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NON-ACCRETIVE SCHRÖDINGER OPERATORS AND

EXPONENTIAL DECAY OF THEIR EIGENFUNCTIONS

D. KREJČIŘÍK, N. RAYMOND, J. ROYER, AND P. SIEGL

Abstract. We consider non-self-adjoint electromagnetic Schrödinger operators on
arbitrary open sets with complex scalar potentials whose real part is not necessarily
bounded from below. Under a suitable sufficient condition on the electromagnetic
potential, we introduce a Dirichlet realisation as a closed densely defined operator with
non-empty resolvent set and show that the eigenfunctions corresponding to discrete
eigenvalues satisfy an Agmon-type exponential decay.

1. Introduction

1.1. Context and motivation. We consider the electromagnetic Schrödinger operator

(−i∇ +A)2 + V in L2(Ω) , (1.1)

subject to Dirichlet boundary conditions on ∂Ω, where Ω is an arbitrary open subset
of Rd. The functions V : Ω → C and A : Ω → R

d are the scalar (electric) and vector
(magnetic) potentials, respectively.

If d = 3 and V is real-valued, the self-adjoint Dirichlet realisation of (1.1) is the
Hamiltonian of a quantum particle constrained to a nanostructure Ω and subjected to
an external electromagnetic field (− grad V,− rotA). The literature on the subject is
enormous and we restrict ourselves to referring to the recent book [Ray16] with an
extensive bibliography.

Although complex-valued potentials V have appeared in quantum theory from its
early years, too, notably in the context of effective Hamiltonians for open systems (see,
e.g., [Exn85]) and resonances (see [AAD01] for a more recent study), the corresponding
spectral theory is much less developed. The interest in non-self-adjoint Schrödinger op-
erators have been renewed at the turn of the millenium with the advent of the so-called
quasi-Hermitian quantum mechanics (see [KS15] for a mathematically oriented review).
There are also motivations in other areas of physics, for instance, superconductivity
(see [AH14] for a mathematical treatement) and optics with a number of recent exper-
iments (see, e.g., [RBM+12]). Finally, Schrödinger operators with potentials having a
complex coupling constant (in fact spectral parameter) appear naturally in the study of
the damped wave equation (see, e.g., [Sjö00, BR14]).

1.2. About the main results. Our main result is the Agmon-type exponential decay
of eigenfunctions corresponding to discrete eigenvalues of (1.1), cf. Theorem 2.8, which
can be viewed as a non self-adjoint version of the Agmon-Persson estimates, see [Per60,
Agm85]. We emphasise that the decay is not an effect of the positive part of ReV
since it may be absent, or even worse, ReV is allowed to be negative and unbounded at
infinity.

Key words and phrases. Schrödinger operators, complex potentials, Agmon estimates, domain
separation.
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1.2.1. A sufficient condition to define the operator. The first problem that we tackle in
our analysis is finding of a Dirichlet realisation of (1.1) with non-empty resolvent set.
This is not a trivial task as we do not restrict the signs of ReV and ImV and so the
standard sectorial form techniques of [Kat66, Sec. VI.2.1] are not available.

A simple example one should have in mind is

−
d2

dx2
− x2 + ix3 in L2(R) , (1.2)

for which the numerical range covers the whole complex plane. Due to the latter, even
the Kato’s theorem for accretive Schrödinger operators, based on Kato’s distributional
inequality [EE87, Sec. VII.2], is not applicable immediately1. Here we can even go
beyond operators like (1.2) for which the suitable Dirichlet realisation can be actually
found by available methods in [AH15, BST15]. We allow much wilder behaviour of V in
terms of the possible growth at infinity and oscillations. In more detail, we essentially
require that (cf. Assumption 2.1 and Proposition 2.2)

|∇V (x)|+ |∇B(x)| = o
(
(|V (x)|+ |B(x)|)

3

2 + 1
)
, (1.3)

(ReV (x))− = o
(
|V (x)|+ |B(x)|+ 1

)
, (1.4)

as |x| → ∞, where (ReV )− is the negative part of ReV and B := dA is the magnetic
matrix.

The condition (1.4) puts restrictions on the size of (ReV )− which in fact represents
a “small” perturbation of an m-accretive operator (1.1) with V replaced by (ReV )+ +
i ImV . Notice however, that (ReV )− can be compensated not only by ImV , but also
by the magnetic field. In a different context (absence of eigenvalues), a certain analogy
between the magnetic field and ImV was observed in [FKV16].

