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Introduction and problem formulation

In this paper we consider a modification of the Generalized Seasonal Block Bootstrap (GSBB) proposed by Dudek et al. (2014a) [START_REF] Dudek | A generalized block bootstrap for seasonal time series[END_REF] by incorporating the tapering idea of [START_REF] Paparoditis | Tapered block bootstrap Biometrika[END_REF] [START_REF] Paparoditis | Tapered block bootstrap Biometrika[END_REF]. First we introduce some notation. Let {X t , t ∈ Z} be a periodically correlated (PC) time series with known period d, i.e. X t has periodic mean and 1 covariance functions E (X t+d ) = E (X t ) and Cov (X t+d , X s+d ) = Cov (X t , X s ) .

For more details on PC time series we refer the reader to [START_REF] Hurd | Periodically Correlated Random Sequences: Spectral. Theory and Practice[END_REF] [START_REF] Hurd | Periodically Correlated Random Sequences: Spectral. Theory and Practice[END_REF]. We will assume that X t is α-mixing i.e. α X (k) → 0 as k → ∞, where

α X (k) = sup t sup A∈F X (-∞,t) B∈F X (t+k,∞) |P (A ∩ B) -P (A)P (B)| and F X (-∞, t) = σ ({X s : s ≤ t}), F X (t + k, ∞) = σ ({X s : s ≥ t + k}).
We observe the sample X 1 , . . . , X n . Denote the sequence of data-tapering windows by w n (t), where w n (t) = w ( t-0.5 n )

; here, w is a function such that

w : R → [0, 1] with ||w n || 1 = ∑ n i=1 |w i (t)| and ||w n || 2 = (∑ n i=1 w 2 i (t) ) 1/2 .
Following [START_REF] Paparoditis | Tapered block bootstrap Biometrika[END_REF] [START_REF] Paparoditis | Tapered block bootstrap Biometrika[END_REF] we assume the following conditions:

A1 w(t) = 0 if t / ∈ [0, 1], and w(t) > 0 for t in a neighbourhood of 1/2; A2 w(t) is symmetric about t = 1/2 and nondecreasing for t ∈ [0, 1/2];

A3 The self-convolution w * w(t) is twice continuously differentiable at the point t = 0 where w * w(t) = ∫ 1 -1 w(x)w(x + |t|)dx.

Define the overall mean μ = d -1 ∑ d i=1 µ i and the seasonal means µ i = E(X i+jd ), i = 1, . . . , d, j ∈ Z that are estimated respectively by [START_REF] Araujo | The Central Limit Theorem for Real and Banach Valued Random Variables[END_REF] where v i = max{j such that i + jd ≤ n}.

µ = d -1 d ∑ i=1 µ i and µ i = v -1 i v i -1 ∑ j=0 X i+jd
We now introduce the Generalized Seasonal Tapered Block Bootstrap (GSTBB); for simplicity, we assume that n = lb and n = wd, where b is a block length and l, b ∈ N .

BOOTSTRAP ALGORITHM (GSTBB):

• define X t = X t -µ <t> , where < t >= (t mod d) denotes the season associated with t.

• the bootstrap sample X * 1 , . . . , X * n is generated by applying the GSBB procedure of Dudek et al. (2014a) to the sample X 1 , . . . , X n . For the sake of simplicity of notation and presentation we describe below the circular version of the GSBB. However, the usual GSBB can also be used.

-Choose a (positive) integer block size b(< n).

-For t = 1, b + 1, 2b + 1, . . . , (l -1)b + 1, let B * t = (X * t , X * t+1 , . . . , X * t+b-1 ) = ( X kt , X kt+1 , . . . , X kt+b-1 ),
where k t is iid from a discrete uniform distribution

P (k t = t + vd) = 1 w for v = 0, 1, . . . , w -1.
When the time index t + vd > n, we shift it taking t + vd -n.

-Join the l blocks B * 1 , . . . , B * (l-1)b+1 to obtain a bootstrap sample (X * 1 , . . . , X * n ).

