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SUMMARY

In this work we study the flow of a conducting fluid inside a two-dimensional square domain. The problem
is solved by using avariational multiscalefinite element approach. The study focuses on a high magnetic
interaction parameter range and high Reynolds number. Under the imposition of a high magnetic field,
the flow gets regularized, but fast transient phenomena takeplace, which could lead to numerical errors.
An expression to compute the maximum time-step which guarantees convergence in explicit schemes is
proposed and validated through numerical tests.
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1. INTRODUCTION

The flow in a cavity induced by the motion of one of the walls is aclassical benchmark for fluid
mechanics analyses and it has been widely studied in literature [1, 2, 3]. The most interesting
part of the flow is the area close to the corners, where high turbulence and discontinuous velocity
occur [4]. The flow has been studied at different range of Reynolds number (Re) up to 100000
in [5]. Approaches similar to the one used in the present workhave been used to study Reynolds
from 10000 in [6, 7] and up to50000 in [8, 9]. The number of induced eddies increases with the
increasing of the Reynolds number, their size decreases andthe flow turns to be chaotic [10]. This
flow can be braked by the superimposition of a constant magnetic field [11]. This case has been
used as benchmark for different applications, from biomagnetic fluids [12], to nanofluids [13]. The
stabilisation due to the external magnetic field in the cavity has also been studied [14, 15, 16].
Deeper investigations have been done on the natural convected cavity under an external magnetic
field both numerically [17, 18, 19, 20] and experimentally [21]. At the best of our knowledge,
the flow behaviour at high Stuart number has not been object ofstudies. The idea is to use this
benchmark to test the numerical coupling between the fluid flow and the magnetic field at different
configurations. The framework of this work is braking application in material forming, in order to
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Figure 1. Schematic representation of the lid-driven cavity test: geometrical features and boundary
conditions

decrease the turbulence. In these kind of applications, themagnetic Reynolds number is usually
Rem << 1, so the magnetic field convection has a small role in the development of the magnetic
field. A given turbulence level can be obtained by imposing a certain magnetic field. The problem is
that this level does not depend only on the Stuart number,N = Ha2/Re. By rewritingN in terms of
material parameters we haveN = (B2Lσ)/(ρu), so it does not depend on the fluid viscosity. Thus
a high Stuart number allows us to brake the flow, but the expected braking will occur at different
level of N , depending on the material viscosity. For low viscosity fluids,Re will increase, while
N will not, so highB will be needed to completely brake the flow. Therefore, we want to study
the numerical behaviour of the solution when the imposed magnetic field is high, which induces
a fast transient state in the flow. All the simulations in thiswork have been performed by using
CimLib R©which is a set of libraries developed in the Lab and used as base for the commercial
software TherCastR©.

2. MATHEMATICAL MODEL

The considered test case has been sketched in figure 1. The 2D square cavity has lengthL = 1;
no-slip boundary conditions have been imposed at three borders while a constant tangent unity
velocity has been imposed at the last border. The zero level pressure has been imposed to the vertex
opposite to the applied shear velocity. The gravity is set tozero and the magnetic field is imposed
in different configurations.

A newtonian, incompressible and conductive fluid has been considered. The density has been set
to ρ = 103 kg/m3 and the dynamic viscosityµ has been set in accordance to the target Reynolds
numberRe = ρuL

µ
. The electric conductivity is set toσ = 7.14× 105Ωm. The external magnetic

field (B0) is constant; the Reynolds magnetic number is assumed to be less than one, hereby the
induced magnetic field produced by the conductor’s motion isneglected. Thus, the interaction
between the electromagnetic fields (EMF) and the flow consists in the Lorentz force:

FL = j×B0 (1)

Physics of fluids(2016)
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with j to be the electric current density computed according to theOhm’s law:

j = σ(−∇φ + u×B0) (2)

whereφ is the electric scalar potential. The potential has to respect the current density conservation
condition

∇ · j = 0

∆φ = ∇ · (u×B0)
(3)

which is naturally satisfied for any in-plane magnetic field vector superimposed to a 2D flow, since

∆φ = ∂z(uxBy − uyBx) ≡ 0 (4)

The Lorentz force is added in Navier-Stokes equations as a volumetric force term:
{

ρ(∂u+ u · ∇u)−∇ · (2µε(u)− pI) = FL

∇ · u = 0
(5)

The equations are solved by a variational multiscale approach in the framework of stabilized finite-
elements. For the detailed analysis of the method, we recallto [8]. In this work we limit to notice
that the electromagnetic force is tracked explicitly in time, so it affects the Galerkin resolution and
the stabilization terms as a known source term.

