
HAL Id: hal-01310844
https://hal.science/hal-01310844v1

Submitted on 3 May 2016 (v1), last revised 24 Jun 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Which Contingent Events to Observe for the Dynamic
Controllability of a Plan

Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand

To cite this version:
Arthur Bit-Monnot, Malik Ghallab, Félix Ingrand. Which Contingent Events to Observe for the
Dynamic Controllability of a Plan. International Joint Conference on Artificial Intelligence (IJCAI-
16), Jul 2016, New York, NY, United States. �hal-01310844v1�

https://hal.science/hal-01310844v1
https://hal.archives-ouvertes.fr

Which Contingent Events to Observe
for the Dynamic Controllability of a Plan

Arthur Bit-Monnot Malik Ghallab Félix Ingrand
LAAS-CNRS, Université de Toulouse, France

{bit-monnot, malik, felix}@laas.fr

Abstract

Planning and acting in a dynamic environment require
distinguishing controllable and contingent events and
checking the dynamic controllability of plans. Known
procedures for testing the dynamic controllability assume
that all contingent events are observable.

Often this assumption does not hold. We consider here
the general case of networks with invisible as well as ob-
servable contingent points. We propose a first procedure
for testing their dynamic controllability. Further, we de-
fine an algorithm for choosing among the observable con-
tingent points which to observe with additional sensing
actions, such as to make a plan dynamically controllable.
We show how these procedures can be incrementally in-
tegrated into a constraint-based temporal planner.

1 Introduction

The issue of controllable vs contingent events in tem-
poral reasoning problems has been recognized for some
time. It triggered a long line of research that matured re-
cently into scalable consistency and controllability check-
ing algorithms.

A controllable timepoint is a free variable that can be
set by the agent to meet its constraints. A contingent time-
point refers to an event not under the agent control; it is a
random variable whose value is observed when that event

Acknowledgement: This work was supported in part by the EU
MUMMER project funded by the H2020 program under grant agree-
ment No 688147 and the EDSYS Doctoral School of the University of
Toulouse.

occurs. Constraints on contingent points express knowl-
edge about the possible range of these random variables.
A Simple Temporal Network with Uncertainty (STNU)
extends the usual STN model to handle both types of
points. An STNU is Dynamically Controllable (DC, or
controllable for short) if there is an execution strategy that
allows to set values to future controllable points, given the
observation of past contingent points.

Results and algorithms developed for STNUs rely on
the assumption that all contingent points are observable.
In many cases this assumption is questionable. Contingent
points result from the proper dynamics of the world. The
agent can make enough prediction about this dynamics to
plan its activity. However, it may or may not be able to
observe precisely the occurrence of the predicted contin-
gent points. It may have to deal with events whose mo-
ments of occurrence are invisible. For instance, synchro-
nizing one’s activity with a distant partner may involve
timepoints that are invisible (Figure 1). Further, there may
be contingent points that remain observable, but that are
hidden unless specific actions are taken. This is essential
for planning in a dynamic domain. Given the planned ac-
tivity with respect to a predicted contingent evolution of
the environment, the agent has to decide what it needs to
observe to make its plan controllable and what observa-
tion actions are consistent with its activity.

The focus of this paper is not on planning per se, but on
the controllability of Partially Observable STNUs (POST-
NUs). We propose the following contributions:
• We partition contingent points into invisible and observ-

able ones. We define a procedure called PODC that
maps a POSTNU into an equivalent STNU, and demon-
strate that when the latter is DC then the POSTNU is

1

Wife at
Work

Wife
Driving

Wife at
Home

Dinner
Ready

Start
Cooking

[3
0,

60
]

W
ork

ing

[35, 40]

Driving [−
5, 5]

[25, 30]

Cooking

Figure 1: This simple example illustrates dynamic con-
trollability: the STNU is controllable only if the event
Wife Driving is observed. This observation may require
sensing actions.

also DC with respect to its observable points. To our
knowledge, PODC is the first DC-checking algorithm
for POSTNUs.

• We further partition the observable timepoints into visi-
ble and hidden ones, the latter require observation ac-
tions to become visible to the agent (Figure 4). We
define an algorithm called NEEDEDOBS for choosing
among the hidden points what to observe to make the
POSTNU controllable. NEEDEDOBS relies on PODC
and on an edge labeling mechanism whose main prop-
erty is proved. We report on the performance of PODC
and NEEDEDOBS.

