Generic sections of essentially isolated determinantal singularities - Archive ouverte HAL
Article Dans Une Revue International Journal of Mathematics Année : 2017

Generic sections of essentially isolated determinantal singularities

Résumé

We study the essentially isolated determinantal singularities (EIDS), defined by Ebeling and Gusein-Zade [S. M. Gusein-Zade and W. Ebeling, On the indices of 1-forms on determinantal singularities, Tr. Mat. Inst. Steklova 267 (2009) 119-131], as a generalization of isolated singularity. We prove in dimension 3, a minimality theorem for the Milnor number of a generic hyperplane section of an EIDS, generalizing the previous results by Snoussi in dimension 2. We define strongly generic hyperplane sections of an EIDS and show that they are still EIDS. Using strongly general hyperplanes, we extend a result of Le concerning the constancy of the Milnor number.

Dates et versions

hal-01310962 , version 1 (03-05-2016)

Identifiants

Citer

Jean-Paul Brasselet, Nancy Chachapoyas, Maria A. S. Ruas. Generic sections of essentially isolated determinantal singularities. International Journal of Mathematics, 2017, 28 (11), pp.1750083. ⟨10.1142/S0129167X17500835⟩. ⟨hal-01310962⟩
128 Consultations
0 Téléchargements

Altmetric

Partager

More