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Abstract In this paper we generalize the Continuous-

Discrete Extended Kalman Filter (CD-EKF) to the case

where the state and the observations evolve on con-

nected unimodular matrix Lie groups. We propose a

new assumed density filter called Continuous-Discrete

Extended Kalman Filter on Lie Groups (CD-LG-EKF).

It is built upon a geometrically meaningful modeling of

the concentrated Gaussian distribution on Lie Groups.

Such a distribution is parametrized by a mean and a co-

variance matrix defined on the Lie group and in its as-

sociated Lie algebra respectively. Our formalism yields

tractable equations for both non-linear continuous time

propagation and discrete update of the distribution pa-

rameters under the assumption that the posterior dis-

tribution of the state is a concentrated Gaussian. As a

side effect, we contribute to the derivation of the first
and second order differential of the matrix Lie group

logarithm using left connection. We also show that the

CD-LG-EKF reduces to the usual CD-EKF if the state

and the observations evolve on Euclidean spaces. Our

approach leads to a systematic methodology for the de-

sign of filters, which is illustrated by the application to

a camera pose filtering problem with observations on

Lie group. In this application, the CD-LG-EKF signif-
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icantly outperforms two constrained non-linear filters

(one based on a linearization technique and the other

on the unscented transform) applied on the embedding

space of the Lie group.

Keywords Extended Kalman Filter · Matrix Lie

group · Filtering on Manifold · Stochastic Processes on

Manifolds · Camera Pose Filtering

1 Introduction

The differential geometry formalism has been exten-

sively employed in a wide range of applications in the

last few years [25]. This is due to the fact that treat-

ing a constrained problem naively employing classical

Euclidean space tools may cause theoretical and im-

plementation difficulties. On the contrary, taking into

account the geometry of a manifold usually leads to

well-posed problems which can boost the performances

of algorithms [2].

This paper deals with the estimation of a state evolv-

ing on a manifold. There exist two major approaches

to perform Bayesian filtering for a state evolving on

an Euclidean space: the Kalman Filters (KF) such as

(Extended KF : [28], Unscented KF : [36], Cubature

KF : [4]) and the Particle Filters (PF) [16]. However

among those methods only a few works tried to ex-

tend them to manifolds (see Table 1). Particle Filters

[41] for states evolving on a Riemannian, [42] Stiefel

or [32] Grassmann manifolds have been proposed while

an Unscented KF for a state and observations evolv-

ing on Riemannian manifolds [20] has recently been

developed. In [11], the Extended KF was generalized

to matrix Lie groups for a discrete time system. How-

ever, most physical models are described by ordinary

differential equations, while measurements are usually
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discrete. Therefore, in this work, we focus on designing

a continuous-discrete filter.

Here we consider matrix Lie Groups manifolds [18]

that form an important kind of smooth manifolds. They

are particularly useful to avoid singularities when repre-

senting state spaces with either circularity or boundary

issues. Typical examples include the complex unit cir-

cle with complex product
(
S1,×

)
is a one-dimensional

Lie Group, as well as rotation matrices SO (3), unitary

quaternions SU (2), rigid-body motion SE (3), invert-

ible matrices GL (3).

Hence in this paper we extend the Continuous-Discr-

ete Extended Kalman Filter (CD-EKF) [28] defined for

a state and observations evolving on Euclidean spaces

to the case of a state and observations evolving on con-

nected unimodular matrix Lie groups. This could be

interpreted as a generic constrained filtering problem

[38] by enforcing an equality constraint taking the zero

value only for matrices belonging to the group. How-

ever, in this case the state covariance matrix would be

singular and would not have a meaningful interpreta-

tion.

A large number of works modeling the state on a

Lie group have dealt with the attitude estimation prob-

lem. Among them the Multiplicative Extended Kalman

Filter (MEKF) [24, 26] corresponds to an ad hoc mod-

ification of the usual CD-EKF that is designed to take

into account the unit constraint of a unit quaternion.

Many works employ this formalism [30, 19, 43, 44]. Ad

hoc modifications of the Discrete Unscented Kalman

Filter have also been developed for attitude estimation

[14, 23, 40]. The Motor Extended Kalman Filter dedi-

cated to the Lie group SE (3) was introduced in [8] to
perform rigid body motion estimation.

In [31], irreducible unitary representation matrices

are used to estimate probability density function via the

group Fourier transform, for long time propagations.

For small propagations, they propose a particle filter

like propagation step which consists in sampling paths

of the stochastic differential equation on Lie groups.

The probability density function is then approximated

by computing the mean and the covariance from the

paths.

A closely related approach to our formalism has

been recently developed [10, 9, 27] leading to the Invari-

ant Extended Kalman Filter (IEKF). It is dedicated to

continuous systems possessing symmetries and allows

one to simultaneously guarantee that the state will re-

main on the Lie group and extend the domain of con-

vergence around the so-called permanent trajectories.

However, neither the issue of discrete measurements nor

the problem of observations evolving on a Lie group are

addressed.

In contrast, our formalism deals with a continuous-

discrete problem in a unified way for generic smooth

evolution equations with the guarantee that the state

model is consistent with the group manifold. More-

over, we consider observations evolving on a Lie group.

Assuming the posterior distribution of the state is a

concentrated Gaussian on Lie groups, we propose a

tractable formulation of error propagation and update

that we call Continuous-Discrete Extended Kalman Fil-

ter on Lie groups (CD-LG-EKF). Moreover, we show

that the CD-LG-EKF reduces to the traditional Eu-

clidean CD-EKF if the state and the observations evolve

on Euclidean spaces. Therefore, this paper introduces

a generic framework, which can be tailored to specific

applications by designing the Lie Groups on which the

state and the observations are defined. As a side effect,

we also contribute to the derivation of the first and sec-

ond order differential of the matrix Lie group logarithm

using left connection which analytical expressions are

essential in the derivation of our formalism.

The rest of the paper is organized as follows: Section

2 introduces our notations as well as main Lie group

and Lie algebra notions. The CD-LG-EKF theory is

presented in Section 3. In section 4, the first and sec-

ond order differential of the matrix Lie group logarithm

using left connection used in the CD-LG-EKF theory

are derived. In section 5 the CD-LG-EKF methodology

is illustrated on a camera pose estimation problem. Fi-

nally the conclusion and future research directions are

provided in Section 5.

2 Preliminaries

2.1 Notations

2.1.1 Lie Group and Lie Algebra Notations

G ⊂ Rn×n : Matrix Lie Group
X,Y ∈ G : Elements of G
e = Idn×n : Identity of G
XY,X−1 : Group composition and inverse

TXG ⊂ Rn×n : Tangent space of G at X
v ∈ TXG : Tangent vector at X
g = TeG : Lie algebra of G
a, b ∈ g, a = [a]∨G, b = [b]∨G ∈ Rp : Elements of g

and their vector representation
[·]∧G : Rp → g, [·]∨G : g→ Rp : Lie algebra

isomorphisms

LgX = gX : Left action of G onto itself with g ∈ G
DLg : TXG→ TgXG : Tangent mapping of Lg

expG : g→ G : Matrix exponential
logG : G→ g : Matrix logarithm
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Approach State Manifold Observation Manifold System Filter Type

Bonnabel et al. 2009 [10] Lie groups Euclidean
Continuous and

EKF
possessing symmetries

Snoussi et al. 2006 [41] Riemannian Euclidean Discrete PF
Tompkins et al. 2007 [42] Stiefel Euclidean Discrete PF
Hauberg et al. 2013 [20] Riemannian Riemannian Discrete UKF

Rentmeesters et al. 2010 [32] Grassmann Grassmann Discrete PF
Bourmaud et al. 2010 [11] Matrix Lie groups Matrix Lie groups Discrete EKF

This paper Matrix Lie groups Matrix Lie groups Continuous-Discrete EKF

Table 1 Categorization of state of the art approaches on Kalman and Particle filtering for a state evolving on a manifold (PF
= particle filter, EKF = Extended Kalman filter, UKF = Unscented Kalman Filter)