• We show how the above two procedures can be used
incrementally in temporal planning and illustrate their
integration into a constraint-based temporal planner.

These three issues are covered respectively in Sections 3,
4 and 5, preceded by a discussion of the state of the art.

2 Related Work

Barták et al. (2014) survey the state of the art in tem-
poral networks. STNUs were introduced by Vidal and
Ghallab (1996). Strong, weak and dynamic controllability
cases were analyzed by Vidal and Fargier (1999). Algo-
rithms for strong and weak controllability were proposed
by Cimatti et al. (2012a,b). State space planning with
strong controllability is studied by Cimatti et al. (2015).
Several extensions of the STNU model have been pro-
posed, e.g., with conditions and disjunctions Cimatti et al.
(2014); Hunsberger et al. (2015).

A polynomial algorithm for the dynamic controllabil-
ity of STNUs was proposed by Morris et al. (2001), im-
proved by Morris and Muscettola (2005), Morris (2014)
and Hunsberger (2015). The latter two algorithms runs in
O(n3). An implementation of Morris (2014) supports our
results.

Incremental algorithms for checking the dynamic con-
trollability of STNUs have been introduced by Stedl and
Williams (2005) and Shah et al. (2007). They have been
improved by Nilsson et al. (2013, 2014); their latest ver-
sion runs in O(n3).

Dynamic execution strategies for triggering online con-
trollable points in a DC STNU are studied by Tsamardi-
nos et al. (1998) and Morris (2014).

Partially Observable STNUs (POSTNU) were intro-
duced by Moffitt (2007) together with an incomplete fil-
tering algorithm. If that filter returns an affirmative output
then its input POSTNU is not DC, otherwise there is no
guarantee that the network is dynamically controllable. To
our knowledge, no other work covers Partially Observable
STNUs.

3 Checking the controllability of a
POSTNU

3.1 Background

An STNU extends an STN with controllable and contin-
gent nodes. It has two types of links:

• requirement links, denoted A
[l,u]−−→ B, specify that

point B can be chosen anywhere in the interval [A +
l, A+ u].

• contingent links, A [l′,u′]
===⇒ C, say that contingent node

C will occur at a random point in [A+ l′, A+ u′].
An STNU is Controllable (DC for short)1 if there is an

execution strategy that chooses future controllable points
given the observation of past contingent ones, while meet-
ing all the constraints. A necessary but not sufficient con-
dition for controllability requires the network to be con-
sistent and the minimal consistent network should not re-
duce any contingent link.

1Unless stated otherwise, controllable refers to dynamic controlla-
bility.

2

Conditions Added constraint
A B:x←−− C y←− D A B:(x+y)←−−−−− D
A x←− C c:y←−− D, x < 0 A x+y←−−− D
A B:x←−− C c:y←−− D, x < 0, B 6= C A B:(x+y)←−−−−− D
A x←− C y←− D A x+y←−−− D
B b:x←−− A B:z←−− C, z ≥ −x A z←− C

Table 1: Constraint propagation rules in an STNU

A labeled distance graph representation is convenient
for checking the controllability of STNUs. We use it in the
rest of this paper. It relies on transforming the STNU net-
work into a labeled multigraph obtained as follows. Each
requirement link A

[x,y]−−−→ B is replaced by two edges
A

y−→ B and A −x←−− B. A contingent link A [x,y]
==⇒ B

is replaced by four edges: the same two edges as for a
controllable link, and two labelled edges A b:x−−→ B and
A B:−y←−−− B, called lower-case and upper-case edges, re-
ferring respectively to the lower and upper bound values
of the contingent link.

A labeled distance graph can be used to compute dis-
tances between nodes, as in a distance graph of an ordi-
nary STN. The latter is consistent if and only if its dis-
tance graph does not contain a negative cycle. Specific
propagation rules (Table 1) have been devised for labelled
distance edges to provide a similar property: an STNU is
controllable iff it does not have a so-called semi-reducible
negative cycle obtained with these constraint propagation
rules Morris (2014). Procedure DC-CHECK takes as input
an STNU; it propagates these constraints with a Dijkstra-
like algorithm; it returns true when no such a negative
cycle is found, which entails a DC STNU.

