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In this paper we obtain sharp weighted estimates for solutions of the ∂equation in a lineally convex domains of finite type. Precisely we obtain estimates in spaces of the form L p (Ω,δ γ ), δ being the distance to the boundary, with gain on the index p and the exponent γ. These estimates allow us to extend the L p (Ω,δ γ ) and lipschitz regularity results for weighted Bergman projection obtained in [CDM14b] for convex domains to more general weights.

INTRODUCTION

The study of the regularity of the Bergman projection onto holomorphic functions in a given Hilbert space is a very classical subject. When the Hilbert space is the standard Lebesgue L 2 space on a smoothly bounded pseudoconvex domain Ω in C n , many results are known and there is a very large bibliography.

When the Hilbert space is a weighted L 2 space on a smoothly bounded pseudoconvex domain Ω in C n , it is well known for a long time that the regularity of the Bergman projection depends strongly on the weight ( [START_REF] Kohn | Global regularity for ∂ on weakly pseudo-convex manifolds[END_REF], [START_REF] Barrett | Behavior of the Bergman projection on the Diederich-Fornaess worm[END_REF], [START_REF] Christ | Global C ∞ irregularity of the ∂ -Neumann problem for worm domains[END_REF]). Until last years few results where known (see [START_REF] Forelli | Projections on Spaces of Holomorphic Functions in Balls[END_REF], [START_REF] Ligocka | On the Forelli-Rudin construction and weighted Bergman projections[END_REF], [START_REF] Bonami | Weighted Bergman projections in domains of finite type in C 2[END_REF], [START_REF] Chang | Sobolev and Lipschitz estimates for weighted Bergman projections[END_REF]) but recently some positive and negative results where obtained by several authors (see for example [START_REF] Zeytuncu | Weighted Bergman projections and kernels: L p regularity and zeros[END_REF], [START_REF]L p regularity of some weighted Bergman projections on the unit disc[END_REF], [START_REF]Sobolev regularity of weighted Bergman projections on the unit disc[END_REF], [START_REF]Regularity of weighted Bergman Projections[END_REF], [START_REF]Estimates for weighted Bergman projections on pseudo-convex domains of finite type in C n[END_REF], [START_REF]On Estimates for Weighted Bergman Projections[END_REF], [vZ], [START_REF]An Application of the Prékopa-Leindler Inequality and Sobolev Regularity of Weighted Bergman Projections[END_REF] and references therein).

In this paper we are interested in some generalization of the result obtained in [START_REF]Estimates for weighted Bergman projections on pseudo-convex domains of finite type in C n[END_REF] for convex domains of finite type.

Let Ω be a convex domain of finite type in C n . Let g be a gauge function for Ω and define ρ 0 = g 4 e 1-1/g -1. Let P ω 0 be the Bergman projection of the space L 2 (Ω, ω 0 ), where ω 0 = (-ρ 0 ) r , r ∈ Q + . Then in [START_REF]Estimates for weighted Bergman projections on pseudo-convex domains of finite type in C n[END_REF]Theorem 2.1] we proved that P ω 0 maps continuously the spaces L p Ω, δ β Ω , p ∈ ]1, +∞[, 0 < β + 1 ≤ p(r + 1), into themselves, δ Ω being the distance to the boundary of Ω. Here we consider a weight ω which is a non negative rational power of a C 2 function in Ω equivalent to the distance to the boundary and we prove that the Bergman projection P ω of the Hilbert space L 2 (Ω, ω) maps continuously the spaces L p Ω, δ β ∂ Ω , p ∈ ]1, +∞[, 0 < β + 1 ≤ r + 1 into themselves and the lipschitz spaces Λ α (Ω), 0 < α ≤ 1 /m, into themselves.

This result is obtained comparing the operators P ω 0 and P ω with the method described in [START_REF]On Estimates for Weighted Bergman Projections[END_REF]. To do it we need to have weighted L p Ω, δ γ Ω estimates with appropriate gains on the index p and on the power γ for solution of the ∂ -equation. This is done, with sharp estimates, for a general lineally convex domain of finite type using the method introduced in [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF], which overcomes the fact that the Diederich-Fornaess support function is only locally defined and that it is not possible do make a division with good estimates in non convex domains.

Our results extend the results (without weights) obtained for convex domains of finite type by A. Cumenge in [START_REF] Cumenge | Sharp estimates for ∂ on convex domains of finite type[END_REF] and [START_REF]Zero sets of functions in the Nevanlinna or the Nevanlinna-Djrbachian classes[END_REF] and B. Fisher in [START_REF] Fischer | L p estimates on convex domains of finite type[END_REF] (see also T. Hefer [START_REF] Hefer | Hôlder and L p estimates for ∂ on convex domains of finite type depending on Catlin's multitype[END_REF]).