2.1. Time-advancing scheme

In this work we use the classicalθ-scheme for the variational multi-scale (VMS) algorithm used
in [8]. The main difference is the presence of an additional term, i.e. the Lorentz force; this term is
considered as an explicit source term [22], thus it is evaluated at the(n− 1) time step and considered
constant through the step. This means that, under the hypothesis of a globally braking effect of
the magnetic field, we overestimate the force due to the linearization inside the time step. The
aforementioned overestimation is not a problem for low level of the magnetic interaction parameter:
in this case the transient flow induced by the magnetic field has a characteristic time scale much
higher than the time step, classically computed according to theCFL condition:

∆t <
C∆x

u
(6)

whereu is the fluid velocity,C is a constant and∆x is the characteristic dimension of the element.
For the current work we have∆x ≃ 0.01, u = 1 andC > 1, sinceC = 1 is the usual limit for
explicit time schemes. In [8] we showed that for the current problem∆t = 0.1 can be used.
Different problems arise when the magnetic interaction parameter is increased. For highN , the
transient flow’s time scale could be of the same magnitude as the∆tCFL: in this configuration a
different∆t has to be calculated to both obtain accuracy and convergence. To do this, we consider
a purely inertial flow, which is reasonable at highRe. This is also justified in respect to continuous
casting, where the metal density is high as well as the turbulence . We want to find the time-step
by which the piece-wise constant Lorentz force completely brakes the flow in one time-step. So we
compare the work of the external force to the internal energy, approximated to the kinematic energy:

∫

dE =

∫

δW . (7)

We consider the force to be constant in time and opposite to the velocity, thus:

1

2
ρu2

0 = fLs(t). (8)

Physics of fluids(2016)
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wheres(t) is the displacement of a material particle during the time step.
By considering a material particle far enough from the boundary, and by assuming the magnetic
field normal to the velocity (most restrictive case), we can reduce the motion of the particle to a
constant decelerating motion

s = ut+
1

2
at2 = ut−

1

2

fL
ρ
t2. (9)

By substituting equations (1) and (9), we can rewrite equation (8) as:

−
1

2ρ
(σB2)2∆t2 + σB2∆t−

1

2
ρ = 0

∆t∗ = ρ
1

σB2

(10)

where∆t∗ is the threshold where the work of the external force is high enough to dissipate all the
kinetic energy in one time-step. Similarly,∆t = 2∆t∗ will be the time step which will allow the
force to induce a flow opposite to the flow at the previous time-step in the areas far enough from the
boundary.

2.2. Anisotropic mesh adaptation

In [23] a posteriori error estimate based on the length distribution tensor approach and the associated
edge based error analysis is proposed. This error estimation algorithm is the base for the anisotropic
meshing scheme adopted in the current work. In this section we propose a synthesis of the method
based on [23] and further developed in [9] in the case of Navier-Stokes, multi-field re-meshing.
Let us introduce the set of fields we want to remesh according to:

u = {u1, u2, ..., uN}. (11)

Let’s than denote the error of each field along the axis as:

eij = {e1ij , e
2
ij , ..., e

N
ij } (12)

which can be expressed as:
enij = gij ·Xij (13)

whereXij is the length of the edge linking thei− th node to thej − th node, andgij = H(u)Xij .
Thus, we can define the error along the edges as

enij = gij ·Xij . (14)

Now we want to consider the error in relation to a change in theedges’ length, express in term of
stretching factorss ∈ R, so that:

{

X̃ij = sijX
ij

ẽnij = s2ijG · xij
(15)

with X̃ij and ẽnij being the target edge length and the target error respectively andG a recovery-
gradient operator defined in [23].

