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Real-Time Estimation of Vehicle’s Lateral
Dynamics at Inclined Road Employing Extended
Kalman Filter

Kun Jiang, Alessandro Corréa Victorino, Ali Charara

Abstract—In order to enhance road safety, this article presents
a robust methodology for estimation of vehicle’s lateral dynamics
states, including velocities, sideslip angles, accelerations and tire
forces. Awareness of vehicle dynamics states is essential for most
intelligent vehicle control systems. However some of these states
are not available by direct sensor measurement for technical
and economical reasons. Even those available sensors are always
coupled with noises or errors. In order to become reliable,
many intelligent systems use very expensive sensors, which are
not available for ordinary passenger cars. Therefore, it is quite
interesting to have an accurate estimation of all dynamics states
based on low-cost sensors. The main contribution of this article is
providing a reliable estimator of vehicle dynamics states in pres-
ence of sensor noises and irregular roads. A best-wheel selection
approach is applied in order to have a better understanding
of vehicle’s driving situation and enable us to select the best
models for estimating dynamics states. The proposed estimator
is based on the algorithm of extended Kalman Filter, which could
minimize the variance of estimation errors. The estimator is
implemented in our experimental vehicles and tested at banked
track. Experimental results validate and prove the feasibility of
this approach.

I. INTRODUCTION

Accurate knowledge of vehicle dynamics states (such as
velocities, yaw rate, sideslip angle and wheel ground forces)
is essential for advanced driver assistance systems (ADAS),
such as adaptive cruise control (ACC), electric stability control
(ESC). The control of longitudinal and lateral dynamics stabil-
ity can be realized by longitudinal speed control and yaw rate
control. The longitudinal speed and yaw rate can be measured
directly, thus the control signal could be obtained easily [2,3].
However, a system directly controlled by measurement will
be probably unstable. The measurement may contain lots
of undesired noises and errors. Moreover, the measurement
usually cannot cover all the dynamics states of vehicle. In
this situation, due to incorrect and inadequate comprehension
of vehicle dynamics states, the control system is not able to
make the best decisions to ensure vehicle’s safety.

Consequently, the objective of this paper is to develop a
robust estimator to provide more accurate and more detailed
information about vehicle dynamics states than the direct
measurement. The dynamics states to be observed include
longitudinal speeds, lateral speeds, yaw rate, tire forces and
the sideslip angle of vehicle.
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Vehicle longitudinal speed sometimes could be regarded
as wheel speed, which is measured by wheel speed sensors.
Nevertheless, wheel speeds could become unrelated to the
vehicle velocity when driving in slippery conditions. In order
to compensate the errors caused by wheel slip, GPS signal is
used to correct the data of wheel speed sensor as a fusion of
data [4-7,9]. Besides the longitudinal speed, sideslip angle is
also an important parameter to describe vehicle dynamics. The
higher the sideslip angle is, the more easily drift out happens
for a vehicle, especially on a low friction road. As a result,
the sideslip angle has been used in many control system to
improve stability. Two common techniques to estimate vehicle
sideslip angle are to directly integrate inertial sensors and to
use a physical vehicle model [5,6].

a) Integration: According to kinematic motion of vehi-
cle, the derivative of sideslip angle is a function of lateral
acceleration and vehicle velocities, as shown in Equation (1).
The advantage of the direct integration method is based on the
independence of tire properties, road friction and other vehicle
parameters. Nevertheless, the sensor error will be accumulated
in the integration process especially for the lateral acceleration
signal, which is easily influenced by some internal and external
factors. ) a '
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where a, is the lateral acceleration, V,, is the longitudinal
velocity, w is the yaw rate and .44 is the sideslip angle of
vehicle at center of gravity (COG).

b) Physical model: The physical model based approach
is to estimate the sideslip angle according to the physical
vehicle dynamics models. The role of the vehicle dynamics
model is to extract the useful information (such as the sideslip
angle) from the measurements. The accuracy of this approach
is greatly affected by the quality of the dynamics models.
In the application, the commonly-used dynamics model is
usually a greatly simplified description of the complex vehicle
behaviors. The variation of road condition and other vehicle
parameters is not taken into account. As a consequent, the
model errors is hardly avoidable. A typical vehicle dynamics
model is the bicycle model, illustrated in Figure 1.