[a, b] = ab− ba : Lie Bracket
AdG (X) b =

[
XbX−1

]∨
G

: Adjoint representation

of G on g
adG (a) b = [[a, b]]∨G : Adjoint endomorphism

with adG (a) ⊂ Rp×p

2.1.2 Propagation Step Notations

X (t) ∈ G : State
X (t) ∼ NG (µ (t) , P (t)) : Concentrated Gaussian

distribution on Lie Group
µ (t) ∈ G : State mean

ε (t) =
[
logG

(
µ (t)−1X (t)

)]∨
G
∈ Rp : Lie algebraic

state error
ε (t) ∼ NRp (m (t) = 0p×1, P (t)) : Gaussian

distribution on Lie algebra of mean 0p×1 and

covariance P

2.1.3 Update Step Notations

Xk|l, µk|l : State and state mean at instant k

having incorporated the first l measurements

ε−k|l, P
−
k|l : Lie algebraic state error and state

covariance at instant k having incorporated

the first l measurements,

before state reparametrization
εk|l, Pk|l : Lie algebraic state error and state

covariance at instant k having incorporated

the first l measurements,

after state reparametrization

2.1.4 Misc

0p×n : p-by-n null matrix
Idp×p : p-by-p identity matrix
O
(
‖a‖k

)
(b, c) = F (a) (b, c) : Big O notation, with

F (a) (b, c) a bilinear application in b and c and

supb,c with ‖b‖=1,‖c‖=1 ‖F (a) (b, c)‖ ‖F (a)‖ ≤ C ‖a‖
where C is a constant

2.2 Lie Groups and Lie Algebras

In this section we give the definitions and basic prop-

erties of Lie Groups and Lie Algebra. For a detailed

description of these notions the reader is referred to

[1, 13, 18]. We focus on matrix Lie Groups since almost

all Lie Groups encountered in the physical sciences are

matrix groups [17] and any finite dimensional Lie group

is homeomorphic to a matrix Lie group [3] (Ado’s the-

orem).

2.2.1 Lie Groups and Lie Algebras

A Lie Group G is a group which also has the structure

of a smooth manifold such that group composition and

inversion are smooth operations. We refer the reader to

[22] for a detailed presentation on smooth manifold. If

G is a matrix Lie group, then Y ∈ G ⊂ Rn×n and its

operations are matrix multiplication and inversion with

the identity matrix as identity element. In this case, it

is possible to define the left action LY : G→ G of the

group onto itself simply as follows:

LYX = Y X (1)

where Y,X ∈ G. Note that an Euclidean space Rp is a

trivial matrix Lie Group by taking the matrix embed-

ding:

x ∈ Rp 7→ X =

[
Idp×p x

0 1

]
⊂ R(p+1)×(p+1) (2)

Since G is a smooth manifold, one can attach to ev-

ery point X ∈ G a tangent space TXG. The tangent

space is a vector space with the dimension equal to the

dimension of the manifold.

Using the left group action LY of G onto itself a

natural tangent mapping DLY : TXG → TY XG can

be defined as follows:

DLY v = Y v (3)

where v is a matrix element of TXG, i.e

v ∈ TXG ⊂ Rn×n. This means that a vector v defined

in a tangent space TXG can be transported in any other

tangent space using DLg (see fig. 1).

From this property arises the notion of left invariant

vector field which associates a tangent vector

v (X) ∈ TXG to each element X of the group, such

that all of them can be completely determined by the
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Fig. 1 Illustration of Tangent Mapping

value of v (e) at the identity element by transporting it

around the Lie Group using DLX : v (X) = DLXv (e).

Thus we focus our attention on the properties of the

tangent space at the identity TeG called the Lie Alge-

bra g.

The Lie Algebra g associated to a p-dimensional ma-

trix Lie group is a p-dimensional vector space which

may be defined by a basis consisting of real matrices Ei
for i = 1 . . . p. This basis defines a linear isomorphism

between g and Rp that we denote as follows:

[·]∨G : g→ Rp (4)

[·]∧G : Rp → g (5)

For example let a ∈ g ⊂ Rn×n, then we have

[a]
∨
G = a ∈ Rp. Thus [Ei]

∨
G = ei where {ei} is the natu-

ral basis of Rp and a =
∑p
i=1 aiEi with

a = (a1, . . . , ap)
T

. This will allow us to express the

differential calculus of the filter computation in vector

form with the minimal number of parameters p, as op-

posed to considering the matrices with n2 coefficients.

2.2.2 Link between a Lie group and its associated Lie

algebra

Exponential Mapping The link between a Lie group and

its associated Lie algebra can be expressed by integra-

tion of velocities in the algebra into the group structure

as follows:{
ġ (t) = g (t) a

g (0) = e
(6)

where a ∈ g, g (t) ∈ G and ġ (t) = DLg(t)a ∈ Tg(t)G

is the time derivative of g (t). One can see that in the

case of matrix Lie Groups, the solution to this ordinary

differential equation is:

g (t) = expG (at) (7)

Fig. 2 Illustration of matrix exponential and matrix loga-
rithm

M ⊂ G ⊂ Rn×n
logG→
←

expG

s ⊂ g ⊂ Rn×n
[·]∨
G→
←
[·]∧
G

S ⊂ [g]∨G ⊂ Rp

Fig. 3 Summary table

where expG : g → G is simply the matrix exponential

(see fig. 2).

Note that expG (at1) expG (at2) = expG (a (t1 + t2))

and expG (at)
−1

= expG (−at). We also have the inverse

mapping defined by logG which corresponds to the ma-

trix logarithm. Note that the exponential and logarith-

mic mappings establish a local diffeomorphism between

an open neighbourhood of 0 in g and an open neigh-

bourhood of e in G. We also define s ⊂ g and M ⊂ G

as sets on which expG and logG are bijective functions

with s an open symmetric connected subset of g. We

further assume that the series of expG and logG are

converging on s and M respectively. The two previous

notions are summarized in fig. 3 where S = [s]
∨
G ⊂ Rp.

Non-commutativity The Adjoint representation of G

on g is defined as the linear operator AdG:

AdG (X) b =
[
X [b]

∧
GX

−1]∨
G

(8)

It captures properties related to commutation:

XexpG
(
[b]
∧
G

)
= expG

(
[AdG (X) b]

∧
G

)
X (9)

Taking the directional derivative of XbX−1 and hav-

ing defined X = expG (a), we obtain the bilinear and

anticommutative Lie bracket for a matrix Lie group:

dexpG (sa) bexpG (−sa)

ds

∣∣∣
s=0

= ab− ba = [a, b] (10)
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Since [·, ·], [·]∨Gand [·]∧G are linear functions, we can ex-

press the Lie bracket in [g]
∨
G = Rp as follows:[[

[a]
∧
G , [b]

∧
G

]]∨
G

= adG (a) b (11)

where adG :Rp → Rp×p. We also have the following prop-

erty:

adG (a) b = −adG (b) a (12)

Note that ad0p×1
= 0p×p. Moreover, for a commuta-

tive group ∀a ∈ Rp, adG (a) = 0p×p. We also introduce

the following notation where (adG (a))ij denotes the el-

ement at the ith raw and jth column of the matrix

adG (a):

(adG (a))ij = LTija (13)

where Lij ∈ Rp. Finally let us introduce the first few

terms of the non-trivial Baker-Campbell-Hausdorff for-

mula which expresses the group product directly in the

algebra:

a =logG (expG (b) expG (c)) = b + c +
1

2
[b, c] + · · ·

(14)

This result can also be expressed in [g]
∨
G = Rp:

a = b+ c+
1

2
adG (b) c+ · · · (15)

The following related formula will be useful for our

derivations:[
logG

(
expG

(
[−a]

∧
G

)
expG

(
[a+ b]

∧
G

))]∨
G

= a+ ΦG (a) b+O
(
‖b‖2

)
(16)

where

ΦG (a) =

∞∑
m=0

(−1)
m

(m+ 1)!
adG (a)

m
(17)

is called the right Jacobian of G [7]. A few more useful

properties that will be used in this paper are given in

appendix A.

2.3 Concentrated Gaussian Distribution on Lie Groups

In this section we introduce the concept of concentrated

Gaussian on Lie groups [45, 48] as a generalization

of the normal distribution in Euclidean space which

is used in the CD-EKF formalism. In order to define

such a distribution, the considered Lie group has to

be a connected [18] unimodular [12] matrix Lie group.