3.2 Transforming a POSTNU into an STNU
A POSTNU is an STNU where contingent events are par-
titioned into observable and invisible events.

Definition 1. A POSTNU is a tuple
Ω = (XC , XI , XO, C) where:
• XC is a set of controllable timepoints;
• XI is a set of invisible contingent events;
• XO is a set of observable contingent events;

• C is a set of requirement and contingent links.

A POSTNU is controllable if there exists an execution
strategy that chooses future controllable points given the
observation of past observable points. If there is no invis-
ible event, then a POSTNU is simply an STNU. If there
is no observable event, then a POSTNU is DC iff the cor-
responding STNU is strongly controllable, i.e., there are
values of XC that meet all the constraints regardless of
the values of XI .

Conditions Added constraint
A B:x←−− B y←− C A x+y←−−− C
A B:x←−− B C:y←−− C A C:x+y←−−−− C
A x←− B b:y←−− C A x+y←−−− C
A a:x←−− B b:y←−− C A a:x+y←−−−− C

Table 2: Added constraints due to an invisible point B.

In order to check the controllability of POSTNU we
map it into an STNU. The mapping removes invisible
nodes and adds constraints on controllable and observable
points, as specified in Table 2. The controllability of the
resulting STNU is then checked.

This is performed by procedure PODC (Figure 2).
For every invisible node xI , it propagates the constraints
in Table 2 (PROPAGATEINVISIBLE) and it removes all
edges to and from xI (REMOVEEDGES). At that point
(XC , XO, C

′) is an STNU whose controllability is tested
with DC-CHECK.

PODC(XC , XI , XO, C)
C ′ ← C
for each xI ∈ XI do

C ′ ← PROPAGATEINVISIBLE(C ′, xI)
C ′ ← REMOVEEDGES(C ′, xI)

return DC-CHECK(XC , XO, C
′)

Figure 2: Maps a POSTNU into a fully observable STNU
whose controllability is tested with DC-CHECK.

Proposition 1. If PODC(Ω) returns true, then the
POSTNU Ω = (XC , XO, XI , C) is dynamically control-
lable.

3

Proof. Consider an invisible timepoint B with an incom-
ing contingent linkA [l,u]

==⇒ B (i.e.,A b:l−→ B andA B:−u←−−−
B in the labeled distance graph). B cannot be the target
of more than one contingent link, otherwise the network
is not DC. There are three possible constraints that may
involve B:
• B is the target of a requirement edge B −y←−− C, which

says “C must occur at least y time units after B”. The
first rule in Table 2 adds the edge C −y−u←−−−− A. This
edge dominates the original one: a minimum delay of at
least y will be maintained between B and C regardless
of the outcome of the contingent link A⇒ B.

• B is the source of a requirement edge B x−→ C, which
says “C should occur at most x time units after B”. The
third rule in Table 2 introduces an edge A x+l−−→ C. The
original edge is dominated by this edge: a maximum
delay of x is enforced between B and C regardless of
the outcome of the contingent link A⇒ B.

• B is the source of a contingent link B [x,y]
==⇒ C, giving

two edges B c:x−−→ C and B C:−y←−−− C. The second and
fourth rules in Table 2 add the edges A c:x+l−−−→ C and
A C:−y−l←−−−−− C. These merge the two contingent links
A ⇒ B ⇒ C into one, ignoring B as an intermediary
point. They dominate the original ones as they are less
informative.
Consequently, any edge involving B in the original

POSTNU is dominated by an edge introduced by the rules
in Table 2. All those edges to and from B can thus be re-
moved from the STNU without relaxing the problem.

The converse of Proposition 1 does not hold in gen-
eral, since the transformation of PODC is conservative on
some POSTNUs. An example of such network is given in
Figure 3. This network has a chained contingency: there is
a contingent timepoint B that is at the center of a contin-
gent chain A ⇒ B ⇒ C and is involved in an additional
contingent or requirement link with another timepoint D.

The converse of Proposition 1 holds for a POSTNU
without chained contingencies. Let us focus on this class
of networks; we discuss later why it is relevant in plan-
ning.

