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Numerical stability analysis and flow simulation of lid-&in
cavity subjected to high magnetic field

L. Marioni**, F. Bay and E. Hacherh

1 MINES ParisTech, Center for Materials Forming (CEMEF), UMRIRS 7635, BP 207, 06904 Sophia-Antipolis,
France.

SUMMARY

In this work we study the flow of a conducting fluid inside a tdisaensional square domain. The problem
is solved by using @ariational multiscalefinite element approach. The study focuses on a high magnetic
interaction parameter range and high Reynolds number. tihéeimposition of a high magnetic field,
the flow gets regularized, but fast transient phenomena pkdee, which could lead to numerical errors.
An expression to compute the maximum time-step which gueesnconvergence in explicit schemes is
proposed and validated through numerical tests.
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1. INTRODUCTION

The flow in a cavity induced by the motion of one of the walls isl@ssical benchmark for fluid
mechanics analyses and it has been widely studied in literdfl, 2, 3]. The most interesting
part of the flow is the area close to the corners, where hidghutence and discontinuous velocity
occur [4]. The flow has been studied at different range of RElsanumber Re up to 100000

in [5]. Approaches similar to the one used in the present viiarke been used to study Reynolds
from 10000 in [6, 7] and up t050000 in [8, 9]. The number of induced eddies increases with the
increasing of the Reynolds number, their size decreasetharftbw turns to be chaotic [10]. This
flow can be braked by the superimposition of a constant magfiekd [11]. This case has been
used as benchmark for different applications, from bionegigriluids [12], to nanofluids [13]. The
stabilisation due to the external magnetic field in the gakiis also been studied [14, 15, 16].
Deeper investigations have been done on the natural caa/eavity under an external magnetic
field both numerically [17, 18, 19, 20] and experimentalljt][2At the best of our knowledge,
the flow behaviour at high Stuart number has not been objestunfies. The idea is to use this
benchmark to test the numerical coupling between the fluid #lod the magnetic field at different
configurations. The framework of this work is braking apgtion in material forming, in order to
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Figure 1.Schematic representation of the lid-driven gawést: geometrical features and boundary
conditions

decrease the turbulence. In these kind of applicationsptagnetic Reynolds number is usually
Rem << 1, so the magnetic field convection has a small role in the dgveént of the magnetic
field. A given turbulence level can be obtained by imposingréain magnetic field. The problem is
that this level does not depend only on the Stuart nunibet, Ha?/ Re. By rewriting N in terms of
material parameters we hawe= (B2Lo)/(pu), so it does not depend on the fluid viscosity. Thus
a high Stuart number allows us to brake the flow, but the expeotaking will occur at different
level of N, depending on the material viscosity. For low viscositydljiRe will increase, while
N will not, so highB will be needed to completely brake the flow. Therefore, wetviarstudy
the numerical behaviour of the solution when the imposedmegg field is high, which induces
a fast transient state in the flow. All the simulations in thvisrk have been performed by using
CimLib®which is a set of libraries developed in the Lab and used as fmsthe commercial
software TherCa&t.

2. MATHEMATICAL MODEL

The considered test case has been sketched in figure 1. Thqu2Bescavity has length = 1;
no-slip boundary conditions have been imposed at threeeb®nghile a constant tangent unity
velocity has been imposed at the last border. The zero legsspre has been imposed to the vertex
opposite to the applied shear velocity. The gravity is setet@ and the magnetic field is imposed
in different configurations.

A newtonian, incompressible and conductive fluid has beesidered. The density has been set
to p = 103 kg/m? and the dynamic viscosity has been set in accordance to the target Reynolds
numberRe = 2“& The electric conductivity is set to = 7.14 x 10° Qm. The external magnetic
field (By) is constant; the Reynolds magnetic number is assumed tessetian one, hereby the
induced magnetic field produced by the conductor's motiongglected. Thus, the interaction
between the electromagnetic fields (EMF) and the flow cansighe Lorentz force:

FL=jxBo 1)
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LID-DRIVEN CAVITY FLOW SUBJECTED TO HIGH MAGNETIC FIELD 3

with j to be the electric current density computed according t@then’s law:
j=0(-Vé+uxBy) 2

whereg is the electric scalar potential. The potential has to refsipe current density conservation
condition

V-j=0

A¢ZV'(UXB0) (3)

which is naturally satisfied for any in-plane magnetic fieédtor superimposed to a 2D flow, since

The Lorentz force is added in Navier-Stokes equations asusnairic force term:

p(Ou+u-Vu) — V- (2ue(u) —pI) =F

_ 5)
V-u=0

The equations are solved by a variational multiscale agbroathe framework of stabilized finite-
elements. For the detailed analysis of the method, we recgl]. In this work we limit to notice
that the electromagnetic force is tracked explicitly inginso it affects the Galerkin resolution and
the stabilization terms as a known source term.