NOTATIONS AND MAIN RESULTS

Throughout this paper we will use the following general notations:

• Ω is a smoothly bounded lineally convex domain of finite type m in C n (see [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF] for a precise definition). • ρ is a smooth defining function of Ω such that, for δ 0 sufficiently small, the do- mains Ω t = {ρ(z) < t}, -δ 0 ≤ t ≤ δ 0 , are all lineally convex of finite type m. • δ Ω denotes the distance to the boundary of Ω.

• For any real number γ > -1, we denote by L p Ω, δ γ Ω the L p -space on Ω for the measure δ γ Ω (z)dλ (z), λ being the Lebesgue measure. Our first results give sharp L q Ω, δ γ ′ Ω estimates for solutions of the ∂ -equation in Ω with data in L p Ω, δ γ Ω : Theorem 2.1. Let N be a positive large integer. let γ and γ ′ be two real numbers such that max {-1, γ -1 /m} ≤ γ ′ ≤ γ ≤ N -2. Then there exists a linear operator T , depending on ρ and N, such that, for any ∂ -closed (0, r)-form with coefficients in

L p Ω, δ γ Ω , p ∈ [1, +∞], T f is a solution of the equation ∂ (T f ) = f satisfying the following estimate: (1) If 1 ≤ p < m(γ ′ +n)+2
1-m(γ-γ ′ ) , T maps continuously the space of ∂ -closed forms with coefficients in L p Ω, δ γ Ω into the space of forms whose coefficients are in L q Ω, δ γ ′

Ω

with Note that, if γ ′ < γ, then m(γ ′ +n)+2 1-m(γ-γ ′ ) > m(γ + n)+ 2, and (3) is sharper than (1). Moreover, without weights, these estimates are known to be sharp (see [START_REF] Chen | Optimal L p estimates for the ∂ -equation on complex ellipsoids in C n[END_REF]). The two next propositions, which are immediate corollaries of the theorem, will be used in the last section: Proposition 2.1. There exists a constant ε 0 > 0 such that, for all large integer N and all -1 < γ ≤ N -2, there exists a linear operator T solving the ∂ -equation in Ω such that, for all p ∈ [1, +∞[, there exists a constant C N,p > 0 such that for all ∂ -closed (0, r)-form f , 1 ≤ r ≤ n -1, on Ω, we have

1 q = 1 p -1-m(γ-γ ′ ) m(γ ′ +n)+2 ; (2) If p = m(γ + n) + 2, T
Ω |T f | p δ γ Ω dλ ≤ C N,p Ω | f | p δ γ+ε 0 Ω dλ .
Proposition 2.2. There exist a linear operator T solving the ∂ -equation in Ω and a constant ε 0 > 0 such that, for all -1 < γ ≤ N -2 and all p ∈ [1, +∞[, there exists a constant C N,p > 0 such that for all ∂ -closed (0, r)-form f , 1 ≤ r ≤ n -1, we have Theorem 2.2. For all α > 0 there exists a constant C > 0 such that, for all smooth ∂closed (0, r)-form f , 1 ≤ r ≤ n -1, on Ω, there exists a solution of the equation ∂ u = f , continuous on Ω such that

Ω |u|δ α-1 Ω dλ ≤ C 1 α Ω f k δ α Ω dλ ,
where the norm f k was introduced in [BCD98] (see [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF] for details, the definition is recalled in section 3.2).

Note that the estimate given by Theorem 2.1 when p = q = 1 (and then γ ′ = γ -1 /m) is weaker than the one given above.

An immediate application of this last estimate is the characterization of the zero sets of the weighted Nevanlinna classes (called Nevanlinna-Djrbachian classes in [START_REF]Zero sets of functions in the Nevanlinna or the Nevanlinna-Djrbachian classes[END_REF]) obtained by A. Cumenge for convex domains:

Theorem 2.3. A divisor D in Ω can be defined by a holomorphic function satisfying

Ω ln + | f | δ α-1 Ω dλ < +∞, α > 0, if and only if it satisfy the generalized Blaschke condition D δ α+1 dλ 2n-2 < +∞.
As the proof of such result using Theorem 2.2 is very classical we will not give any detail on it in this paper.

The two propositions 2.1 and 2.2 will be used to generalize some estimates obtained for weighted Bergman projections of convex domains of finite type in [CDM14b]:

Theorem 2.4. Let D be smoothly bounded convex domain of finite type in C n . Let χ be any C 2 non negative function in D which is equivalent to the distance δ D to the boundary of D and let η be a strictly positive C 1 function on D. Let P ω be the (weighted) Bergman projection of the Hilbert space L 2 (D, ω) where ω = η χ r with r a non negative rational number.Then:

(1) For p ∈ ]1, +∞[ and -1 < β ≤ r, P ω maps continuously L p D, δ β D into itself. (2) For 0 < α ≤ 1 /m P ω maps continuously the Lipschitz space Λ α (D) into itself.