Henceforth, in the rest of the paper, when referring to

Lie groups, we will consider this assumption to hold.

Note that this is the case of most Lie groups of interest

such as SO (3), SE (3), SL (3), Rn...

From [45] the following distribution can be defined:

ρ (x) = αe
− 1

2

(
[logG(x)]

∨
G

T
P−1[logG(x)]

∨
G

)
(18)

where α is a normalizing factor, X ∈ M ⊂ G is a

random variable with probability density ρ (x), G is a

p-dimensional connected unimodular matrix Lie group

and P is a positive definite matrix. Probability of el-

ements outside of M is set to zero. Let us define ε as

follows :

ε = [logG (X)]
∨
G (19)

where ε ∈ S ⊂ Rp. When ρ (X) is tightly focused around

the group identity (i.e the maximum of the eigenvalues

of P is small), the distribution of ε can be approximated

by:

ε ∼ NRp (0p×1, P ) (20)

Where NRp (0p×1, P ) is a classical Euclidean Gaussian

distribution defined on Rp. It corresponds to the follow-

ing approximation:[
logG

(
expG

(
[ε]
∧
G

))]∨
G
' ε (21)

which is valid only when the probability mass of ε in S is

close to one. In this case, the distribution of X is called

a concentrated Gaussian distribution on G around the

identity. It can be transported around µ ∈ G using the

left action of the Lie group, producing a concentrated

Gaussian on G centered at µ:

X = µexpG
(
[ε]
∧
G

)
where ε ∼ NRp (0p×1, P ) (22)

µ will be called the mean of X, ε can be seen as a Lie

algebraic error of mean 0p×1 and covariance P . Figure

4 provides a graphical interpretation of the transfer of

probability distribution from ε to X. We also introduce

the following notation for a concentrated Gaussian ran-

dom variable X evolving on a Lie group:

X ∼ NG (µ, P ) (23)

Such a distribution allows us to describe the uncertainty

of the state in Rp while the state evolves on G and hence

using Euclidean tools while being invariant w.r.t the left

action of the group on itself.

As recently noted in [7], the distribution we consider

in (22) and [11] is slightly different from the one defined

in [45, 48]. Indeed, in (18), α depends on x and is con-

stant only when ρ (x) is tightly focused. On the contrary,

in (22) ε is directly defined as a Gaussian distribution

in Rp and thus α is constant by definition. As it is well

explained in [7], working with (22) is more ”natural” in

robotics. In practice both approaches produce the same

results (see eq.(55) in [7] and eq.(23) in [46]).
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Fig. 4 Concentrated Gaussian on Lie groups

3 Theory of the Continuous Discrete Extended

Kalman Filter on Lie Groups

In this section we present the theory of the proposed

CD-LG-EKF.

3.1 Problem Settings

3.1.1 Propagation Model

In this paper, we consider the generic formulation of a

dynamic system:

dX (t) = X (t) [Ω (X (t))]
∧
G dt+

p∑
i=1

X (t)Ei ◦ dBi (t)

(24)

where X (t) ∈ G is the state we wish to estimate at

time t, G is a p-dimensional matrix Lie group and B (t)

is a p-dimensional Brownian motion with coordinates

(B1 (t) , . . . , Bp (t)), and covariance matrix R, i.e

B (t1) − B (t2) ∼ NRp (0p×1, (t2 − t1)R) with t1 < t2
(see [35]). Ω (X) is a differentiable left-parametrized ve-

locity function defined as follows:

Ω (X) : G 7→ Rp (25)

Using the overdot notation for differentiation to time,

we could interpret (24) as:

Ẋ (t) = X (t)
(
[Ω (X (t))]

∧
G + [n (t)]

∧
G

)
(26)

where n (t) ∼ NRp (0p×1, R) is a white Gaussian noise

and [n (t)]
∧
G ∈ g . Hence Ẋ (t) ∈ TXG. The driving white

noise corresponds formally to:

p∑
i=1

X (t)Ei ◦ dBi (t) = [n (t)]
∧
G dt (27)

In the following, unless there is an ambiguity, the time

parameter will be dropped for the sake of readability

(i.e X (t) will be denoted by X).

Remark 1 The system considered in this paper does

not need to be invariant w.r.t the (left or right) action

of the Lie group as in [10].

Remark 2 In (24), Ω is a function of X (t). It allows

to handle complex propagation models. For example, in

our experimentations, both the pose of the camera and

its speed belong to the state, the speed being used as

input for the propagation of the pose (see 5.2).

Remark 3 If G is an Euclidean space (24) becomes:

dX (t) = Ω (X (t)) dt+ dB (28)

which is the generic CD-EKF state propagation equa-

tion with additive noise (see [28]).

3.1.2 Observation Model

We also consider discrete measurements on a q-dimen-

sional matrix Lie group G′:

zk = h (Xk) expG′
(
[wk]

∧
G′

)
(29)

where h : G → G′ is a differentiable function, zk ∈ G′,
Xk ∈ G is the state we wish to estimate at time k and

wk ∼ NRq (0q×1, Qk) is a white Gaussian noise.

Remark 4 If G and G′ are Euclidean spaces, (29) be-

comes:

zk = h (Xk) + wk (30)

which is the generic CD-EKF state update equation with

additive noise (see [28]).

3.2 Proposed Solution

We assume the state posterior distribution to be a con-

centrated Gaussian distribution on Lie groups:

p (Xk|z1, . . . , zl) = NG
(
µk|l, Pk|l

)
, i.e:

Xk|l = µk|lexpG

([
εk|l
]∧
G

)
(31)

where εk|l ∼ NRp
(
mk|l = 0p×1, Pk|l

)
. We focus on

l = k − 1 (propagation) and l = k (update). Therefore,

the aim of the CD-LG-EKF is to propagate and update

the distribution parameters µk−1|k−1 and Pk−1|k−1. In

our formalism, µ is the state estimate. In order to ap-

ply the concentrated Gaussian distribution formalism

(i.e the maximum of the eigenvalues of P is small), the

time-step between two observations as well as the max-

imum of the eigenvalues of the white Gaussian noise

covariance matrix considered in (29) are assumed to be

small enough.
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3.3 Propagation

We assume that the state posterior distribution at time

k−1 is represented by NG
(
µk−1|k−1, Pk−1|k−1

)
. There-

fore, the aim of this section is to show how to propagate

µk−1|k−1 and Pk−1|k−1 between two consecutive sensor

measurements. The following definition of Lie algebraic

state error ε (t) will be useful in the rest of this section:

ε = [ε∧]
∨
G = [logG (η)]

∨
G (32)

where η is defined as:

η = µ−1X (33)

Thus, we have:

η = expG
(
[ε]
∧
G

)
(34)

Moreover, we recall that:

εk−1|k−1 ∼ NRp
(
mk−1|k−1 = 0p×1, Pk−1|k−1

)
(35)

Remark 5 One way to estimate µk−1|k−1 and Pk−1|k−1
is to sample paths using (24), in a particle filter like

propagation step, and then to compute the mean and

the covariance from the paths as it was proposed in [31].

On the contrary, in this work, we are interested in get-

ting closed form (approximated) equations both for the

mean and the covariance propagations in order to ex-

tend the CD-EKF propagation formalism to Lie groups.

Although the approach of [31] would yield more accurate

results than our method for a large number of simulated

paths, its computational cost would be much higher.

Remark 6 When Ω does not depend on X (t) and is

either constant or an explicit function of t, [46] pro-

poses to generate sample paths on small time periods.

The mean and covariance is then computed for each

small period of time. The final mean and covariance

is obtained by the concatenation of the noisy motions.

Note that the second order covariance propagation for-

mula proposed in [46] was recently derived in a new

manner in [7].

3.3.1 Mean Propagation

We choose to propagate the mean µ (t) using the state

model (24) without noise and we will show in section

3.3.2 that using this propagation formula, the Lie alge-

braic state error mean m (t) = E [ε (t)] remains null up

to first order terms:

dµ = µ [Ω (µ)]
∧
G dt (36)

where dµ
dt ∈ TµG.