1.2.2. About the power 3
2 . The power 3

2 in the condition (1.3) is an improvement compar-
ing to [AH15, BST15] where the power 1 is assumed; in these references (where (1.2) fits
already), a big-O instead of the little-o is used. In the present paper, we can therefore
treat examples like

−
d2

dx2
− ex

2

+ iex
4

in L2(R) . (1.5)

Moreover, we show in Theorem 2.4 that the operator domain of the found realisation
of (1.1) possesses a very convenient separation property, namely

Dom((−i∇ +A)2 + V ) = Dom((−i∇ +A)2) ∩ Dom(V ) . (1.6)

The power 3
2 in (1.3) is not a coincidence as it is known to be optimal (with little-o

replaced by a sufficiently small constant in (1.3)) with respect to the separation property
in the self-adjoint case [EZ78, EG78, BH99] (see also [Duf83], [HM88] in the magnetic
case).

1.2.3. Weighted coercivity. Our approach for proving all the results of this paper is
based on the generalised Lax-Milgram-type theorem of Almog and Helffer [AH15] in-
volving a new idea of weighted coercivity, which can be viewed as a generalisation of the
T-coercivity (see for instance [BBDCZ10, Def. 2.1]). While from the point of view of ab-
stract Lax-Milgram or representation theorems, an optimal “if and only if” condition for
m-accretivity was found in the recent work [tESV15, Thm. 4.2], the weighted coercivity
of Theorem 3.3 makes such abstract results directly applicable for (1.1). Moreover, the
present paper reveals a connection between weighted coercivity and exponential decay
of eigenfunctions stated in Theorem 2.8.

1Note that, in special self-adjoint settings, however, interesting alternative approaches can be found
in the literature. For instance, in [GKMV13], representation theorems for indefinite quadratic forms are
established and can be used to define certain self-adjoint operators possibly unbounded from below.
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1.3. Examples of applications. Besides the independent interest of our results, we
indicate below two connections to other recent works, both when |V | is confining so
that the resolvent of (1.1) is compact (see Proposition 2.5). The first one concerns the
completeness of eigensystem of (1.1), the second one the rates of eigenvalue convergence
of domain truncations.

1.3.1. Eigensystem completeness. The crucial ingredient in a natural proof of the eigen-
system completeness is the fundamental result of operator theory (see, e.g., [DS88,
Cor. XI.9.31]) combining the p-Schatten class property of the resolvent and a control
of the resolvent norm on a sufficient number of rays in C; for operators like (1.1), this
approach was followed in [SK12, AH15]. We indicate how the completeness results can
be extended to operators satisfying weaker conditions (1.3) only. Our domain separation
and the graph norm estimate (cf. Theorem 2.4), the second resolvent identity and the
ideal property of Schatten classes show that the resolvent of (1.1) is in the p-Schatten
class (0 < p < ∞) if and only if the resolvent of the self-adjoint (1.1) with V replaced
by |V | is in the p-Schatten class; to obtain the value of p depending on V and A, cri-
teria of the type [AH15, Thm. 1.3] can be applied. To have the control of the resolvent
norm on rays in C, we can use the standard bound (1 over the distance to the numerical
range) if (1.1) is at least accretive and, in the non-accretive case, the perturbation result
[Kat66, Thm. IV.3.17] with viewing (ReV )− as a relatively bounded perturbation of an
m-accretive operator (1.1) with V replaced by (ReV )+ + i ImV (see [BST15, Prop. 2.4
(iv)] for details on such an approach).

1.3.2. Domain truncation. It was proved in [BST15] that eigenvalues of (1.1) on R
d

with A = 0 and V satisfying (stronger) conditions of the type (1.3)–(1.4), see [BST15,
Asm. II], can be approximated without pollution by the eigenvalues of (1.1) truncated
to a sequence of expanding domains, e.g. balls, and subject to Dirichlet boundary con-
ditions. The rate of convergence for a given eigenvalue or (1.1) on R

d was estimated by
the decay rate of the corresponding eigenfunctions (and generalised eigenfunctions in the
case of Jordan blocks) at infinity (see [BST15, Thm. 5.2]). Our Agmon-type estimate,
cf. Theorem 2.8 and Remark 2.9, shows that this convergence is exponential which vastly
generalises known facts for complex polynomial potentials (see, e.g., [Sib75, CGR10]).

1.4. Organisation of the paper. In Section 2, we summarise our main results. The
definition of (1.1) as a closed densely defined operator together with a convenient char-
acterisation of the operator domain is performed in Section 3. The spectral properties
are established in Section 4. At the end of the paper, we attach Appendix A with
elements of spectral theory related to the present study.

2. Main results

2.1. Assumptions. Let Ω be a non-empty open (possibly unbounded) subset of Rd,
d > 1. Another standing assumption of this paper is that the electromagnetic potentials
satisfy

(V,A) ∈ C1(Ω;C)× C2(Ω;Rd) .