• for m = 0, . . . , l -1, let Y * mb+j := w b (j) √ b ||w b || 2 X * mb+j .
GSTBB bootstrap versions of µ and µ i are now defined by

µ * = d -1 d ∑ i=1 µ * i and µ * i = v -1 i v i -1 ∑ j=0 Y * i+jd . ( 2 
)
Consistency of the GSTBB for the sample means and related statistics is shown in the sequel; all proofs are in the Appendix. A small simulation study can be found in Section 4.

Main results

Let µ = (µ 1 , . . . , µ d ) ′ and µ = ( µ 1 , . . . , µ d ) ′ denote the vector of seasonal means and its estimator as defined in equation ( 1), respectively. Let L( √ n( µµ)) denote the probability law of √ n( µ-µ), and

L * ( √ n( µ * -E * µ * )) its boot- strap counterpart conditionally on the observed time series X 1 , X 2 , . . . , X n ; similarly, define L( √ n( µ -µ)), and L * ( √ n( µ * -E * µ * )).
Theorem 2.1 Let {X t , t ∈ Z} be a PC time series that is α-mixing. Assume that for some δ > 0, sup

t E|X t | 4+δ < ∞ and ∑ ∞ k=1 kα δ/(4+δ) X (k) < ∞. If b → ∞ as n → ∞ such that b = o(n)
, then the GSTBB is consistent for the overall mean and seasonal means, i.e.

d 2 ( L (√ v ( µ -µ) ) , L * (√ v ( µ * -E * µ * ) )) p -→ 0, (3) 
d 2 ( L ( √ n ( µ -µ )) , L * ( √ n ( µ * -E * µ * ))) p -→ 0, ( 4 
)
where d 2 is the Mallows metric and v = ⌊n/d⌋.

Furthermore, we present consistency theorems for smooth functions of the overall mean and the seasonal means; the latter is important as it allows for construction of simultaneous confidence intervals for µ. 

(i) differentiable in a neighborhood of µ N H = {x ∈ R : |x -µ| < 2η} for some η > 0 (ii) H ′ (µ) ̸ = 0 (iii) the first-order derivative H ′ satisfies a Lipschitz condition of order κ > 0 on N H . If b → ∞ as n → ∞ such that b = o(n/ log n) and b -1 = o(log -1 n), then GSTBB is consistent i.e. d 2 ( L ( √ n ( H ( µ ) -H (µ) )) , L * ( √ n ( H ( µ * ) -H ( E * µ * ))) p -→ 0.
(i) differentiable in a neighborhood N H = { x ∈ R d : ||x -µ|| < 2η } for some η > 0 (ii) ▽H(µ) ̸ = 0 (iii) the first-order partial derivatives of H satisfy a Lipschitz condition of order κ > 0 on N H . If b → ∞ as n → ∞ such that b = o(n/ log n) and b -1 = o(log -1 n), then GSTBB is consistent i.e. d 2 ( L (√ v (H ( µ) -H (µ)) ) , L * (√ v (H ( µ * ) -H (E * µ * )) )) p -→ 0,( 5 
)
where µ = ( µ 1 , . . . , µ d ) and v = ⌊n/d⌋.

Remark:

In practical applications, the GSTBB should not be used with b ≤ d such that d = kb for k ∈ N especially for simultaneous confidence intervals. In such a case, the GSTBB provides too high or too low coverage probabilities. To explain this phenomenon, consider the simple case of b = d. In this situation observations from the first and the last season are used with lower weights. By contrast, if b = 2d, then lower weights are no longer assigned to all observations from aforementioned seasons, and this negative effect disappears.

Remark: Using Theorem 2.3 one may calculate quantiles of the (1-2α)% equal-tailed bootstrap simultaneous confidence intervals using the maximum and the minimum statistics. Define

K max (x) = P * ( √ w max i ( µ * i -µ i ) ≤ x ) , K min (x) = P * ( √ w min i ( µ * i -µ i ) ≤ x ) .
Then, the confidence region is of the form

( µ i - K -1 max (1 -α) √ w , µ i - K -1 min (α) √ w ) (6) 
simultaneously for i = 1, . . . , d.

