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Analysis in temporal regime of dispersive invisible structures designed from
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B. Gralak,∗ G. Arismendi, B. Avril, A. Diatta, and S. Guenneau
CNRS, Aix-Marseille Université, Centrale Marseille, Institut Fresnel, 13397 Marseille, France

(Dated: June 13, 2021)

A simple invisible structure made of two anisotropic homogeneous layers is analyzed theoretically
in temporal regime. The frequency dispersion is introduced and analytic expression of the transient
part of the field is derived for large times when the structure is illuminated by a causal excitation.
This expression shows that the limiting amplitude principle applies with transient fields decaying
as the power −3/4 of the time. The quality of the cloak is then reduced at short times and remains
preserved at large times. The one-dimensional theoretical analysis is supplemented with full-wave
numerical simulations in two-dimensional situations which confirm the effect of dispersion.

PACS numbers: 78.20.Bh, 41.20.Jb, 78.67.Pt, 42.25.Bs

In 2006, Pendry et al. [1] and Leonhardt [2] de-
signed an invisibility cloak for electromagnetic radiation
by blowing up a hole in optical space and hiding an ob-
ject inside it. These proposals have been validated by
microwave experiments [3]. However, these metamateri-
als are subject to an inherent frequency dispersion which
may affect the quality of the optical function designed in
time harmonic regime. Hence, there is a renewed interest
in the propagation in dispersive media, originally inves-
tigated by Brillouin [4]. The effect of dispersion has been
addressed in the cases of the flat lens [5–9] and cylindrical
invisibility cloaks [10–12].

In the present letter, a regularized version of Pendry’s
transform [13], is implemented for the design of the sim-
plest possible system of invisible layers. With this trans-
form, infinities are avoided in the material parameters of
the cloak which consists of two homogeneous anisotropic
slabs. Frequency dispersion is introduced, which is a
required model for metamaterials whenever the permit-
tivity (or permeability) is lower than that of vacuum
(i.e. when the phase velocity is greater than c or neg-
ative). The effect of dispersion is analyzed with electro-
magnetic sources with sinusoidal time dependence that
are switched on at an initial time. Such an illumination
has been originally used by Brillouin [4] in homogeneous
dispersive media, and more recently in the case of the
negative index flat lens [5–7].

The originality of our approach is to consider a sim-
ple invibility system made of two layers allowing ana-
lytic calculations. Indeed, the invisible nature of the sys-
tem leads to a simple expression of the transmitted field,
since there is no reflexion at the interfaces. Also, the ab-
sence of branch cut in the integral expression of the time
dependent field in multilayered structures is exploited.
The method is presented in detail and the derivation of
the transient regime shows that the electromagnetic field
includes contributions generated by the singular values
of the permittivity and permeability (zeros and infini-
ties). An explicit expression of the transient fields is ob-
tained for long times, which is similar to the one obtained

by Brillouin [4] for wavefronts (forerunners). Next, the
limiting amplitude principle is considered to show that
cloaking can be addressed in temporal regime after the
transient regime. These results are supplemented with
numerical simulations in the case of a two-dimensional
cylindrical layered cloak, where the presence of additional
modes is confirmed in the transient regime.

We start with the definition of a system of invisible
layers. Let x = (x1, x2, x3) be a Cartesian coordinate
system in the space R3. At the oscillating frequency ω,
the electric field amplitude E(x) is governed in free space
by the Helmholtz equation

−∇×∇×E(x) + ω2µ0ε0 E(x) = 0 , (1)

where ε0 and µ0 are the vacuum permittivity and perme-
ability. The invisible layered structure is then deduced
using the coordinate transform x→ x′ (see Fig. 1):

x′1 =
a

α
x1 0 ≤ x1 ≤ α ,

x′1 = a+
b− a
b− α

(x1 − α) α ≤ x1 ≤ b ,
x′1 = x1 x1 ≤ 0 , b ≤ x1 ,

(2)

where 0 < a < α < b, x′2 = x2 and x′3 = x3 being
invariant. The effect of this geometric transform is to
map the layer 0 ≤ x1 ≤ α onto the layer 0 ≤ x′1 ≤ a
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FIG. 1. Coordinate transform for invisible layers. Left:
change of coordinate x1 → x′1. Center: free space before
coordinate transform. Right: invisible set of homogeneous
anisotropic layers after coordinate transform.
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(denominated as layer A), and the layer α ≤ x1 ≤ b onto
a ≤ x′1 ≤ b (denominated as layer B). Note that such a
geometric transform, adapted from [14], regularizes the
original transform for an invisibility cloak proposed in [1].
The corresponding transform is applied to the Helmholtz
equation (1):