This theorem combined with Theorem 2.1 extends to weighted situations the Corollary 1.3 of [START_REF] Cumenge | Sharp estimates for ∂ on convex domains of finite type[END_REF] Corollary. Under the assumptions of Theorem 2.4, the solution of the equation

∂ u = f which is orthogonal to holomorphic functions in L 2 (D, ω) where f is a (0, 1)-form ∂ - closed with coefficients in L p (Ω, δ γ Ω ), -1 < γ, belongs to: (1) L q (D, δ γ ′ D ), with 1 q = 1 p -1-m(γ-γ ′ ) m(γ ′ +n)+2 and max {-1, γ -1 /m} < γ ′ ≤ γ, if γ ′ ≤ r, 1 ≤ p < m(γ ′ +n)+2 1-m(γ-γ ′ ) , and q > 1; (2) Λ α (D), with α = 1 m 1 -m(γ+n)+2 p , if p ∈ ]m(γ + n) + 2, +∞].

PROOFS OF THEOREMS 2.1 AND 2.2

First of all by standard regularization procedure, it suffices to prove theorems 2.1, and 2.2 for forms smooth in Ω.

To solve the ∂ -equation on a lineally convex domain of finite type, we use the method introduced in [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]. We now briefly recall the notations and main results from that work.

If f is a smooth (0, r)-form ∂ -closed, the following formula was established

f (z) = (-1) q+1 ∂ z Ω f (ζ ) ∧ K 1 N (z, ζ ) - Ω f (ζ ) ∧ P N (z, ζ ),
where K 1 N (resp. P N ) is the component of a kernel K N (formula (2.7) of [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]) of bi-degree (0, r) in z and (n, nr -1) in ζ (resp. (0, r) in z and (n, nr) in ζ ) constructed with the method of [AB82] using the Diederich-Fornaess support function constructed in [START_REF] Diederich | Lineally convex domains of finite type: holomorphic support functions[END_REF] (see also Theorem 2.2 of [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]) and the function G(ξ ) = 1 ξ N with a sufficiently large number N (instead of G(ξ ) = 1 ξ in formula (2.7) of [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]). Then, the form Ω f (ζ ) ∧ P N (z, ζ ) is ∂ -closed and the operator T solving the ∂ -equation in theorems 2.1 and 2.2 is defined on smooth forms by

T f (z) = Ω f (ζ ) ∧ K 1 N (z, ζ ) -∂ * N Ω f (ζ ) ∧ P N (z, ζ ) ,
where ∂ * N is the canonical solution of the ∂ -equation derived from the theory of the ∂ -Neumann problem on pseudoconvex domains of finite type. This formula is justified by the fact that, when the coefficients of f are in L 1 Ω, δ γ Ω (γ > -1) then, given a large integer s, if N is chosen sufficiently large, the coefficients of the form Ω f (ζ ) ∧ P N (z, ζ ) are in the Sobolev space L 2 s (Ω). More precisely, it is clear that lemmas 2.2 and 2.3 of [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF] remains true with weighted estimates depending on the choice of N: Lemma 3.1. For r ≥ 1 and γ ≤ N, all the z-derivatives of P N (z, ζ ) (-ρ(ζ )) -γ are uniformly bounded in Ω × Ω, and, for each positive integer s, there exists a constant C s,N,γ such that, if f is (0, r)-form with coefficients in L 1 (Ω, δ γ Ω ),

Ω f (ζ ) ∧ P N (z, ζ ) L 2 s (Ω) ≤ C s,N,γ f L 1 (Ω,δ γ Ω ) .
As Ω is assumed to be smooth and of finite type, the regularity results of the ∂ -Neumann problem ( [START_REF] Kohn | Non coercive boundary value problems[END_REF] and [START_REF] Catlin | Subelliptic estimates for ∂ -Neumann problem on pseudoconvex domains[END_REF]) Lemma 3.2. For r ≥ 1 and -1 < γ ≤ N, for each positive integer s, if f is a ∂ -closed (0, r)-form with coefficients in L 1 (Ω, δ γ Ω ) and g

= Ω f (ζ ) ∧ P N (z, ζ ), then ∂ * N (g) is a solution of the equation ∂ u = g satisfying ∂ * N (g) L 2 s (Ω) ≤ C s,N,γ f L 1 (Ω,δ γ ) .
Applying Sobolev lemma we immediately get:

Lemma 3.3. For r ≥ 1, p ∈ [1, +∞] and -1 < γ ≤ N, if f is a ∂ -closed (0, r)-form with coefficients in L 1 (Ω, δ γ Ω ) and g = Ω f (ζ ) ∧ P N (z, ζ ), then ∂ * N (g) is a solution of the equation ∂ u = g satisfying ∂ * N (g) C 1 (Ω) ≤ C f L 1 (Ω,δ γ ) .
Finally the proofs of our theorems are reduced to the proofs of good estimates for the operator T K defined by (3.1)

T K : f → Ω f (ζ ) ∧ K 1 N (z, ζ ).
To do it with some details we need to recall the anisotropic geometry of Ω and the basic estimates given in [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF].