This smoothness hypothesis is technically convenient, but it is definitely far from being
optimal for the applicability of our techniques and the validity of the obtained results.
We write V = V1 + iV2 where V1 and V2 are real-valued. Associated with the vector
potential A, we consider the magnetic (skew-symmetric) matrix

B = (Bjk)
d
j,k=1 , Bjk := ∂jAk − ∂kAj = i[Pj , Pk] , (2.1)

where Pℓ := −i∂ℓ +Aℓ.
As in [AH15], let us introduce functions

Φ :=
V2

mB,V
and Ψ :=

B

mB,V
, (2.2)
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where

mB,V :=

√
1 + |B|2 + |V |2 .

Here |V (x)| denotes the usual norm of a complex number, while we use

|B(x)| :=

√√√√
d∑

j,k=1

Bjk(x)2 , |∇B(x)| :=

√√√√
d∑

j,k=1

|∇Bjk(x)|
2 ,

where |∇Bjk(x)| is now the usual Euclidean norm of a vector in R
d. Finally, given a

real-valued function a, we adopt the standard notation a± := max(±a, 0).
With these notations, the main hypothesis of this paper reads:

Assumption 2.1. There exist constants γ1 > 0 and γ2 ∈ R such that

V 2
2 + 1

12d |B|2

mB,V
+ V1 − 9

(
|∇Φ|2 + |∇Ψ|2

)
> γ1|V | − γ2 . (2.3)

On the left-hand side in (2.3), the first term is non-negative, the last bracket gives
a non-positive contribution and V1 has no sign a priori. If V1 is bounded from below,
then we only have to control the last term to obtain the required inequality. The point
is that V2 or B can be used to control the non-positive contribution of V1.

Assumption 2.1 is easily checked to hold for (1.2). A sufficient condition for the
validity of Assumption 2.1 is contained in the following proposition.

Proposition 2.2. We assume

|∇V (x)|+ |∇B(x)| = o
(
m

3

2

B,V (x)
)
, (2.4)

(V1)− (x) = o
(
mB,V (x)

)
, (2.5)

as |x| → +∞. Then Assumption 2.1 is satisfied.

2.2. Definition of the operator. First we introduce the usual magnetic Sobolev space

H1
A(Ω) := {u ∈ L2(Ω) : (−i∇+A)u ∈ L2(Ω)} ,

equipped with the norm

‖u‖H1
A
(Ω) :=

√
‖u‖2 + ‖(−i∇ +A)u‖2 .

Here ‖ · ‖ denotes the norm of L2(Ω) and the associated inner product will be denoted
by 〈·, ·〉. We also introduce the subspace H1

A,0(Ω) defined as the closure of C∞
0 (Ω) for

the norm ‖ · ‖H1
A
(Ω). Then we can introduce our variational space as

V :=
{
u ∈ H1

A,0(Ω) : |V |
1

2 u ∈ L2(Ω)
}
,

equipped with the norm

‖u‖
V
:=

√
‖u‖2H1

A
(Ω) +

∫

Ω
|V | |u|2 dx ,

with respect to which V is complete.
We introduce a sesquilinear form

Q(u, v) := 〈(−i∇ +A)u, (−i∇ +A)v〉+

∫

Ω
V uv dx , Dom(Q) := V .

For u, v ∈ C∞
0 (Ω), a dense subspace of V , we have

Q(u, v) =
〈
(−i∇ +A)2u+ V u, v

〉
,

so Q is the form naturally associated with (1.1). If V were such that Q was sectorial,
then Q would be closed and it would give rise to an m-sectorial operator by Kato’s rep-
resentation theorem [Kat66, Thm. VI.2.1]. In our general setting (where the numerical
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range of Q is allowed to be the whole complex plane), however, there is no general repre-
sentation theorem and even the notion of closedness for forms is not standard. Anyway,
we are still allowed to introduce an operator L by the Riesz theorem

∀u ∈ Dom(L ), ∀v ∈ V , Q(u, v) =: 〈L u, v〉 , (2.6)

where

Dom(L ) :=
{
v ∈ V : u 7→ Q(u, v) is continuous on V for the norm of L2(Ω)

}
. (2.7)

The following theorem shows that such a defined operator L shares all the nice
properties of operators introduced by the standard representation theorem. The proof
is based on the new abstract representation theorem of Almog and Helffer (see [AH15,
Thm. 2.2], reproduced below as Theorem 3.2).

Theorem 2.3. Suppose Assumption 2.1. The following properties hold:

(i) Dom(L ) is dense in H,
(ii) L is closed,
(iii) the resolvent set of L is not empty.

Furthermore, we have the following description of the domain of L .

Theorem 2.4. Let (2.4) and (2.5) hold. Then we have

Dom(L ) =
{
u ∈ V : (−i∇ +A)2u ∈ L2(Ω) ∧ V u ∈ L2(Ω)

}
.