Application of the GSTBB in second order moment analysis

The statistical analysis of PC time series in often performed in the frequency domain. To detect significant frequencies the Fourier representations of the mean and the autocovariance functions are used. Since it is easy to demean a PC time series by removing periodic means, the main interest of researchers is focused on the autocovariance function. Thus, from here on we will assume that EX t ≡ 0.

Denote the autocovariance function by B(t, τ ) = Cov(X t , X t+τ ), where t and τ are time and shift indices, respectively. Note that for a PC time series, B(t, τ ) is a periodic function of t. The Fourier representation of B(t, τ ) is of the form

B(t, τ ) = ∑ λ∈Λτ a(λ, τ ) exp(iλt),
where

Λ τ = {λ : a(λ, τ ) ̸ = 0} ⊂ {2kπ/d, k = 0, . . . , d -1}.
Thus, the number of second order significant frequencies is finite.

Without loss of generality we assume that τ ≥ 0 from now on. Then, the estimator of a(λ, τ ) is of the form (see [START_REF] Hurd | Nonparametric time series analysis for periodically correlated processes[END_REF][START_REF] Hurd | Correlation theory of almost periodically correlated processes[END_REF] [START_REF] Hurd | Nonparametric time series analysis for periodically correlated processes[END_REF] [6], Hurd and Leśkow (1992) [START_REF] Hurd | Estimation of the Fourier coefficient functions and their spectral densities for ϕ-mixing almost periodically correlated processes[END_REF])

a n (λ, τ ) = 1 n n-τ ∑ t=1 X t X t+τ exp(-iλt).
The estimator a n (λ, τ ) is asymptotically normal; see we construct its GSTBB analog and show its consistency.

For a fixed τ ≥ 0 and λ ∈ Λ τ the GSBB version of a n (λ, τ ) is of the form

a GSBB n (λ, τ ) = 1 n n-τ ∑ t=1 X * t X * t+τ exp(-iλt).
To apply the GSTBB for a(λ, τ ) we need to modify the GSTBB algorithm presented in the previous section. Without loss of generality, assume that n = vd, v ∈ Z. Note that the estimator a n (λ, τ ) can be rewritten as follows:

a n (λ, τ ) = 1 vd d ∑ s=1 v-1 ∑ k=0 X s+kd X s+kd+τ exp(-iλ(s + kd)) = 1 d d ∑ s=1 a n,s (λ, τ );
In the above, if s + kd + τ > n we set the corresponding summand to 0. Note that for λ ∈ Λ τ we have

a n,s (λ, τ ) = 1 v v-1 ∑ k=0 X s+kd X s+kd+τ exp(-iλ(s + kd)) = 1 v v-1 ∑ k=0 X s+kd X s+kd+τ exp(-iλs)
and finally

a n (λ, τ ) = 1 vd d ∑ s=1 exp(-iλs) v-1 ∑ k=0 X s+kd X s+kd+τ = 1 d d ∑ s=1 exp(-iλs)ȃ n,s (λ, τ ), where ȃn,s (λ, τ ) = 1 v ∑ v-1 k=0 X s+kd X s+kd+τ .
The estimators a n,s (λ, τ ) will be essential to define the GSTBB estimator. They will have the same role as the estimators of seasonal means in the previous section, i.e. they will be used to demean the corresponding series.

BOOTSTRAP ALGORITHM (GSTBB) for a(λ, τ ) :

Let n = lb, where b is a block length; recall the assumption EX t ≡ 0.