For ζ close to ∂ Ω and ε ≤ ε 0 , ε 0 small, define, for all unitary vector v,

τ (ζ , v, ε) = sup {c such that |ρ (ζ + λ v) -ρ(ζ )| < ε, ∀λ ∈ C, |λ | < c} .
Let ζ and ε be fixed. Then, an orthonormal basis (v 1 , v 2 , . . . , v n ) is called (ζ , ε)-extremal (or ε-extremal, or simply extremal) if v 1 is the complex normal (to ρ) at ζ , and, for i > 1, v i belongs to the orthogonal space of the vector space generated by (v 1 , . . . , v i-1 ) and minimizes τ (ζ , v, ε) in that space. In association to an extremal basis, we denote

τ(ζ , v i , ε) = τ i (ζ , ε).
Then we defined polydiscs AP ε (ζ ) by

AP ε (ζ ) = z = ζ + n ∑ k=1 λ k v k such that |λ k | ≤ c 0 Aτ k (ζ , ε) ,
c 0 being sufficiently small, depending on Ω, P ε (ζ ) being the corresponding polydisc with A = 1 and we also define

d(ζ , z) = inf {ε such that z ∈ P ε (ζ )} .
The fundamental result here is that d is a pseudo-distance which means that, ∀α > 0, there exist constants c(α) and C(α) such that

(3.2) c(α)P ε (ζ ) ⊂ P αε (ζ ) ⊂ C(α)P ε (ζ ) and P c(α)ε (ζ ) ⊂ αP ε (ζ ) ⊂ P C(α)ε (ζ ).
For ζ close to ∂ Ω and ε > 0 small, the basic properties of this geometry are (see [START_REF] Conrad | Anisotrope optimale Pseudometriken für lineal konvex Gebeite von endlichem Typ (mit Anwendungen)[END_REF] and [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]):

(1) Let w = (w 1 , . . . , w n ) be an orthonormal system of coordinates centered at ζ . Then

∂ |α+β | ρ(ζ ) ∂ w α ∂ wβ ε ∏ i τ (ζ , w i , ε) α i +β i , |α + β | ≥ 1.
(2) Let ν be a unit vector. Let

a ν αβ (ζ ) = ∂ α+β ρ ∂ λ α ∂ λ β (ζ + λ ν) |λ =0 . Then ∑ 1≤|α+β |≤2m a ν αβ (ζ ) τ(ζ , ν, ε) α+β ≃ ε. (3) If (v 1 , . . . , v n ) is a (ζ , ε)-extremal basis and γ = ∑ n 1 a j v j = 0, then 1 τ(ζ , γ, ε) ≃ n ∑ j=1 a j τ j (ζ , ε) . (4) If v is a unit vector then: (a) z = ζ + λ v ∈ P ε (ζ ) implies |λ | τ(ζ , v, ε), (b) z = ζ + λ v with |λ | ≤ τ(ζ , v, ε) implies z ∈ CP ε (ζ ).
(5) If ν is the unit complex normal, then τ(ζ , v, ε) = ε and if v is any unit vector and λ ≥ 1,

(3.3) λ 1/m τ j (ζ , v, ε) τ j (ζ , v, λ ε) λ τ j (ζ , v, ε),
where m is the type of Ω.

Lemma 3.4. For z close to ∂ Ω, ε small and ζ ∈ P ε (z), in the coordinate system (ζ i ) associated to the (z, ε)-extremal basis, we have:

(1) ∂ ρ ∂ ζ i (ζ ) ε τ i (z,ε) (property (1) of the geometry recalled above); (2) τ i (ζ , ε) ≃ τ i (z, ε) if c 0 is chosen sufficiently small.
We now recall the detailed expression of K 1 N ([CDM14a] sections 2.2 and 2.3):

K 1 N (z, ζ ) = n-1 ∑ k=n-r C ′ k ρ(ζ ) k+N s ∧ ∂ ζ Q n-r ∧ (∂ zQ) k+r-n ∧ (∂ zs) n-k-1 |z -ζ | 2(n-k) 1 K 0 S(z, ζ ) + ρ(ζ ) k+N , where 
s(z, ζ ) = n ∑ i=1 ζ i -z i d (ζ i -z i )
and

Q(z, ζ ) = 1 K 0 ρ(ζ ) n ∑ i=1 Q i (z, ζ )d (ζ i -z i ) with S(z, ζ ) = χ(z, ζ )S 0 (z, ζ ) -(1 -χ(z, ζ ))|z -ζ | 2 = n ∑ i=1 Q i (z, ζ ) (z i -ζ i ) ,
S 0 being the holomorphic support function of Diederich-Fornaess (see [START_REF] Diederich | Lineally convex domains of finite type: holomorphic support functions[END_REF] or Theorem 2.2 of [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]) and χ a truncating function which is equal to 1 when both |z -ζ | and δ Ω (ζ ) are small and 0 if one of these expressions is large (see the beginning of Section 2.2 of [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF] for a precise definition). Recall that K 0 is chosen so that