Moreover, for all δ > 0, there exists Cδ > 0 such that, for all u ∈ Dom(L ),

‖L u‖2 > (1− δ)
(
‖(−i∇ +A)2u‖2 + ‖V u‖2

)
− Cδ‖u‖

2. (2.8)

2.3. Spectral properties. The reader may wish to consult Appendix A, where we
recall basic definitions related to the spectrum and Fredholm properties.

First of all, we give a sufficient condition for L to have a purely discrete spectrum.

Proposition 2.5. Suppose Assumption 2.1. If

lim
|x|→+∞

|V (x)| = +∞ , (2.9)

then L is an operator with compact resolvent.

In general, we give an estimate on the location of the essential spectrum. To this
purpose, let us introduce the quantity (which is either a finite non-negative number or
infinity)

V∞ := lim inf
|x|→+∞

|V (x)| ,

and the following family of subsets of the complex plane:

ρc := {µ ∈ C : −c− Reµ− |Imµ| > 0} ,

where c is any real number.

Theorem 2.6. Suppose Assumption 2.1. We have

ργ2 ⊂ ρ(L ) . (2.10)

Moreover, assuming that V∞ is positive, we have

ργ2 ⊂ ργ2−γ1V̌∞

⊂ Fred0(L ) (2.11)

for all V̌∞ ∈ (0, V∞). The spectrum of L contained in ργ2−γ1V̌∞

, if it exists, is formed
by isolated eigenvalues with finite algebraic multiplicity.

Remark 2.7. When V∞ = +∞, we recover from Theorem 2.6 the result of Proposi-
tion 2.5.
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Finally, we state our main result. It shows in particular that the discrete spectrum in
the region ργ2−γ1V̌∞

is associated with exponentially decaying eigenfunctions and that
this decay may be estimated in terms of an Agmon-type distance.

Theorem 2.8. Suppose Assumption 2.1. Let us assume that sp(L )∩ργ2−γ1V̌∞

6= ∅ and
consider λ in this set. Let us define the metric

g(x) := (γ1|V (x)| − Re (λ)− |Im (λ)| − γ2)+ dx2 ,

and the corresponding Agmon distance (to any fixed point of Ω) dAg(x) that satisfies

|∇dAg|
2 = (γ1|V | − Re (λ)− |Im (λ)| − γ2)+ . (2.12)

Pick up any ε ∈ (0, 1). If ψ is an eigenfunction associated with λ, we have

e
1−ε

3
dAg ψ ∈ L2(Ω) . (2.13)

The same conclusion holds for all ψ in the algebraic eigenspace associated with λ.

Remark 2.9. If there exist R > 0 and γ > 0 such that,

∀|x| > R , γ1|V | − Re (λ)− |Im (λ)| − γ2 > γ ,

then there exists M > 0 such that, in this region, dAg(x) > γ |x| −M .

3. Weighted coercivity and representation theorems

The main objective of this section is to prove Theorems 2.3 and 2.4.

3.1. Two abstract representation theorems. We first recall the following gener-
alised representation theorems from [AH15].

Theorem 3.1 ([AH15, Thm. 2.1]). Let V be a Hilbert space. Let Q be a continuous
sesquilinear form on V ×V. Assume that there exist Φ1,Φ2 ∈ L(V) and α > 0 such that
for all u ∈ V we have

|Q(u, u)| + |Q(Φ1(u), u)| > α ‖u‖2V ,

|Q(u, u)| + |Q(u,Φ2(u))| > α ‖u‖2V .

The operator A defined by

∀u, v ∈ V, Q(u, v) = 〈A u, v〉V

is a continuous isomorphism of V onto V with bounded inverse.

Theorem 3.2 ([AH15, Thm. 2.2]). In addition to the hypotheses of Theorem 3.1, assume
that H is a Hilbert space such that V is continuously embedded and dense in H and that Φ1

and Φ2 extend to bounded operators on H. Then the operator L defined by

∀u ∈ Dom(L ), ∀v ∈ V, Q(u, v) =: 〈L u, v〉H

where

Dom(L ) := {u ∈ V : the map v 7→ Q(u, v) is continuous on V for the norm of H} ,

satisfies the following properties:

(i) L is bijective from Dom(L ) onto H,
(ii) Dom(L ) is dense in V and in H,
(iii) L is closed.
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3.2. Weighted coercivity estimates. For any complex number µ, consider the shifted
form Qµ(u, v) := Q(u, v)− µ 〈u, v〉. The aim of this subsection is to prove the following
estimate and deduce Theorem 2.3 from it (with help of Theorem 3.2).

Theorem 3.3 (Weighted coercivity). For every µ ∈ C, W ∈ W 1,∞(Ω;R) and all
u ∈ C∞

0 (Ω), we have

Re
[
Qµ(u, e

2Wu)
]
+ Im

[
Qµ(u,Φe

2Wu)
]
>

1

2

∥∥(−i∇+A)eWu
∥∥2

+

∫

Ω

∣∣eWu
∣∣2
[
V 2
2 + 1

12d |B|2

mB,V
+ V1 − Reµ− |Imµ| − 9

(
|∇Φ|2 + |∇Ψ|2 + |∇W |2

)]
dx .