2.1. Time-advancing scheme

In this work we use the classicéischeme for the variational multi-scale (VMS) algorithneds
in [8]. The main difference is the presence of an additioeaht i.e. the Lorentz force; this term is
considered as an explicit source term [22], thus it is evatliat thgn — 1) time step and considered
constant through the step. This means that, under the hggistbf a globally braking effect of
the magnetic field, we overestimate the force due to the fization inside the time step. The
aforementioned overestimation is not a problem for lowllef¢he magnetic interaction parameter:
in this case the transient flow induced by the magnetic fieklehaharacteristic time scale much
higher than the time step, classically computed accordiniggCFL condition:

CAzx

u

At < (6)
whereu is the fluid velocity,C is a constant and\z is the characteristic dimension of the element.
For the current work we havAz ~ 0.01, « =1 and C > 1, sinceC =1 is the usual limit for
explicit time schemes. In [8] we showed that for the currenbfemA¢ = 0.1 can be used.
Different problems arise when the magnetic interactiorapeater is increased. For high, the
transient flow’s time scale could be of the same magnitudé@atcry.: in this configuration a
different At has to be calculated to both obtain accuracy and convergéoa® this, we consider
a purely inertial flow, which is reasonable at hiflh. This is also justified in respect to continuous
casting, where the metal density is high as well as the tartmd . We want to find the time-step
by which the piece-wise constant Lorentz force completedkés the flow in one time-step. So we
compare the work of the external force to the internal enexggroximated to the kinematic energy:

/%:/ma (7

We consider the force to be constant in time and oppositectodlocity, thus:

S0 = fus(). ®)
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4 MARIONI ET AL.

wheres(t) is the displacement of a material particle during the tineg st

By considering a material particle far enough from the bamdand by assuming the magnetic
field normal to the velocity (most restrictive case), we caduce the motion of the particle to a
constant decelerating motion

1 1
s =ut 4+ —at® = ut — —f—LtQ. (9)
2 2p

By substituting equations (1) and (9), we can rewrite eguai) as:

1 1
72—(032)2&2 +oB*At — 3¢ =0
P . (10)

AtF = p—
oB?

whereAt* is the threshold where the work of the external force is higbugh to dissipate all the
kinetic energy in one time-step. Similarls¢t = 2At¢* will be the time step which will allow the
force to induce a flow opposite to the flow at the previous tste in the areas far enough from the
boundary.

2.2. Anisotropic mesh adaptation

In [23] a posteriori error estimate based on the lengthibigtion tensor approach and the associated
edge based error analysis is proposed. This error estimatjorithm is the base for the anisotropic
meshing scheme adopted in the current work. In this sectmpmpose a synthesis of the method
based on [23] and further developed in [9] in the case of Neviekes, multi-field re-meshing.

Let us introduce the set of fields we want to remesh according t

u:{ul,ug,...,uN}. (11)
Let’s than denote the error of each field along the axis as:

€ = {e%j,e?j, ...,eg (12)

which can be expressed as: -

ey =g’ - XY (13)
whereX is the length of the edge linking thie- th node to thej — th node, ands®’ = H(u)X".
Thus, we can define the error along the edges as

et =g . X, (14)

ij
Now we want to consider the error in relation to a change inetthges’ length, express in term of
stretching factors € R, so that:
X = g;. X4
e (15)
€ = sijg - X
with .Xij andéy; being the_target edge length and the target error respbctwnel G a recovery-
gradient operator defined in [23].
Let us define the set of stretching coefficients as

S={s;; eRTi=1,.,A, j=1,..,A T\ NC{) #0} (16)

with A being the number of nodes of the mesh; we can therefore dbevassociate metrie as:

-1

M = éz sHXY Q)X (17)

JET (1)
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Figure 2. Velocity profile along the middle-line: validatio

For the complete derivation of the metric, please refer 8.[2
Set the metric framework, we need now to choose the inputtiietdmesh according to. For high-
Reynolds incompressible flows, we propose the followingéétlds:

u(X?) = {N”— N L} (18)

o] ma fod]

whereN; and N, are weighting parameters ands the velocity field

3. RESULTS

3.1. Horizontal magnetic field and validation

The code in absence of magnetic field has been largely vaddaditerature [8, 9] for the lid-driven
case, hence in the current work we limit to validate the cafie By # 0. For the first test case, we
set By in the same direction as the x axis. In figureu2, profile along the vertical middle-line is
plotted. The benchmark is taken from [14] aRd = 5000 and N = 5, 30 are reported in figure 2(a)
and 2(b) respectively. In figure 3 the velocity magnitudeha tipper part of the cavity is plotted.
We can notice that the braking effect increasedvascreases and the vertical velocity (normal to
By) is dumped. This leads to a more horizontal flow and thinndresl as shown in figure 4.

