning. Some other unsupervised
dictionary learning algorithms also have been validated. Mairal
et al. proposed an online dictionary learning [133] algorithm
based on stochastic approximations, which treated the dictio-
nary learning problem as the optimization of a smooth convex
problem over a convex set and employed an iterative online
algorithm at each step to solve the subproblems. Yang and
Zhang proposed a sparse variation dictionary learning (SVDL)
algorithm [134] for face recognition with a single training
sample, in which a joint learning framework of adaptive
projection and a sparse variation dictionary with sparse bases
were simultaneously constructed from the gallery image setto
the generic image set. Shi et al. proposed a minimax concave
penalty based sparse dictionary learning (MCPSDL) [112]
algorithm, which employed a non-convex relaxation online
scheme, i.e. a minimax concave penalty, instead of using
regular convex relaxation approaches as approximation ofl0-
norm penalty in sparse representation problem, and designed
a coordinate descend algorithm to optimize it. Bao et al.
proposed a dictionary learning by proximal algorithm (DLPM)
[118], which provided an efficient alternating proximal algo-
rithm for solving thel0-norm minimization based dictionary
learning problem and demonstrated its global convergence
property.

2) Supervised dictionary learning:Unsupervised dictionary
learning just considers that the examples can be sparsely
represented by the learned dictionary and leaves out the label
information of the examples. Thus, unsupervised dictionary
learning can perform very well in data reconstruction, such
as image denoising and image compressing, but is not ben-
eficial to perform classification. On the contrary, supervised
dictionary learning embeds the class label into the processof
sparse representation and dictionary learning so that thisleads
to the learned dictionary with discriminative informationfor
effective classification.

(1) Discriminative KSVD for dictionary learning
Discriminative KSVD (DKSVD) [127] was designed to

solve image classification problems. Considering the priori-
ties of supervised learning theory in classification, DKSVD
incorporates the dictionary learning with discriminativeinfor-
mation and classifier parameters into the objective function
and employs the KSVD algorithm to obtain the global optimal
solution for all parameters. The objective function of the
DKSVD algorithm is formulated as

〈D,C,X〉 = arg min
D,C,X

‖Y −DX‖2F + µ‖H − CX‖2F
+η‖C‖2F s.t. ‖xi‖0 ≤ k

(VIII.11)

whereY is the given input samples,D is the learned dictio-
nary,X is the coefficient term,H is the matrix composed of
label information corresponding toY , C is the parameter term
for classifier, andη andµ are the weights. With a view to the
framework of KSVD, problem VIII.11 can be rewritten as

〈D,C,X〉 = arg min
D,C,X

‖
(

Y√
µH

)

−
(

D√
µC

)

X‖2F
+η‖C‖2F s.t. ‖xi‖0 ≤ k

(VIII.12)

In consideration of the KSVD algorithm, each column of
the dictionary will be normalized tol2-norm unit vector and(

D√
µC

)

will also be normalized, and then the penalty

term ‖C‖2F will be dropped out and problem VIII.12 will be
reformulated as

〈Z,X〉 = argmin
Z,X

‖W −ZX‖2F s.t. ‖xi‖0 ≤ k (VIII.13)

whereW =

(
Y√
µH

)

, Z =

(
D√
µC

)

and apparently the

formulation VIII.13 is the same as the framework of KSVD
[122] in Eq. VIII.2 and it can be efficiently solved by the
KSVD algorithm.

More specifically, the DKSVD algorithm contains two main
phases: the training phase and classification phase. For the
training phase,Y is the matrix composed of the training sam-
ples and the objective is to learn a discriminative dictionary D
and the classifier parameterC. DKSVD updatesZ column by
column and for each column vectorzi, DKSVD employs the
KSVD algorithm to obtainzi and its corresponding weight.
Then, the DKSVD algorithm normalizes the dictionaryD and
classifier parameterC by

D′ = [d′
1,d

′
2, · · · ,d′

M ] = [ d1

‖d1‖ ,
d2

‖d2‖ , · · · ,
dM

‖dM‖ ]

C′ = [c′1, c
′
2, · · · , c′M ] = [ c1

‖d1‖ ,
c2

‖d2‖ , · · · ,
cM

‖dM‖ ]

x′
i = xi × ‖di‖

(VIII.14)
For the classification phase,Y is the matrix composed of

the test samples. Based on the obtained learning resultsD′

andC′, the sparse coefficient matrix̂xi can be obtained for
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each test sampleyi by exploiting the OMP algorithm, which
is to solve

x̂i = argmin ‖yi −D′x′
i‖22 s.t. ‖x′

i‖0 ≤ k (VIII.15)

On the basis of the corresponding sparse coefficientx̂i, the
final classification, for each test sampleyi, can be performed
by judging the label result by multiplyinĝxi by classifierC′,
that is,

label = C′ × x̂i (VIII.16)

where thelabel is the final predicted label vector. The class
label of yi is the determined class index oflabel.

The main highlight of DKSVD is that it employs the
framework of KSVD to simultaneously learn a discriminative
dictionary and classifier parameter, and then utilizes the effi-
cient OMP algorithm to obtain a sparse representation solution
and finally integrate the sparse solution and learned classifier
for ultimate effective classification.
(2) Label consistent KSVD for discriminative dictionary learn-
ing

Because of the classification term, a competent dictionary
can lead to effectively classification results. The original sparse
representation for face recognition [20] regards the raw data
as the dictionary, and then reports its promising classification
results. In this section, a label consistent KSVD (LC-KSVD)
[135, 136] is introduced to learn an effective discriminative
dictionary for image classification. As an extension of D-
KSVD, LC-KSVD exploits the supervised information to learn
the dictionary and integrates the process of constructing the
dictionary and optimal linear classifier into a mixed recon-
structive and discriminative objective function, and thenjointly
obtains the learned dictionary and an effective classifier.The
objective function of LC-KSVD is formulated as

〈D,A,C,X〉 = arg min
D,A,C,X

‖Y −DX‖2F + µ‖L−AX‖2F
+η‖H − CX‖2F s.t. ‖xi‖0 ≤ k

(VIII.17)

where the first term denotes the reconstruction error, the
second term denotes the discriminative sparse-code error,and
the final term denotes the classification error.Y is the matrix
composed of all the input data,D is the learned dictionary,
X is the sparse code term,µ and η are the weights of the
corresponding contribution items,A is a linear transformation
matrix,H is the matrix composed of label information corre-
sponding toY , C is the parameter term for classifier andL
is a joint label matrix for labels ofY andD. For example,
providing thatY = [y1 . . . y4] and D = [d1 . . . d4] where
y1, y2, d1 and d2 are from the first class, andy3, y4, d3 and
d4 are from the second class, and then the joint label matrix

L can be defined asL =







1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1







. Similar to the

DKSVD algorithm, the objective function VIII.17 can also be
reformulated as

〈Z,X〉 = argmin
Z,X

‖T − ZX‖22 s.t. ‖xi‖0 ≤ k (VIII.18)

whereT =





Y√
µL√
ηH



, Z =





D√
µA√
ηC



.