Proposition 2. A POSTNU Ω with no chained contingen-
cies is controllable if and only if PODC(Ω) holds.

A B

C

D
[0, 2]

[2, 2]

[5, 5
]

Figure 3: A POSTNU where PODC is too conservative.
The network is controllable even if B is invisible: just
schedule D 3 units after C. Here, B is indirectly observ-
able through C.

Proof (sketch). It is sufficient to show that, for given con-
tingent point B, either (i) no indirect information can be
gathered on B after its occurrence; or (ii) such informa-
tion is useless since B is not involved in any requirement
link.

The complexity of PODC is in O(n3) for a network of
n nodes: the for iteration is in O(|XI | × |C|) dominated
by the DC-CHECK step of cubic complexity.

4 Finding what to observe in a
POSTNU

We partitioned contingent events into invisible and ob-
servable ones. However, an observable event may or may
not be visible to an agent depending on, e.g., its location,
the setting of its sensors or its concurrent activity. The
agent may need to perform specific actions to perceive
observable events.

Given a plan π, we further partition the set of observ-
able contingent events XO into two subsets (Figure 4):
• XV (π): events whose occurrence will always be visible

to the agent, e.g., when the phone in my pocket rings;
• XH(π): events that are normally hidden, they become

visible if specific actions are added to π, e.g., to observe
that the water boils I need to be close and pay attention
to it.
Contingent events in a plan π are: XI ∪ XV (π) ∪

XH(π). Invisible events are intrinsic to a domain model,
which has no means to observe them. However, the parti-
tion of observable events depends on the specification of
a planning problem as well as on the particular plan for

4

Contingent

Invisible

Observable

{
Visible
Hidden

Figure 4: Classes of contingent points.

that problem: an event initially in XH migrates to XV iff
the actions needed to observe it are added to π. To make
a plan controllable, an agent may need to perform addi-
tional sensing actions.

4.1 Needed Observations
Let Ωπ = (XC , XI , XV (π), XH(π), C) be a POSTNU
without chained contingencies corresponding to a plan π.
XV (π) are the events initially specified as visible and
those hidden that become visible because of the activity
already planned in π. Ωπ can be in one of the following
three cases:

(1) PODC(XC , XI , XV (π) ∪ XH(π), C) is false: π
cannot be made controllable even if allXH(π) is ob-
served.

(2) PODC(XC , XI ∪ XH(π), XV (π), C) is true: π is
controllable without any additional observation.

(3) Otherwise additional observation actions of events in
XH(π) may make π controllable.

The third case requires identifying inXH events whose
observation makes the augmented plan controllable. This
is performed with procedure NEEDEDOBS (Figure 5),
which searches a space of subsets of XH . A path in the
search tree corresponds to a set of events to move from the
initialXH toXV . A search state is expanded by nondeter-
ministically choosing an event x to observe in a set of can-
didates. This is a backtrack point, but the order in which
the candidates are examined is irrelevant. The search fails
when no candidates can be found in XH . It succeeds in
finding a set of observations, minimal in the set inclusion
sense, that make the network DC.

OBSCANDIDATES is a key function in NEEDEDOBS:
it selects a subset of XH whose observation might render
the POSTNU controllable. A naive version would simply

NEEDEDOBS(XC , XI , XV , XH , C)
if PODC(XC , XI ∪XH , XV , C) then

return ∅
Σ← OBSCANDIDATES(XH)
if Σ = ∅ then return failure
x← NONDETERMINISTICALLYCHOOSE(Σ)
σ ← NEEDEDOBS(XC , XI , XV ∪ {x}, XH \ x)
if σ = failure then return failure
else return {x} ∪ σ

Figure 5: Finding a set of observations to make a Partially
Observable STNU Dynamically Controllable

try all possibly hidden events. Let us discuss how to find
a focused set of candidates.

4.2 Finding relevant candidates for obser-
vation

The key insight to focus the search is to analyze what
makes a given POSTNU not DC. We first remark that the
transformations in Table 2 simply make sure that the net-
work stays consistent regardless of whether an invisible
node occurs at its earliest or at its latest. More specifi-
cally, the first and second rules propagate the upper-case
edges, while the last two rules propagate the lower-case
edges of the invisible node.