Let us define the set of stretching coefficients as

S = {sij ∈ R
+ i = 1, ...,Λ, j = 1, ...,Λ, Γ(i) ∩ Γ(j) 6= ∅} (16)

with Λ being the number of nodes of the mesh; we can therefore derivethe associate metricM as:

M
i =





1

d

∑

j∈Γ(i)

s2ijX
ij
⊗

Xij





−1

. (17)

Physics of fluids(2016)
Prepared usingfldauth.cls DOI: http://dx.doi.org/10.1063/1.4948433



Acc
ep

te
dLID-DRIVEN CAVITY FLOW SUBJECTED TO HIGH MAGNETIC FIELD 5

0 0.5 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Velocity Magnitude (m/s)

y

Shatrov et al.[14] CimLib

(a) Velocity profile along the middle-line,Re = 5000,
N = 5
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(b) Velocity profile along the middle-line,Re = 5000,
N = 30

Figure 2. Velocity profile along the middle-line: validation

For the complete derivation of the metric, please refer to [23].
Set the metric framework, we need now to choose the input fieldto remesh according to. For high-
Reynolds incompressible flows, we propose the following setof fields:

u(Xi) =

{

Nv

vi

|vi|
, Ns

|vi|

maxj |vj |

}

(18)

whereNs andNv are weighting parameters andv is the velocity field

3. RESULTS

3.1. Horizontal magnetic field and validation

The code in absence of magnetic field has been largely validated in literature [8, 9] for the lid-driven
case, hence in the current work we limit to validate the case with B0 6= 0. For the first test case, we
setB0 in the same direction as the x axis. In figure 2,ux profile along the vertical middle-line is
plotted. The benchmark is taken from [14] andRe = 5000 andN = 5, 30 are reported in figure 2(a)
and 2(b) respectively. In figure 3 the velocity magnitude in the upper part of the cavity is plotted.
We can notice that the braking effect increases asN increases and the vertical velocity (normal to
B0) is dumped. This leads to a more horizontal flow and thinner eddies, as shown in figure 4.

Even with higherRe the stabilizing effect of the magnetic field occurs: in figure5 the evolution
of the flow in respect to the magnetic interaction parameter is shown. The number of eddies is
directly related to the Stuart number, as reported in figure 6. Note that in figure 6 a non-continuous

Physics of fluids(2016)
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−1)
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(a) Velocity magnitude iny ∈ (0.8; 1): Re = 5000, N = 5

(b) Velocity magnitude iny ∈ (0.8; 1): Re = 5000, N = 30

Figure 3. Velocity magniture in the upper part of the cavity

(a) Velocity magnitude isocontour:Re = 5000,
N = 5

(b) Velocity magnitude isocontour:Re = 5000,
N = 30

Figure 4. Isocontour of velocity field magnitude. The isovalues are in logarithmic scale:20 in the range
||u|| ∈ (0.01; 0.5) and100 in the range||u|| ∈ (0; 0.01)

variable, the number of eddies, is plotted so the linear function represents the tendency of a piece-
wise constant function. As we see from figure 5, the differentN adopted do not represent the last
(and most unstable) eddy at the same level of development. The increasing ofN is a constrain over
the vertical flow which leads to almost horizontal re-circulation patterns. In figure 7 the average
slope of the interface between the two upper eddies is plotted; by increasingN an alternating
horizontal flow is induced and the vertical re-circulation is confined at the external boundaries. In
figure 8 the horizontal velocity along the vertical middle-line is plotted. By increasing the magnetic
field, the main horizontal flow moves upwards and the thickness is almost constant. At highN , the
eddy is pushed against the lid, its thickness decreases and its velocity increases. Note also that the
horizontal velocity of the secondary eddies is much lower than the velocity of the first upper eddy.
As the eddies’ thickness decreases with the increasing ofB, remesh is fundamental to catch
the small eddies without increasing the number of elements.In figure 9 we see how the mesh
anisotropically adapts to the flow. From figure 9(c) it is possible to notice that the algorithms
does not catch the low velocity eddies by itself. For this reason, the weighting parameterNs and
Nn are computed according to the magnetic interaction parameter. The anisotropic non-structured
mesh allows the user to well model the boundary layers and thearea close to the corners, where
instabilities due to the boundary conditions non continuity may occur.