The learning process of the LC-KSVD algorithm, as is
DKSVD, can be separated into two sections, the training
term and the classification term. In the training section, since
problem VIII.18 completely satisfies the framework of KSVD,
the KSVD algorithm is applied to updateZ atom by atom and
computeX . ThusZ andX can be obtained. Then, the LC-
KSVD algorithm normalizes dictionaryD, transform matrix
A, and the classifier parameterC by

D′ = [d′
1,d

′
2, · · · ,d′

M ] = [ d1

‖d1‖ ,
d2

‖d2‖ , · · · ,
dM

‖dM‖ ]

A′ = [a′
1,a

′
2, · · · ,a′

M ] = [ a1

‖d1‖ ,
a2

‖d2‖ , · · · ,
aM

‖dM‖ ]

C′ = [c′1, c
′
2, · · · , c′M ] = [ c1

‖d1‖ ,
c2

‖d2‖ , · · · ,
cM

‖dM‖ ]
(VIII.19)

In the classification section,Y is the matrix composed of
the test samples. On the basis of the obtained dictionaryD′,
the sparse coefficient̂xi can be obtained for each test sample
yi by exploiting the OMP algorithm, which is to solve

x̂i = argmin ‖yi −D′x′
i‖22 s.t. ‖x′

i‖0 ≤ k (VIII.20)

The final classification is based on a simple linear predictive
function

l = argmax
f

{f = C′ × x̂i} (VIII.21)

wheref is the final predicting label vector and the test sample
yi is classified as a member of thel-th class.

The main contribution of LC-KSVD is to jointly incorporate
the discriminative sparse coding term and classifier parameter
term into the objective function for learning a discriminative
dictionary and classifier parameter. The LC-KSVD demon-
strates that the obtained solution, compared to other methods,
can prevent learning a suboptimal or local optimal solutionin
the process of learning a dictionary [135].
(3) Fisher discrimination dictionary learning for sparse repre-
sentation

Fisher discrimination dictionary learning (FDDL) [137]
incorporates the supervised information (class label informa-
tion) and the Fisher discrimination message into the objective
function for learning a structured discriminative dictionary,
which is used for pattern classification. The general model
of FDDL is formulated as

J(D,X) = argmin
D,X

{f(Y,D,X) + µ‖X‖1 + ηg(X)}
(VIII.22)

where Y is the matrix composed of input data,D is the
learned dictionary,X is the sparse solution, andµ andη are
two constants for tradeoff contributions. The first component
is the discriminative fidelity term, the second component is
the sparse regularization term, and the third component is the
discriminative coefficient term, such as Fisher discrimination
criterion in Eq. (VIII.23).
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Considering the importance of the supervised information,
i.e. label information, in classification, FDDL respectively
updates the dictionary and computes the sparse representation
solution class by class. Assume thatY i denotes the matrix of
i-th class of input data, vectorX i denotes the sparse repre-
sentation coefficient of the learned dictionaryD overY i and
X i

j denotes the matrix composed of the sparse representation
solutions, which correspond to thej-th class coefficients from
X i. Di is denoted as the learned dictionary corresponding to
the i-th class. Thus, the objective function of FDDL is

J(D,X) = argmin
D,X

(

c∑

i=1

f(Y i, D,X i) + µ‖X‖1+

η(tr(SW (X)− SB(X)) + λ‖X‖2F ))
(VIII.23)

wheref(Y i, D,X i) = ‖Y i − DX i‖2F + ‖Y i − DiX i
i‖2F +

∑

j 6=i ‖DjX i
j‖2F andSW (X) andSB(X) are the within-class

scatter ofX and between-class scatter ofX , respectively.c is
the number of the classes. To solve problem VIII.23, a natural
idea of optimization is to alternatively optimizeD and X
class by class, and then the process of optimization is briefly
introduced.

When fixing D, problem VIII.23 can be solved by com-
puting X i class by class, and its sub-problem is formulated
as

J(X i) = argmin
Xi

(
f(Y i, D,X i) + µ‖X i‖1 + ηg(X i)

)

(VIII.24)
whereg(X i) = ‖X i−Mi‖2F −∑c

t=1 ‖Mt−M‖2F +λ‖X i‖2F
and Mj and M denote the mean matrices corresponding to
thej-th class ofX i andX i, respectively. Problem VIII.23 can
be solved by the iterative projection method in the literature
[138].

When fixingα, problem VIII.23 can be rewritten as

J(D) = argmin
D

(‖Y i −DiX i −
∑

j 6=i

DjXj‖2F+

‖Y i −DiX i
i‖2F +

∑

j 6=i

‖DiX i
j‖2F )

(VIII.25)

whereX i here denotes the sparse representation ofY over
Di. In this section, each column of the learned dictionary is
normalized to a unit vector withl2-norm. The optimization of
problem VIII.25 computes the dictionary class by class and
it can be solved by exploiting the algorithm in the literature
[139].

The main contribution of the FDDL algorithm lies in
combining the Fisher discrimination criterion into the process
of dictionary learning. The discriminative power comes from
the method of constructing the discriminative dictionary using
the functionf in problem VIII.22 and simultaneously formu-
lates the discriminative sparse representation coefficients by
exploiting the functiong in problem VIII.22.
(4) Other supervised dictionary learning for sparse represen-
tation

Unlike unsupervised dictionary learning, supervised dictio-
nary learning emphasizes the significance of the class label

information and incorporates it into the learning process to
enforce the discrimination of the learned dictionary. Recently,
massive supervised dictionary learning algorithms have been
proposed. For example, Yang et al. [139] presented a metaface
dictionary learning method, which is motivated by ‘metagenes’
in gene expression data analysis. Rodriguez and Sapiro [140]
produced a discriminative non-parametric dictionary learning
(DNDL) framework based on the OMP algorithm for image
classification. Kong et al. [141] introduced a learned dictionary
with commonalty and particularity, called DL-COPAR, which
integrated an incoherence penalty term into the objective
function for obtaining the class-specific sub-dictionary.Gao
et al. [142] learned a hybrid dictionary, i.e. category-specific
dictionary and shared dictionary, which incorporated a cross-
dictionary incoherence penalty and self-dictionary incoherence
penalty into the objective function for learning a discrim-
inative dictionary. Jafari and Plumbley [143] presented a
greedy adaptive dictionary learning method, which updatedthe
learned dictionary with a minimum sparsity index. Some other
supervised dictionary learning methods are also competentin
image classification, such as supervised dictionary learning in
[144]. Zhou et al. [145] developed a joint dictionary learning
algorithm for object categorization, which jointly learned a
commonly shared dictionary and multiply category-specific
dictionaries for correlated object classes and incorporated the
Fisher discriminant fidelity term into the process of dictionary
learning. Ramirez et al. proposed a method of dictionary
learning with structured incoherence (DLSI) [140], which
unified the dictionary learning and sparse decomposition into a
sparse dictionary learning framework for image classification
and data clustering. Ma et al. presented a discriminative low-
rank dictionary learning for sparse representation (DLRDSR)
[146], in which the sparsity and the low-rank properties were
integrated into one dictionary learning scheme where sub-
dictionary with discriminative power was required to be low-
rank. Lu et al. developed a simultaneous feature and dictionary
learning [147] method for face recognition, which jointly
learned the feature projection matrix for subspace learning and
the discriminative structured dictionary. Yang et al. introduced
a latent dictionary learning (LDL) [148] method for sparse rep-
resentation based image classification, which simultaneously
learned a discriminative dictionary and a latent representation
model based on the correlations between label information
and dictionary atoms. Jiang et al. presented a submodular
dictionary learning (SDL) [149] method, which integrated the
entropy rate of a random walk on a graph and a discriminative
term into a unified objective function and devised a greedy-
based approach to optimize it. Si et al. developed a support
vector guided dictionary learning (SVGDL) [150] method,
which constructed a discriminative term by using adaptively
weighted summation of the squared distances for all pairwise
of the sparse representation solutions.