• the bootstrap sample X * 1 , . . . , X * n is generated using GSBB on X 1 , . . . , X n ;

• for s = 1, . . . , d and k = 0, . . . , v -1 let

Y * s+kd = exp(-iλs) ( X * s+kd X * s+kd+τ -ȃn,s (λ, τ ) ) ; • for m = 0, . . . , l -1, let Y * mb+j := w b (j) √ b ||w b || 2 Y * mb+j ; • the GSTBB estimator is of the form a * n (λ, τ ) = 1 n d ∑ s=1 v-1 ∑ k=0 Y * s+kd = 1 n n-τ ∑ t=1 Y * t .
Before showing the consistency of the proposed algorithm, we introduce some additional notation. Let λ and τ denote r-dimensional vectors of frequencies and shifts of the form λ = (λ 1 , . . . , λ r )

′ , τ = (τ 1 , . . . , τ r ) ′ . Additionally, a(λ, τ ) = (ℜ(a(λ 1 , τ 1 )), ℑ(a(λ 1 , τ 1 )), . . . , ℜ(a(λ r , τ r )), ℑ(a(λ r , τ r ))) ′ .
By a n (λ, τ ) we denote its estimator and by a * n (λ, τ ) its bootstrap counterpart. Additionally, by W P (k) we denote a weakly periodic process of order k. Recall that a process

X t is W P (k) if E|X t | k < ∞ and for any t, τ 1 , . . . , τ k-1 ∈ Z E(X t X t+τ 1 . . . X t+τ k-1
) is periodic in the variable t. Theorem 3.1 Let {X t , t ∈ Z} be a PC time series with E(X t ) ≡ 0 and WP [START_REF] Dudek | Generalized Seasonal Block Bootstrap in frequency analysis of cyclostationary signals[END_REF]. Assume that for some δ > 0, sup

t E|X t | 8+2δ < ∞ and ∑ ∞ k=1 kα δ/(4+δ) X (k) < ∞. If b → ∞ as n → ∞ such that b = o(n) then the GSTBB for the overall mean is consistent, i.e. d 2 ( L (√ n ( a n (λ, τ ) -a(λ, τ )) ) , L * (√ n ( a * n (λ, τ ) -E * a * n (λ, τ ))
)) p -→ 0.

Theorem 3.1 states consistency of the GSTBB under the same conditions that were used to show consistency of the GSBB in Dudek et al. (2014b) [START_REF] Dudek | Generalized Seasonal Block Bootstrap in frequency analysis of cyclostationary signals[END_REF].

Remark: The consistency of the GSTBB for smooth functions of a n (λ, τ ) can be easily obtained using the same reasoning as in Dudek et al. (2014b) [START_REF] Dudek | Generalized Seasonal Block Bootstrap in frequency analysis of cyclostationary signals[END_REF]. Thus, we omit technical details.

Simulation data example

In this section we compare the performance of the GSBB and the GSTBB on a simulation data example. For our study we chose an ARMA type model of the form 

X t =
w c (t) =    t c for t ∈ [0, c] 1 for t ∈ [c, 1 -c] (1-t) c for t ∈ [1 -c, 1]
with c = 0.43. Finally, the actual coverage probabilities (ACPs) of the 95% equal tailed bootstrap pointwise confidence intervals for the overall mean and simultaneous confidence intervals for the seasonal means were calculated. Results are presented in Figures 12.

In the overall mean estimation problem with n = 240 the ACPs are too low, which means that the confidence intervals obtained with the GSBB and the GSTBB are too narrow. For n = 480 the highest ACPs values are around 94% for the GSTBB, while for the GSBB they are 1-2% lower. It is worth to note that for most cases ACP curves for the GSTBB seem to be flatter than corresponding ones obtained with the GSBB. The highest difference between the ACP values is observed for b = 80, d = 12 and n = 480 and is equal around 6%. Independently on the sample size and the chosen block length the GSTBB almost always outperforms the GSBB. It provides the ACPs that are closer to the nominal one.

Regarding simultaneous confidence intervals the ACP curves are quite flat independently on the period length and the sample size and those obtained with the GSTBB seem to be flatter. For example for n = 240 with d = 12 the ACPs obtained with the GSTBB differ from 95% less than 1%, while the GSBB ones range from 93% to 97%. In a few cases the differences between the performance of the GSBB and the GSTBB are small, but in general the GSTBB provides ACPs closer to 95%. The maximal difference is again observed for n = 480 with d = 12. For block length b = 40 it is equal around 3%. For the largest block length b = 80 independently on the sample size the ACPs obtained with the GSTBB are always higher and more accurate than the GSBB ones.