ℜe ρ(ζ ) + 1 K 0 S(z, ζ ) < ρ(ζ ) 2 , that is (3.4) ρ(ζ ) + 1 K 0 S(z, ζ ) |ρ(ζ )| .
The following estimates of the expressions appearing in K 1 N are basic (see [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]): Lemma 3.5. For ζ ∈ P 2ε (z) \ P ε (z), we have:

ρ(ζ ) + 1 K 0 S(z, ζ ) ε, (z, ζ ) ∈ Ω × Ω.
Lemma 3.6. For z close to Ω, ε small and ζ ∈ P ε (z), in the coordinate system (ζ i ) associated to the (z, ε)-extremal basis, we have:

(1)

|Q i (z, ζ )| + |Q i (ζ , z)| ε τ i (z,ε) (see [DF06]); (2) 
∂ Q i (z,ζ ) ∂ ζ j ε τ i (z,ε)τ j (z,ε) (see [DF06]); (3) ∂ 2 Q i (z,ζ ) ∂ ζ j ∂ z k + ∂ 2 Q i (z,ζ ) ∂ ζ j ∂ z k ε τ i (z,ζ )τ j (z,ζ )τ k (z,ζ ) (see [DF06]).
To simplify notations, we will now do the proofs of the theorems only for (0, 1)-forms, the general case of (0, r)-forms being identical except for complications in the notations.

The preceding lemmas and the properties of the geometry easily give the following estimates of the kernel K 1 N (for (0, 1)-forms): Lemma 3.7. For ε small enough and z sufficiently close to the boundary we have:

If ζ ∈ P ε (z), K 1 N (z, ζ ) ρ(ζ ) N-1 (|ρ(ζ )| + ε)ε n-1 ∏ n-1 i=1 τ i (z, ε) 1 K 0 S(z, ζ ) + ρ(ζ ) N+n-1 1 |z -ζ | .
In particular:

Lemma 3.8. For ε small enough and z sufficiently close to the boundary:

(1) If ε ≤ δ ∂ Ω (z), for ζ ∈ P ε (z), K 1 N (z, ζ ) 1 ∏ n-1 i=1 τ i (z, ε) 1 |z -ζ | . (2) If ζ ∈ P 2ε (z) \ P ε (z) or z ∈ P 2ε (ζ ) \ P ε (ζ ) and k ≤ N + n -1, K 1 N (z, ζ ) |ρ(ζ )| k ε k 1 ∏ n-1 i=1 τ i 1 |z -ζ | , and 
∇ z K 1 N (z, ζ ) |ρ(ζ )| k ε k+1 1 ∏ n-1 i=1 τ i 1 |z -ζ | ,
where τ i is either τ i (z, ε) or τ i (ζ , ε).

An elementary calculation shows that:

Lemma 3.9. For z ∈ Ω, δ small and 0 ≤ µ < 1, (3.5)

P(z,δ ) dλ (ζ ) |z -ζ | 1+µ τ n (z, δ ) 1-µ n-1 ∏ j=1 τ 2 j (z, δ ),
and, for α > 0, (3.6)

P(ζ ,δ ) δ α-1 Ω (z) |z -ζ | dλ (z) δ α-1 α τ n (ζ , δ ) n-1 ∏ j=1 τ 2 j (ζ , δ ).
3.1. Proof of Theorem 2.1.

Proof of (1) of Theorem 2.1. It is based on a version of a classical operator estimate which can be found, for example, in Appendix B of the book of M. Range [START_REF] Range | Holomorphic Functions and Integrals Representations in Several Complex Variables[END_REF]:

Lemma 3.10. Let Ω be a smoothly bounded domain in C n . Let µ and ν be two positive measures on Ω. Let K be a measurable function on Ω × Ω. Assume that there exists a positive number ε 0 > 0, a positive constant C and a real number s ≥ 1 such that:

(1)

Ω |K(z, ζ )| s δ -ε Ω (ζ )dµ(ζ ) ≤ Cδ -ε Ω (z), (2) Ω |K(z, ζ )| s δ -ε Ω (z)dν(z) ≤ Cδ -ε Ω (ζ )
, for all ε ≤ ε 0 , where δ Ω denotes the distance to the boundary of Ω. Then the linear operator T defined by

T f (z) = Ω K(z, ζ ) f (ζ )dµ(ζ ) is bounded from L p (Ω, µ) to L q (Ω, ν) for all 1 ≤ p, q < ∞ such that 1 q = 1 p + 1 s -1.
Short proof. This is exactly the proof given by M. Range in his book: let ε be sufficiently small. Writing