B. Sparse representation in image processing

Recently, sparse representation methods have been extensively
applied to numerous real-world applications [151, 152]. The
techniques of sparse representation have been gradually ex-
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tended and introduced to image processing, such as super-
resolution image processing, image denoising and image
restoration.

First, the general framework of image processing us-
ing sparse representation especially for image reconstruction
should be introduced:

Step 1: Partition the degraded image into overlapped patches
or blocks.

Step 2: Construct a dictionary, denoted asD, and assume
that the following sparse representation formulation should be
satisfied for each patch or blockx of the image:
α̂ = argmin ‖α‖p s.t. ‖x−HDα‖22 ≤ ε
whereH is a degradation matrix and0 ≤ p ≤ 1.
Step 3: Reconstruct each patch or block by exploitingx̂ =

Dα̂.
Step 4: Put the reconstructed patch to the image at the

corresponding location and average each overlapped patches
to make the reconstructed image more consistent and natural.

Step 5: Repeat step 1 to 4 several times till a termination
condition is satisfied.

The following part of this subsection is to explicitly intro-
duce some image processing techniques using sparse repre-
sentation.

The main task of super-resolution image processing is to
extract the high super-resolution image from its low resolution
counterpart and this challenging problem has attracted much
attention. The most representative work was proposed to
exploit the sparse representation theory to generate a super-
resolution (SRSR) image from a single low-resolution image
in literature [153].

SRSR is mainly performed on two compact learned dic-
tionariesDl and Dh, which are denoted as dictionaries of
low-resolution image patches and its corresponding high-
resolution image patches, respectively.Dl is directly employed
to recover high-resolution images from dictionaryDh. Let X
andY denote the high-resolution and its corresponding low-
resolution images, respectively.x andy are a high-resolution
image patch and its corresponding low-resolution image patch,
respectively. Thus,x = Py andP is the projection matrix.
Moreover, if the low resolution imageY is produced by down-
sampling and blurring from the high resolution imageX , the
following reconstruction constraint should be satisfied

Y = SBX (VIII.26)

whereS andB are a downsampling operator and a blurring
filter, respectively. However, the solution of problem VIII.26
is ill-posed because infinite solutions can be achieved for a
given low-resolution input imageY . To this end, SRSR [153]
provides a prior knowledge assumption, which is formulated
as

x = Dhα s.t. ‖α‖0 ≤ k (VIII.27)

where k is a small constant. This assumption gives a prior
knowledge condition that any image patchx can be approxi-
mately represented by a linear combination of a few training
samples from dictionaryDh. As presented in Subsection
III-B, problem VIII.27 is an NP-hard problem and sparse
representation withl1-norm regularization is introduced. If

the desired representation solutionα is sufficiently sparse,
problem VIII.27 can be converted into the following problem:

argmin ‖α‖1 s.t. ‖x−Dhα‖22 ≤ ε (VIII.28)

or
argmin ‖x−Dhα‖22 + λ‖α‖1 (VIII.29)

whereε is a small constant andλ is the Lagrange multiplier.
The solution of problem VIII.28 can be achieved by two main
phases, i.e. local model based sparse representation (LMBSR)
and enhanced global reconstruction constraint. The first phase
of SRSR, i.e. LMBSR, is operated on each image patch, and
for each low-resolution image patchy, the following equation
is satisfied

argmin ‖Fy − FDlα‖22 + λ‖α‖1 (VIII.30)

whereF is a feature extraction operator. One-pass algorithm
similar to that of [154] is introduced to enhance the com-
patibility between adjacent patches. Furthermore, a modified
optimization problem is proposed to guarantee that the super-
resolution reconstruction coincides with the previously ob-
tained adjacent high-resolution patches, and the problem is
reformulated as

argmin ‖α‖1 s.t. ‖Fy−FDlα‖22 ≤ ε1; ‖v−LDhα‖22 ≤ ε2
(VIII.31)

wherev is the previously obtained high-resolution image on
the overlap region, andL refers to the region of overlap
between the current patch and previously obtained high-
resolution image. Thus problem VIII.31 can be rewritten as

argmin ‖ŷ −Dα‖22 + λ‖α‖1 (VIII.32)

where ŷ =

[
Fy

v

]

and D =

[
FDl

LDh

]

. Problem VIII.32

can be simply solved by previously introduced solution of the
sparse representation withl1-norm minimization. Assume that
the optimal solution of problem VIII.32, i.e.α∗, is achieved,
the high-resolution patch can be easily reconstructed byx =
Dhα

∗.
The second phase of SRSR enforces the global reconstruc-

tion constraint to eliminate possible unconformity or noise
from the first phase and make the obtained image more
consistent and compatible. Suppose that the high-resolution
image obtained by the first phase is denoted as matrixX0,
we projectX0 onto the solution space of the reconstruction
constraint VIII.26 and the problem is formulated as follows

X∗ = argmin ‖X −X0‖22 s.t. Y = SBX (VIII.33)

Problem VIII.33 can be solved by the back-projection method
in [155] and the obtained imageX∗ is regarded as the final
optimal high-resolution image. The entire super-resolution via
sparse representation is summarized in algorithm 14 and more
information can be found in the literature [153].

Furthermore, extensive other methods based on sparse rep-
resentation have been proposed to solve the super-resolution
image processing problem. For example, Yang et al. pre-
sented a modified version called joint dictionary learning via
sparse representation (JDLSR) [156], which jointly learned
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Algorithm 14. Super-resolution via sparse representation

Input: Training image patches dictionariesDl andDh, a low-resolution
imageY .
For each overlapped3×3 patchesy of Y using one-pass algorithm, from
left to right and top to bottom

Step 1: Compute optimal sparse representation coefficientsα∗ in
problem (VIII.32).

Step 2: Compute the high-resolution patch byx = Dhα
∗.

Step 3: Put the patchx into a high-resolution imageX0 in corresponding
location.

End
Step 4: Compute the final super-resolution imageX∗ in problem

(VIII.33).
Output: X∗

two dictionaries that enforced the similarity of sparse repre-
sentation for low-resolution and high-resolution images.Tang
et al. [157] first explicitly analyzed the rationales of the
sparse representation theory in performing the super-resolution
task, and proposed to exploit theL2-Boosting strategy to
learn coupled dictionaries, which were employed to construct
sparse coding space. Zhang et al. [158] presented an image
super-resolution reconstruction scheme by employing the dual-
dictionary learning and sparse representation method for image
super-resolution reconstruction and Gao et al. [159] proposed
a sparse neighbor embedding method, which incorporated the
sparse neighbor search and HoG clustering method into the
process of image super-resolution reconstruction. Fernandez-
Granda and Candes [160] designed a transform-invariant
group sparse regularizer by implementing a data-driven non-
parametric regularizers with learned domain transform on
group sparse representation for high image super-resolution.
Lu et al. [161] proposed a geometry constrained sparse
representation method for single image super-resolution by
jointly obtaining an optimal sparse solution and learning a
discriminative and reconstructive dictionary. Dong et al.[162]
proposed to harness an adaptive sparse optimization with
nonlocal regularization based on adaptive principal component
analysis enhanced by nonlocal similar patch grouping and
nonlocal self-similarity quadratic constraint to solve the image
high super-resolution problem. Dong et al. [163] proposed to
integrate an adaptive sparse domain selection and an adaptive
regularization based on piecewise autoregressive models into
the sparse representations framework for single image super-
resolution reconstruction. Mallat and Yu [164] proposed a
sparse mixing estimator for image super-resolution, which
introduced an adaptive estimator models by combining a group
of linear inverse estimators based on different prior knowledge
for sparse representation.