−∇′× 1

µ(x′1)
∇′×E′(x′)+ε(x′1)ω2µ0ε0 E

′(x′) = 0 , (3)

where the relative permittivity and permeability are both
equal to the tensor ν ≡ ε = µ (as in [8]) taking constant
values in each layer: ε(x′1) = µ(x′1) = ν(x′1) = νa if 0 ≤ x′1 ≤ a ,

ε(x′1) = µ(x′1) = ν(x′1) = νb if a ≤ x′1 ≤ b ,
ε(x′1) = µ(x′1) = ν(x′1) = 1 if x′1 ≤ 0 , b ≤ x′1 .

(4)
The constant values in layers A and B are given by

νa,b =

ν
⊥
a,b 0 0

0 ν
‖
a,b 0

0 0 ν
‖
a,b

 , (5)

where the components parallel and perpendicular to the
plane interfaces, respectively denoted by the superscripts
‖ and ⊥, are

ν⊥a = 1/ν‖a = a/α , ν⊥b = 1/ν
‖
b = (b−a)/(b−α) . (6)

The transformed Helmholtz equation (3) can be reduced
to a set of two independent scalar equations using the
symmetries of the geometry, namely the invariances un-
der the translations and rotations in the plane (x′2, x

′
3).

After a Fourier decomposition from (x′2, x
′
3) to (k′2, k

′
3),

equation (3) becomes

∂

∂x

1

ν‖(x)

∂U

∂x
(x)− k2

ν⊥(x)
U(x)+

ω2

c2
ν‖(x)U(x) = 0 , (7)

for U(x), the (Fourier transformed) electric field compo-
nent along direction (−k3, k2). Here, x denotes x′1, k2

equals k22 + k23 (with k2 = k′2 and k3 = k′3), c = 1/
√
ε0µ0

is the light velocity in vacuum, and functions ν‖(x) and
ν⊥(x) are the components of ν(x) respectively parallel
and perpendicular to the plane interfaces. Notice that,
since ε = µ, the second scalar equation derived from the
Helmholtz equation is fully identical to (7), except that
U(x) should be the (Fourier transformed) magnetic field
component along direction (−k′3, k′2) [or (−k3, k2)].

In this letter, the system is analyzed using a transfer
matrix formalism [15]. Equation (7) is formulated as

∂

∂x
F (x) = −iM(x)F (x) , (8)

where

F =

[
U

i

ν‖
∂U

∂x

]
, M =

 0 ν‖

ω2

c2
ν‖ − k2

ν⊥
0

 . (9)

The transfer matrices Ta and Tb, associated with layers
A and B, defined by F (a) = TaF (0) and F (b) = TbF (a),
are given by

Ta = exp[−iM0α] , Tb = exp[−iM0(b− α)] , (10)

the matrix M0 being the value taken by the matrix M(x)
in vacuum, i.e. when ν‖(x) = ν⊥(x) = 1. This implies
that the transfer matrix TbTa = exp[−iM0b], associated
with layers A and B, is exactly the same as the one of a
vacuum layer of thickness b. Hence the system of layers
A and B is invisible to any incident field.

Nevertheless, as pointed out by V. Veselago when he
introduced negative index materials [16], causality prin-
ciple and passivity require that permittivity and perme-
ability be frequency dispersive when they take relative
value below unity [17, 18]. According to this requirement,
frequency dispersion is introduced in the components of
νa and νb with value below unity, assuming the simple
Drude-Lorentz model [18]:

ν⊥a (ω) = 1− Ω2
a

ω2 − ω2
a

, Ω2
a =

α− a
α

(ω2
0 − ω2

a) ,

ν
‖
b (ω) = 1− Ω2

b

ω2 − ω2
b

, Ω2
b =

α− a
b− a

(ω2
0 − ω2

b ) .