In order to prove Theorem 3.3, we need two lemmata.

Lemma 3.4. For every u ∈ C∞
0 (Ω), we have

∫

Ω

|B|2

mB,V
|u|2 dx 6 3d ‖(−i∇+A)u‖2 + ‖(∇Ψ)u‖2 .

Proof. Let u ∈ C∞
0 (Ω) and j, k ∈ J1, dK := [1, d] ∩ Z. Using (2.1) and (2.2), we have

∫

Ω

B2
jk

mB,V
|u|2 dx =

〈
i[Pj , Pk]u,Ψjku

〉
=
〈
iPku, PjΨjku

〉
−
〈
iPju, PkΨjku

〉

=
〈
iPku,ΨjkPju

〉
−
〈
iPju,ΨjkPku

〉
−
〈
Pku, (∂jΨjk)u

〉
+
〈
Pju, (∂kΨjk)u

〉

6
3

2
‖Pju‖

2 +
3

2
‖Pku‖

2 +
1

2
‖(∂jΨjk)u‖

2 +
1

2
‖(∂kΨjk)u‖

2 .

We conclude by summing over j, k ∈ J1, dK. �

The second lemma follows elementarily by an integration by parts.

Lemma 3.5. For every u ∈ C∞
0 (Ω) and χ ∈W 1,∞(Ω;R), we have

Re
〈
(−i∇ +A)u, (−i∇ +A)χ2u

〉
= ‖(−i∇+A)χu‖2 − ‖(∇χ)u‖2 .

Now we are in a position to prove Theorem 3.3.

Proof of Theorem 3.3. Let us consider u ∈ C∞
0 (Ω) and W ∈ W 1,∞(Ω;R). Choosing

χ := eW in Lemma 3.5, we get the identity

Re
[
Q(u, e2Wu)

]
=

∫

Ω
V1
∣∣eWu

∣∣2 dx+
∥∥(−i∇+A)eWu

∥∥2 −
∥∥(∇W )eWu

∥∥2 . (3.1)

Moreover, we have

Im
[
Q(u,Φe2Wu)

]
= Im

〈
(−i∇+A)u, (−i∇ +A)(Φe2Wu)

〉
+

∫

Ω

V 2
2

mB,V

∣∣eWu
∣∣2 dx .

The first term of the right-hand side equals

Im
〈
(−i∇+A)u,−i(∇Φ + 2Φ∇W )e2Wu)

〉

= Im
〈
eW (−i∇ +A)u,−i(∇Φ + 2Φ∇W )eWu)

〉

= Im
〈
(−i∇+A)eWu,−i(∇Φ + 2Φ∇W )eWu)

〉
.

Consequently, for all α ∈ (0, 1), we have

∣∣Im
〈
(−i∇+A)u, (−i∇ +A)(Φe2Wu)

〉∣∣

6 α
∥∥(−i∇+A)eWu

∥∥2 + 1

4α

∥∥(∇Φ+ 2(∇W )Φ
)
eWu

∥∥2
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and therefore

Im
[
Q(u,Φe2Wu)

]

>

∫

Ω

V 2
2

mB,V

∣∣eWu
∣∣2 dx− α

∥∥(−i∇+A)eWu
∥∥2 − 1

4α

∥∥(∇Φ+ 2(∇W )Φ
)
eWu

∥∥2 . (3.2)

Summing up (3.1) and (3.2), we deduce

Re
[
Q(u, e2Wu)

]
+ Im

[
Q(u,Φe2Wu)

]
> (1− α)

∥∥(−i∇ +A)eWu
∥∥2

+

∫

Ω

∣∣eWu
∣∣2
(

V 2
2

mB,V
+ V1 − |∇W |2 −

1

2α
|∇Φ|2 −

2

α
|∇W |2

)
dx .

It remains to add the term involving |B|2. By Lemma 3.4, we have

∥∥(−i∇+A)eWu
∥∥2 > 1

3d

(∫

Ω

|B|2

mB,V

∣∣eWu
∣∣2 dx−

∥∥(∇Ψ)eWu
∥∥2
)
.

Thus, for all β ∈ [0, 1 − α], we get

Re
[
Q(u, e2Wu)

]
+ Im

[
Q(u,Φe2Wu)

]
> (1− α− β)

∥∥(−i∇+A)eWu
∥∥2

+

∫

Ω

∣∣eWu
∣∣2
(
V 2
2 + β

3d |B|2

mB,V
+ V1 −

2 + α

α
|∇W |2 −

1

2α
|∇Φ|2 −

β

3d
|∇Ψ|2

)
dx .