Noise in an image is unavoidable in the process of image
acquisition. The need for sparse representation may arise when
noise exists in image data. In such a case, the image with
noise may lead to missing information or distortion such that
this results in a decrease of the precision and accuracy of
image processing. Eliminating such noise is greatly beneficial
to many applications. The main goal of image denoising is
to distinguish the actual signal and noise signal so that we
can remove the noise and reconstruct the genuine image. In
the presence of image sparsity and redundancy representation

[4, 7], sparse representation for image denoising first extracts
the sparse image components, which are regarded as useful
information, and then abandons the representation residual,
which is treated as the image noise term, and finally recon-
structs the image exploiting the pre-obtained sparse compo-
nents, i.e. noise-free image. Extensive research articlesfor
image denoising based on sparse representation have been
published. For example, Donoho [8, 29, 165] first discovered
the connection between the compressed sensing and image
denoising. Subsequently, the most representative work of using
sparse representation to make image denoising was proposed
in literature [166], in which a global sparse representation
model over learned dictionaries (SRMLD) was used for image
denoising. The following prior assumption should be satisfied:
every image block of imagex, denoted asz, can be sparsely
represented over a dictionaryD, i.e. the solution of the
following problem is sufficiently sparse:

argmin
α

‖α‖0 s.t. Dα = z (VIII.34)

And an equivalent problem can be reformulated for a proper
value ofλ, i.e.

argmin
α

‖Dα− z‖22 + λ‖α‖0 (VIII.35)

If we take the above prior knowledge into full consideration,
the objective function of SRMLD based on Bayesian treatment
is formulated as

arg min
D,αi,x

δ‖x− y‖22 +
M∑

i=1

‖Dαi − Pix‖22 +
M∑

i=1

λi‖αi‖0
(VIII.36)

where x is the finally denoised image,y the measured
image with white and additive Gaussian white noise,Pi is
a projection operator that extracts thei-th block from image
x, M is the number of the overlapping blocks,D is the learned
dictionary,αi is the coefficients vector,δ is the weight of the
first term andλi is the Lagrange multiplier. The first term
in VIII.36 is the log-likelihood global constraint such that
the obtained noise-free imagex is sufficiently similar to the
original imagey. The second and third terms are the prior
knowledge of the Bayesian treatment, which is presented in
problem VIII.35. The optimization of problem VIII.35 is a
joint optimization problem with respect toD, αi andx. It can
be solved by alternatively optimizing one variable when fixing
the others. The process of optimization is briefly introduced
below.

When dictionaryD and the solution of sparse representation
αi are fixed, problem VIII.36 can be rewritten as

argmin
x

δ‖x− y‖22 +
M∑

i=1

‖Dαi − z‖22 (VIII.37)

where z = Pix. Apparently, problem VIII.37 is a simple
convex optimization problem and has a closed-form solution,
which is given by

x =

(
M∑

i=1

PT
i Pi + δI

)−1( M∑

i=1

PT
i Dαi + δy

)−1

(VIII.38)
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Whenx is given, problem (VIII.36) can be written as

arg min
D,αi

M∑

i=1

‖Dαi − Pix‖22 +
M∑

i=1

λi‖αi‖0 (VIII.39)

where the problem can be divided intoM sub-problems and
the i-th sub-problem can be reformulated as the following
dictionary learning problem:

arg min
D,αi

‖Dαi − z‖22 s.t. ‖αi‖0 ≤ τ (VIII.40)

where z = Pix and τ is small constant. One can see
that the sub-problem VIII.39 is the same as problem VIII.2
and it can be solved by the KSVD algorithm previously
presented in Subsection VIII-A2. The algorithm of image
denoising exploiting sparse and redundant representationover
learned dictionary is summarized in Algorithm 15, and more
information can be found in literature [166].

Algorithm 15. Image denoising via sparse and redundant representation
over learned dictionary
Task: To denoise a measured imagey from white and additional Gaussian
white noise:
argminD,αi,x δ‖x− y‖22 +

∑M
i=1 ‖Dαi − Pix‖22 +

∑M
i=1 λi‖αi‖0

Input: Measured image sampley, the number of training iterationT .
Initialization: t = 1, setx = y, D initialized by an overcomplete DCT
dictionary.
While t ≤ T do

Step 1: For each image patchPix, employ the KSVD algorithm to
update the values of sparse representation solutionαi and corresponding
dictionaryD.

Step 2:t = t + 1
End While

Step 3: Compute the value ofx by using Eq.(VIII.38).
Output: denoised imagex

Moreover, extensive modified sparse representation based
image denoising algorithms have been proposed. For example,
Dabov et al. [167] proposed an enhanced sparse representation
with a block-matching 3-D (BM3D) transform-domain filter
based on self-similarities and an enhanced sparse represen-
tation by clustering similar 2-D image patches into 3-D data
spaces and an iterative collaborative filtering procedure for im-
age denoising. Mariral et al. [168] proposed the use of extend-
ing the KSVD-based grayscale algorithm and a generalized
weighted average algorithm for color image denoising. Protter
and Elad [169] extended the techniques of sparse and redun-
dant representations for image sequence denoising by exploit-
ing spatio-temporal atoms, dictionary propagation over time
and dictionary learning. Dong et al. [170] designed a clustering
based sparse representation algorithm, which was formulated
by a double-header sparse optimization problem built upon
dictionary learning and structural clustering. Recently,Jiang
et al. [171] proposed a variational encoding framework with
a weighted sparse nonlocal constraint, which was constructed
by integrating image sparsity prior and nonlocal self-similarity
prior into a unified regularization term to overcome the mixed
noise removal problem. Gu et al. [172] studied a weighted
nuclear norm minimization (WNNM) method withF -norm
fidelity under different weighting rules optimized by non-local
self-similarity for image denoising. Ji et al. [173] proposed
a patch-based video denoising algorithm by stacking similar

patches in both spatial and temporal domain to formulate a
low-rank matrix problem with the nuclear norm. Cheng et al.
[174] proposed an impressive image denoising method based
on an extension of the KSVD algorithm via group sparse
representation.

The primary purpose of image restoration is to recover the
original image from the degraded or blurred image. The sparse
representation theory has been extensively applied to image
restoration. For example, Bioucas-Dias and Figueirdo [175]
introduced a two-step iterative shrinkage/thresholding (TwIST)
algorithm for image restoration, which is more efficient and
can be viewed as an extension of the IST method. Mairal et
al. [176] presented a multiscale sparse image representation
framework based on the KSVD dictionary learning algorithm
and shift-invariant sparsity prior knowledge for restoration of
color images and video image sequence. Recently, Mairal
et al. [177] proposed a learned simultaneous sparse coding
(LSSC) model, which integrated sparse dictionary learning
and nonlocal self-similarities of natural images into a unified
framework for image restoration. Zoran and Weiss [178] pro-
posed an expected patch log likelihood (EPLL) optimization
model, which restored the image from patch to the whole
image based on the learned prior knowledge of any patch
acquired by Maximum A-Posteriori estimation instead of using
simple patch averaging. Bao et al. [179] proposed a fast
orthogonal dictionary learning algorithm, in which a sparse
image representation based orthogonal dictionary was learned
in image restoration. Zhang et al. [180] proposed a group-
based sparse representation, which combined characteristics
from local sparsity and nonlocal self-similarity of natural
images to the domain of the group. Dong et al. [181, 182] pro-
posed a centralized sparse representation (CSR) model, which
combined the local and nonlocal sparsity and redundancy
properties for variational problem optimization by introducing
a concept of sparse coding noise term.