Even with higherRe the stabilizing effect of the magnetic field occurs: in figbrthe evolution
of the flow in respect to the magnetic interaction parameteshown. The number of eddies is
directly related to the Stuart number, as reported in figuiedie that in figure 6 a non-continuous
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(a) Velocity magnitude iy € (0.8;1): Re = 5000, N =5

E =

(b) Velocity magnitude iy € (0.8;1): Re = 5000, N = 30

Figure 3. Velocity magniture in the upper part of the cavity

(a) Velocny magnitude isocontouRe = 5000, (b) Velocity magnitude isocontouRze = 5000,
= =30

Figure 4. Isocontour of velocity field magnitude. The isoes are in logarithmic scal@p in the range
[lu|| € (0.01;0.5) and100 in the rangd|u|| € (0;0.01)

variable, the number of eddies, is plotted so the lineartianaepresents the tendency of a piece-
wise constant function. As we see from figure 5, the diffe@@radopted do not represent the last
(and most unstable) eddy at the same level of developmeatinEheasing ofV is a constrain over
the vertical flow which leads to almost horizontal re-cietidn patterns. In figure 7 the average
slope of the interface between the two upper eddies is plotig increasingV an alternating
horizontal flow is induced and the vertical re-circulatisrconfined at the external boundaries. In
figure 8 the horizontal velocity along the vertical middieelis plotted. By increasing the magnetic
field, the main horizontal flow moves upwards and the thicknealmost constant. At higN, the
eddy is pushed against the lid, its thickness decreasessaweldcity increases. Note also that the
horizontal velocity of the secondary eddies is much lowantthe velocity of the first upper eddy.
As the eddies’ thickness decreases with the increasing,ofemesh is fundamental to catch
the small eddies without increasing the number of eleméntéigure 9 we see how the mesh
anisotropically adapts to the flow. From figure 9(c) it is pokesto notice that the algorithms
does not catch the low velocity eddies by itself. For thissoga the weighting parametéf; and
N,, are computed according to the magnetic interaction paemighe anisotropic non-structured
mesh allows the user to well model the boundary layers andit close to the corners, where
instabilities due to the boundary conditions non continnigy occur.

Physics of fluid$2016)
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(e) Velocity streamlineske = 10000, N = 15 (f) Velocity streamlinesRe = 10000, N = 20

Figure 5. Velocity streamlines of the flow subjected at défe external magnetic field’s magnitudes

3.2. Vertical magnetic field
In the lid-driven cavity test, the horizontal flow is the pary one, since it's forced by the boundary
condition. An horizontal magnetic field opposes to the eefttirculation of the flow, stimulating

Physics of fluid$2016)
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Figure 6. Number of horizontal eddies with respect to themség interaction parameter
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Figure 7. Average slope of the interface between the two rupgdies

the horizontal flow. In this way we decrease the importancéhefsecondary vertical flow, so
we create different eddies almost independent; the uppeiruluces a first eddy, whose bottom
part induces the second eddy below and so on. In order to faigract with the mechanical
behaviour we decided to consider a magnetic field facing timegoy flow. In the second test case
the orientation of the magnetic field was changed, so Hhat= const. and B, = B, = 0. In this
configuration the primary flow, driven by b.c., must cross thegnetic field, so a higher level of
braking is expected. In figure 10 the flow at different Stuarnbers is described. The first effect of
the magnetic field is to sharpen the flow at the upper-right@oand to suppress the smallest eddies
(figure 10(b)). By increasing the Stuart number the main extflyeezes along the right boundary,
where the kinetic energy input by the b.c. is highest. Hnall figure 10(f), the flow is controlled
by the magnetic field. The fluid coming from the upper boundhayiates in the; direction since
the magnetic field obstacles the horizontal flow. Despits, tifie flow has to move to the left side
because of the boundary conditions on velocity and so it cafonrm an independent eddy. For this
reason a slow, laminar flow is formed in the middle of the gatver this value ofV, the vertical
eddy’s size would decrease as well as the magnitude of ¥gliocthe center band. The height of