Appendix

Proof of Theorem 2.1. Under conditions of Theorem 2.1 Dudek et al. (2014a) [START_REF] Dudek | A generalized block bootstrap for seasonal time series[END_REF] showed consistency of GSBB for the overall mean and the seasonal means. In the sequel we follow the main idea of their proof, presenting only the main differences.

Without loss of generality we assume that the sample size n is an integer multiple of the block length b (n = lb) and is an integer multiple of the period length d (n = vd). We consider circular versions of the GSBB and the GSTBB. At first we show (4 block of the length b, starting with observation Y * t , i.e

Z * t = Y * t + • • • + Y * t+b-1
and Z * t,b be a corresponding sum but obtained with the GSBB method i.e.

Z * t = X * t + • • • + X * t+b-1 .
Note that E * Z * t = 0 and E * Z * t = 0. As in the proof of Theorem 1 in Dudek et al. (2014a) [START_REF] Dudek | A generalized block bootstrap for seasonal time series[END_REF] we use Corollary 2.4.8 from Araujo and Giné (1980) [START_REF] Araujo | The Central Limit Theorem for Real and Banach Valued Random Variables[END_REF]. Thus, we need to show that for any δ > 0 l-1

∑ k=0 P * ( 1 √ n Z * 1+kb,b > δ ) p -→ 0, (7) 
l-1

∑ k=0 E * ( 1 √ n Z * 1+kb,b 1 |Z * 1+kb,b |> √ nδ ) p -→ 0, (8) 
l-1

∑ k=0 Var * ( 1 √ n Z * 1+kb,b 1 |Z * 1+kb,b |≤ √ nδ ) p -→ σ 2 , ( 9 
)
where σ 2 is the asymptotic variance of

L ( √ v ( µ -µ)).
At first note that for each k = 0, . . . , l-1 and s

= 1, . . . , v E 1/ √ bZ 1+kb+sd,b 4 
are uniformly bounded by constant independent on n, where

Z 1+kb+sd = Y 1+kb+sd + • • • + Y (k+1)b+sd
and

Y j+kb+sd = w b (j) √ b ||w b || 2 X mb+sd+j for j = 1, . . . , b.
This can be shown following the same reasoning as in the proofs of Theorems 1 and 3 from Kim (1994) [START_REF] Kim | Moment bounds for non-stationary dependent sequences[END_REF]. Following main steps of the proof of Theorem 1 from Dudek et al. (2014a) [START_REF] Dudek | A generalized block bootstrap for seasonal time series[END_REF] one can get [START_REF] Hurd | Estimation of the Fourier coefficient functions and their spectral densities for ϕ-mixing almost periodically correlated processes[END_REF] and [START_REF] Hurd | Periodically Correlated Random Sequences: Spectral. Theory and Practice[END_REF]. For [START_REF] Kim | Moment bounds for non-stationary dependent sequences[END_REF] we additionally need to use Lemma 5 from Leśkow and Synowiecki (2010) [START_REF] Le Śkow | On bootstrapping periodic random arrays with increasing period[END_REF] for the array Q n,s = 1 b Z 2 s,b , s ∈ S, where S = {1 + kb + td : 1 + kb + td ≤ n+b-1, t = 0, . . . , v -1, k = 1, . . . , l}. Note that this array is α-mixing with α Q (τ ) ≤ α X (τ -b + 1). Moreover, its elements have uniformly bounded second moments. Denote by n 0 the number of elements of set S. Additionally, we define the array

Q n,s = 1 b Z 2 s,b , s ∈ S,
where

Z 1+kb+sd = X 1+kb+sd + • • • + X (k+1)b+sd .
Dudek et al. (2014a) [START_REF] Dudek | A generalized block bootstrap for seasonal time series[END_REF] showed that (1/n 0 )

∑ s∈S E ( Q n,s
) → σ 2 (see proof of Theorem 1). We use this fact to obtain the same property for the array Q n,s . We have that

1 n 0 ∑ a∈S E (Q n,a ) = 1 n 0 ∑ a∈S Var ( 1 √ b Z a,b
) .