Physics of fluids(2016)
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(a) Velocity streamlines:Re = 10000, N = 0.5 (b) Velocity streamlines:Re = 10000, N = 1

(c) Velocity streamlines:Re = 10000, N = 2 (d) Velocity streamlines:Re = 10000, N = 5

(e) Velocity streamlines:Re = 10000, N = 15 (f) Velocity streamlines:Re = 10000, N = 20

Figure 5. Velocity streamlines of the flow subjected at different external magnetic field’s magnitudes

3.2. Vertical magnetic field

In the lid-driven cavity test, the horizontal flow is the primary one, since it’s forced by the boundary
condition. An horizontal magnetic field opposes to the vertical circulation of the flow, stimulating

Physics of fluids(2016)
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Figure 6. Number of horizontal eddies with respect to the magnetic interaction parameter
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Figure 7. Average slope of the interface between the two upper eddies

the horizontal flow. In this way we decrease the importance ofthe secondary vertical flow, so
we create different eddies almost independent; the upper b.c. induces a first eddy, whose bottom
part induces the second eddy below and so on. In order to fullyinteract with the mechanical
behaviour we decided to consider a magnetic field facing the primary flow. In the second test case
the orientation of the magnetic field was changed, so thatBy = const. andBx = Bz = 0. In this
configuration the primary flow, driven by b.c., must cross themagnetic field, so a higher level of
braking is expected. In figure 10 the flow at different Stuart numbers is described. The first effect of
the magnetic field is to sharpen the flow at the upper-right corner and to suppress the smallest eddies
(figure 10(b)). By increasing the Stuart number the main eddysqueezes along the right boundary,
where the kinetic energy input by the b.c. is highest. Finally, in figure 10(f), the flow is controlled
by the magnetic field. The fluid coming from the upper boundarydeviates in they direction since
the magnetic field obstacles the horizontal flow. Despite this, the flow has to move to the left side
because of the boundary conditions on velocity and so it can not form an independent eddy. For this
reason a slow, laminar flow is formed in the middle of the cavity. Over this value ofN , the vertical
eddy’s size would decrease as well as the magnitude of velocity in the center band. The height of

Physics of fluids(2016)
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Figure 8. Horizontal velocity profile along the vertical middle-line

(a) Final mesh:Re = 10000, N =
0.5

(b) Final mesh:Re = 10000, N =
1

(c) Final mesh:Re = 10000, N =
2

Figure 9. Dinamically adapted anisotropic mesh

the right eddy depends on the Reynolds number: as reported intable I a higher Reynolds number
leads to a higher vertical excursion of the eddy. It is also shown a very known result, by which a
high Stuart number can regularize the turbulent flow and makeit steady. In figure 11 the horizontal
velocities along the horizontal middle-line are reported.We notice that the constant velocity band in
the middle is wider whenRe is higher (andµ lower); the low-viscosity flow is therefore constrained
into a thin and high eddy close to the right boundary. The sameprocess is clear from the same plot
for a higher Stuart number (figure 12). The curve for the sameRe (Re = 10000 andRe = 20000)
are more braked, thus the velocity picks decrease and the plateau is wider (until almostx = 0.8
against aboutx = 0.55).

In figure 13 we plot the number of nodes where the velocity normal to the magnetic fields
reverses over one time step, i.e.un · fn > 0; in this case the Lorentz force brakes the flow and
then accelerates it inside the same time increment. Since the Lorentz force does not follow the
velocity inside the time step, it happens that for fast transient phenomena the∆tCFL is of the same
magnitude than the transient flow itself. From figure 13 we seethat∆t = 3 · 10−3 sec leads to invert

Physics of fluids(2016)
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(a) Velocity streamlines,
Re = 10000,N = 0

(b) Velocity streamlines,
Re = 10000, N = 0.01785

(c) Velocity streamlines,
Re = 10000, N = 0.2856

(d) Velocity streamlines,
Re = 10000, N = 0.6426

(e) Velocity streamlines,
Re = 10000, N = 1.785

(f) Velocity streamlines,
Re = 10000, N = 7.14

Figure 10. Velocity streamlines of the lid-driven cavity flow under a vertical magnetic field.