K f = K s f p δ ε p-1 p q Ω (ζ ) 1/q K 1-s q δ -ε p-1 p Ω f 1-p q ,
Hölder's inequality (with 1 q + p-1 p + s-1 s = 1) gives

|T f (z)| ≤ Ω |K(z, ζ )| s δ ε p-1 p q Ω (ζ ) | f | p (ζ )dµ(ζ ) 1/q Ω |K(z, ζ )| s δ -ε Ω (ζ ) p-1 p Ω | f (ζ )| p dµ(ζ ) s-1 s .
The first hypothesis of the lemma gives (for ε ≤ ε 0 )

|T f (z)| q ≤ C Ω |K(z, ζ )| s δ ε p-1 p q Ω (ζ )δ -ε p-1 p q Ω (z) | f | p (ζ )dµ(ζ ) Ω | f (ζ )| p dµ(ζ ) q s-1 s .
Integration with respect to the measure dν(z) gives (using the second hypothesis of the lemma with ε p-1 p q ≤ ε 0 )

Ω |T f (z)| q dν(z) ≤ C 2 Ω | f | p dµ q/p .
Applying this lemma to the operator T K (formula (3.1)) with µ = δ γ Ω dλ and ν = δ γ ′ Ω dλ , the required estimates on K 1 N are summarized in the following Lemma:

Lemma 3.11.

(1) Let µ 0 = 1 m(γ+n)+1 . Then for -1 < γ < N -1 and ε > 0 sufficiently small,

Ω K 1 N (z, ζ ) 1+µ 0 δ Ω (ζ ) -µ 0 γ-ε dλ (ζ ) δ Ω (z) -ε .
(2) Let µ 0 = 1-m(γ-γ ′ ) m(γ+n)+1 . Then for -1 < γ < N -1 and ε > 0 sufficiently small,

Ω K 1 N (z, ζ ) 1+µ 0 δ Ω (z) γ ′ -ε δ Ω (ζ ) (1+µ 0 )γ dλ (z) δ Ω (ζ ) -ε .
We now prove this last lemma.

Proof of (1) of Lemma 3.11. K 1 N being bounded, uniformly in (z, ζ ), outside P ε 0 (z), it is enough to prove that

P ε 0 (z) K 1 N (z, ζ ) 1+µ 0 δ -γ µ 0 -ε Ω (ζ )dλ (ζ ) δ -ε Ω (z)
for ε 0 and ε sufficiently small. As this is trivial if z is far from the boundary, we assume that z is sufficiently close to ∂ Ω.

Let A(z, ζ ) = K 1 N (z, ζ ) |z -ζ |. If ζ ∈ P (z, δ Ω (z)) then δ Ω (z) ≃ δ Ω (ζ ) and, by (2) of Lemma 3.8, (3.7) |A(z, ζ )| 1+µ 0 δ -γ µ 0 -ε Ω (ζ ) δ Ω (z) -µ 0 (γ+n)-ε n-1 ∏ j=1 τ 2 j (z, δ Ω (z)) .
Thus, by (3.5), we get

P(z,δ Ω (z)) K 1 N (z, ζ ) 1+µ 0 δ -γ µ 0 -ε Ω (ζ )dλ (ζ ) δ Ω (z) -µ 0 (γ+n)-ε+ 1-µ 0 m = δ Ω (z) -ε . Now, let ζ ∈ P 2 i δ Ω (z) (z) \ P 2 (i+1)
δ Ω (z) (z), if N is sufficiently large (N ≥ γ + n + 1), by (3) of Lemma 3.8, we have

|A(z, ζ )| 1+µ 0 δ -γ µ 0 -ε Ω (ζ ) 2 i δ Ω (z) -µ 0 (γ+n)-ε n-1 ∏ j=1 τ 2 j z, 2 i δ Ω (z)
which gives ((3.5))

P i (z) K 1 N (z, ζ ) 1+µ 0 δ -γ µ 0 -ε Ω (ζ )dλ (ζ ) 2 i δ Ω (z) -µ 0 (γ+n)-ε+ 1-µ 0 m = δ Ω (z) -ε 2 i -ε , finishing the proof.
Proof of (2) of Lemma 3.11. As in the preceding proof we have to show that

P ε 0 (ζ ) K 1 N (z, ζ ) δ Ω (ζ ) γ 1+µ 0 δ Ω (z) γ ′ -ε dλ (z) δ Ω (ζ ) -ε .
If z ∈ P (ζ , δ Ω (z)) then δ Ω (ζ ) ≃ δ Ω (z), the estimate (3.7), which is still valid replacing τ j (z, δ Ω (z)) by τ j (ζ , δ Ω (ζ )) (Lemma 3.4), and (3.5) (interchanging the roles of z and ζ ), we immediately get

P(ζ ,δ Ω (ζ )) K 1 N (z, ζ ) δ Ω (ζ ) γ 1+µ 0 δ Ω (z) γ ′ -ε dλ (z) δ Ω (ζ ) -µ 0 (γ+n)-(γ-γ ′ )+ 1-µ 0 m -ε = δ Ω (ζ ) -ε . Assume now z ∈ P i (ζ ) = P 2 i δ Ω (ζ ) (ζ ) \ P 2 (i+1) δ Ω (ζ ) (ζ ).
The proofs of (2) and (3) of Theorem 2.1 are complete.