(11)

Under this assumption, the functions ν⊥a (ω) and ν
‖
b (ω)

take the appropriate values for the invisibility at ω = ω0.
Notice that the resonance frequencies ωa and ωb must
be smaller than the operating frequency ω0 in order to
ensure that the oscillator strengths Ω2

a and Ω2
b are pos-

itive. For frequencies different from ω0, the system has
no reason to be invisible.

The effect of dispersion is analyzed using illumination
with sinusoidal time-dependence oscillating at ω0 and
switched on at an initial time. Such a “causal” incident
field, originally used by L. Brillouin [4] and more recently
in [5–7], is assumed to be in normal incidence for simplic-
ity. Hence the following current source is considered:

S(x, t) = S0 δ(x− x0)θ(t) sin[ω0t] , (12)

where δ is the Dirac “function”, θ(t) the step function
(equal to 0 if t < 0 and 1 otherwise), and S0 the constant
component of the source parallel to the field component
U(x). In the domain of complex frequencies z = ω + iη,
the electric field radiated in vacuum by this source is

U0(x, z) =
S0µ0c

2

ω0

z2 − ω2
0

exp
[
iz|x− x0|/c

]
. (13)

The positive imaginary part η has been added to the
frequency ω to ensure a correct definition of the Fourier
transform with respect to time of the source (12). The
time dependent incident field radiated in vacuum is, with
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FIG. 2. Excitation of the system. Top: Causal current source
with sinusoidal time dependence. Bottom: Field radiated by
the causal source and illuminating the invisible layers.

z = ω + iη,

E0(x, t) =
1

2π

∫
R
dω exp[−izt]U0(x, z)

= −S0µ0c

2
θ(t− |x− x0|/c)

× sin[ω0(t− |x− x0|/c)] .

(14)

The next steps are to compute the time dependent field
transmitted through the system, and to analyze the be-
havior of the field when the time t tends to infinity. Ac-
cording to the limiting amplitude principle, the solution
should have an asymptotic behavior corresponding to the
time harmonic frame oscillating at the frequency ω0. Let
T (ω) be the transmission coefficient of the system made
of layers A and B. Then, the time dependent electric field
is, for x > b,

ET (x, t) =
1

2π

∫
R
dω exp[−iz(t−{x−b}/c)]U0(0, z)T (z) .

(15)
At this stage, it is stressed that, for a fixed incident an-
gle, the transmission coefficient T (z) does not contain
any square root of the permittivities and permeabilities
of the layered system and of the complex frequency z.
This remarkable property, which remains true for any
multilayered structure, underpins the present technique
since it removes all branch cuts in the evaluation of the
integral of the transmitted field. This is an advantage
in comparison with the method used by Brillouin for the
analysis of wave propagation in dispersive media [4]. The
expression of the transmitted field is thus given by the
sum of the contributions from all the poles in the function
f(z) under the integral in (15).

The poles of the factor U0(0, z) at z = ±ω0 [see Eq.
(13)] provide the contribution at the operating frequency
ω0,

E
(0)
T (x, t) = −S0µ0c

2
θ(t− {x− x0 + α− a}/c)

× sin[ω0(t− {x− x0}/c)] ,
(16)

corresponding to the time harmonic solution for which
the system is invisible. This contribution vanishes for
times such that ct is smaller than x − x0 + α − a = x +
|x0|+α−a > x+|x0|, instead of x−x0 = x+|x0|. This is
not suprising since the dispersion has not been taken into
account in both parallel permittivity and permeability

ε
‖
a = µ

‖
a = ν

‖
a > 1 of layer A: hence the corresponding

delay (α− a)/c is retrieved in the above expression.
The poles of the transmission coefficient are deter-

mined from the expression

T (z) = exp[iz{α+ (b− a)ν
‖
b (z)}/c] . (17)

Next, replacing ν
‖
b (z) by the dispersive model (11) yields

T (z) = exp[iz(α+ b− a)/c] exp

[
−i z(b− a)

c

Ω2
b

z2 − ω2
b

]
.