Remark 7 If G is an Euclidean space, we have

dµ = Ω (µ) dt (37)

which corresponds to the CD-EKF propagation of the

mean.

3.3.2 Lie Algebraic State Error Propagation

The aim of this section is to obtain a tractable equa-

tion of dε (t) which is crucial both to justify (36) and

to obtain the covariance propagation expression since

cov (ε (t)) = P (t). From (36), we have:

d
(
µ−1

)
= −µ−1dµµ−1 (36)

= − [Ω (µ)]
∧
G dtµ

−1 (38)

Thus we obtain:

dη
(34)
= d

(
µ−1X

)
= d

(
µ−1

)
X + µ−1d (X)

(24),(38)
= − [Ω (µ)]

∧
G dtµ

−1X

+µ−1

(
X [Ω (X)]

∧
G dt+

p∑
i=1

XEi ◦ dBi

)

= − [Ω (µ)]
∧
G dtη + η [Ω (X)]

∧
G dt+ η

p∑
i=1

Ei ◦ dBi

= η
(
−
[
AdG

(
η−1

)
Ω (µ)

]∧
G
dt+ [Ω (X)]

∧
G dt

)
+ ηdB

(39)

where

dB =

p∑
i=1

Ei ◦ dBi (40)

Taking the first order Taylor expansion on Lie groups

of Ω, we obtain:

Ω (X) = Ω
(
µexpG

(
[ε]
∧
G

))
= Ω (µ) + Fε+O

(
‖ε‖2

)
(41)

where

F =
d

dε
Ω
(
µexpG

(
[ε]
∧
G

))
|ε=0 (42)

We now introduce the intermediate stochastic process

ξ (t) whose differential is defined as follows:

dξ = η−1 ◦ dη (43)
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From the two previous results, we can derive the ex-

pression of dξ (t):

dξ = η−1 ◦ dη
(39)
= −

[
AdG

(
η−1

)
Ω (µ)

]∧
G
dt+ [Ω (X)]

∧
G dt+ dB

(34)
= −

[
AdG

(
expG

(
− [ε]

∧
G

))
Ω (µ)

]∧
G
dt

+ [Ω (X)]
∧
G dt+ dB

(134),(41)
=

[(
−Idp×p + adG (ε) +O

(
‖ε‖2

))
Ω (µ)

]∧
G
dt

+
[
Ω (µ) + Fε+O

(
‖ε‖2

)]∧
G
dt+ dB

=
[(

adG (ε)Ω (µ) + Fε+O
(
‖ε‖2

))]∧
G
dt+ dB

= [(F − adG (Ω (µ))) ε]
∧
G dt+O

(
‖ε‖2

)
dt+ dB

= Lε∧dt+O
(
‖ε∧‖2

)
dt+ dB (44)

where

Lε∧ = [(F − adG (Ω (µ))) ε]
∧
G (45)

In order to obtain the expression of dε∧ (t), we ap-

ply Ito’s lemma in Lie groups (see [5]) which in this

case requires the expressions of the first and second or-

der differential of the matrix Lie group logarithm using

left connection. Since their expression is not straight-

forward and constitute a key element in the CD-LG-

EKF theory, we simply give the result here and refer

the reader to section 4 for the complete proof.

dε∧ = dlogG (η)

= 〈∇logG (η) , ηdξ〉+
1

2
HesslogG

(η) (ηdξ, ηdξ)

(85),(82)
= dξ +

1

2
[ε∧, dξ] +

1

12
[ε∧, [ε∧, dξ]]

+
1

12
[dξ, [dξ, ε∧]] +O

(
‖ε∧‖2

)
(dξ, dξ) +O

(
‖ε∧‖3

)
dξ

(44)
= Lε∧dt+ dB +

1

2
[ε∧, dB] +

1

12
[ε∧, [ε∧, dB]]

+
1

12
[dB, [dB, ε∧]] +O

(
‖ε∧‖2

)
dt+O

(
‖ε∧‖3

)
dB

(46)

dε
(32),(46)

= (F − adG (Ω (µ))) εdt+ db+
1

2
adG (ε) db

+
1

12
adG (ε)

2
db+

1

12
adG (db)

2
ε

+O
(
‖ε∧‖2

)
dt+O

(
‖ε∧‖3

)
db

=

(
F − adG (Ω (µ)) +

1

12
C (R)

)
εdt

+

(
Id +

1

2
adG (ε) +

1

12
adG (ε)

2

)
db

+O
(
‖ε‖2

)
dt+O

(
‖ε‖3

)
db (47)

where

db =

p∑
i=1

ei ◦ dBi (48)

and

(C (R) dt)ij
(139)
=
(

adG (db)
2
)
ij

=

p∑
k=1

LTikdbdb
TLkj

(49)

with

dbdbT =

(
p∑
l=1

eldBl

)(
p∑

m=1

eTmdBm

)

=

p∑
l=1

p∑
m=1

ele
T
mdBldBm =

p∑
l=1

p∑
m=1

ele
T
mRlmdt (50)

Since m (t) = E [ε (t)], we have the following result ne-

glecting terms in O
(
‖ε‖2

)
dt and O

(
‖ε‖3

)
db in (47):

dm

dt

(141)
= Jm (51)

where

J = F − adG (Ω (µ)) +
1

12
C (R) (52)

Thus, m (t) remains null, up to first order terms, during

the propagation since m (t0) = mk−1|k−1 = 0p×1.

3.3.3 Covariance Propagation

Once again neglecting terms in O
(
‖ε‖2

)
dt and

O
(
‖ε‖3

)
db, and denoting Cov (ε (t)) = P (t), the co-

variance propagation equation associated to equation

(47) is:

dP

dt

(142)
= JP + PJT +R

+
1

4
E
(

adG (ε)RadG (ε)
T
)

+
1

12
E
(

adG (ε)
2
)
R+

1

12
RE

(
adG (ε)

2
)T

(53)

where

E
(

adG (ε)
2
)
ij

(139)
=

p∑
k=1

LTikPLkj (54)

E
(

adG (ε)RadG (ε)
T
)
ij

(138)
=

p∑
k=1

p∑
l=1

RklL
T
ikPLjl (55)

Remark 8 If G is a Euclidean space, adG = 0p×p.

Then we retrieve the CD-EKF covariance propagation

equation:

dP

dt
= FP + PFT +R (56)
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3.3.4 Propagation Step Summary

With the initial conditions µ (t = tk−1) = µk−1|k−1 and

P (t = tk−1) = Pk−1|k−1 the propagation consists in in-

tegrating (36) and (53) until time tk in order to ob-

tain the predicted mean µk|k−1 and covariance Pk|k−1.

Hence, at the end of the propagation step, the estimated

state is parametrized as follows:

Xk|k−1 = Xk|z1 . . . zk−1 ∼ NG
(
µk|k−1, Pk|k−1

)
(57)

3.4 Update

The aim of this section is to update µk|k−1 and Pk|k−1
incorporating the new measurement zk.