In order to circumvent the shortcomings of direct inte-
gration method and the model-based method, it is necessary
to employ sensor fusion. In this way, the dynamics state of
vehicle is estimated by the combination of physical model
and integration method. Furthermore, during the sensor fusion
process, different vehicle dynamics models and sensors can be



combined to provide a robust estimation. As published in [3],
the longitudinal speed is estimated by combining wheel speed
sensors and wheel torque sensors. The sensor fusion process
can be generally concluded as a process to attribute different
weightings or confidence to the measurement of each sensor.
The Kalman filter is the most widely-used algorithm to realize
the sensor fusion for estimation of vehicle dynamics states.
Extended Kalman filter is implemented in [10] to estimate
tire/road forces. Dual Kalman filter is proposed in [11] for the
estimation of side slip angle and steering stiffness. Particle
filter methodology is employed for the sideslip angle in [8].

Until today, developing an accurate estimators for vehicle
dynamics states is still a very challenging research topic. That
is due to two aspects: 1) the need of an accurate and also sim-
ple dynamics model; 2) the need of a robust and time-efficient
data processing technique to eliminate unpredictable sensor
errors. The main contribution of this paper is to improve the
performance of our estimator in both of the two aspects. For
the aspect of vehicle modeling, we employed a non-linear tire
model and the double track vehicle model, illustrated in Figure
1. Moreover, we have taken into account the vehicle’s pitch-
roll movements and road inclination (both road bank angle and
slope angle). For the other aspect, we proposed a best-wheel
selection algorithm and combined with the Extended Kalman
filter to facilitate the sensor fusion process. In general, we
proposed a robust algorithm for real-time estimation of vehicle
dynamics states in presence of sensor errors, road angles
and tire slips. To evaluate the performance of our estimators,
the proposed algorithm is implemented in our experimental
vehicle DYNA, a Peugeot 308 [8], as shown in Figure 4.

This paper is organized as follows. Section 2 presents the
construction of our proposed estimator. Section 3 introduces
the experimental vehicles. Then, experiment results are de-
scribed in Section 4. Finally, concluding remarks and future
perspectives are given in Section 5.

II. ROBUST ESTIMATION OF VEHICLE’S LATERAL
DYNAMICS STATES

In the literature, the estimator of dynamics states is devel-
oped based on the assumption that the inertial sensors are
always available. In our context, the sensor failure may occurs.
Therefore, the value of acceleration, yaw velocity and linear
speed should be estimated with models rather than obtained
directly by the measurement. For the simplicity and efficiency,
the vehicle dynamics model is divided into 5 subsystems,
represented by the 5 blocks in Figure 2. For each of the
subsystem, we have developed a Kalman filter to optimize the
estimation. The 5 blocks are the pitch-roll angle estimator, the
accelerations estimator, the road angle estimator, the velocity
estimator and the sideslip angle estimator. The advantage of
using 5 Kalman filters is to make the observer more robust,
even in presence of sensor errors. The estimation of pitch-roll
angle, road angle and velocities are presented in our previous
work [1]. In this article, we focus on the robust estimation
of lateral dynamics, especially the side slip angles and lateral
tire forces. To clearly present the modification we proposed,
we concluded our work as two parts: the best wheel selection
algorithm and the EKF based sensor fusion algorithm.
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Figure 1. Bicycle Model and Double track model
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Figure 2. Algorithm overview

A. Best-wheel selection

To begin with, we remind that the sideslip angle B..4 is
defined by the Equation (2). Then according to this definition
and the double track model, the tire slip angle at each wheel
(ayi, afr, i, o) can be calculated by Equation (3).

Beog = arctan( &) 2)
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where v, v, are the lateral and longitudinal speed at COG,
d; , 9, are the steering angle of front left and right wheel
respectively, the index g; refers to the front left wheel.

Direct measurement of (.., or v, is not available in the
ordinary cars. However, the tire slip angle (o, gy, Qi Otpy)
could be estimated with tire models, as introduced in [5] [9].
Thus the problem of estimation of sideslip angle at COG (
Beog) is transferred into the estimation of tire slip angle at
each wheel. Theoretically, all the four tire slip angles can be
computed with the tire models, but when the tire slip angle is
large, the tire model become very non-linear and less accurate.
Therefore, it is better to choose a best-wheel among the four
wheels to compute the sideslip angle at COG B.4. The best
wheel in our context means the wheel with the smallest lateral
side slip. The mathematical criterion of selecting the best-
wheel is represented by Equation (4)
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where Sy i the sideslip angle at COG estimated by the
best wheel approach, oy is the slip angles of front tires , «
is the slip angle of rear tires, § is the average steering angle,
€ is a constant parameter.