We say that an edge e enforces the upper bound of a
invisible pointB if it was either: (i) introduced by the first
or second rule of Table 2 with B as an invisible point; or
(ii) derived through constraint propagation from an edge
enforcing the upper bound of B. Similarly for the lower
bounds with respect to the last two rules. We say that an
invisible point is enforced by a sequence of edges if at
least one edge of the sequence enforces that point.

We make this information explicit in the network by
labeling all edges with the set of points they enforce. For
instance, if an edge is labeled with the set {A,B,B}, it
means it enforces the upper bounds of A and B (noted A
and B), and the lower bound of B (noted B).

Procedure PODC is extended to initialize these labels.
Table 3 shows the extended transformations with the ad-
ditional labels (in red). For an invisible event B, the added
constraint inherits the label of the two constraints it orig-

5

inates from (the sets U and V) and has an additional pro-
jection B (resp. B) if it enforces the lower (resp. upper)
bound of B.

Conditions Added constraint
A B:x, U←−−−− B y, V←−−− C A x+y, U∪V ∪{B}←−−−−−−−−−− C
A B:x, U←−−−− B C:y, V←−−−− C A C:x+y, U∪V ∪{B}←−−−−−−−−−−−− C
A x, U←−−− B b:y, V←−−−− C A x+y, U∪V ∪{B}←−−−−−−−−−− C
A a:x, U←−−−− B b:y, V←−−−− C A c:x+y, U∪V ∪{B}←−−−−−−−−−−− C

Table 3: Added constraints due to an invisible point B,
with the labels propagated to track the points enforced by
edges.

We also extend the classical STNU reduction rules of
Table 1 as follow: if a reduction is triggered that produces
an edge e3 from two edges e1 and e2, then e3 is annotated
with the labels of both e1 and e2. Letϕ be an STNU issued
from the transformation by Table 3 of a POSTNU. If ϕ
is not DC then it necessarily has a “culprit” sequence of
edges (a semi-reducible negative cycle). This sequence,
denoted ϕCulprit, enforces invisible and hidden nodes in
XI and XH ; in the latter case it can give us observation
candidates.

Proposition 3. Let Ω = (XC , XI , XV , XH , C) be
a POSTNU without chained contingencies such that
PODC(XC , XI ∪XH , XV , C) is false, and ϕ be the cor-
responding STNU. If there is a sequence ϕCulprit that en-
forces both the upper and lower bounds of events in XH ,
then the observation of at least one such event is needed
to make Ω controllable. Otherwise Ω cannot be made con-
trollable.

Proof. Making Ω controllable requires a change in ϕ in
order to remove ϕCulprit. The only allowed changes re-
sult from observing events in XH . Observing an event A
means that edges labeled with A or A (and only those)
won’t be introduced in ϕ. Since the only edges that can
be removed are the ones labeled with a node in XH , then
if there is none (ϕCulprit enforces only nodes in XI) ϕ re-
mains non DC regardless of additional observations. Oth-
erwise the observation of at least one event in XH en-
forced by the sequence ϕCulprit is needed.

Let ϕ′ be a partial projection of ϕ defined as follows:
for every contingent link A [l,u]

==⇒ B where B has its lower

(a) A B C D
[0, 2] [0, 2] [0, 2]

(b) A B C D

b:0

B:−2

c:0

C:−2

2

0

(c) A C D

c:0, B

C:−4, B

2

0

(d) A B D

b:0

B:−2

2, C

−2, C

(e) A D

2, CB

−4, CB

Figure 6: (a) A POSTNU with two contingent points B
and C; its labelled distance graph (where requirement
edges are omitted for clarity) in different observability
cases: (b) both B and C are observable, (c) B is invisi-
ble, (d) C is invisible, (e) both B or C are invisible.

(resp. upper) and only its lower (resp. upper) bound en-
forced by ϕCulprit, we replace in ϕ′ this link by a new link
A

[l,l]
==⇒ B (resp. A [u,u]

==⇒ B). ϕ′ is essentially a version of
ϕ where the duration of all contingent links with only one
bound enforced by ϕCulprit is known in advance.

The main feature of ϕ′ is that it contains all edges of
ϕCulprit, making ϕ′ not DC. In ϕ′, complete knowledge of
events with just one enforced bound is not sufficient to re-
move the inconsistent sequence. Consequently, removing
the inconsistency requires at least one event with its two
bounds participating in ϕCulprit to be observed.

