
HAL Id: hal-01311134
https://hal.science/hal-01311134

Submitted on 3 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Separation of Concerns in OFL
Adeline Capouillez, Pierre Crescenzo, Philippe Lahire

To cite this version:
Adeline Capouillez, Pierre Crescenzo, Philippe Lahire. Separation of Concerns in OFL. Workshop
Advanced Separation of Concerns lors de la conférence ECOOP 2001 (15th European Conference on
Object-Oriented Programming), Jun 2001, Budapest, Hungary. pp.107-130. �hal-01311134�

https://hal.science/hal-01311134
https://hal.archives-ouvertes.fr

Separation of Concerns in OFL

Adeline Capouillez, Pierre Crescenzo, and Philippe Lahire
Laboratoire I3S (UNSA/CNRS)

Projet OCL

Les Algorithmes, bâtiment Euclide B

2000, route des lucioles

B.P. 121

F-06903 Sophia Antipolis CEDEX

FrancefAdeline.Capouillez|Pierre.Crescenzo|Philippe.Lahireg@unice.fr
http://www.i3s.unice.fr/~ocl/

1 Overview of the approach

OFL (Open Flexible Languages) is the name of a meta-model for object-oriented programming languages

based on classes. It relies on three essential concepts of these languages: the descriptions which are a

generalisation of the notion of class, the relationships such as inheritance or aggregation and the languages

themselves. OFL provides a customisation (hyper-genericity) of these three concepts in order to adapt their

operational semantics to the programmer’s needs. So, at first reading the OFL approach can be summed up

as the search for a set of parameters whose value determines the operational semantics of an object-oriented

language based on classes.

One of the main goals of OFL is to describe existing object-oriented languages such as Java [Fla99,

GJSG00], Eiffel [Mey97], or C++ [Str97] in order to be able to extend them according to two directions.

On the first hand, we want to extend the language itself by adding new concepts and more especially new

inter-classes relationships (like a multiple inheritance relationship in Java) [CCL01]. On the other hand,

we wish to extend the language with new orthogonal services (for example persistent object handling). In

this paper we focus on the second direction.

When designing and programming applications, people often need additional services in order to handle

object evolution, persistence, distribution of data, etc. One of the most interesting approach is to use aspect-

oriented programming (AOP) in order to integrate those services [KHH+01]. This integration is performed

directly within the application, and most of the time there is not only one aspect dealing, for instance, with

the management of persistence but several: each handles persistent object management with its own point

of view. The design of hierarchies of aspects relies on the same problems as the design of the hierarchy of

classes related to the main purpose of an application.

We intend to propose another variant based on an integration of aspects within the semantics of the

language and not directly into an application. We aim that the handling of one service becomes the job of

a meta-programmer instead of remaining the job of the application programmer. Our approach is based

on the integration of aspects into OFL and on the ability to customise them. So that, they can be adapted

to the application needs. Such approach based on hyper-genericity encourages, from our point of view, the

design of aspects which are more efficient (built by a specialist) and reusable by a wide range of application

(they are customisable); it improves also the separation between the implementation of a service and the

design of an application. The integration of the notion of service in OFL uses techniques which come from

AOP but these techniques are adapted in order to match the requirements of the OFL model.

First we give an overview of the OFL model core and then we give some of the key elements of our

approach.

2 The hyper-genericity

Genericity is the ability to customise the behaviour of a class in an object language just as in the Eiffel or

C++ (template) generic classes. Hyper-genericity is the ability to customise the behaviour of the language

itself. More precisely we have chosen to customise the behaviours of three important notions of object

languages based on classes quoted above.

1

2.1 The Parameters

We have defined a set of parameters [CCCL01] which represents the main features of the behaviours

of these three important notions which are called concept-relationship, concept-description and concept-

language. For instance, concerning the concept-relationship, the value of the Cardinality parameter

allows to specify if it is simple or multiple. As for the concept-description we have for example the Gener-
ator parameter which determines whether the concept-description can or cannot create its own instances.

2.2 The Actions

The operational semantics of each concept must adapt to the value of its parameters. This is achieved

thanks to a set of action algorithms whose execution depends on these values. For example, the assignment

of an object to an attribute, the dynamic binding of the features, the sending of messages and lots of other

behaviours are expressed according to parameters of concept-relationship and concept-description. OFL

links two facets to each action: the first illustrates the static part inside an interpretor or a compiler; the

second represents the dynamic aspect integrated within the runtime. The distribution of the code into these

two facets depends on implementation choices of the OFL model.

3 Architecture of the model core

Figure 1 illustrates how to use the OFL model to describe an application. In this figure the three necessary

levels of design are shown:

1. the application level includes the program’s descriptions and objects (OFL-instances and OFL-data),

2. the language level describes the components of the programming language (OFL-components), and

3. the OFL level represents the reification of those components (OFL-concepts and OFL-atoms which are

in the OFL-core).

language relationship description objectconcept−
relationship

concept−
description

a−language ... a−description ...

Vehicle Car Colour

a−
generalisation−

relationship
−relationship

an−aggregation

...