Here we mainly introduce a recently proposed simple but
effective image restoration algorithm CSR model [181]. Fora
degraded imagey, the problem of image restoration can be
formulated as

y = Hx+ v (VIII.41)

whereH is a degradation operator,x is the original high-
quality image andv is the Gaussian white noise. Suppose that
the following two sparse optimization problems are satisfied

αx = argmin ‖α‖1 s.t. ‖x−Dα‖22 ≤ ε (VIII.42)

αy = argmin ‖α‖1 s.t. ‖x−HDα‖22 ≤ ε (VIII.43)

wherey and x respectively denote the degraded image and
original high-quality image, andε is a small constant. A new
concept called sparse coding noise (SCN) is defined

vα = αy −αx (VIII.44)

Given a dictionaryD, minimizing SCN can make the image
better reconstructed and improve the quality of the image
restoration becausex∗ = x̂ − x̃ = Dαy − Dαx = Dvα.
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Thus, the objective function is reformulated as

αy = argmin
α

‖y −HDα‖22 + λ‖α‖1 + µ‖α−αx‖1
(VIII.45)

where λ and µ are both constants. However, the value of
αx is difficult to directly evaluate. Because many nonlocal
similar patches are associated with the given image patchi,
clustering these patches via block matching is advisable and
the sparse code of searching similar patchl to patch i in
clusterΩi, denoted byαil, can be computed. Moreover, the
unbiased estimation ofαx, denoted byE[αx], empirically can
be approximate toαx under some prior knowledge [181], and
then SCN algorithm employs the nonlocal means estimation
method [183] to evaluate the unbiased estimation ofαx, that
is, using the weighted average of allαil to approachE[αx],
i.e.

θi =
∑

l∈Ωi

wilαil (VIII.46)

wherewil = exp
(
−‖xi − xil‖22/h

)
/N , xi = Dαi, xil =

Dαil, N is a normalization parameter andh is a constant.
Thus, the objective function VIII.45 can be rewritten as

αy = argmin
α

‖y −HDα‖22 + λ‖α‖1 + µ

M∑

i=1

‖αi − θi‖1
(VIII.47)

where M is the number of the separated patches. In the
j-th iteration, the solution of problem VIII.47 is iteratively
performed by

αj+1
y = argmin

α
‖y −HDα‖22 + λ‖α‖1 + µ

M∑

i=1

‖αi − θ
j
i ‖1

(VIII.48)
It is obvious that problem VIII.47 can be optimized by the
augmented Lagrange multiplier method [184] or the iterative
shrinkage algorithm in [185]. According to the maximum
average posterior principle and the distribution of the sparse
coefficients, the regularization parameterλ and constantµ can
be adaptively determined byλ = 2

√
2ρ2

σi
and µ = 2

√
2ρ2

ηi
,

whereρ, σi andηi are the standard deviations of the additive
Gaussian noise,αi and the SCN signal, respectively. More-
over, in the process of image patches clustering for each given
image patch, a local PCA dictionary is learned and employed
to code each patch within its corresponding cluster. The main
procedures of the CSR algorithm are summarized in Algorithm
16 and readers may refer to literature [181] for more details.

C. Sparse representation in image classification and visual
tracking

In addition to these effective applications in image process-
ing, several other fields for sparse representation have been
proposed and extensively studied in image classification and
visual tracking. Since Wright et al. [20] proposed to employ
sparse representation to perform robust face recognition,more
and more researchers have been applying the sparse represen-
tation theory to the fields of computer vision and pattern recog-
nition, especially in image classification and object tracking.

Algorithm 16. Centralized sparse representation for image restoration

Initialization: Setx = y, initialize regularization parameterλ andµ, the
number of training iterationT , t = 0, θ0 = 0.
Step 1: Partition the degraded image intoM overlapped patches.
While t ≤ T do
Step 2: For each image patch, update the corresponding dictionary for each
cluster via k-means and PCA.
Step 3: Update the regularization parametersλ andµ by using

λ = 2
√

2ρ2

σt
andµ = 2

√
2ρ2

ηt
.

Step 4: Compute the nonlocal means estimation of the unbiased estimation
of αx, i.e. θt+1

i , by using Eq. (VIII.46) for each image patch.
Step 5: For a givenθt+1

i , compute the sparse representation solution,
i.e. αt+1

y , in problem (VIII.48) by using the extended iterative shrinkage
algorithm in literature [185].
Step 6:t = t + 1
End While
Output: Restored imagex = Dαt+1

y

Experimental results have suggested that the sparse representa-
tion based classification method can somewhat overcome the
challenging issues from illumination changes, random pixel
corruption, large block occlusion or disguise.

As face recognition is a representative component of pattern
recognition and computer vision applications, the applications
of sparse representation in face recognition can sufficiently
reveal the potential nature of sparse representation. The most
representative sparse representation for face recognition has
been presented in literature [18] and the general scheme of
sparse representation based classification method is summa-
rized in Algorithm 17. Suppose that there aren training
samples,X = [x1, x2, · · · , xn] from c classes. LetXi denote
the samples from thei-th class and the testing sample isy.

Algorithm 17. The scheme of sparse representation based classification
method

Step 1: Normalize all the samples to have unitl2-norm.
Step 2: Exploit the linear combination of all the training samples to
represent the test sample and the followingl1-norm minimization problem
is satisfied

α∗ = argmin ‖α‖1 s.t. ‖y −Xα‖22 ≤ ε.
Step 3: Compute the representation residual for each class

ri = ‖y −Xiα
∗
i ‖22

whereα∗
i here denotes the representation coefficients vector associated

with the i-th class.
Step 4: Output the identity of the test sampley by judging

label(y) = argmini(ri).