The OBSCANDIDATES function returns ∅ when there
is a sequence ϕCulprit (obtained when PODC is false)
which does not enforce the upper and lower bounds of
a node in XH . Otherwise it returns all such nodes.

Figure 6(e) gives an example of such an inconsistent
network. It was built by applying PODC to the network
of Figure 6(a) with B and C marked invisible. The edge
A 2, CB−−−−→ D states that the lower bounds of both B and
C require a delay from A to D of at most 2. The edge
A −4, CB←−−−−− D states that the upper bounds of both B
and C require a delay from A to D of at least 4. These

6

0

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200
Number of contingent events

R
un

tim
e

(m
s)

Figure 7: NEEDEDOBS runtime distribution on 2264 ran-
dom networks of 32 to 311 events in total, requiring 1 to
4 observations to be DC (median, first and third quartiles,
max and min); dashed line: gives the unfocused search
median runtime.

two edges will be detected as a culprit cycle that enforces
both the lower and upper bounds ofB andC. To make the
network controllable, at least one of B or C must be ob-
served. This would result in the STNUs of either Figures
6(c) and 6(d) which are both controllable.2

Figure 7 shows an empirical evaluation of the perfor-
mance of NEEDEDOBS on randomly generated POST-
NUs corresponding to typical planning domains with a
few hundred nodes and up to 200 contingent events.3 The
labeling technique speeds up the search by several orders
of magnitude over the naı̈ve approach. Indeed, NEEDE-
DOBS required on average 5 iterations, and as many calls
to DC-CHECK, to find a minimal set of observations.
Even on large networks, this number never exceeded 13.

5 Planning with a POSTNU
Our proposed approach and procedures PODC and
NEEDEDOBS can be integrated incrementally into a tem-
poral planner. Let us describe how this was done with

2Note that the network in Figure 6 has no chained contingencies.
3All tests were run on an Intel i7 processor with 4 GB RAM.

FAPE Dvořák et al. (2014), a constraint-based hierarchi-
cal temporal planner for the ANML language of Smith
et al. (2008).

FAPE searches a space of partial plans by fixing flaws
in a current partial plan until no flaw remains. Flaw are
for example unachieved goals, unrefined tasks or threads
to the consistency or causal relations of the plan.

To handle POSTNUs we need a way to refer to con-
tingent events and their sensing actions. We associate to
every observable contingent event x a boolean state vari-
able svx that is true when x can be observed. A sensing
action for x is any action that makes svx true, before and
during the entire interval of the expected occurrence time
of x. An observable event x is initially in XV if svx is
unconditionally always true.

Let Ωπ = (XC , XI , XV (π), XH(π), C) be the
POSTNU corresponding to a plan π as defined in sub-
section 4.1. A contingent event x is: (i) in XI if svx is
always false and there is no sensing action for x; (ii) in
XV (π) if svx is true over the interval of occurrence of x;
(iii) in XH(π) otherwise.

Controllability checks are incrementally integrated in
the planning procedure. When a partial plan π is selected
for expansion, NEEDEDOBS is run to determine whether
π requires additional observation to be made controllable.
If it does, a new flaw φ is introduced for π. φ has one
resolver for every minimal set of observations given by
NEEDEDOBS. This resolver contains, for every event x in
the observation set, an assertion requiring svx to be true
over the timespan of x.

When an assertion is added to a partial plan, an open
goal flaw is created: either (i) the assertion already holds
or can be made to hold with temporal or binding con-
straints, or (ii) the assertion does not hold. The latter is
handled by introducing a new enabling action, in our case
a sensing action, if one exists. Hence, the resolver ensures
that all necessary sensing actions end up in the plan. If
multiple sensing actions are available for an event, the
planner’s search will branch on this choice, as when solv-
ing an open goal.

This procedure adds incrementally the required sens-
ing actions while building the plan; it permits early back-
tracks when dead-ends are encountered. For the sake of
completeness, NEEDEDOBS is extended to give another
set of observations if the previous ones cannot be added
to the plan.