Class Object
instantiation generalisation aggregation

concept−
language

Red

OFL−concepts OFL−atoms

OFL

an−application

OFL−instances

OFL−data

OFL−components

MyFerrari

Figure 1: The OFL-core architecture

2

The Application Level To describe an application, the programmer uses the services supplied by the

language level. He creates OFL-instances, which are the descriptions and the relationships of his appli-

cation by instantiation of the OFL-components. At runtime, the application objects, called OFL-data, are

instances of the OFL-instances representing the descriptions.

The Language Level The language level describes different types of relationships and descriptions

which can be used in the described language. This entities are called OFL-components. Each OFL-

component is associated to a set of values, each of them associated to one parameter of the corresponding

OFL-concept. The relationships are instances of concept-relationship, the description are instances

of concept-description. The language itself is an instance of concept-language. Its main function is

to put together the relationships and descriptions which are supplied to the programmer.

The OFL Level This level is the core of the OFL model. This model is a meta-model for the programming

language (language level) and a meta-meta-model for the programs (application level). As was said in

section 2, we have chosen to customise three important notions: relationships, descriptions and languages.

However, a lot of other entities need to be reified such as objects, methods, assertions, etc. in order to design

a language completely. The OFL level includes two types of entities:

1. the OFL-concepts which describes the customisable part of the relationships, descriptions and lan-

guages, and

2. the OFL-atoms which reify the non-customisable part of these three concepts as well as all the other

program entities (feature, instance, etc.).

Also assertions are described in each OFL-concept and OFL-atom in order to keep the model consistent,

they apply on any instance of all concepts.

Let us give some more details about OFL-concepts. They are composed by several parts, main ones are:� Characteristics These are the essential elements for the definition of the concept. For example, one

from the description-concept is dealing with the kinds of relationship that may be used starting from

associated descriptions.� Parameters The value of these parameters describe a part of the operational semantics of the con-

cept.� Assertions These are the properties and constraints which are specific to all instances of one concept

and to the atoms which participate to its reification.� Actions They realise the operational semantics of the concept in accordance with the values of the

parameters.

Characteristics, parameter values and assertions may differ from one OFL-component definition to an-

other whereas actions are common to all OFL-components.

4 OFL and separation of concerns

One of the main interests of techniques related to the separation of concerns is to provide a way to integrate

treatments which are orthogonal to the design of the application’s hierarchy of classes, in such a way that

they are clearly separated from the code of application. To build aspects which are highly reusable and

adaptable is a fairly difficult thing and the skills needed for this are quite different from the ones needed

for building an end-user application: generally to build one service we need an expert from the domain.

According to the OFL model such services could be integrated in two different ways:� Through the definition of two additional OFL-components: a new kind of description (an aspect may

be seen as a special class) and a new kind of inter-class relationship in order to simulate the joint

points declaration [KHH+01] associated to an aspect1.

1At the moment we investigate in order to check the faisibility of this implementation choice.

3

� To extend OFL with a new entity that we call OFL-aspect which will implement at the model level a

way to customise OFL-concepts in order to integrate the service.

In the following, we deal only with the later direction. Of course people who think about very specific

services, that is to say services which fit only to one or to a very small number of applications should

integrate them using classical AOP techniques. But as far as it concerns services that should be highly

adaptable and which address a wide range of applications, then we are convinced that it is better to develop

an approach based on the insertion of hyper-generic treatment which are orthogonal to the language to be

extended (with the service).

For example, let us add to the Java language, a set of capabilities for handling persistent objects that

may be adapted to different contexts, from very basic to complex management of persistent objects; then it

may worth to define an OFL service which relies on a set of specific parameters allowing to adapt exactly

the behaviour of the language extension to the needs of the application. For example, it may be interesting

to handle differently applications whether they use large collections of simple objects or small collections of

complex objects.

4.1 An intuitive approach to create a new service

When building a new service several steps are required:� to think about the scope of the service and its limitations. So that we know if it worths to define an

OFL-service instead of using classical AOP.� To identify the set of parameters that will parametrise the service to be added. Building a new service

for handling persistence could require the definition of parameters for handling object loading and

transaction management policies. This step requires to have a good knowledge of the state of the art

related to the service objectives.� To identify properties that should be included to the reification of description and to the reification

of instances of these descriptions. For handling persistence, an instance of description will get a

persistent object identifier and a version number will be associated to a description.� According to the parameters that had been found, to check if there is any need to build some specific

kinds of description or some specific kinds of relationship. A service which implement basic persis-

tence handling does not require specific components but a service dealing with the handling of object

evolution will certainly lead to the definition of a new kind of description (version) and to one or

several kinds of relationship (is-a-version-of, etc.).� To identify possible specific atoms, that is to say not customisable entities included into the model but

whose semantics may be captured only by new assertions. For example, handling persistence may

require a new kind of atom which associates an object persistent identifier (POI) to its address in

volatile memory (VOI). Some assertions should be defined in order to catch how to synchronise the

persistent object with its volatile copy.� To write pieces of code that implement the operational semantics of those parameters. They should be

integrated to the set of actions that are specified by the OFL environment (at run -time or statically)

in order to handle application according to the characteristics, parameters and properties which had

been added (see section 4.2 for some more details).