Numerous sparse representation based classification meth-
ods have been proposed to improve the robustness, effec-
tiveness and efficiency of face recognition. For example, Xu
et al. [9] proposed a two-phase sparse representation based
classification method, which exploited thel2-norm regular-
ization rather than thel1-norm regularization to perform a
coarse to fine sparse representation based classification, which
was very efficient in comparison with the conventionall1-
norm regularization based sparse representation. Deng et al.
[186] proposed an extended sparse representation method
(ESRM) for improving the robustness of SRC by eliminating
the variations in face recognition, such as disguise, occlu-
sion, expression and illumination. Deng et al. [187] also
proposed a framework of superposed sparse representation
based classification, which emphasized the prototype and vari-
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ation components from uncontrolled images. He et al. [188]
proposed utilizing the maximum correntropy criterion named
CESR embedding non-negative constraint and half-quadratic
optimization to present a robust face recognition algorithm.
Yang et al. [189] developed a new robust sparse coding
(RSC) algorithm, which first obtained a sparsity-constrained
regression model based on maximum likelihood estimation and
exploited an iteratively reweighted regularized robust coding
algorithm to solve the pre-proposed model. Some other sparse
representation based image classification methods also have
been developed. For example, Yang et al. [190] introduced an
extension of the spatial pyramid matching (SPM) algorithm
called ScSPM, which incorporated SIFT sparse representation
into the spatial pyramid matching algorithm. Subsequently,
Gao et al. [191] developed a kernel sparse representation
with the SPM algorithm called KSRSPM, and then proposed
another version of an improvement of the SPM called LSc-
SPM [192], which integrated the Laplacian matrix with local
features into the objective function of the sparse representation
method. Kulkarni and Li [193] proposed a discriminative
affine sparse codes method (DASC) on a learned affine-
invariant feature dictionary from input images and exploited
the AdaBoost-based classifier to perform image classification.
Zhang et al. [194] proposed integrating the non-negative
sparse coding, low-rank and sparse matrix decomposition
(LR-Sc+SPM) method, which exploited non-negative sparse
coding and SPM for achieving local features representation
and employed low-rank and sparse matrix decomposition for
sparse representation, for image classification. Recently, Zhang
et al. [195] presented a low-rank sparse representation (LRSR)
learning method, which preserved the sparsity and spatial
consistency in each procedure of feature representation and
jointly exploited local features from the same spatial proximal
regions for image classification. Zhang et al. [196] developed
a structured low-rank sparse representation (SLRSR) method
for image classification, which constructed a discriminative
dictionary in training terms and exploited low-rank matrix
reconstruction for obtaining discriminative representations.
Tao et al. [197] proposed a novel dimension reduction method
based on the framework of rank preserving sparse learning,
and then exploited the projected samples to make effective
Kinect-based scene classification. Zhang et al. [198] proposed
a discriminative tensor sparse coding (RTSC) method for
robust image classification. Recently, low-rank based sparse
representation became a popular topic such as non-negative
low-rank and sparse graph [199]. Some sparse representation
methods in face recognition can be found in a review [83]
and other more image classification methods can be found in
a more recent review [200].

Mei et al. employed the idea of sparse representation to
visual tracking [201] and vehicle classification [202], which
introduced nonnegative sparse constraints and dynamic tem-
plate updating strategy. It, in the context of the particle filter
framework, exploited the sparse technique to guarantee that
each target candidate could be sparsely represented using the
linear combinations of fewest targets and particle templates.
It also demonstrated that sparse representation can be propa-
gated to address object tracking problems. Extensive sparse

representation methods have been proposed to address the
visual tracking problem. In order to design an accelerated
algorithm for l1 tracker, Li et al. [203] proposed two real-
time compressive sensing visual tracking algorithms based
on sparse representation, which adopted dimension reduction
and the OMP algorithm to improve the efficiency of recovery
procedure in tracking, and also developed a modified version
of fusing background templates into the tracking procedure
for robust object tracking. Zhang et al. [204] directly treated
object tracking as a pattern recognition problem by regarding
all the targets as training samples, and then employed the
sparse representation classification method to do effective
object tracking. Zhang et al. [205] employed the concept
of sparse representation based on a particle filter framework
to construct a multi-task sparse learning method denoted as
multi-task tracking for robust visual tracking. Additionally,
because of the discriminative sparse representation between
the target and the background, Jia et al. [206] conceived a
structural local sparse appearance model for robust object
tracking by integrating the partial and spatial information from
the target based on an alignment-pooling algorithm. Liu et al.
[207] proposed constructing a two-stage sparse optimization
based online visual tracking method, which jointly minimized
the objective reconstruction error and maximized the discrim-
inative capability by choosing distinguishable features.Liu et
al. [208] introduced a local sparse appearance model (SPT)
with a static sparse dictionary learned fromk-selection and
dynamic updated basis distribution to eliminate potentialdrift-
ing problems in the process of visual tracking. Bao et al. [209]
developed a fast real timel1-tracker called the APG-l1tracker,
which exploited the accelerated proximal gradient algorithm to
improve thel1-tracker solver in [201]. Zhong et al. [210] ad-
dressed the object tracking problem by developing a sparsity-
based collaborative model, which combined a sparsity-based
classifier learned from holistic templates and a sparsity-based
template model generated from local representations. Zhang et
al. [211] proposed to formulate a sparse feature measurement
matrix based on an appearance model by exploiting non-
adaptive random projections, and employed a coarse-to-fine
strategy to accelerate the computational efficiency of tracking
task. Lu et al. [212] proposed to employ both non-local self-
similarity and sparse representation to develop a non-local self-
similarity regularized sparse representation method based on
geometrical structure information of the target template data
set. Wang et al. [213] proposed a sparse representation based
online two-stage tracking algorithm, which learned a linear
classifier based on local sparse representation on favorable
image patches. More detailed visual tracking algorithms can
be found in the recent reviews [214, 215].

IX. EXPERIMENTAL EVALUATION

In this section, we take the object categorization problem
as an example to evaluate the performance of different sparse
representation based classification methods. We analyze and
compare the performance of sparse representation with the
most typical algorithms: OMP [36],l1 ls [76], PALM [89],
FISTA [82], DALM [89], homotopy [99] and TPTSR [9].
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(a) Parameter selection on ORL
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(b) Parameter selection on LFW
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(c) Parameter selection on Coil20
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(d) Parameter selection on 15scene

Fig. 5: Classification accuracies of using different sparserepresentation based classification methods versus varying values of
the regularization parameterλ on the (a) ORL (b) LFW (c) Coil20 and (d) Fifteen scene datasets.

Plenties of data sets have been collected for object cate-
gorization, especially for image classification. Several image
data sets are used in our experimental evaluations.

ORL: The ORL database includes 400 face images taken
from 40 subjects each providing 10 face images [216]. For
some subjects, the images were taken at different times, with
varying lighting, facial expressions, and facial details.All the
images were taken against a dark homogeneous background
with the subjects in an upright, frontal position (with tolerance
for some side movement). Each image was resized to a 56×46
image matrix by using the down-sampling algorithm.

LFW face dataset: The Labeled Faces in the Wild (LFW)
face database is designed for the study of unconstrained
identity verification and face recognition [217]. It contains
more than 13,000 images of faces collected from the web
under the unconstrained conditions. Each face has been labeled
with the name of the people pictured. 1680 of the people

pictured have two or more distinct photos in the database.
In our experiments, we chose 1251 images from 86 peoples
and each subject has 10-20 images [218]. Each image was
manually cropped and was resized to 32×32 pixels.

Extended YaleB face dataset: The extended YaleB database
contains 2432 front face images of 38 individuals and each
subject having around 64 near frontal images under different
illuminations [219]. The main challenge of this database is
to overcome varying illumination conditions and expressions.
The facial portion of each original image was cropped to a
192×168 image. All images in this data set for our experi-
ments simply resized these face images to 32×32 pixels.

COIL20 dataset:Columbia Object Image Library (COIL-
20) database consists of 1,440 size normalized gray-scale im-
ages of 20 objects [220]. Different object images are captured
at every angle in a 360 rotation. Images of the objects were
taken from varying angles at pose intervals of five degrees and
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each object has 72 images.
Fifteen scene dataset:This dataset contains 4485 images

under 15 natural scene categories presented in literature [221]
and each category includes 210 to 410 images. The 15 scenes
categories are office, kitchen, living room, bedroom, store,
industrial, tall building, inside cite, street, highway, coast, open
country, mountain, forest and suburb. A wide range of outdoor
and indoor scenes are included in this dataset. The average
image size is around 250×300 pixels and the spatial pyramid
matching features are used in our experiments.