7

Let us go back to the issue of chained contingencies.
Contingent points in a plan are usually the end points or
the intermediate points of the agent own actions as well
as the expected events to be triggered by the environment
independently of its actions. The expectations regarding
the latter are often known with respect to absolute time
(e.g., periodic events), which rule out chained contingen-
cies. Expected events, supposed to occur regardless of
the agent activity, can seldom be defined with respect to
the end points of its actions. Further, two consecutive ac-
tions cannot make a chained contingency. Remains as a
case of such contingencies intermediate and final points
of actions. This case can be avoided by decomposing the
action or expressing the contingent constraints with re-
spect to the controllable point. If this is not convenient,
then NEEDEDOBS loses completeness but remains sound
and useful in practice. Finally let us note that for a net-
work with chained contingencies, if PODC is false even
when all observables are assumed visible (case 1 in sub-
section 4.1), then one can apply the filtering procedure of
Moffitt (2007) to possibly confirm that this network is not
controllable; but a negative output leaves the issue open.

A full presentation of FAPE and its performance is not
within the scope of this paper. However, to test our ap-
proach beyond the results on random POSTNUs, we run
it on FAPE on a simple logistics domain that has n areas.
In each area several contingent events of different types
occur. An event e produces an effect that holds for a given
amount of time. An agent can: (i) move between the ar-
eas, (ii) observe the occurrence of events in its area, and
(iii) handle an event by acting during the period its ef-
fect holds. Each problem instance has two agents and few
tasks corresponding to events that need be handled.

The planner is run on 192 randomly generated in-
stances of this domain. The typical solution involves a
few move actions of the agents and one handling action
per task. A handled event leads either to: (i) add a sensing
action to observe this event; (ii) add one or several sensing
actions to observe earlier events to provide enough infor-
mation; or (iii) no sensing action is needed. The planner
is able to identify which of these options is possible and
choose a desirable one appropriately.

Figure 8 shows the runtime distribution to plan prob-
lems having different number of tasks. More tasks result
in more actions in the final plan, which naturally increases
planning time. The planner spent on average 47.31%, and

0.1

1

10

60

2 4 6 8 10 12
Number of tasks

R
un

tim
e

(s
)

Figure 8: FAPE runtime distribution on 192 random in-
stances of a logistics domain with 8 to 200 contingent
events (isolated points are beyond the maximum plotted
by R).

at most 68%, of its processing time for identifying nec-
essary observations. Three problems were not solved for
a timeout of 60 seconds. On those problems, the limita-
tion was the heuristic of the planner that failed to provide
sufficient guidance, since our usual heuristics are not de-
signed to assess the specifics of partial observability. Be-
yond the quantitative measures, it is important to note that,
with a reasonable overhead, the planner was able to incre-
mentally identify the necessary observations to keep its
plan dynamically controllable. More importantly, this was
done while maintaining and extending the causal structure
of the plan to support the required sensing actions.

6 Conclusion
This paper presents a fairly comprehensive study of
temporal networks with partially observable contingent
events. The dynamic controllability of STNUs assumes
all contingent events to be observable. In many domains
they are not. However, the agent can observe them if it
takes adequate sensing actions, hence if it plans for those
actions.

We proposed a transformation of POSTNUs into
STNUs to determine their controllability using known
DC-CHECK algorithms. We formally proved PODC to
be sound; it is complete for an interesting subclass of net-
works. This advances the state of the art with respect to
the other known algorithm Moffitt (2007) which cannot
guarantee that a network is controllable.

8

Building on PODC, we proposed NEEDEDOBS for
finding a minimal set of observations that makes a
POSTNU controllable. We developed an edge labelling
mechanism that focuses NEEDEDOBS and demonstrated
formally its main property. Empirical tests show that
NEEDEDOBS remains efficient even on networks corre-
sponding to large plans.

We showed how the proposed approach can be inte-
grated incrementally to a temporal planner. The required
extensions to a constraint-based hierarchical planner were
briefly discussed, together with empirical results of our
implementation in a domain designed for testing our
POSTNU approach.

Finally, we believe that this paper opens an interest-
ing research perspective regarding partial observability,
beyond our present focus on its use in temporal plans.
Indeed, classical models of partially observable dynamic
systems consider only two categories of variables: invisi-
ble and observable. Our partition in three categories is es-
sential in most domains, since visibility is also a dynamic
property.