Table I. Minimum height of||u|| = 0.05 isovalue

Re yN=7.14 yN=1.785

200000 0.11 non-steady
100000 0.165 non-steady
50000 0.22 0.09
20000 0.33 0.148
10000 0.44 0.175
5000 0.5 0.21
1000 0.52 0.258

the flow in the55% of the domain. It is important to underline that in a Eulerianframework, this is
a natural phenomenon: the velocity variation is referred tothe spatial deformation of the flow and
not on the material particle itself. In this case the pathological behaviour is evident from the fast
increase of the number of these points, as clear from figure 13. To better analyse this problem, we
will consider the most restrictive case in section 3.3.

3.3. Perfect braking case

In this section we will present a numerical test in order to better catch the numerical problem shown
in figure 13. We propose to consider a Lorentz force opposite to velocity on the whole domain
(perfectly braking) and equal to:

fL = σuB2. (19)

By this test we will be able to:

Physics of fluids(2016)
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Figure 11.ux plot over the center-liney = 0.5 at differentRe andN = 1.785
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Figure 12.ux plot over the center-liney = 0.5 at differentRe andN = 7.14

• Minimize the flow deformation. As stated in section 3.2, “reverse velocity” point could be
naturally produced by the flow deformation in Eulerian simulations. By imposing a perfectly
braking force, the flow will be slowed but not heavily deformed. The pathological velocity
inversion will occur on the whole domain for the same time step, so it will be easily detected.

• Extend the numerical problem on the whole domain. In the cases presented in sections 3.1 and
3.2, the numerical problems occurred in the regions where magnetic reaction to the flow was
maximum, so where the velocity was normal to the magnetic field. By imposing a perfectly
braking force we will be able to extend the same conditions tothe whole domain.

This numerical test case represents all the physical cases in which the Lorentz force is opposite to
the velocity globally (e.g. vertical flow with an horizontalmagnetic field) or locally (e.g. cases in
sections 3.1 and 3.2).

Several tests similar to the one reported in figure 13 have been conducted and the results are
reported in figure 14. In all these configurations we notice that the turn of velocity is much faster

Physics of fluids(2016)
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Figure 13. Number of reverse-velocity nodes normalized to the total number of free nodes,N = 7.14

than in the case of vertical magnetic field. In figure 13 the velocity turning is smoother because
part of the Lorentz force’s work is spent to deform the flow; inthis case the extra-constraint on
deformation leads to an almost instantaneous velocity turning, where the energy dissipated inside
the time step is high enough to balance the inertia. We can also notice that the expression (10) well
predicts the time-step which leads to this phenomenon, represented by the dotted lines (notice that
few different time steps were used for each simulation, so the whole band is included between the
smaller and larger time steps used). We do not report the complete curves for all the configurations
analyzed, but in figure 15 we show the variation of the critical time step over the variation of the
main problem variables: from this figure we see the the dependencies are conform to the one adopted
in (10).

The choice of∆t affects also the convergence. In figure 16 the convergence oftheL2 error is
plotted; the error is here computed in respect to an overkilled solution with∆t ≪ min(∆t). From
this plot we see that for∆t ≥ 2∆t∗ the simulation diverges, even if we respect theCFL condition.
In this case the Lorentz force (constant inside the time-step) is high enough to reverse the flow and
increase the velocity magnitude in the opposite direction,which leads to a diverging acceleration of
the flow, thus we have

{

un · un−1 < 0 ∨ ||un|| ≥ ||un−1||

fn
L · un > 0 ∨ ||fn

L || ≥ ||fn−1
L ||.