(18)
Thus the transmission coefficient has two isolated sin-
gularities at z = ±ωb. It is shown in the supplemental
material that the residues associated with these singular-
ities exist, and can be estimated for large values of the
relative time

τ = t− x− x0 + α− a
c

� β =
(b− a)Ω2

b

2ω2
b c

. (19)

The resulting contribution E
(b)
T in the transmitted field

is

E
(b)
T (x, t) ≈

τ/β→∞
− 2S0µ0πc

ω0ωb
ω2
b − ω2

0

θ(τ)
1√
τ/β

×J1(2ωbβ
√
τ/β) cos[ωb(τ + β/2)

]
,

(20)
where J1 is the Bessel function (see the supplemental
material). It is stressed that a similar behavior, given
by the Bessel function J1 with argument proportional to√
τ , has been highlighted by Brillouin [4] but for short

relative time τ (forerunners). In both cases, J1 is a con-
sequence of the dispersion given by the Drude-Lorentz
model (11), but for different frequency ranges: near the
resonance frequencies ±ωb in the present case, and for
the high frequencies in the case considered by Brillouin
(forerunners). Forerunners at τ → 0 can be also charac-
terized here.

The asymptotic form J1(u) ≈
√

2/(πu) cos[u − 3π/4]
provides an explicit expression for long time τ � β. The
contribution in the transmitted field becomes

E
(b)
T (x, t) ≈

τ/β→∞
− 2S0µ0c

ω0ωb
ω2
b − ω2

0

√
π√
ωbβ

θ(τ)

× (τ/β)−3/4 cos
[
2ωbβ

√
τ/β − 3π/4]

× cos[ωbβ(τ/β + 1/2)
]
.

(21)
This expression shows that this second contribution has
a first factor oscillating at the frequency ωb and a sec-
ond factor with more complex oscillating behavior with
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argument Ωb
√

2(b− a)τ/c. The amplitude of this contri-
bution decreases like (ωbτ)−3/4, and thus the total trans-
mitted electric field

ET (x, t) ≈
τ/β→∞

−S0µ0c

2
θ(τ) sin[ω0(τ+{α−a}/c)] (22)

tends to the field radiated in vacuum (14) for long enough
time τ , and cloaking is addressed. Hence the limiting
amplitude principle applies here, unlike for the perfect
lens [5, 7].

The situation where small absorption is included can
be considered: the resonance frequencies ±ωb are re-
placed by ±ωb − iγ with γ > 0 in (11) while Ωb re-
mains positive. The main change in the second con-
tribution (21) is the presence of the additional factor
exp[−γτ ], which makes the permanent regime (purely
oscillating at the operating frequency ω0) easier to han-
dle. Notice that the argument of the Bessel function,
2ωbβ

√
τ/β = Ωb

√
2(b− a)τ/c, is independent of ωb and

thus absorption has no influence on the behavior gov-
erned by this function. Finally, it is stressed that the
introduction of small absorption affects the transmission
coefficient at the operating frequency ω0 by an attenua-
tion of exp[−γ(b − a)/c], which results in a signature of
the invisible structure.

In oblique incidence, expressions are more complicated
since reflections occur at the different interfaces. How-
ever, the term −k2/ν⊥a in (9) leads to a singularity at the
frequency ωp for which ν⊥a vanishes:

ν⊥a (ωp) = 0 , ωp = ±
√
ω2
a + Ω2

a . (23)

This singularity generates an additional contribution at
the frequency ωp, as well as the singularity at ωb. It is
found that both singularities ν → 0 and ν → ∞ lead to
additional contributions of the field in temporal regime.
This result confirms the well-known difficulties associated
with cloak’s singularities [14].

The analytical results are numerically tested in the
case of a cylindrical cloak designed using homogeniza-
tion techniques [19, 20]. This cloak is a concentric mul-
tilayered structure of inner radius R1 and outer radius
R2 = 2R1, consisting of 20 homogeneous layers of equal
thickness R1/20 and made of non dispersive dielectrics
(see table I for the values of relative permittivities, the
relative permeability being unity).

layer 1 2 3 4 5 6 7 8 9 10

ε/ε0 0.0012 8.0 0.02 8.0 0.07 8.0 0.12 8.0 0.18 8.0

layer 11 12 13 14 15 16 17 18 19 20

ε/ε0 0.24 8.0 0.3 8.0 0.38 8.0 0.44 8.0 0.5 8.0

TABLE I. Relative permittivity values of the layered cloak
from inside (layer 1) to outside (layer 20).