When the front wheels are laterally slipping, the vehicle
will be under-steering, § — % > (. As a result, the sideslip
angle at COG should be compluted with rear wheel slip angles.
Otherwise, when the rear wheels are laterally slipping, the
vehicle will be over-steering, § — i—w < 0, sideslip angle
should be calculated by front wheels. The best wheel approach
could eliminate the estimation errors caused by tire slip, due
to that the slipping wheel is not used in the estimation. Only
the wheel under small slip is chosen for further estimation.
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B. Extended Kalman filter based sensor fusion

Even though the tire slip angle of the best-wheel is small,
it is still challenging to accurately calculate its value, as
many factors could influence the tire performance, such as
temperature or humidity. In the literature, the linear tire model
is employed. In order to take into account the non-linearity
and the impact of vertical load, we chose the non-linear tire
model, Dugoff model, as shown in Equation (5) and illustrated
by Figure 3.

Fy=Catis fOV)
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where A indicates the tire slip situation, for more details, the
reader may refer to [8].
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Figure 3. Dugoff lateral force model characteristics

The Figure 3 also explains why we should chose the small
slip wheel. When the excessive slip occurs, the tire force can
hardly reflect the value of slip angle.

The static tire lateral forces are obtained based on the yaw
dynamics and bicycle model, as expressed by Equation (6).

oI, Lysind Licosd —Lo Foy
MyGy | = sin § cosd 1 Fyy
MUy cos —sind 0 Fy,
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(6)

However, the tire lateral forces are not generated instanta-
neously. Thus the transient tire model is employed to further
improve the accuracy of estimation, depicted by Equation (7).
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where ﬁy‘f and F'y, are static lateral tire forces calculated
by Dugoff models, pi1, po are estimator parameters and con-
figured by experiments.

Substituting the Equation (5, 6, 7) into (4) generates the
sideslip angle at CDG, which is noted as [p.s¢. The advantage
of best-wheel approach is the ability of estimating sideslip
angle without integration. However, the estimation is based on
simplified tire models, the model errors should not be ignored.
Therefore, we employed the EKF algorithm to combine all
these estimation methods and models as a sensor fusion. The
Kalman filter for estimating sideslip angle can be written as:

Be _ 0 0 ﬂcd ] 1 Gy —gsin @, ;
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where ay, @, , v, 7,[), , are estimated in former blocks,
and therefore used as constant values in this block.

] + cov(noise)



III. EXPERIMENTAL VEHICLE
A. Vehicle description

In this section we present the sensors and onboard acqui-
sition system architecture of our experimental vehicle. The
experimental vehicle DYNA, a Peugeot 308sw as shown in
Figure 4, is instrumented by the laboratory HEUDIASYC
UMR 7253 CNRS at Compiegne, France. This experimental
platform is dedicated to validate the algorithm of estimating
vehicle dynamics and the embedded real-time systems. All
experimental data in this article is acquired by this system.
The sensors we used could be generally classified as two
categories, sensors used for validation and sensors used for
input of the estimator.
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Figure 4. Experimental vehicle DYNA, equipped with different sensors

Sensors used for validation:

CORREVIT S-400: Non-Contact Optical Sensor for mea-
surement of lateral speed and sideslip angle. The sensor is
installed at place of the spare wheel under the car.

Kistler RoaDyn S625 wheel force transducers: It’s able to
measure all the tire-road contact forces and wheel torques in
three dimensions. Four wheel force sensors are fixed at each
wheel. These sensors are very expensive for ordinary cars. It
is noted that they are used only for reference.

A scenario record camera is used to register the vehicle
trajectory.

Sensors used for input measures:

CROSSBOWVGT700AB: It combines MEMSIC’s high per-
formance fiber optic gyros with silicon micro-machined
(MEMS) accelerometer technology. It could provide a highly
accurate measurement of Vertical Gyro (VG) and Inertial
parameters.

CORRSYS-DATRON HT500: it is a non contact distance
sensor. It provides measurement of the deflection between
chassis and ground. They are installed respectively at four
corners of vehicle body.

Available data on CAN bus: wheel rotation velocity, engine
speed, yaw rate, brake pressure, lateral acceleration from the
ESP, steering wheel angle. And a low-cost GPS.

These devices are located in the trunk of the car with the
electric circuit system as shown in Figure 5. The monitoring
equipment is located on the back left seat. The operator can
manipulate the configuration of the system with a monitor and
keyboard.