3.4.1 Lie algebraic error update

Let us define the following innovation term:

z̃k =
[
logG′

(
h
(
µk|k−1

)−1
zk

)]∨
G

(29)
=
[
logG′

(
h
(
µk|k−1

)−1
h (Xk) expG′

(
[wk]

∧
G′

))]∨
G

(15)
= Hkεk|k−1 + wk +O

(∥∥εk|k−1∥∥2 , ‖wk‖2) (58)

where

Hk =
∂

∂ε

[
logG′

(
h
(
µk|k−1

)−1
h
(
µk|k−1expG

(
[ε]
∧
G

)))]∨
G
|ε=0 (59)

Equation (58) is linear in εk|k−1 which evolves on Rp.
Therefore, we can apply the classical update equations

of the Kalman filter [28] to update εk|k−1 into the poste-

rior distribution as ε−k|k ∼ NRp
(
m−k|k, P

−
k|k

)
where m−k|k

and P−k|k can be calculated as follows:
Kk = Pk|k−1HTk

(
HkP k|k−1HTk +Qk

)−1
m−k|k = 0p×1 +Kk (z̃k −Hk0p×1)

P−k|k = (Id−KkHk)Pk|k−1

(60)

Remark 9 If G and G′ are Euclidean spaces, eq. (58)

simplifies to the CD-EKF innovation term:

z̃k = zk − h
(
µk|k−1

)
(61)

3.4.2 State Reparametrization

At the end of the update step, we expect to have

Xk = µk|kexpG

([
εk|k
]∧
G

)
with E

[
εk|k
]

= 0p×1 (condi-

tionally to z1, . . . , zk), to satisfy the concentrated Gaus-

sian distribution definition (22). However we have

E
[
ε−k|k

]
= m−k|k 6= 0p×1. Hence, we perform the fol-

lowing reparametrization:

µk|k = µk|k−1expG

([
m−k|k

]∧
G

)
(62)

Thus, using equation (16) and neglecting terms in

O

(∥∥∥ε−k|k∥∥∥2), we obtain:

mk|k
(148)
= 0p×1 (63)

Pk|k
(149)
= ΦG

(
m−k|k

)
P−k|kΦG

(
m−k|k

)T
(64)

Remark 10 If G is an Euclidean space then

ΦG

(
m−k|k

)
= 0p×p (65)

Thus we retrieve the CD-EKF equations:

µk|k = µk|k−1 +m−k|k (66)

Pk|k = P−k|k (67)

3.4.3 Update Step Summary

At the end of the update step, the estimated state is

parametrized as follows:

Xk|z1, . . . , zk ∼ NG
(
µk|k, Pk|k

)
(68)

where εk|k ∼ NRp
(
mk|k = 0p×1, Pk|k

)
.

3.5 CD-LG-EKF Algorithm

3.5.1 General overview

The CD-LG-EKF algorithm is summarized below (see

3.3 and 3.4 for details):
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Inputs : µk−1|k−1, Pk−1|k−1, zk
Outputs : µk|k, Pk|k

Propagation on t ∈ [tk−1, tk] :
Integrate the following differential equations
dµ(t)

dt
= µ (t) [Ω (µ (t))]∧G

dP (t)

dt
= J (t)P (t) + P (t) J (t)T +R

+1
4
E
(
adG (ε (t))RadG (ε (t))T

)
+ 1

12
E
(
adG (ε (t))2

)
R+ 1

12
RE

(
adG (ε (t))2

)T
Update :

Kk = Pk|k−1HTk
(
HkPk|k−1HTk +Qk

)−1

m−k|k = Kk
([

logG′
(
h
(
µk|k−1

)−1
zk
)]∨
G

)
µk|k = µk|k−1expG

([
m−k|k

]∧
G

)
Pk|k = ΦG

(
m−k|k

)
(Idl×l −KkHk)Pk|k−1ΦG

(
m−k|k

)T
Algorithm 1: CD-LG-EKF

3.5.2 Implementation Issues

In order to implement the CD-LG-EKF algorithm, equa-

tions (36) and (53) have to be integrated during ∆t

where ∆t represents the time between two measure-

ments. However, µ (t) and P (t) evolve on G and Sym+

respectively where Sym+ corresponds to the Rieman-

nian manifold of symmetric positive definite matrices.

Therefore some care has to be taken while propagating

them.

Mean propagation To propagate µ (t) = µt, we employ

a Lie-Euler method using small steps δt, i.e δt� ∆t:

µt+δt ' µtexpG
(
[Ω (µt)]

∧
G δt

)
(69)

Covariance propagation To propagate P (t), we choose

the Log-Euclidean metric [6] with the following approx-

imation where f : Sym+ → Sym:

dlogm (P )

dP
(f (P )) ' logm (P + hf (P ))− logm (P )

h
(70)

where logm and expm correspond to matrix logarithm

and matrix exponential respectively. Thus the covari-

ance can be propagated as follows using small steps δt:

Pt+δt ' expm

(
logm (Pt) +

dlogm (Pt)

dPt
(f (Pt)) δt

)
' expm

(
1

α
(logm (Pt + αf (Pt) δt)

− (1− α) logm (Pt))) (71)

Moreover if λmin (Pt) > λmax (αf (Pt) δt) then

(Pt + αf (Pt) δt) ∈ Sym+. Therefore we have the fol-

lowing constraint on α to remain on Sym+:

α <
λmin (Pt)

λmax (f (Pt)) δt
(72)

4 First and Second Order Differential of the

Matrix Lie group Logarithm using Left

Connection

In this section, we derive the expression of the first and

second order differential of the matrix Lie group loga-

rithm using left connection. These results are used in

the CD-LG-EKF theory presented in section 3. To the

best of our knowledge, it is the first time these expres-

sions are obtained.

4.1 First and second order derivative along a path of

the matrix logarithm

Let us recall the matrix logarithm definition:

logG (Id +A) =

∞∑
k=1

(−1)
k+1

k
Ak

= A− A2

2
+
A3

3
+O

(
‖A‖4

)
(73)

where A ∈ Rn×n and the series of logG (Id +A) is con-

verging. The first and second order derivative along a

path can be obtained as follows:

d

ds
logG (Id +A (s)) =

dA (s)

ds

−1

2

(
A (s)

dA (s)

ds
+
dA (s)

ds
A (s)

)
+

1

3

(
dA (s)

ds
A (s)

2
+A (s)

dA (s)

ds
A (s)

+A (s)
2 dA (s)

ds

)
+O

(
‖A (s)‖3

) dA (s)

ds
(74)

d2

ds2
logG (Id +A (s))

(74)
=

d2A (s)

ds2

−1

2

(
A (s)

d2A (s)

ds2
+
d2A (s)

ds2
A (s)

)
−
(
dA (s)

ds

)2

+
2

3

((
dA (s)

ds

)2

A (s) +
dA (s)

ds
A (s)

dA (s)

ds

+A (s)

(
dA (s)

ds

)2
)

+O
(
‖A (s)‖2

)(dA (s)

ds
,
dA (s)

ds

)
+O

(
‖A (s)‖2

) d2A (s)

ds2
(75)
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where O (‖·‖) (·, ·) is defined in section 2.1.4.

4.2 First order differential of the matrix Lie group

logarithm

Let us define:

Id +A (s) = BexpG (sc∧) (76)

where B ∈ G and c∧ ∈ g. Then:

dA (s)

ds
= BexpG (sc∧) c∧ (77)

d2A (s)

ds2
= BexpG (sc∧) c2∧ (78)

dA (s)

ds

∣∣∣∣
s=0

= Bc∧ (79)

d2A (s)

ds2

∣∣∣∣
s=0

= Bc2∧ (80)

Thus, using (74) the first order differential of the matrix

Lie group logarithm is:

〈∇logG (B) , Bc∧〉
def
=

d

ds
logG (BexpG (sc∧)) |s=0

(74),(79),(80)
= Bc∧ −

1

2
((B − Id)Bc∧ +Bc∧ (B − Id))

+
1

3

(
Bc∧ (B − Id)

2
+ (B − Id)Bc∧ (B − Id)

+ (B − Id)
2
Bc∧

)
+O

(
‖(B − Id)‖3

)
Bc∧ (81)

Setting B = expG (b∧) and using the results provided

as supplementary material1, we finally obtain:

〈∇logG (expG (b∧)) , expG (b∧) c∧〉

=

(
Id + b∧ +

1

2
b2∧

)
c∧

−1

2

((
b∧ +

3

2
b2∧

)
c∧ + c∧

(
b∧ +

1

2
b2∧

)
+ b∧c∧b∧

)
+

1

3

(
c∧b

2
∧ + b∧c∧b∧ + b2∧c∧

)
+O

(
‖b∧‖3

)
c∧

= c∧ +
1

2
b∧c∧ −

1

2
c∧b∧ +

1

12
c∧b

2
∧ +

1

12
b2∧

c∧ −
2

12
b∧c∧b∧ +O

(
‖b∧‖3

)
c∧

= c∧ +
1

2
[b∧, c∧] +

1

12
[b∧, [b∧, c∧]] +O

(
‖b∧‖3

)
c∧

(82)

where we used the following property of the Lie bracket

(a, b ∈ g):

[a, [a, b]] = aab + baa− 2aba (83)