The proof of Theorem 2.1 is now complete.

3.2. Proof of Theorem 2.2.

First we briefly recall the definition of the anisotropic norm . k given in [START_REF] Charpentier | Estimates for Solutions of the ∂ -Equation and Application to the Characterization of the Zero Varieties of the Functions of the Nevanlinna Class for Lineally Convex Domains of Finite Type[END_REF]: for z close to the boundary,

f (z) k = sup v i =1 f ; v 1 , . . . , v q (z) ∑ q i=1 k (z, v i ) , where k (z, v) = δ Ω (z)
τ(z,v,δ Ω (z)) . The estimate needed for the operator (3.1) to prove the theorem is Lemma 3.13. For α > 0, we have

Ω δ α-1 Ω (z) K 1 N (z, ζ ) ∧ f (ζ ) dλ (z) 1 α δ α Ω (ζ ) f (ζ ) k .
Proof. As before, we consider only the case of (0, 1)-forms f and we assume ζ sufficiently close to the boundary.

Denote Q 0 (ζ ) = P (ζ , δ Ω (ζ )) and Q i (ζ ) = P ζ , 2 i δ Ω (ζ ) \P ζ , 2 i-1 δ Ω (ζ ) , i = 1, 2, . .

. and let us prove

Q i δ α-1 Ω (z) K 1 N (z, ζ ) ∧ f (ζ ) dλ (z) 1 2 i 1 α δ α Ω (ζ ) f (ζ ) k .
Expressing the forms K 1 N (z, ζ ) and f (ζ )in the coordinate system (ζ i ) i associated to a ζ , 2 i δ Ω (ζ ) -extremal basis, we have to show that, for i = 0, 1, . . . and 1 ≤ l ≤ n,

Q i (ζ ) δ α-1 Ω (z) K 1 N (z, ζ ) ∧ dζ l dλ (z) 1 2 i 1 α δ α Ω (ζ ) dζ l k .
First, we remark that K 1 N (z, ζ ) ∧ dζ l is a sum of expressions of the form W D where

D(ζ , z) = |z -ζ | 2 1 K 0 S(z, ζ ) + ρ(ζ ) n+N-1
, and,

W = ζ m -z m ρ N (ζ ) n-1 ∏ k=1 ∂ Q i k (z, ζ ) ∂ ζ j k n i=1 dζ i ∧ dζ i or W = ζ m -z m ρ N-1 (ζ ) ∂ ρ(ζ ) ∂ ζ j k 0 Q i k 0 (ζ , z) ∏ 1≤k≤n-1 k =k 0 ∂ Q i k (z, ζ ) ∂ ζ j k n i=1 dζ i ∧ dζ i ,
with i 1,...,i n-1 ,m = { j 1 , . . . , j n-1 , l} = {1, . . . , n}. Then, using Lemma 3.6 (and the properties of the geometry) we obtain the following estimates:

For z ∈ Q 0 , K 1 N (z, ζ ) ∧ dζ l is bounded by a sum of expressions of the form 1

∏ n j=1 τ 2 j (ζ , δ Ω (ζ )) τ m (ζ , δ Ω (ζ )) τ l (ζ , δ Ω (ζ )) 1 |z -ζ | .
and, by Theorem 4.1,

Id -P ω 0 • A P ω (u) ∧ ∂ ϕ ∈ L 2+(k+1)ε (D, δ r D ) .
As ϕ is continuous and strictly positive we get P ω ( f ) ∈ L 2+(k+1)ε (D, δ r D ). Thus, P ω maps L p (D, δ r D ) into it self for p ∈ [2, +∞[. The same result for p ∈ ]1, 2] follows because P ω is self-adjoint.

To prove that P ω maps L p D, δ β D for -1 < β ≤ r, we use a similar induction argument using Proposition 2.1 instead of Proposition 2.2:

For A we choose now the operator T of Proposition 2.1 with γ = r, and 0 < ε ≤ ε 0 , ε 0 as in Proposition 2.1 such that there exists an integer L such that β = r -Lε. For Remark.

(1) The restriction -1 < β ≤ r in 2.4 (instead of 0 < β + 1 ≤ p(r + 1) in [START_REF]Estimates for weighted Bergman projections on pseudo-convex domains of finite type in C n[END_REF]) is due to the method because if f ∈ L p D, δ β D with β > r, a priori P ω ( f ) does not exists.