A. Parameter selection

Parameter selection, especially selection of the regularization
parameterλ in different minimization problems, plays an
important role in sparse representation. In order to make fair
comparisons with different sparse representation algorithms,
performing the optimal parameter selection for different sparse
representation algorithms on different datasets is advisable
and indispensable. In this subsection, we perform extensive
experiments for selecting the best value of the regularization
parameterλ with a wide range of options. Specifically, we
implement thel1 ls, FISTA, DALM, homotopy and TPTSR
algorithms on different databases to analyze the importance of
the regularization parameter. Fig. 5 summarizes the classifi-
cation accuracies of exploiting different sparse representation
based classification methods with varying values of regular-
ization parameterλ on the two face datasets, i.e. ORL and
LFW face datasets, and two object datasets, i.e. COIL20 and
Fifteen scene datasets. On the ORL and LFW face datasets,
we respectively selected the first five and eight face images of
each subject as training samples and the rest of image samples
for testing. As for the experiments on the COIL20 and fifteen
scene datasets, we respectively treated the first ten imagesof
each subject in both datasets as training samples and used all
the remaining images as test samples. Moreover, from Fig. 5,
one can see that the value of regularization parameterλ can
significantly dominate the classification results, and the values
of λ for achieving the best classification results on different
datasets are distinctly different. An interesting scenario is
that the performance of the TPTSR algorithm is almost not
influenced by the variation of regularization parameterλ in
the experiments on fifteen scene dataset, as shown in Fig.
5(d). However, the best classification accuracy can be always
obtained within the range of 0.0001 to 1. Thus, the value of the
regularization parameter is set within the range from 0.0001
to 1.

B. Experimental results

In order to test the performance of different kinds of sparse
representation methods, an empirical study of experimental
results is conducted in this subsection and seven typical sparse
representation based classification methods are selected for
performance evaluation followed with extensive experimental
results. For all datasets, following most previous published
work, we randomly choose several samples of every class
as training samples and used the rest as test samples and

the experiments are repeated 10 times with the optimal pa-
rameter obtained using the cross validation approach. The
gray-level features of all images in these data sets are used
to perform classification. For the sake of computational ef-
ficiency, principle component analysis algorithm is used as
a preprocessing step to preserve 98% energy of all the data
sets. The classification results and computational time have
been summarized in Table I. From the experimental results
on different databases, we can conclude that there still does
not exist one extraordinary algorithm that can achieve the
best classification accuracy on all databases. However, some
algorithms are noteworthy to be paid much more attention.
For example, thel1 ls algorithm in most cases can achieve
better classification results than the other algorithms on the
ORL database, and when the number of training samples of
each class is five, thel1 ls algorithm can obtain the highest
classification result of95.90%. The TPTSR algorithm is very
computationally efficient in comparison with other sparse
representation withl1-norm minimization algorithms and the
classification accuracies obtained by the TPTSR algorithm are
very similar and sometimes even better than the other sparse
representation based classification algorithms.

The computational time is another indicator for measuring
the performance of one specific algorithm. As shown in
Table I, the average computational time of each algorithm is
shown at the bottom of the table for one specific number of
training samples. Note that the computational time of OMP
and TPTSR algorithms are drastically lower than that of other
sparse representation withl1-norm minimization algorithms.
This is mainly because the sparse representation withl1-
norm minimization algorithms always iteratively solve thel1-
norm minimization problem. However, the OMP and TPTSR
algorithms both exploit the fast and efficient least squares
technique, which guarantees that the computational time is
significantly less than otherl1-norm based sparse representa-
tion algorithms.

C. Discussion

Lots of sparse representation methods have been available
in past decades and this paper introduces various sparse
representation methods from some viewpoints, including their
motivations, mathematical representations and the main al-
gorithms. Based on the experimental results summarized in
Section IX, we have the following observations.

First, a challenging task of choosing a suitable regularization
parameter for sparse representation should make further exten-
sive studies. We can see that the value of the regularization
parameter can remarkably influence the performance of the
sparse representation algorithms and adjusting the parameters
in sparse representation algorithms requires expensive labor.
Moreover, adaptive parameter selection based sparse represen-
tation methods is preferable and very few methods have been
proposed to solve this critical issue.

Second, although sparse representation algorithms have
achieved distinctly promising performance on some real-world
databases, many efforts should be made in promoting the
accuracy of sparse representation based classification, and the
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Data set (#Tr) OMP l1 ls PALM FISTA DALM Homotopy TPTSR
ORL(1) 64.94±2.374 68.50±2.021 68.36±1.957 70.67±2.429 70.22±2.805 66.53±1.264 71.56±3.032
ORL(2) 80.59±2.256 84.84±2.857 80.66±2.391 84.72±3.242 84.38±2.210 83.88±2.115 83.38±2.019
ORL(3) 89.00±1.291 89.71±1.313 86.82±1.959 90.00±3.141 90.36±1.829 89.32±1.832 90.71±1.725
ORL(4) 91.79±1.713 94.83±1.024 88.63±2.430 94.13±1.310 94.71±1.289 94.38±1.115 94.58±1.584
ORL(5) 93.75±2.125 95.90±1.150 92.05±1.039 95.60±1.761 95.50±1.269 95.60±1.430 95.75±1.439
ORL(6) 95.69±1.120 97.25±1.222 92.06±1.319 96.69±1.319 96.56±1.724 97.31±1.143 95.81±1.642
Average Time(5) 0.0038s 0.1363s 7.4448s 0.9046s 0.8013s 0.0100s 0.0017s
LFW(3) 22.22±1.369 28.24±0.667 15.16±1.202 26.55±0.767 25.46±0.705 26.12±0.831 27.32±1.095
LFW(5) 27.83±1.011 35.58±1.489 12.89±1.286 34.13±0.459 33.90±1.181 33.95±1.680 35.43±1.409
LFW(7) 32.76±2.318 40.17±2.061 11.63±0.937 39.86±1.226 38.40±1.890 38.04±1.251 40.92±1.201
LFW(9) 35.14±1.136 44.93±1.123 7.84±1.278 43.86±1.492 43.56±1.393 42.29±2.721 44.72±1.793
Average Time(7) 0.0140s 0.6825s 33.2695s 3.0832s 3.9906s 0.2372s 0.0424s
Extended YaleB(3) 44.20±2.246 63.10±2.341 63.73±2.073 62.84±2.623 63.76±2.430 64.22±2.525 56.23±2.153
Extended YaleB(6) 72.48±2.330 81.97±0.850 81.93±0.930 82.25±0.734 81.74±1.082 81.64±1.159 78.53±1.731
Extended YaleB(9) 83.42±0.945 88.90±0.544 88.50±1.096 89.31±0.829 89.26±0.781 89.12±0.779 86.49±1.165
Extended YaleB(12) 88.23±0.961 92.49±0.622 91.07±0.725 92.03±1.248 91.85±0.710 92.03±0.767 91.30±0.741
Extended YaleB(15) 91.97±0.963 94.22±0.719 93.19±0.642 94.50±0.824 93.07±0.538 93.67±0.860 93.38±0.785
Average Time(12) 0.0116s 3.2652s 17.4516s 1.5739s 1.9384s 0.5495s 0.0198s
COIL20(3) 75.90±1.656 77.62±2.347 70.26±2.646 75.80±2.056 76.67±2.606 78.46±2.603 78.16±2.197
COIL20(5) 83.00±1.892 82.63±1.701 79.55±1.153 84.09±2.003 84.38±1.319 84.58±1.487 83.69±1.804
COIL20(7) 87.26±1.289 88.22±1.304 82.88±1.445 88.89±1.598 89.00±1.000 89.36±1.147 87.75±1.451
COIL20(9) 89.56±1.763 90.97±1.595 84.94±1.563 90.16±1.366 91.82±1.555 91.44±1.198 89.41±2.167
COIL20(11) 91.70±0.739 92.98±1.404 87.16±1.184 93.43±1.543 93.46±1.327 93.55±1.205 92.71±1.618
COIL20(13) 92.49±1.146 94.29±0.986 88.36±1.283 94.50±0.850 93.92±1.102 94.93±0.788 92.72±1.481
Average Time(13) 0.0038s 0.0797s 7.5191s 0.7812s 0.7762s 0.0159s 0.0053s
Fifteen scene(3) 85.40±1.388 86.83±1.082 86.15±1.504 86.48±1.542 85.89±1.624 86.15±1.073 86.62±1.405
Fifteen scene(6) 89.14±1.033 90.34±0.685 89.97±0.601 90.82±0.921 90.12±0.998 89.65±0.888 90.83±0.737
Fifteen scene(9) 83.42±0.945 88.90±0.544 88.50±1.096 89.31±0.829 89.26±0.781 89.12±0.779 90.64±0.940
Fifteen scene(12) 91.67±0.970 92.06±0.536 92.76±0.905 92.22±0.720 92.45±0.860 92.35±0.706 92.33±0.563
Fifteen scene(15) 93.32±0.609 93.37±0.506 93.63±0.510 93.63±0.787 93.53±0.829 93.84±0.586 93.80±0.461
Fifteen scene(18) 93.61±0.334 94.31±0.551 94.67±0.678 94.28±0.396 94.16±0.344 94.16±0.642 94.78±0.494
Average Time(18) 0.0037s 0.0759s 0.9124s 0.8119s 0.8500s 0.1811s 0.0122s