1 Supplementary material and Matlab code are available at
https://sites.google.com/site/guillaumebourmaud/

4.3 Second order differential of the matrix Lie group

logarithm using left connection

Using (75), the second order differential of the matrix

Lie group logarithm is:

HesslogG
(B) (Bc∧, Bc∧)

def
=

d2

ds2
logG (BexpG (sc∧)) |s=0

(75),(79),(80)
= Bc2∧ −

1

2

(
(B − Id)Bc2∧ +Bc2∧ (B − Id)

)
− (Bc∧)

2
+

2

3

(
(Bc∧)

2
(B − Id) +Bc∧ (B − Id)Bc∧

+ (B − Id) (Bc∧)
2
)

+O
(
‖(B − Id)‖2

)
(c∧, c∧) (84)

Setting B = expG (b∧), and using the results provided

as supplementary material, we finally obtain:

HesslogG
(expG (b∧)) (expG (b∧) c∧, expG (b∧) c∧)

= (Id + b∧) c2∧ −
1

2

(
b∧c

2
∧ + c2∧b∧

)
−
(
c2∧ + c∧b∧c∧ + b∧c

2
∧
)

+
2

3

(
c2∧b∧ + c∧b∧c∧ + b∧c

2
∧
)

+O
(
‖b∧‖2

)
(c∧, c∧)

=
1

6
b∧c

2
∧ +

1

6
c2∧b∧ −

2

6
c∧b∧c∧ +O

(
‖b∧‖2

)
(c∧, c∧)

=
1

6
[c∧, [c∧, b∧]] +O

(
‖b∧‖2

)
(c∧, c∧) (85)

5 Applicability, Results and Discussion

In this section we illustrate the applicability of the CD-

LG-EKF to the practical problem of the estimation of

a camera pose. When we apply the CD-LG-EKF to a

particular problem, we build the Lie groups perform-

ing a direct product between the components. Instead

of using a matrix representation of the state, we use a

symbolic representation for the sake of brevity. An ele-

ment of the group G is denoted (·)G whereas an element

of the Lie algebra g is denoted (·)g. These notations are

simply a rewriting of the matrices.

5.1 Lie Groups of interest & Product of Lie Groups

Some Lie groups of interest where our theory applies

are listed in Table 2.

Most of the time, the state to be estimated com-

prises several components evolving on different Lie

Groups (ex: orientation in SO (3) and position in R3).

The product of Lie groups is a Lie group [33]. Thus

our theory also applies directly to any state that is a

combination of Lie Groups.
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Group Example of Application
SO (3) , SU (2) Orientation

SL (3) Homography
SE (3) Rigid Body Transformation(
R+∗,×

)
Scaling Factor, Focal length...

(Rn,+) Anything evolving on an Euclidean Space

Table 2 Lie Groups of interest

The simplest way to handle a state comprising sev-

eral components is to consider the Lie group formed by

their direct product (ex: SO (3) × R3). However, con-

trary to the case of a state evolving on an Euclidean

space, others ways to combine Lie groups exist [33]

(ex: semi-direct product, twisted product...). As a con-

sequence, the estimator performances depend on the

choice of the group structure. To the best of our knowl-

edge, the question of how to choose the best group re-

mains open and application dependent [34]. The study

if symmetries which was used in [10] may provide hints

for such a choice. Hence the choice of the appropriate

Lie group, as well as the choice of its associated Lie

algebra basis, remain a modeling question for the prac-

titioner.

5.2 Application of the CD-LG-EKF to a Camera Pose

Filtering Problem

The camera pose filtering problem we consider deals

with estimating a camera pose using a white-noise ac-

celeration model given noisy pose measurements. It

presents the originality that the velocity is not mea-

sured directly, although it is included and estimated as

part of the state. It is designed as a fundamental infer-

ence module to be used in applications where only the

absolute pose can be measured, such as for localization

and tracking from a wearable camera that is addressed

in the Dem@Care project2 [47].

5.2.1 Derivation of the filter

Motion equations Let us consider the following kine-

matics using engineering notations as in (26):
Ṙ = R

(
[ω]
∧
SO(3) + [nR]

∧
SO(3)

)
ω̇ = nω

Ṫ = v + nT

v̇ = nv

(86)

where

2 Dementia Ambient Care Project: www.demcare.eu

– R = Rgb ∈ SO (3), represents the orientation of

the global frame with respect to the camera (body)

frame

– ω = ωb ∈ R3 is the angular velocity vector in the

body frame

– T =
−→
OgOb

g

∈ R3 is the position of the camera in

the global frame

– v = vg ∈ R3 is the radial velocity of the camera in

the global frame

– nR , nω, nT and nv are (potentially correlated)

white Gaussian driving noises

Measurement equations We consider the case where a

calibrated camera evolves in a known 3D world and

the camera pose is estimated at fixed rate by a black

box such as PnP module [29] that matches the image

content to a 3D model of the world:

{
Rzk = RexpSO(3) (wRk)

Tzk = T + wTk
(87)

where

– Rzk ∈ SO (3), represents a noisy observation of the

orientation of the global frame with respect to the

camera (body) frame

– Tzk ∈ R3 is a noisy observation of the position of

the camera in the global frame

– wRk and wTk are correlated white Gaussian noises

State (X) and Lie group (G) definition We build the

following Lie group on which the state X evolves:

G = SO (3)× R3 × R3 × R3 (88)

(SO (3) properties are detailed in appendix D) which is

symbolically represented by:

X =



R

Id3×3 ω

1

Id3×3 T

1

Id3×3 v

1


=


R

ω

T

v


G

(89)

X−1 =


RT

−ω
−T
−v


G

and X1X2 =


R1R2

ω1 + ω2

T1 + T2
v1 + v2


G

(90)

Its associated Lie algebra is:

g = so (3)× R3 × R3 × R3 (91)
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and the following properties hold (a ∈ R12):

a =
[
aTR, a

T
ω , a

T
T , a

T
v

]T
(92)

[a]
∧
G =



[aR]
∧
SO(3)

03×3 aω
0

03×3 aT
0

03×3 av
0



=


[aR]

∧
SO(3)

aω
aT
av


g

(93)

expG
(
[a]
∧
G

)
=


expSO(3)

(
[aR]

∧
SO(3)

)
aω
aT
av


G

(94)

adG (a) =

[
adSO(3) (aR) 09×9

09×9 09×9

]
(95)

since SO (3) is the only non-commutative component

of G.

ΦG (a) =

[
ΦSO(3) (aR) 09×9

09×9 09×9

]
(96)

Calculations for the propagation step Given the previ-

ously defined Lie group G, we can rewrite the motion

equations (86) in the form of the system considered in

this paper (26) where

Ω (X) =
[
ωT ,01×3, v

T ,01×3
]T

(97)

and

n =
[
nTR, n

T
ω , n

T
T , n

T
v

]T
(98)

Also,

ε =
[
εTR, ε

T
ω , ε

T
T , ε

T
v

]T ∈ R12 (99)

The only required calculation for the propagation step

is the derivative of Ω which has a simple form in our

case:

F (t) =
d

dε (t)
Ω
(
µ (t) expG

(
[ε (t)]

∧
G

))
|ε(t)=0

=


03×3 Id3×3 03×3 03×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 Id3×3
03×3 03×3 03×3 03×3

 (100)

Observation (z) and Lie group (G′) definition We build

the following Lie group on which the observations zk
evolve:

G′ = SO (3)× R3 (101)

which is symbolically represented by:

zk =

Rzk Id3×3 Tzk
1

 =

(
Rzk
Tzk

)
G′

(102)

z−1k =

(
RTzk
−Tzk

)
G′

and z1z2 =

(
Rz1Rz2
Tz1 + Tz2

)
G′

(103)

Its associated Lie algebra is:

g′ = so (3)× R3 (104)

and the following properties hold (b ∈ R6):

b =
[
bTR, bT

]T
(105)

[b]
∧
G =

 [bR]
∧
SO(3)

03×3 bT
0

 =

(
[bR]

∧
SO(3)

bT

)
g

(106)

expG′
(
[b]
∧
G′

)
=

(
expSO(3)

(
[bR]

∧
SO(3)

)
bT

)
G′

(107)