Physics of fluid$2016)
Prepared usindldauth.cls DOI: http://dx.doi.org/10.1063/1.4948433



LID-DRIVEN CAVITY FLOW SUBJECTED TO HIGH MAGNETIC FIELD 9

SRS
VAN AN
S

S
R
SARVAV, PSS
TS S

oo
)

NS
750

X
W
AN,
%AQSN
SIS SAARS
P avasy

i

s

AR

N
v

Wy v ‘
Ay
A OS

(a) Final mesh:Re = 10000, N = (b) Final mesh:Re = 10000, N = (c) Final mesh:Re = 10000, N =
0.5 1 2

Figure 9. Dinamically adapted anisotropic mesh

the right eddy depends on the Reynolds number: as reportidbliem | a higher Reynolds number
leads to a higher vertical excursion of the eddy. It is alsmagha very known result, by which a
high Stuart number can regularize the turbulent flow and nitadteady. In figure 11 the horizontal
velocities along the horizontal middle-line are reporié. notice that the constant velocity band in
the middle is wider whetke is higher (and. lower); the low-viscosity flow is therefore constrained
into a thin and high eddy close to the right boundary. The sameess is clear from the same plot
for a higher Stuart number (figure 12). The curve for the s@né¢Re = 10000 and Re = 20000)
are more braked, thus the velocity picks decrease and theaplas wider (until almost = 0.8
against about = 0.55).

In figure 13 we plot the number of nodes where the velocity rarta the magnetic fields
reverses over one time step, i€: - f* > 0; in this case the Lorentz force brakes the flow and
then accelerates it inside the same time increment. Sireédhentz force does not follow the
velocity inside the time step, it happens that for fast iemsphenomena thAtc gy, is of the same
magnitude than the transient flow itself. From figure 13 wetkagAt = 3 - 1072 sec leads to invert

Physics of fluid$2016)
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(@ Velocity streamlineqb) Velocity streamlines(c) Velocity streamlines,
Re = 10000,N =0 Re = 10000, N = 0.01785 Re = 10000, N = 0.2856

(d) Velocity streamlines(e) Velocity streamlineg(f) Velocity streamlines,
Re = 10000, N = 0.6426 Re = 10000, N = 1.785 Re = 10000, N =7.14

Figure 10. Velocity streamlines of the lid-driven cavityflander a vertical magnetic field.

Table I. Minimum height of|u|| = 0.05 isovalue

Re YN=7.14 | YN=1.785
200000 0.11 | non-steady
100000| 0.165 | non-steady

50000 0.22 0.09
20000 0.33 0.148
10000 0.44 0.175
5000 0.5 0.21

1000 0.52 0.258

the flow in the55% of the domain. It is important to underline that in a Euledieamework, this is
a natural phenomenon: the velocity variation is referrethéospatial deformation of the flow and
not on the material particle itself. In this case the patbiwlal behaviour is evident from the fast
increase of the number of these points, as clear from figurdd Better analyse this problem, we
will consider the most restrictive case in section 3.3.

3.3. Perfect braking case

In this section we will present a numerical test in order ttidyecatch the numerical problem shown
in figure 13. We propose to consider a Lorentz force oppositeetocity on the whole domain
(perfectly braking) and equal to:

f1 = ouB?. (19)

By this test we will be able to:

Physics of fluid$2016)
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Figure 11u, plot over the center-ling = 0.5 at differentRe and N = 1.785
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Figure 12, plot over the center-ling = 0.5 at differentRe and N = 7.14

e Minimize the flow deformatiorAs stated in section 3.2, “reverse velocity” point could be
naturally produced by the flow deformation in Eulerian siatigns. By imposing a perfectly
braking force, the flow will be slowed but not heavily defon&he pathological velocity
inversion will occur on the whole domain for the same timgss® it will be easily detected.

e Extend the numerical problem on the whole domhirthe cases presented in sections 3.1 and
3.2, the numerical problems occurred in the regions whegnetic reaction to the flow was
maximum, so where the velocity was normal to the magnetid.fi8y imposing a perfectly
braking force we will be able to extend the same conditiorteéovhole domain.

This numerical test case represents all the physical casgkith the Lorentz force is opposite to
the velocity globally (e.g. vertical flow with an horizontalagnetic field) or locally (e.g. cases in
sections 3.1 and 3.2).