References
Barták, R., Morris, R., and Venable, B. (2014). An In-

troduction to Constraint-Based Temporal Reasoning.
Morgan & Claypool.

Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R.,
and Roveri, M. (2014). Sound and Complete Algo-
rithms for Checking the Dynamic Controllability of
Temporal Networks with Uncertainty, Disjunction and
Observation. In International Symposium on Temporal
Representation and Reasoning (TIME), pages 27–36.

Cimatti, A., Micheli, A., and Roveri, M. (2012a). Solv-
ing temporal problems using SMT: Strong controlla-
bility. In Proc. Int. Conf. Principles and Practice of
Constraint Programming (CP).

Cimatti, A., Micheli, A., and Roveri, M. (2012b). Solving
temporal problems using SMT: Weak controllability. In
Proc. AAAI.

Cimatti, A., Micheli, A., and Roveri, M. (2015). Strong
temporal planning with uncontrollable durations: a
state-space approach. In Proc. AAAI, pages 1–7.

Dvořák, F., Barták, R., Bit-Monnot, A., Ingrand, F., and
Ghallab, M. (2014). Planning and Acting with Tem-
poral and Hierarchical Decomposition Models. In In-
ternational Conference on Tools with Artificial Intelli-
gence (ICTAI), pages 115–121.

Hunsberger, L. (2015). New techniques for checking dy-
namic controllability of simple temporal networks with
uncertainty. In Agents and Artificial Intelligence, pages
170–193.

Hunsberger, L., Posenato, R., and Combi, C. (2015).
A Sound-and-Complete Propagation-Based Algorithm
for Checking the Dynamic Consistency of Conditional
Simple Temporal Networks. In International Sym-
posium on Temporal Representation and Reasoning
(TIME), pages 4–18.

Moffitt, M. D. (2007). On the Partial Observability of
Temporal Uncertainty. In Proc. AAAI, pages 1031–
1037.

Morris, P. (2014). Dynamic Controllability and Dispatch-
ability Relationships. In Integration of AI and OR
Techniques in Constraint Programming, volume 8451,
pages 464–479.

Morris, P. and Muscettola, N. (2005). Temporal Dynamic
Controllability Revisited. In Proc. AAAI, pages 1193–
1198.

Morris, P., Muscettola, N., and Vidal, T. (2001). Dynamic
control of plans with temporal uncertainty. In Proc.
IJCAI, pages 494–502.

Nilsson, M., Kvarnström, J., and Doherty, P. (2013). In-
cremental Dynamic Controllability Revisited. In Proc.
ICAPS, pages 337–341.

Nilsson, M., Kvarnström, J., and Doherty, P. (2014). In-
cremental dynamic controllability in cubic worst-case
time. In Int. Symp. on Temporal Representation and
Reasoning (TIME).

Shah, J. A., Stedl, J., Williams, B. C., and Robertson, P.
(2007). A Fast Incremental Algorithm for Maintaining
Dispatchability of Partially Controllable Plans. In Proc.
ICAPS, pages 296–303.

9

Smith, D. E., Frank, J., and Cushing, W. (2008). The
ANML language. In The ICAPS-08 Workshop on
Knowledge Engineering for Planning and Scheduling
(KEPS).

Stedl, J. and Williams, B. (2005). A fast incremental dy-
namic controllability algorithm. In Proc. ICAPS Wksp.
on Plan Execution.

Tsamardinos, I., Muscettola, N., and Morris, P. (1998).
Fast transformation of temporal plans for efficient exe-
cution. In Proc. AAAI.

Vidal, T. and Fargier, H. (1999). Handling contingency in
temporal constraint networks: from consistency to con-
trollabilities. J. Experimental & Theoretical Artificial
Intelligence.

Vidal, T. and Ghallab, M. (1996). Dealing with uncertain
durations in temporal constraints networks dedicated to
planning. In Proc. ECAI, pages 48–52.

10

	Introduction
	Related Work
	Checking the controllability of a POSTNU
	Background
	Transforming a POSTNU into an STNU

	Finding what to observe in a POSTNU
	Needed Observations
	Finding relevant candidates for observation

	Planning with a POSTNU
	Conclusion