(2) The restriction r ∈ Q + is not natural and it is very probable that Theorem 2.4 is true with r ∈ R + . To get that with our method we should first prove the result of Theorem 4.1 for r a non negative real number. Looking at the proof in [START_REF]Estimates for weighted Bergman projections on pseudo-convex domains of finite type in C n[END_REF], this should be done proving point-wise estimates of the Bergman kernel of a domain D of the form D = (z, w) ∈ C n+m such that ρ 0 (z) + ∑ |w i | 2q i < 0 , with q i large real numbers such that ∑ 1 /q i = r. The difficulty here being that D is no more C ∞ -smooth and thus the machinery induced by the finite type cannot be used.

  maps continuously the space of ∂ -closed forms with coefficients in L p Ω, δ γ Ω into the space of forms whose coefficients are in BMO(Ω); (3) If p ∈ ]m(γ + n) + 2, +∞], then T maps continuously the space of ∂ -closed forms with coefficients in L p Ω, δ γ Ω into the space of forms whose coefficients are in the lipschitz space Λ α (Ω) with α = 1 m 1 -m(γ+n)+2 p .

f.

  ∈ L p D, δ β D , assume P ω ( f ) ∈ L 2 D, δ r-lε D , 0 ≤ l < L. Then, Proposition 2.1 and Theorem 4.1 imply Id -P ω 0 • A P ω (u) ∧ ∂ ϕ ∈ L p D, δ r-(l+1)ε D which gives P ω ( f ) ∈ L p D, δ r-(l+1)ε D. By induction this gives P ω ( f ) ∈ L p D, δ β D , concluding the proof of (1) of the theorem.The proof of (2) of the theorem is now easily done: assumeu ∈ Λ α (D), 0 < α ≤ 1 /m. Let p ≤ +∞ such that α = 1 m 1 -m(r+n)+2p By part (1), P ω (u) ∈ L p (D, δ r D ), by (3) of Theorem 2.1, A P ω (u) ∧ ∂ ϕ ∈ Λ α (D) (A being the operator T ), and, by Theorem 4.1, Id -P ω 0 • A P ω (u) ∧ ∂ ϕ ∈ Λ α (D) concluding the proof.

If γ ′ -ε ≥ 0, using δ Ω (z) 2 i δ Ω (ζ ), (3) of Lemma 3.8 and (3.5) give

, finishing the proof in that case. If -1 < γ ′ -ε≤ 0, as

the proof is done as before using (3) of Lemma 3.8.

The proof of (1) of Theorem 2.1 is now complete.

Proof of (2) and (3) of Theorem 2.1. By the Hardy-Littlewood lemma we have to prove the two following inequalities:

δ Ω (z) α-1 . Then, using Hölder's inequality these two estimates are consequences of the following lemma:

Then

Proof of the lemma. Denote p ′ = 1 + η so that p ′ /p = η and 1 /p = η 1+η . By the basic estimates of K 1 N (and the fact thatγ p ′ p > -1) it suffices to estimate the above integral when the domain of integration is reduced to P(z, ε 0 ).

Assume first that ζ ∈ P(z, 2 i δ Ω (z)) \ P(z, 2 i-1 δ Ω (z)). Then, by (3) of Lemma 3.8, we have

and by (3.5), we get

. Then, by (3) of Lemma 3.8, we have

, and, by (3.5), we have

Thus, as δ Ω (z) ≃ δ Ω (ζ ), we get

finishing the proof of the lemma.

This gives (using (3.6))

the penultimate inequality coming from property (3.3) of the geometry. The lemma is proved and so is Theorem 2.2.

PROOF OF THEOREM 2.4

We use the method developed in [START_REF]On Estimates for Weighted Bergman Projections[END_REF] for the proofs of theorems 2.1 and 2.3 of that paper.

In [START_REF]Estimates for weighted Bergman projections on pseudo-convex domains of finite type in C n[END_REF] we prove, in particular, the following result: let g be a gauge of D and ρ 0 = g 4 e 1-1/g -1 then: Theorem 4.1 (Theorem 2.1 of [START_REF]Estimates for weighted Bergman projections on pseudo-convex domains of finite type in C n[END_REF]). Let ω 0 = (-ρ 0 ) r , r being a non negative ratio- nal number, and let P ω 0 be the Bergman projection of the Hilbert space L 2 (Ω, ω 0 ). Then, for p ∈ ]1, +∞[ and 1 ≤ β ≤ p (r + 1) -1, P ω 0 maps continuously the space L p D, δ β D into itself and, for α > 0, P ω 0 maps continuously the lipschitz space Λ α (D) into itself.

If ω is as in Theorem 2.4 then there exists a strictly positive C 1 function in D, ϕ, such that ω = ϕω 0 . Then we compare the regularity of P ω 0 and P ω using the following formula

where A is any operator solving the ∂ -equation for ∂ -closed forms in L 2 (D, ω).

We first show that P ω maps continuously L p (Ω, δ r Ω ) into itself. Let f ∈ L p (D, δ r Ω ), p ∈ [2, +∞[. For A we choose the operator T of Proposition 2.2 with γ = r, and we choose 0 < ε ≤ ε 0 , ε 0 as in Proposition 2.2, such that there exists an integer N such that p = 2 + Nε. Let us prove, by induction, that P ω ( f ) ∈ L 2+kε (D, δ r D ) for k = 0, . . . , N. Assume this is true for 0 ≤ k < N. Then by Proposition 2.2,