The proof is concluded by taking α = β = 1
4 and adding the contribution related to the

shift by µ. �

With Theorems 3.2 and 3.3 we easily deduce Theorem 2.3.

Proof of Theorem 2.3. Under Assumption 2.1, the inequality of Theorem 3.3 extends to
all u ∈ V . Applied with W = 0, Theorem 3.3 then gives, for all u ∈ V ,

|Qµ(u, u)|+ |Qµ(u,Φu)| >
1

2
‖(−i∇ +A)u‖2

+

∫

Ω
|u|2

(
V 2
2 + 1

12d |B|2

mB,V
+ V1 − Reµ− |Imµ| − 9(|∇Φ|2 + |∇Ψ|2)

)
dx . (3.3)

Using Assumption 2.1, it implies

|Qµ(u, u)|+ |Qµ(u,Φu)| >
1

2
‖(−i∇+A)u‖2

+

∫

Ω
(γ1|V | −Reµ− |Imµ| − γ2) |u|

2 dx .
(3.4)

Taking µ ∈ R such that µ < −γ2, the inequality establishes the coercivity of Qµ on V ,
so it is enough to apply Theorem 3.2 to Qµ. �

3.3. Description of the operator domain. At this moment, we only know that
the operator domain of L is given by (2.7). This subsection is devoted to a proof of
Theorem 2.4, which gives a more explicit characterisation of Dom(L ).

Let us first state a density result.

Lemma 3.6. The set

D :=
{
u ∈ Dom(L ) : suppu is compact in Ω

}
(3.5)

is a core of L .
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Proof. From the definition of Dom(L ) given by (2.7), we get that

Dom(L ) ⊂ {u ∈ V : (−i∇+A)2u+ V u ∈ L2(Ω)} . (3.6)

Take u ∈ Dom(L ) and notice that V u ∈ L2
loc(Ω) from our regularity assumption

about V , thus (−i∇+A)2u ∈ L2
loc(Ω) as well. We define a suitable cut-off, see [Dav95,

proof of Thm. 8.2.1]. Consider a non-negative function ϕ ∈ C∞
0 (Rd) such that ϕ(x) = 1

if |x| < 1 and ϕ(x) = 0 if |x| > 2 and, for u ∈ Dom(L ), define, for all x ∈ Ω and n ∈ N,

un(x) := u(x)ϕn(x) , ϕn(x) := ϕ
(x
n

)
. (3.7)

Since

(−i∇+A)2un = ϕn(−i∇+A)2u− 2i∇ϕn · (−i∇+A)u− (∆ϕn)u , (3.8)

we have from the derived regularity of u and the compactness of suppϕn that {un}n∈N ⊂
D. Moreover, by the dominated convergence theorem, ‖un − u‖ → 0 as n→ ∞ and

‖[(−i∇ +A)2 + V ]u− [(−i∇ +A)2 + V ]un‖

6 ‖(1 − ϕn)[(−i∇ +A)2 + V ]u‖+ 2‖∇ϕn · (−i∇+A)u‖+ ‖(∆ϕn)u‖ −−−→
n→∞

0 ,

since ‖∇ϕn‖L∞(Rd) = n−1‖∇ϕ‖L∞(Rd), ‖∆ϕn‖L∞(Rd) = n−2‖∆ϕ‖L∞(Rd) and u ∈ V . �

By integrating by parts, we get the following lemma.

Lemma 3.7. For all u ∈ D and δ > 0, we have

2 ‖(−i∇ +A)u‖2 6 δ‖(−i∇ +A)2u‖2 + δ−1‖u‖2 .

Proof. For every u ∈ D, we have

‖(−i∇ +A)u‖2 = 〈(−i∇+A)u, (−i∇ +A)u〉 =
〈
(−i∇+A)2u, u

〉

where the second equality employs an integration by parts using our regularity assump-
tions about V and A, namely V u ∈ L2(Ω) with (3.6). The proof is concluded by
applying the Cauchy-Schwarz and Young inequalities. �

In the following Lemma 3.8 and Proposition 3.9, we establish estimates on |B|u; the
proofs are adaptations of [AH15, Lem. 3.4].