Derivations for the update step Given the previously

defined Lie group G′, we can rewrite the measurement

equations (87) in the form of the measurement equation

considered in this paper (29) where

h (Xk) = AXkA
T =

Rk Id3×3 Tk
1

 (108)

A =

 Id3×3 03×3 03×1 03×3 03×1 03×3 03×1
03×3 03×3 03×1 Id3×3 03×1 03×3 03×1
01×3 01×3 0 01×3 1 01×3 0

 (109)

and

wk =
[
wTRk , w

T
Tk

]
(110)

The only required calculation for the update step is:

Hk =
∂

∂ε

[
logG′

(
h
(
µk|k−1

)−1
h
(
µk|k−1expG

(
[ε]
∧
G

)))]∨
G
|ε=0

=
∂

∂ε

[
εR
εT

]
|ε=0 =

[
Id3×3 03×3 03×3 03×3
03×3 03×3 Id3×3 03×3

]
(111)
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5.2.2 Trajectory Simulations

In order to evaluate our formalism on synthetic data, we

need to simulate trajectories. We employ the following

formalism:

X (t+ δt) = X (t) expG
(
[Ω (X (t)) δt+ δn]

∧
G

)
(112)

where

δn ∼ NR12 (012×1, Rδt) (113)

In our simulations we take

R =


03×3 03×3 03×3 03×3
03×3 Rω 03×3 03×3
03×3 03×3 03×3 03×3
03×3 03×3 03×3 Rv

 (114)

where

Rω =

10−3 0 0

0 10−3 0

0 0
(
π
4

)2
 in (rad/s2)

2
(115)

which corresponds to a camera rotating mainly around

the z-axis, and

Rv =

 1 0 0

0 1 0

0 0 10−3

 in (m/s2)
2

(116)

which corresponds to camera translating mainly in the

xy-plane.

5.2.3 Measurement Simulations

Once a trajectory is simulated, we wish to create a se-

quence of measurements. Given a covariance matrix Qk,

we can draw a sample fromNR6 (06×1, Qk) and simulate

an observation using (29). In order to give a physical in-

terpretation to Qk and meaningful correlations between

the translation and the orientation of the camera, Qk
is obtained as follows for each observations. First of all,

the simulated trajectory is placed in a 3D sparse envi-

ronment (a 3D cube with keypoints on the faces in our

case). The keypoints are independent and distributed

using an isotropic normal distribution with a standard

deviation of 0.1 meter. 2D points are simulated by re-

projecting the 3D keypoints in the focal plane of the

camera, assuming the camera is calibrated. The stan-

dard variation of the 2D points is set to 3 pixels for

a pinhole camera with focal f = 600 pix and image

size 1280× 960. We estimate the camera pose C using

a maximum likelihood algorithm [2] which minimizes

the reprojection error of the 3D keypoints in the im-

age. The algorithm is initialized at the true (simulated)

camera pose. Finally the covariance matrix (Qk) of the

estimated camera pose is approximated using Laplace

approximation, i.e by inverting the pseudo-Hessian ma-

trix of the reprojection error evaluated in C.

5.2.4 Derivation of a Continuous-Discrete Non Linear

Filter in the Embedding Space of the Lie Group with

Extrinsic Constraint

In order to provide a baseline for performance com-

parison, we now derive a continuous-discrete formalism

based on state of the art algorithms, which extrinsically

takes into account the geometry of the Lie groups. The

idea is to perform filtering in the embedding Euclidean

space of the Lie groups and then to project to estimates

back on the manifold as it was proposed in [38, 15] for

a discrete time system. Here, we adapt the propagation

step to deal with our continuous time model but the

update step remains unchanged.

Propagation step

We define the operators (·)vG : Rn×n → Rl which cor-

responds to the vectorization of an element of G and

(·)MG : Rl → Rn×n the inverse of (·)vG . We also define

π (·) : Rn×n → G the orthogonal projection of Rn×n on

G. For example, in our application

x = (X)
vG =

[
RT1 , R

T
2 , R

T
3 , w

T , TT , vT
]T ∈ R18×1

(117)

where Ri stands for the ith column of R. We consider

the following state equation in Rl :

dx (t) =

(
π
(

(x (t))
MG

) [
Ω
(
π
(

(x (t))
MG

))]∧
G

)vG
dt

+

(
π
(

(x (t))
MG

) p∑
i=1

[ei]
∧
G ◦ dBi (t)

)vG
= f (x (t)) dt+ g (x (t)) ◦ db (t) (118)

where

f (x (t)) =

(
π
(

(x (t))
MG

) [
Ω
(
π
(

(x (t))
MG

))]∧
G

)vG
(119)

db (t) is defined in (48) and g (x (t)) is defined s.t

g (x (t)) ◦ db =

(
π
(

(x (t))
MG

) p∑
i=1

[ei]
∧
G ◦ dBi (t)

)vG
(120)
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The propagation equations of the first two moments

(µ ∈ Rl×1 and P ∈ Sym+ ⊂ Rl×l) of x (t) can be

approximated by (see [28]):

dµ (t)

dt
' f (µ (t)) (121)

and

dP (t)

dt
' F (t)P (t) +P (t)F (t)

T
+g (µ (t))Rg (µ (t))

T

(122)

where

F (t) =
df (x)

dx
|x=µ(t) (123)

After having propagated the first two moments µ (t)

and P (t) from tk−1 to tk, the manifold constraint is

enforced through a projection step as follows:

µk|k−1 =

(
π

((
µ−k|k−1

)MG
))vG

(124)

Pk|k−1 = BkP
−
k|k−1B

T
k (125)

where

Bk =
d
(
π
(

(x)
MG

))vG
dx

|x=µ−
k|k−1

(126)

This projection step is equivalent to performing an up-

date step with a perfect measurement where the mea-

surement equation corresponds to an equality constraint

taking the zero value only for matrices belonging to the

group (see [38]).

Update step

We define the operator (·)vG′ : G′ ⊂ Rm×m → Rk which

corresponds to the vectorization of an element of G′ and

(·)MG′ : Rk → G′ ⊂ Rm×m the projection of Rk on G′.

We consider the following measurement equation:

yk = l (xk, wk) =
(
h
(

(xk)
MG

)
expG′

(
[wk]

∧
G

))vG′
(127)

omitting the constraints (x (t))
MG ∈ G and

(yk)
MG′ ∈ G′. The first two moments of xk are updated

using classical CD-EKF update equations [28]:

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +MkQkM

T
k

)−1
(128)

mk|k = Kk

(
yk − l

(
µk|k−1,0

))
(129)

µ−k|k = µk|k−1 +mk|k (130)

P−k|k = (Idl×l −KkHk)Pk|k (131)

where

Hk =
∂l (x,w)

∂x
|x=µk|k−1,w=0 (132)

and

Mk =
∂l (x,w)

∂w
|x=µk|k−1,w=0 (133)

Finally µ−k|k and P−k|k are projected back on G using

eq.(124) and (125). In the rest of the paper, we refer

to this filter as Continuous-Discrete Constrained Non-

Linear Filter (CD-Constr-NLF).

Implementation issue Some care has to be taken while

implementing the CD-Constr-NLF since the state co-

variance matrix P is singular. Indeed, in our problem,

the covariance matrix is a 18 × 18 matrix whereas the

estimated state has only 12 degrees of freedom. First of

all, in order to propagate P , the numerical scheme de-

scribed in (71) cannot be employed anymore since the

matrix logarithm is not defined for a singular matrix.

Instead, we use a 4th order Runge Kutta verifying at

each step that all the eigenvalues of P are either pos-

itive or equal to zero. Secondly, the matrix inversion

in (128) is replaced by a pseudo-inverse. Finally, in or-

der to improve the performances of the filter, we apply

the projection step after each substep of the numerical

scheme.

5.2.5 Application of a Continuous-Discrete Unscented

Kalman Filter in the Embedding Space of the Lie

Group with Extrinsic Constraint

In this section, we derive a Continuous-Discrete Con-

strained Unscented Kalman Filter (CD-Constr-UKF).

In the Euclidean case, using the unscented transform

(UT) [21] instead of a linearization technique signifi-

cantly improves the performances of a filter (and also

increases its computationnal cost). It might be interest-

ing to compare such a filter, applied in the embedding

space of the Lie group, to our approach, which is based

on a linearization technique but intrinsically takes into

account the geometry of the Lie group.