TABLE I: Classification accuracies (mean classification error rates± standard deviation %) of different sparse representation
algorithms with different numbers of training samples. Thebold numbers are the lowest error rates and the least time cost of
different algorithms.

robustness of sparse representation should be further enhanced.
In terms of the recognition accuracy, the algorithms ofl1 ls,
homotopy and TPTSR achieve the best overall performance.
Considering the experimental results of exploiting the seven
algorithms on the five databases, thel1 ls algorithm has eight
highest classification accuracies, followed by homotopy and
TPTSR, in comparison with other algorithms. One can see
that the sparse representation based classification methods
still can not obtain satisfactory results on some challenge
databases. For example, all these representative algorithms can
achieve relatively inferior experimental results on the LFW
dataset shown in Subsection IX-B, because the LFW dataset
is designed for studying the problem of unconstrained face
recognition [217] and most of the face images are captured
under complex environments. One can see that the PALM
algorithm has the worst classification accuracy on the LFW
dataset and the classification accuracy even decreases mostly
with the increase of the number of the training samples. Thus,
devising more robust sparse representation algorithm is an
urgent issue.

Third, enough attention should be paid on the computational
inefficiency of sparse representation withl1-norm minimiza-
tion. One can see that high computational complexity is one of
the most major drawbacks of the current sparse representation
methods and also hampers its applications in real-time process-
ing scenarios. In terms of speed, PALM, FISTA and DALM
take much longer time to converge than the other methods. The

average computational time of OMP and TPTSR is the two
lowest algorithms. Moreover, compared with thel1-regularized
sparse representation based classification methods, the TPTSR
has very competitive classification accuracy but significantly
low complexity. Efficient and effective sparse representation
methods are urgently needed by real-time applications. Thus,
developing more efficient and effective methods is essential
for future study on sparse representation.

Finally, the extensive experimental results have demon-
strated that there is no absolute winner that can achieve
the best performance for all datasets in terms of classifica-
tion accuracy and computational efficiency. However,l1 ls,
TPTSR and homotopy algorithms as a whole outperform the
other algorithms. As a compromising approach, the OMP
algorithm can achieve distinct efficiency without sacrificing
much recognition rate in comparison with other algorithms and
it also has been extensively applied to some complex learning
algorithms as a function.

X. CONCLUSION

Sparse representation has been extensively studied in recent
years. This paper summarizes and presents various available
sparse representation methods and discusses their motivations,
mathematical representations and extensive applications. More
specifically, we have analyzed their relations in theory and
empirically introduced the applications including dictionary
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learning based on sparse representation and real-world appli-
cations such as image processing, image classification, and
visual tracking.

Sparse representation has become a fundamental tool, which
has been embedded into various learning systems and also has
received dramatic improvements and unprecedented achieve-
ments. Furthermore, dictionary learning is an extremely pop-
ular topic and is closely connected with sparse representa-
tion. Currently, efficient sparse representation, robust sparse
representation, and dictionary learning based on sparse rep-
resentation seem to be the main streams of research on
sparse representation methods. The low-rank representation
technique has also recently aroused intensive research interests
and sparse representation has been integrated into low-rank
representation for constructing more reliable representation
models. However, the mathematical justification of low-rank
representation seems not to be elegant as sparse representation.
Because employing the ideas of sparse representation as a
prior can lead to state-of-the-art results, incorporatingsparse
representation with low-rank representation is worth further
research. Moreover, subspace learning also has been becoming
one of the most prevailing techniques in pattern recognition
and computer vision. It is necessary to further study the rela-
tionship between sparse representation and subspace learning,
and constructing more compact models for sparse subspace
learning becomes one of the popular topics in various research
fields. The transfer learning technique has emerged as a new
learning framework for classification, regression and clustering
problems in data mining and machine learning. However,
sparse representation research still has been not fully applied to
the transfer learning framework and it is significant to unify the
sparse representation and low-rank representation techniques
into the transfer learning framework to solve domain adaption,
multitask learning, sample selection bias and covariate shift
problems. Furthermore, researches on deep learning seems
to become an overwhelming trend in the computer vision
field. However, dramatically expensive training effort is the
main limitation of current deep learning technique and how to
fully introduce current sparse representation methods into the
framework of deep learning is valuable and unsolved.

The application scope of sparse representation has emerged
and has been widely extended to machine learning and
computer vision fields. Nevertheless, the effectiveness and
efficiency of sparse representation methods cannot perfectly
meet the need for real-world applications. Especially, the
complexities of sparse representation have greatly affected
the applicability, especially the applicability to large scale
problems. Enhancing the robustness of sparse representation is
considered as another indispensable problem when researchers
design algorithms. For image classification, the robustness
should be seriously considered, such as the robustness to
random corruptions, varying illuminations, outliers, occlusion
and complex backgrounds. Thus, developing an efficient and
robust sparse representation method for sparse representation
is still the main challenge and to design a more effective dic-
tionary is being expected and is beneficial to the performance
improvement.

Sparse representation still has wide potential for various

possible applications, such as event detection, scene recon-
struction, video tracking, object recognition, object pose es-
timation, medical image processing, genetic expression and
natural language processing. For example, the study of sparse
representation in visual tracking is an important direction and
more depth studies are essential to future further improvements
of visual tracking research.

In addition, most sparse representation and dictionary learn-
ing algorithms focus on employing thel0-norm or l1-norm
regularization to obtain a sparse solution. However, thereare
still only a few studies onl2,1-norm regularization based sparse
representation and dictionary learning algorithms. Moreover,
other extended studies of sparse representation may be fruitful.
In summary, the recent prevalence of sparse representation
has extensively influenced different fields. It is our hope
that the review and analysis presented in this paper can
help and motivate more researchers to propose perfect sparse
representation methods.
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