The left panel of Fig. 3 shows that the cylindrical cloak
works almost perfectly in time harmonic regime oscillat-
ing at the frequency ω0 = 2πc/λ0, where λ0 = R2/2.
Note that a purely dielectric structure is used for this
2D cloak, and thus interfaces between different concen-
tric layers are subject to reflections producing effective
dispersion. Hence, it is expected to observe an effect of
dispersion even if all the dielectric layers are non disper-
sive [15]. The right panel of Fig. 3 shows the longitudinal
magnetic field amplitude when the cloak is illuminated
by the causal incident field given by Eq. (12) and Fig. 2.

FIG. 3. Magnetic field in the presence of the cylindrical cloak
when illuminated by a time harmonic plane wave (left) and by
the causal incident field given by Eq. (12) and Fig. 2 (right).

The cloaking effect appears to be of similar quality in
both panels of Fig. 3. We now analyze the magnetic field
at short times. In Fig. 4, cylindrical modes are excited
in the multilayers when the incident front wave reaches
the cloak (left), what produces a superluminal concentric
wave (see [21] for a design without supraluminal compo-
nent). These modes can propagate in the cloak faster
than the front wave in vacuum since the frequency disper-
sion is not introduced in the dielectrics, especially those
with index values below unity. The cylindrical modes
excited in the multi-layers then radiate cylindrical waves
outside the cloak, as evidenced by the right panel in Fig.
4, which explains the tiny perturbation of the field ob-
served on right panel of Fig. 3 (the field perturbation is
smoothed down at long times, in agreement with the an-
alytical part). In addition, Fig. 4 shows a picture of the

FIG. 4. Magnetic field in the presence of the cylindrical cloak
when illuminated by the causal incident field at two time steps
in the transient regime. Cylindrical modes inside the cloak
generate a supraluminal concentric wave.

transient part of the field produced by the causal source.
Here, we take benefit of the supra-luminal propagation of



5

the modes in the cloak to observe that the radiated tran-
sient part is almost isotropic. We deduce that the radial
dependence of this transient part does not correspond to
the function J1 found by A. Sommerfeld and L. Brillouin
[4], and exhibited in the present Eq. (20). There is no
contradiction since the J1 dependence is clearly related
to the Drude-Lorentz model of the dispersion, while the
transient field around the 2D cloak is related to the effec-
tive dispersion produced by the cylindrical multilayered
geometry. Nonetheless, one can conclude that both situ-
ations considered in this letter attest that the quality of
cloaking deteriorates at short times under illumination
by a causal incident field.

In summary, a new method to analyze propagation of
electromagnetic waves in dispersive media has been pro-
posed. The major ideas are to consider a layered struc-
ture to eliminate branch cuts, and an invisible structure
(with ε = µ) to eliminate reflections in normal incidence.
In this situation, the transient regime can be highlighted
and, especially, an explicit expression is obtained in the
long time limit. As a result the amplitude of the tran-
sient part decreases like (t − x/c)−3/4. Hence the tech-
nique proposed in this letter brings new elements to the
method used by Brillouin [4], where wavefronts (fore-
runners) can be simply exhibited. The analysis of the
transient regime in the situation of the invisible struc-
ture has shown that the singularities of the permittiv-
ity and permeability generate additional contributions to
the electric field. However, in normal incidence, the con-
tributions vanish in the long time limit, thus cloaking
is achieved after the transient regime. Finally, numeri-
cal simulations for a two-dimensional cylindrical layered
cloak confirm the effect of dispersion, which affects the
quality of cloaking at short times when it is illuminated
by a causal incident field.

The proposed method opens new possibilities for
investigating transient regime of dispersive systems,
notably structures designed from transformation optics
like cloaks, carpets, concentrators and rotators. This
method can be also applied to optical systems moving
at constant relativistic velocity [22] and to other wave
equations.