Lemma 3.8. Suppose (2.4). There exists C > 0 such that, for all u ∈ D,

∥∥|B|u
∥∥2 6 C

(
‖m

1

2

B,V (−i∇+A)u‖2 + ‖V u‖2 + ‖(−i∇ +A)2u‖2 + ‖u‖2
)
. (3.9)

Proof. Let u ∈ D. Then Bjku ∈ V and similarly as in Lemma 3.4, we have

‖Bjku‖
2 = Im 〈[Pj , Pk]u,Bjku〉 6 |〈Pku, PjBjku〉|+ |〈Pju, PkBjku〉| (3.10)

for every j, k ∈ J1, dK. Further, using the assumption (2.4), we get that, for all ε1 > 0,

there exist Cε1 , C̃ε1 > 0 such that

|〈Pku, PjBjku〉| 6 |〈BjkPku, Pju〉|+ |〈Pku, u∂jBjk〉|

6 ‖|Bjk|
1

2Pku‖ ‖|Bjk|
1

2Pju‖+ ε1‖m
1

2

B,V Pku‖ ‖mB,V u‖

+ Cε1‖Pku‖ ‖u‖

6 ‖|Bjk|
1

2Pku‖ ‖|Bjk|
1

2Pju‖+

+ ε1

(
‖m

1

2

B,V Pku‖
2 + ‖mB,V u‖

2 + ‖Pku‖
2

)
+ C̃ε1‖u‖

2 .

(3.11)
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Summing up over j and k, we get from (3.10) and (3.11) that there exists C1 > 0 such

that, for all ε1 ∈ (0, 1), there exists Ĉε1 > 0 such that

‖|B|u‖2 6 C1

(
‖m

1

2

B,V (−i∇+A)u‖2 + ε1
(
‖mB,V u‖

2 + ‖(−i∇+A)u‖2
))

+ Ĉε1‖u‖
2 .

We now use Lemma 3.7 to get the desired estimate. �

Proposition 3.9. Suppose (2.4). There exists C > 0, such that, for all u ∈ D, we have

‖|B|u‖2 + ‖m
1

2

B,V (−i∇ +A)u‖2 6 C
(
‖(−i∇ +A)2u‖2 + ‖V u‖2 + ‖u‖2

)
. (3.12)

Proof. Let us first show that, for all ε > 0, there exists Cε > 0 such that, for all u ∈ D,

‖m
1

2

B,V (−i∇+A)u‖2 6 Cε(‖(−i∇ +A)2u‖2 + ‖u‖2) + ε‖mB,V u‖
2 . (3.13)

We write

‖m
1

2

B,V (−i∇ +A)u‖2 = 〈mB,V (−i∇ +A)u, (−i∇ +A)u〉 ,

so that, by an integration by parts,

‖m
1

2

B,V (−i∇+A)u‖2 = 〈(−i∇mB,V )(−i∇+A)u, u〉+ 〈mB,V (−i∇+A)2u, u〉 . (3.14)

We have, for all ε1 ∈ (0, 1),

|〈mB,V (−i∇+A)2u, u〉| 6
ε1

2
‖mB,V u‖

2 +
1

2ε1
‖(−i∇+A)2u‖2 . (3.15)

Moreover, by using (2.4) and Lemma 3.7, for all ε1 ∈ (0, 1), there exists Cε1 > 0 such
that

|〈(−i∇mB,V )(−i∇+A)u, u〉| 6
ε1

2

(
‖m

1

2

B,V (−i∇ +A)u‖2 + ‖mB,V u‖
2

)

+ Cε1

(
‖u‖2 + ‖(−i∇ +A)2u‖2

)
. (3.16)

Using (3.14), (3.15) and (3.16), we deduce (3.13). Having established (3.13), it remains
to combine it with Lemma 3.8 and choose ε sufficiently small. �

Now we are in a position to establish Theorem 2.4.

Proof of Theorem 2.4. For all u ∈ D, we have

‖L u‖2 = ‖(−i∇+A)2u‖2 + ‖V u‖2 + 2Re 〈(−i∇ +A)2u, V u〉

= ‖(−i∇+A)2u‖2 + ‖V u‖2 + 2Re 〈(−i∇ +A)u, (−i∇ +A)(V u)〉

> ‖(−i∇+A)2u‖2 + ‖V u‖2 + 2

∫

Ω
V1|(−i∇+A)u|2 dx

− 2〈|(−i∇ +A)u|, |∇V ||u|〉 .

(3.17)

Note that the second step is justified since V u ∈ V . We proceed by estimating the last
term of (3.17). Let ε ∈ (0, 1). There exist Cε, C̃ε > 0 such that

2〈|(−i∇ +A)u|, |∇V ||u|〉 6 2ε〈|(−i∇ +A)u|,m
3

2

B,V |u|〉+ 2Cε〈|(−i∇+A)u|, |u|〉

6 2ε(‖m
1

2

B,V (−i∇ +A)u‖2 + ‖mB,V u‖
2) + C̃ε‖u‖

2 .

(3.18)

From (3.17), (3.18), (2.5) and Lemma 3.7, we deduce that, for some Ĉε > 0,

‖L u‖2 > (1− 2ε)
(
‖(−i∇+A)2u‖2 + ‖V u‖2

)
− 2ε‖|B|u‖2

− 3ε‖m
1

2

B,V (−i∇+A)u‖2 − Ĉε‖u‖
2 .