Moreover, for any k = 0, . . . , l -1 and t = 1, . . . , v

Var

( 1 √ b Z 1+kb+td,b ) = 1 ||w|| 2 2 E ( b ∑ i=1 w b (i) X i+kb+td ) 2 = = 1 ||w|| 2 2 b ∑ i=1 b-1 ∑ j=-b+1 w b (i)w b (i + |j|)E ( X i+kb+td X i+|j|+kb+td ) = = 1 ||w|| 2 2 b ∑ i=1 b-1 ∑ j=-b+1 w b (i)w b (i + |j|)E ( X i+kb X i+|j|+kb ) = = 1 ||w|| 2 2 d ∑ s=1 vs-1 ∑ m=0 b-1 ∑ j=-b+1 w b (s + md)w b (s + md + |j|)E ( X s+md+kb X s+md+|j|+kb ) = = 1 ||w|| 2 2 d ∑ s=1 vs-1 ∑ m=0 b-1 ∑ j=-b+1 w b (s + md)w b (s + md + |j|)E ( X s+kb X s+|j|+kb ) ,
where for s = 1, . . . , d v s is the number of elements of the set {a = s + md : a ≤ b, m = 0, 1, . . . }.

Since w * w is twice continuously differentiable at 0, we have (for j << b)

vs-1 ∑ m=0 w b (s + md)w b (s + md + |j|) ∼ v s (w * w) ( j b ) ∼ v s (w * w) (0) . ( 10 
)
By symbol ∼ we denote asymptotic equivalence, i.e. sequences a 1,n , a 2,n are asymptotically equivalent a

1,n ∼ a 2,n if a 1,n /a 2,n → 1 as n → ∞. Additionally, ||w|| 2 2 ∼ b(w * w)(0). Thus, b ||w|| 2 2 vs-1 ∑ m=0 w b (s + md)w b (s + md + |j|) ∼ v s and Var ( 1 √ b Z 1+kb+td,b ) -Var ( 1 √ b Z 1+kb+td,b ) ≤ ≤ 1 b d ∑ s=1 b-1 ∑ j=-b+1 E ( X s+kb X s+|j|+kb ) b ||w|| 2 2 vs-1 ∑ m=0 w b (s + md)w b (s + md + |j|) -v s ≤ ≤ C v s b d ∑ s=1 b-1 ∑ j=-b+1 α X (|j|) b v s ||w|| 2 2 vs-1 ∑ m=0 w b (s + md)w b (s + md + |j|) -1 = = C v s b d ∑ s=1 k b ∑ j=-k b α X (|j|) b v s ||w|| 2 2 vs-1 ∑ m=0 w b (s + md)w b (s + md + |j|) -1 + +C v s b d ∑ s=1 -k b -1 ∑ j=-b+1 α X (|j|) b v s ||w|| 2 2 vs-1 ∑ m=0 w b (s + md)w b (s + md + |j|) -1 + +C v s b d ∑ s=1 b-1 ∑ j=k b +1 α X (|j|) b v s ||w|| 2 2 vs-1 ∑ m=0 w b (s + md)w b (s + md + |j|) -1 = = I + II + III,
where C is some positive constant independent on n, k b /b → 0 as n → ∞. Note that v s /b → 1/d as n → ∞. To get the convergence to 0 of I one needs to use [START_REF] Lenart | Subsampling in testing autocovariance for periodically correlated time series[END_REF] and α-mixing property of X t . Using the fact that the absolute value in the second and the third summand is bounded and the time series is α-mixing, one gets convergence to 0 of II and III. Finally, we get that sup