B. Avril, A. Diatta and S. Guenneau acknowledge
ERC funding (ANAMORPHISM). G. Arismendi and B.
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Supplemental material: calculation of the transient
field

The contribution E
(b)
T (x, t) of the two isolated singu-

larities at z = ±ωb in the integral expression (15) is es-
timated for large values of the relative time τ [given by
(19)] after the front wave. These two singularities are
present in the transmission coefficient T (z) given by (18).
Decomposing the ratio z/(z2 − ω2

b ) in simple poles, the
whole function under the integral in (15) can be formu-
lated as

f(z) = f±(z) exp

[
−i (b− a)Ω2

b/(2c)

z − (±ωb)

]
, (24)

where f±(z) are analytic around ±ωb. Let ξ = z−(±ωb),
then the functions f± and exponential can be expanded
in power series around ξ = 0:

f(z) =
∑
q∈N

f
(q)
± (±ωb)
q!

ξq
∑
p∈N

[(b− a)Ω2
b/(2ic)]

p

p!
ξ−p ,

(25)

mailto:boris.gralak@fresnel.fr


6

where f
(q)
± (±ωb) is the derivative of order q of f±(z) eval-

uated at ±ωb. Thanks to the convergence of the series,
the terms of this product can be arranged in order to
obtain the coefficients of the poles ξ−1, i.e. the residues
Res(±ωb) of the function f(z) at z = ±ωb:

Res(±ωb) =
∑

p∈N\{0}

f
(p−1)
± (±ωb)
(p− 1)!

[(b− a)Ω2
b/(2ic)]

p

p!
.

(26)
Notice that it can be checked that the series above con-
verges as well as the series expansion of the exponential
function. Hence the residues Res(±ωb) are well-defined.

Using that the complex conjugated of f(z) is f(z) =
f(−z), the contribution of the singularities at ±ωb in the
time dependent transmitted field is

E
(b)
T (x, t) = θ(t−{x−x0 +α−a}/c) Imag

{
4πRes(ωb)

}
.

(27)
The exact calculation of this second contribution, corre-
sponding to the transient regime, cannot be performed in
general. However, the (x, t) dependence can be analyzed
from the one of f±(z) which can be expressed as

f±(z) = g±(z) exp[−izτ ] , τ = t− (x− x0 + α− a)/c .
(28)

where the functions g±(z) are (x, t) independent, and
the time quantity τ defines the arrival of the signal (from
τ = 0). Denoting β = (b − a)Ω2

b/(2ω
2
b c) and recalling

that ξ = z − (±ωb), the function (24) becomes

f(ξ ± ωb) = g±(ξ ± ωb) exp[∓iωbτ ] exp[−i(τξ + ω2
bβ/ξ)].

(29)

Then the residues can be expressed as

Res(±ωb) =
1

2iπ

∫
|ξ|=d

dξ f(ξ ± ωb) (30)

as soon as the functions g±(z) are analytic in the disks
of radius d and centered at ±ωb. In particular, this ex-
pression can be estimated for τ tending to infinity. Let
the radius of the disks set to d = ωb

√
β/τ and the com-

plex number ξ = ωb
√
β/τ exp[iφ]. For τ/β → ∞, the

functions g±(ξ ± ωb) ≈ g±(±ωb) and the residues can be
approached by

Res(±ωb) ≈
1

2iπ
g±(±ωb) exp[−i(±ωb)τ ] iωb

√
β/τ

×
∫
[0,2π]

dφ exp[iφ− i2ωb
√
βτ cosφ] .

(31)
Using the integral representation of the Bessel function

J1(u) = − 1

2iπ

∫
[0,2π]

dφ exp[iφ− iu cosφ] , (32)

it is deduced that, for τ/β →∞,

Res(±ωb) ≈ − i
S0µ0c

2

ω0ωb
ω2
b − ω2

0

√
β/τ

× exp[∓iωb(τ + β/2)] J1(2ωb
√
βτ) .

(33)

Replacing this estimate of the residues in (27) provides
the expression (20) of the time dependent transmitted
field in the letter.
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