Figure 5. Embedded electronics and computer in the trunk

Sensor data should be sent to a computer which has installed
the estimation algorithm. However, some of these sensors
cannot be directly connected to the computer. Therefore we
developed an acquisition system based on the UEI PowerDNA
Ethernet DAQ Cube to fulfill the task. It is capable of acquiring
48 analog channels using a 24-bit converter [8]. It consists of
a computer UEI powered by a 200 MHz PowerPC processor
running a real-time operating system Xenomai. The Xenomai
is a real-time development framework cooperating with the
Linux kernel. The software provides data acquisition by using
the analog cards AI-217, shown in Figure 6. Digital filters with
different cut-off frequency are installed in the cube to cut off
high frequency noise. The acquisition frequency of the cube
is 4 kHz, while the data is sent back in 200 Hz.
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Figure 6. The structure of the acquisition system

B. Software modules

This car is equipped with an industrial PC in the trunk. A
particular prototyping environment, PACPUS!, is developed in
C/C++ for the real time estimation system. Following the prin-
ciple of component-oriented design, PACPUS provides users
more versatility in their developments. Different components
of PACPUS are developed in our work to fulfill different
tasks. For instance, we develop the component “CubeClient”
for the task of communication between the cube and the
PC. The component is devoted to the task of sending the
request, receiving the UDP packet and then decoding the
UDP packet. Then the data is sent to the component of
vehicle dynamics estimation. Similarly, the components for
management of the other sensors are also constructed in our
work. The estimation algorithm is developed in the .DLL form
as a real-time application. The framework PACPUS employs
the Qt API for graphical interfaces and can be integrated with

'The framework PACPUS is an open source with free license CeCILL-C.
It is available at https://devel.hds.utc.fr/software/pacpus/wiki



other development environment for multi-sensor fusion. The
schema of PACPUS is shown in Figure 7.

PC

PacpusSensor

-Video
-CrossbowComponent
-CANGateway
-CubeUDP
-CUbeComponent

Shared Memory

Serial port
- CAN bus
+ Analogue

VehDynEstimation
-EKFObserver
-PFObserver

VehDynAnticipation
-Anticipation
-HMI

-GraphDisplay

Ethernet

Software

Figure 7. Software architecture of acquisition system and estimation system

IV. EXPERIMENTAL RESULTS
A. Experimental results of slalom test at flat ground

The experiments are conducted at a professional vehicle
testing ground, UTAC CERAM. Two slalom tests are imple-
mented at flat ground and banked track respectively. During
the slalom test at plat ground, the speed is about 60 km/h,
the steering angle range is from -200 to 200 degree, as
shown in Figure 8. Estimation of vehicle lateral dynamics at
a slalom test is very challenging due to the dramatic variation
of vehicle behaviors. Nevertheless, our proposed estimator still
provides estimation with satisfactory accuracy and shows good
robustness in presence of sensor noises.
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Figure 8. Description of Test 1: slalom test at flat ground
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Figure 9. Estimation of road angles. This test is at plat ground, the real value
of road angle is close to zero.
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Figure 9 shows the result of estimated road angles. The
slalom behavior introduced disturbance into the road angle
estimation. By using only inertial sensors, the estimation with
an error of 5 degree is acceptable. Further improvement can
be achieved by fusion with a precise 3D map. Figure 10 shows
the estimation of yaw rate and heading angle in presence of
GPS errors. The estimated lateral dynamic states are illustrated
in Figure 11. The average estimation error is about 3%.

B. Experimental results of slalom test at banked track

Another test is conducted at banked high speed track. In
the testing circuit, there are three parallel tracks: high, middle
and low track. According to the information provided by
UTAC CERAM, we know the bank angles at high, middle
and low track are about 40 degree, 30 degree and 15 degree
respectively. In order to hold stable at banked track, the



vehicle speed reached 135 km/h, as shown in Figure 12. A
slalom behavior is implemented by continuously changing
from high track to low track. The estimation results of road
angles are shown by Figure 13. When t=80s-90s, the vehicle
keeps stable at low track, the estimation result is satisfactory.
When the vehicle begins to do the slalom behavior, road angle
estimation is disturbed but still correctly indicate the variation
of road geometry. The lateral tire forces and sideslip angle are
illustrated in Figure 14. The average estimation error is about
9%.

V. CONCLUSIONS AND PROSPECTS

This paper has presented a new algorithm to estimate vehicle
dynamics states, in presence of road angles and sensor errors.
To reduce the dynamics model errors, we employed the non
linear tire model and modified the double track model by
taking into account the road inclination. We also developed
an algorithm to detect excessive wheel slip and select the
best wheel for estimation of side slip angle. In this way, the
estimator stay robust even one wheel is undergoing excessive
slip. Furthermore, we employed the extended Kalman filter to
combine the estimation results of different approaches, which
can be regarded as a process of sensor fusion. Experimental
results are presented to evaluate the performance of the new
observer.

In the future study, we will focus on improving estimation
accuracy with a precise digital map.
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Figure 12. Description of Test 2: slalom test at banked track
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