(20)

For ∆t ∈ (∆t∗; 2∆t∗) the solution converges, but the convergence rate is small. In this interval,
the transient flow is not well predicted since the punctual velocity reverses its direction at each
time-step. The flow will oscillate across an equilibrium point but the reverse velocity’s magnitude
is still lower than the one at the previous time step, so the oscillations decrease amplitude. This
configuration is defined as:

{

un · un−1 ≤ 0 ∨ ||un|| < ||un−1||

fn
L · un ≥ 0 ∨ ||fn

L || < ||fn−1
L ||.

(21)

For ∆t < ∆t∗ the converge rate is higher and no verse-changing takes place and the following
conditions are satisfied:

{

un · un−1 > 0 ∨ ||un|| < ||un−1||

fn
L · un < 0 ∨ ||fn

L || < ||fn−1
L ||.

(22)

Physics of fluids(2016)
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(a) Reverse-velocity points:µ = 0.1, Bz = 1,
ρ = 1000, σ = 714000

2 3

·10−4

0

0.2

0.4

0.6

0.8

1

Time step(sec)

N
/N

to
t

(b) Reverse-velocity points:µ = 0.1, Bz = 2,
ρ = 1000, σ = 714000
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(c) Reverse-velocity points:µ = 0.1, Bz = 1,
ρ = 100, σ = 714000
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(d) Reverse-velocity points:µ = 0.1, Bz = 1,
ρ = 1000, σ = 714000, ub.c. = 2
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(e) Reverse-velocity points:µ = 0.1, Bz = 1,
ρ = 1000, σ = 7140000
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(f) Reverse-velocity points:µ = 0.1, Bz = 1,
ρ = 1000, σ = 71400000

Figure 14. Normalized reverse-velocity points in different problem configurations
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Figure 15. Critical time-step variation in respect to main physical parameters’ variation
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Figure 16. Convergence of error in respect to the refinement in the time discretization

In this case the Lorentz force monotonically brakes down theflow. The velocity’s evolution is
qualitatively convex and monotonically decreasing, so thepiece-wise constant approximation of
the Lorentz force leads to an over-estimation of the brakingeffect, which still does not affect the
convergence. These considerations are directly connectedto the prediction of the transient state; in
figure 17, the time required to reach the steady state is plotted. For∆t = 2∆t∗ the required time
tends to infinity because the system oscillates between two opposite velocity fields. For∆t < ∆t∗

the solution tends to a constant value,Ts = 0.52 in the current simulation.

In figure 18 the horizontal velocity atP (0.5; 0.75) is plotted over the time-steps. As expected, we
see that the simulation with∆t = 0.0072 > 2∆t∗ diverges and the one with∆t = 0.0001 < ∆t∗

converges providing a good description of the transient state. Between these cases, we see that
for ∆t ∈ (∆t∗; 2∆t∗) the simulations converge to the correct steady state, but the transient state
is oscillatory, due to the numerical problems connected to the time-step. It is also important
to note that the velocity, in those cases, does not reverse ateach time step forever (like for
∆t = 0.0072 > 2∆t∗): when the velocity is low enough that the viscous energy is dominant in
respect to the kinetic energy, the external work is no more sufficient to dissipate the whole energy
and equation (10) is no longer valid. In figure 18, we see that the simulation with∆t = 0.006 stops
oscillating at the16th step. For∆t = 0.0068, this point is reached at the68th step.

4. CONCLUSIONS

In this work high Reynolds driven cavity has been studied. Weshowed how the flow can be braked
and the turbulence decreased by different magnetic field configurations. Indeed, high Reynolds
number flows need high magnetic field to be braked, butρ and µ play different roles; whileρ
affects bothN andRe, µ affects onlyRe, so theN needed to reduce the turbulence to a certain
value depends on the viscosity. For this reason, we studied high Stuart number cases. In these
configurations, problems with the prediction of the transient flow arise and theCFL condition is not
enough to guarantee the convergence. Therefore an expression to estimate a value of time-step is
proposed and it precisely predict and solve the aforementioned problems for high inertia problems.
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Figure 17. Physical time to reach the steady state in respectto the time-step
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Figure 18. Evolution of the horizontal velocity atP (0.5; 0.75) with different time-steps and∆t∗ =
0.0035 sec
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