Several tests similar to the one reported in figure 13 have beaducted and the results are
reported in figure 14. In all these configurations we noti@g the turn of velocity is much faster

Physics of fluid$2016)
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Figure 13. Number of reverse-velocity nodes normalizedhéatdtal number of free noded] = 7.14

than in the case of vertical magnetic field. In figure 13 theeiy turning is smoother because
part of the Lorentz force’s work is spent to deform the flowthis case the extra-constraint on
deformation leads to an almost instantaneous velocityinigrwhere the energy dissipated inside
the time step is high enough to balance the inertia. We canaice that the expression (10) well
predicts the time-step which leads to this phenomenonesepited by the dotted lines (notice that
few different time steps were used for each simulation, sonthole band is included between the
smaller and larger time steps used). We do not report the ledengurves for all the configurations
analyzed, but in figure 15 we show the variation of the crititae step over the variation of the
main problem variables: from this figure we see the the degrrids are conform to the one adopted
in (10).

The choice ofAt affects also the convergence. In figure 16 the convergendsedt? error is
plotted; the error is here computed in respect to an overksblution withAt < min(At). From
this plot we see that foAt > 2A¢* the simulation diverges, even if we respect @fL condition.

In this case the Lorentz force (constant inside the timp}stehigh enough to reverse the flow and
increase the velocity magnitude in the opposite directidrich leads to a diverging acceleration of

the flow, thus we have
n ., ,n—1 n|| > n—1
{u <0V ] 2 [ 20)

>0 vl g

For At € (At*; 2At*) the solution converges, but the convergence rate is smathi$ interval,
the transient flow is not well predicted since the punctuddaiey reverses its direction at each
time-step. The flow will oscillate across an equilibriummdbut the reverse velocity’s magnitude
is still lower than the one at the previous time step, so tlallasons decrease amplitude. This
configuration is defined as:

{“ <0 V[t < lun ] (22)

freur >0 v < I

For At < At* the converge rate is higher and no verse-changing takes plad the following
conditions are satisfied:

{“"'u”1>0 Vol < [un ) (22)

Jpout <0 v < I

Physics of fluid$2016)
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Figure 14. Normalized reverse-velocity points in diffearproblem configurations
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Figure 16. Convergence of error in respect to the refinenmethiei time discretization

In this case the Lorentz force monotonically brakes downfltv. The velocity's evolution is
gualitatively convex and monotonically decreasing, sogleee-wise constant approximation of
the Lorentz force leads to an over-estimation of the brakiffigct, which still does not affect the
convergence. These considerations are directly connextbe prediction of the transient state; in
figure 17, the time required to reach the steady state isgoloBorAt = 2A¢t* the required time
tends to infinity because the system oscillates between pposite velocity fields. FoAt < At*
the solution tends to a constant vallig,= 0.52 in the current simulation.

In figure 18 the horizontal velocity d&(0.5; 0.75) is plotted over the time-steps. As expected, we
see that the simulation with¢ = 0.0072 > 2At* diverges and the one witht = 0.0001 < At*
converges providing a good description of the transiertesBetween these cases, we see that
for At € (At*;2A¢*) the simulations converge to the correct steady state, lsutréimsient state
is oscillatory, due to the numerical problems connectedhto time-step. It is also important
to note that the velocity, in those cases, does not reversadt time step forever (like for
At = 0.0072 > 2At*): when the velocity is low enough that the viscous energyamigant in
respect to the kinetic energy, the external work is no moffécgnt to dissipate the whole energy
and equation (10) is no longer valid. In figure 18, we see tiastmulation withA¢ = 0.006 stops
oscillating at thel6¢h step. ForA¢ = 0.0068, this point is reached at thés¢h step.

4. CONCLUSIONS

In this work high Reynolds driven cavity has been studied sW@wved how the flow can be braked
and the turbulence decreased by different magnetic fieldigumations. Indeed, high Reynolds
number flows need high magnetic field to be braked, dand i play different roles; whilep
affects bothNV and Re, u affects onlyRe, so theN needed to reduce the turbulence to a certain
value depends on the viscosity. For this reason, we studigd $tuart number cases. In these
configurations, problems with the prediction of the transftow arise and th€FL condition is not
enough to guarantee the convergence. Therefore an exprdeséstimate a value of time-step is
proposed and it precisely predict and solve the aforemeatigproblems for high inertia problems.
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Figure 18. Evolution of the horizontal velocity a®(0.5;0.75) with different time-steps and\t* =
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