k,t Var ( 1 √ b Z 1+kb+td,b ) -Var ( 1 √ b Z 1+kb+td,b ) -→ 0, and 
1 n 0 ∑ a∈S E (Q n,a ) → σ 2 ,
which gives us the desired convergence in probability of 1/n 0 ∑ s∈S E (Q n,s ) to σ 2 . The remaining steps of proof of ( 9) are the same as presented by Dudek et al. (2014a) [START_REF] Dudek | A generalized block bootstrap for seasonal time series[END_REF] (see Theorem 1), so we omit the details. Finally, to get (3) one needs to follow the proof of Theorem 1 from Dudek et al. (2014a) [START_REF] Dudek | A generalized block bootstrap for seasonal time series[END_REF] applying the changes as in the above. Thus, again we omit the details.

Proof of Theorems 2.2 and 2.3. Since the reasoning follows exactly the same steps as presented by Dudek et al. (2014a) [START_REF] Dudek | A generalized block bootstrap for seasonal time series[END_REF] (see proofs of Theorems 4.2 and 4.3), we omit technical details.

Proof of Theorem 3.1. We give a sketch of the proof only for the real part of a(λ, τ ). For the imaginary part the reasoning follows the same steps. Finally, the multidimensional consistency can be obtained from the Cramér-Wold device. We need to show that To do that one needs to use the same arguments as in the proof of Theorem 2.1. The necessary facts like convergence of the variance can be found in

Figure 1 :

 1 Figure 1: ACPs of pointwise equal-tailed percentile bootstrap confidence intervals for µ vs. block length b. The three rows correspond to d = 4, 12, 24 respectively. Left and right column sample size n = 240 and n = 480, respectively. GSBB method (grey) and GSBB-TBB (black). Nominal coverage probability is 95%.

Figure 2 :

 2 Figure 2: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d) vs. block length b. The three rows correspond to d = 4, 12, 24 respectively. Left and right column sample size n = 240 and n = 480, respectively. GSBB method (grey) and GSBB-TBB (black). Nominal coverage probability is 95%.

  a n (λ, τ )) -ℜ (a (λ, τ ))) ≤ x) ) --P * (√ n (ℜ ( a * n (λ, τ )) -E * (ℜ ( a * n (λ, τ )))) ≤ x ) p -→ 0.Similarly to Dudek et al. (2014b) [4] we do not show consistency of ℜ ( a * n (λ, τ )) directly, but we use asymptotically equivalent estimator of the form a * n (λ, τ ) n (λ, τ ) is based only on elements contained in the k-th block, which is of the form (X * 1+kb , . . . , X * b+kb ). Estimator a * n (λ, τ ) was obtained form a * n (λ, τ ) by removing those summands Y * t , for which X * t and X * t+τ belong to two consecutive blocks. To get asymptotic equivalence of a * n (λ, τ ) and a * n (λ, τ ), we need to show that √ n |ℜ ( a * n(λ, τ )) -ℜ ( a * n (λ, τ )) -E * (ℜ ( a * n (λ, τ ))) -E * (ℜ ( a * n (λ, τ )))| p * -→ 0.By Tchebychev's inequality it is enough to show the convergence of variancenVar * (ℜ ( a * n (λ, τ )) -ℜ ( a * n (λ, τ )))To get[START_REF] Le Śkow | On bootstrapping periodic random arrays with increasing period[END_REF] one needs to follow the reasoning proposed in Dudek et al. (2014b)[START_REF] Dudek | Generalized Seasonal Block Bootstrap in frequency analysis of cyclostationary signals[END_REF] (see proof of (7.1)) and hence we omit the technical details. Now it is enough to prove consistency of ℜ ( a * n (λ, τ )), i.e.sup x∈R P (√ n (ℜ ( a n (λ, τ )) -ℜ (a (λ, τ ))) ≤ x) ) --P * (√ n (ℜ ( a * n (λ, τ )) -E * (ℜ ( a * n (λ, τ )))) ≤ x ) p -→ 0.

Theorem 2.3 Let {X t , t ∈ Z} be a PC time series that fulfills the assump- tions of Theorem 2.1. Suppose that function H : R d → R s is:
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