Propagation Step The propagation step is performed

as described in [39] since their model fits (118). At the

end of the propagation, we apply the same projection

step as the one applied after the propagation step of

the CD-Constr-NLF.

Update Step The update step is performed as described

in [21] since their model fits (127). At the end of the

update step, we apply the same projection step as the

one applied after the update step of the CD-Constr-

NLF.
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Implementation issue As in the CD-Constr-NLF case,

some care has to be taken while implementing the CD-

Constr-UKF since the state covariance matrix P is sin-

gular. First of all, the Cholesky decomposition which is

usually used to draw the sigma points cannot be com-

puted for a singular matrix. Instead, we use a Singular

Value Decomposition and simply take the square root

of the 12 largest singular values since the estimated

state has only 12 degrees of freedom. Secondly, in order

to improve the performances of the filter, we apply the

projection step after each substep of the propagation

step.

5.2.6 Simulation Results

We simulate trajectories as described in section 5.2.2.

For each trajectory, we create a sequence of measure-

ments as explained in section 5.2.3. An example of simu-

lated trajectory is presented Fig.5. For each filter, T and

R are initialized using the first measurement with small

variances (10−2) whereas ω and v are set to zero with

large variances (104). The time-step used to simulate a

trajectory is ten times smaller than the time-step used

to propagate the mean and the covariance of each filter

between two measurements. Figure 6 reports the Root

Mean Squared Error (RMSE) of each filter w.r.t sam-

pling period (∆t). The RMSE is defined as the square

root of the average of the following errors : ‖µT − T‖22
(position error) and

∥∥∥logSO3

([
µR

TR
]∨
SO(3)

)∥∥∥2
2

(orien-

tation error).

For small sampling period, the CD-LG-EKF, the

CD-Constr-UKF and the CD-Constr-NLF give the same

performances.

However, for a reasonable sampling rate, i.e 25 frames

per seconds which is a standard camera frame-rate, the

CD-LG-EKF and the CD-Constr-UKF performs signif-

icantly better than the CD-Constr-NLF.

For higher sampling period (∆t), the CD-Constr-

NLF diverges while the proposed algorithm as well as

the CD-Constr-UKF keep filtering the camera pose.

Note that the CD-LG-EKF performs slightly better

than the CD-Constr-UKF both in rotation and trans-

lation. It shows that intrinsically taking into account

the geometry of the Lie group significantly increases

the performances of a filter and can even provide bet-

ter results than a computationally more expensive filter

based on the unscented transform.

For very large sampling periods (∆t), the motion

model becomes less informative but the CD-LG-EKF

output is still numerically stable and tends towards the

observations contrary to the CD-Constr-UKF that di-

verges.

6 Conclusion

In this paper, we proposed a new generic algorithm

called Continuous-Discrete Extended Kalman Filter on

connected unimodular matrix Lie Groups that gener-

alizes the Continuous-Discrete Extended Kalman Fil-

ter to the case where the state and the measurements

evolve on a matrix Lie groups. Assuming the posterior

distribution is a concentrated Gaussian distribution, we

showed, using the tools of the Lie group theory, how

to propagate and update the distribution parameters.

As a side effect, we also contributed to the derivation

of the first and second order differential of the matrix

Lie group logarithm using left connection which ana-

lytical expressions were necessary for the state covari-

ance propagation. Our formalization led to a generic

solution to the filtering problem of a state and obser-

vations evolving on matrix Lie groups. The systematic

methodology of the CD-LG-EKF was illustrated by the

application to a camera pose filtering problem where

two constrained non-linear filters, based on a lineariza-

tion technique and an unscented transform respectively,

were outperformed. Future work will consider its use in

localization and tracking from a wearable camera, but

we hope its general formulation will find applications

in many other contexts.
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A Properties and Notations

Property 1 First order Taylor expansion of AdG (·):

AdG
(
expG

(
[a]∧G

))
= expG (adG (a))

= Idp×p + adG (a) +O
(
‖a‖2

)
(134)

where a ∈ Rp.

Property 2 First order Taylor expansion of expG (·):

expG (ε∧) = Idn×n + ε∧ +
1

2
ε2∧ +O

(
‖ε∧‖3

)
(135)

where ε∧ ∈ g

Property 3 Adjoint properties:

(adG (x))ij = LTijx (136)

(
adG (x)T

)
ij

= (adG (x))ji = LTjix (137)

where Lij ∈ Rp×1 and x ∈ Rp×1. We have:
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CD−LG−EKF

CD−Constr−NLF

CD−Constr−UKF

Fig. 5 Example of generated trajectory, measurements, CD-Constr-NLF output and CD-LG-EKF output with [x, y, z]T = T

and [wx, wy, wz]T =
[
logSO(3) (R)

]∨
SO(3)

.

(
adG (x)RadG (x)T

)
ij

= E

(
p∑
k=1

p∑
l=1

(adG (x))ik Rkl
(
adG (x)T

)
lj

)

= E

(
p∑
k=1

p∑
l=1

LTikxRklL
T
jlx

)

= E

(
p∑
k=1

p∑
l=1

RklL
T
ikxx

TLjl

)

=

p∑
k=1

p∑
l=1

RklL
T
ikxx

TLjl (138)

and

(
adG (x)2

)
ij

=

p∑
k=1

(adG (x))ik (adG (x))kj

=

p∑
k=1

LTikxL
T
kjx

=

p∑
k=1

LTikxx
TLkj (139)

B Propagation

For the following dynamical equation where f and G are
bounded and Lipschitz functions:

dx = f (x) dt+G (x) dβ (140)

where β is a Brownian process with diffusion matrix Q (t),
and x ∈ Rm, the mean and covariance propagation equations
are:

ṁx = E [f (x)] (141)

Ṗx =
(
E
[
f (x)xT

]
− E [f (x)]mTx

)
+
(
E
[
xf (x)T

]
−mxE

[
f (x)T

])
+ E

(
G (x)QG (x)T

)
(142)

see [28] Vol.2 Chap.11 Sec.6.
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Fig. 6 Root mean squared error for different sampling periods (∆t)

C Update

Let A ∈ G et b, c ∈ Rp, then:

Aexp (b+ c) = Aexp (b) exp (−b) exp (b+ c)

(16)
= Aexp (b) exp

(
Φ (b) c+O

(
‖c‖2

))
(143)

After the Lie algebraic error update step (3.4.1) we have:

Xk|k = µk|k−1expG
([
ε−k|k

]∧
G

)
= µk|k−1expG

([
m−k|k + r−k|k

]∧
G

)
(144)

where r−k|k ∼ NRp
(
0p×1, P

−
k|k

)
. Applying (143), we obtain:

Xk|k = µk|k−1expG
([
m−k|k

]∧
G

)
expG

([
ΦG

(
m−k|k

)
ε−k|k +O

(∥∥∥ε−k|k∥∥∥2)]∧
G

)
= µk|kexpG

([
εk|k

]∧
G

)
(145)

where

µk|k = µk|k−1expG
([
m−k|k

]∧
G

)
(146)

εk|k = ΦG
(
m−k|k

)
ε−k|k +O

(∥∥∥ε−k|k∥∥∥2) (147)

From the previous expression and neglecting terms

in O

(∥∥∥ε−k|k∥∥∥2):

E
[
εk|k

]
= 0p×1 (148)

Pk|k = E
[
εk|kε

T
k|k

]
= E

[
ΦG

(
m−k|k

)
ε−k|kε

−T
k|kΦG

(
m−k|k

)T ]
= ΦG

(
m−k|k

)
P−k|kΦG

(
m−k|k

)T
(149)

D SO (3) Properties

– expSO(3), logSO(3) and ΦSO(3) can be computed effi-

ciently using Rodrigues’ rotation formulae [37]

– Let a =

 a1a2
a3

 then [a]∧SO(3) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


– Let b ∈ R3 then [a]∧SO(3) b = [b]∗ a

where [b]∗ = − [b]∧SO(3)

– adSO(3) (a) = [a]∧SO(3)
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