4.2 Extension of OFL-core

As it is shown in figure 22 the modelling of a new service strongly depends on the architecture of the OFL

model. We provide hereafter some explanation about the extension of OFL-core with one new service. To

extend the model with several services is not a problem since all services are fully independent (see the

gold rules of our extension below).

2All arrows of the first figure haven’t been duplicated here and an-application is the same in the two figures.

4

OFL-aspects For each OFL-atom of OFL-core we get one aspect which contains its modification, that is

to say new characteristics. It is also possible to define new atoms which are specific to the service.

For each OFL-concept of OFL-core, we get one aspect which contains its modification, that is to say:� New parameters and characteristics related to the concept which are specific to the service to be

added.� New assertions that have to be added to the concept in order to take into account new parameters and

properties as well as some new constraints about new or modified atoms.� New methods that contain semantics that have to be included in actions defined in the concept. It

is not possible to add any action but only to insert additional code at specific location of the existing

ones. Moreover, the added semantics may be influenced by values of parameters or by characteristics

whatever they come from OFL-core or from OFL-aspects, but they may only modify characteristics of

OFL-aspects. This ensures the orthogonality of the service according to the OFL-core model.

OFL−service

OFL−application

an application

... ...

OFL−component

OFL−core

combinecombine

OFL−aspect

concept

description relationship

language

atom

object

concept

relationshipfunction

atom

object function description

language

Figure 2: Extension of OFL-core with one service

OFL-services The choice of the values of parameters associated to OFL-aspects correspond to the cus-

tomisation of the service which implement the particular needs of the application. We recall that it is

mandatory to have a deep study of the application domain needs in order to provide a consistent set of

parameter values. OFL-services represent instances of OFL-aspects (OFL-services may differ one from the

others only according to parameter values). With such an approach we could get only one service associated

to one concern of application, for example one service of persistence, its set of parameter allowing to adapt

the service to the need of application.

Specific OFL-components The implementation of some new services such as evolution require also the

description of new OFL-component, for instance the management of object evolution needs at least a new

import relationship like “is a version of”. Some pieces of the semantics added to OFL-core will handle these

specific components explicitly, so that these components are strongly related to the service3.

OFL-application Its aim is to put OFL-services and OFL-components together. An application is de-

scribed using the OFL-components related to one language. As it is shown in figure 2, an application may

needs to use one service so that it has to extend the OFL-components initially associated to the language

with the OFL-services which correspond to the service implementation. The OFL-application is the OFL-

atom which provides a way to put together: the OFL-services corresponding to the customisation of the

3Structure and behaviour of specific OFL-components are not different from any other OFL-component.

5

service which match the application requirements, the OFL-components especially built for this service

and the atoms which refine the reification of the entities describing the application4.

Our gold rules The protocol used to modify actions which are part of OFL-core concepts is based on AOP

techniques and ensures that following rules are satisfied:

1. Any service may be added (or removed) without any consequences for other services.

2. Any service may be added (or removed) on any order.

3. Service can’t reference another one.

4. Services can reference parameters and characteristics of OFL-core.

5. Services can’t modify characteristics of OFL-core.

6. A service is integrated in such a way that it is transparent for an existing application.

7. Each program can choose to apply or not apply each service.

5 Conclusion and perspectives

To build reusable services, whose definition is orthogonal to the application, is an exiting issue. We are

convinced that the separation of concerns and especially the AOP is an interesting approach to achieve it

as far as it deals with specific services dedicated to one application or to a small set of applications. But

we are also convinced that general orthogonal services, that has to be adapted to the use of a large range

of application should be integrated at the language level. We suggest that the integration is made through

customisable entities that allow to modify the semantics of the language and as consequence, the behaviour

of the application. We are interested in the near future by implementing this approach using existing AOP

environment such as AspectJ [KHH+01].

References

[CCCL01] A. Capouillez, R. Chignoli, P. Crescenzo, and P. Lahire. Hyper-généricité pour les langages à

objets : le modèle OFL. In Conférence LMO 2001 (Langages et Modèles à objets). Hermes Science

Publications, janvier 2001.

[CCL01] A. Capouillez, P. Crescenzo, and P. Lahire. OFL : l’hyper-généricité au service du méta-

programmeur (Application à Java). Technical report, Laboratory Informatique, Signaux et

Systèmes de Sophia Antipolis, mars 2001.

[Fla99] D. Flanagan. Java in a Nutshell: a Desktop Quick Reference. O’Reilly, 3rd edition, December

1999.

[GJSG00] J. Gosling, B Joy, G Steele, and Bracha G. The Java Language Specification. The Sun Microsys-

tems Press Java Series. Sun Microsystems, June 2000.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An Overview of

AspectJ. In the European Conference on Object-Oriented Programming (ECOOP), June 2001.

[Mey97] B. Meyer. Object-Oriented Software Construction. Professional Technical Reference. Prentice

Hall, 2nd edition, 1997.

[Str97] B. Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Co., 3rd edition,

1997.

4We make no assumption about possible additional features for building a service according to one or several other services already

implemented.

6