(3.19)

Finally, using Proposition 3.9, we get

‖L u‖2 > (1− 2ε− 3Cε)
(
‖(−i∇ +A)2u‖2 + ‖V u‖2

)
− (Ĉε + 3Cε)‖u‖2 . (3.20)
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The claim follows by the density of D in Dom(L ), see Lemma 3.6. �

3.4. On Assumption 2.1. We conclude this section by establishing the sufficient con-
dition of Proposition 2.2. Note that Theorem 2.3 is proved under Assumption 2.1, while
our proof of Theorem 2.4 requires the stronger hypotheses (2.4) and (2.5).

Proof of Proposition 2.2. The proof follows from the fact that, by (2.4),

|∇Φ(x)|2 + |∇Ψ(x)|2 =
|x|→+∞

o(mB,V (x)) .

Indeed, using in addition (2.5), we may write

V 2
2 + 1

12d |B|2

mB,V
+ V1 − 9

(
|∇Φ|2 + |∇Ψ|2

)

>
1

12d

|V |2 + |B|2

mB,V
+ V1 −

V 2
1

mB,V
− 9

(
|∇Φ|2 + |∇Ψ|2

)

>
1

12d
mB,V −

1

12d
+ o(mB,V ) ,

which provides (2.3). �

4. Discrete spectrum and exponential estimates of eigenfunctions

The main objective of this section is to establish Proposition 2.5 and Theorems 2.6
and 2.8.

4.1. Confining potentials. In addition to Assumption 2.1, let us assume that V is
confining in the sense of (2.9).

Proof of Proposition 2.5. By Theorem 2.3, we already know that the resolvent of L

exists at a point of the complex plane. Hence, it is enough to show that Dom(L ) is
compactly embedded in L2(Ω). Consider (3.4) with µ = 0. By the definition of L given
in (2.6) and the Cauchy-Schwarz inequality, we get

∀u ∈ Dom(L ) ,

∫

Ω
(γ1|V | − γ2)|u|

2 dx 6 2‖L u‖‖u‖ 6 ‖L u‖2 + ‖u‖2 = ‖u‖2L

for all u ∈ Dom(L ). Moreover, we have Dom(L ) ⊂ H2
loc(Ω). Thus, by the Riesz-

Fréchet-Kolmogorov criterion, the unit ball for the graph norm of L is precompact in
L2(Ω) and thus L is an operator with compact resolvent. �

4.2. General potentials. Now let us assume only Assumption 2.1.

Proof of Theorem 2.6. The inclusion (2.10) is again a consequence of (3.4) and Theo-
rem 3.2. It is sufficient to prove (2.11). Let µ ∈ ργ2−γ1V̌∞

. Of course, if µ ∈ ργ2 there is
nothing to prove. Let us define R > 0 such that,

∀|x| > R , |V (x)| > V̌∞ . (4.1)

Then, we have

γ1|V (x)| − Reµ− |Imµ| − γ2 > γ1V̌∞ − Reµ− |Imµ| − γ2 =: γ > 0 . (4.2)

for all |x| > R. Let us introduce a real-valued smooth function with compact support
0 6 χ 6 1 such that χ(x) = 0 for all |x| > 2R and χ(x) = 1 for all |x| 6 R. We define

M := |γ2 +Reµ+ |Imµ||+ 1 ∈ [1,+∞) .

Let us write

L − µ = L +Mχ− µ−Mχ .

We introduce the (closed) operator L̃ := L +Mχ and, for µ ∈ C, the corresponding

shifted form Q̃µ := Qµ +Mχ.
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Let us explain why L̃−µ is invertible. For that purpose, we recall that by Theorem 3.3
(with W = 0) and Assumption 2.1, we have, for all u ∈ V ,

Re
[
Q̃µ(u, u)

]
+ Im

[
Q̃µ(u,Φu)

]

>
1

2
‖(−i∇+A)u‖2 +

∫

Ω

(
Mχ+ γ1|V | − γ2 − Reµ− |Imµ|

)
|u|2 dx .

By the definitions of M and γ, we deduce that

Re
[
Q̃µ(u, u)

]
+ Im

[
Q̃µ(u,Φu)

]
>

1

2
‖(−i∇+A)u‖2 +min(1, γ) ‖u‖2 .

This proves the coercivity of Q̃µ on V and thus, by Theorem 3.2, L̃ − µ is invertible.

Now, the multiplication operator Mχ is a relatively compact perturbation of L̃ − µ.
Therefore, by Lemma A.2, L −µ is a Fredholm operator with index 0. From Lemma A.3,
we deduce that the spectrum in ργ2−γ1V̌∞

is discrete (that is, made of isolated eigenvalues

of finite algebraic multiplicity, see Appendix A). �

4.3. Agmon-type estimates. Theorem 2.8 is essentially a consequence of the following
proposition about properties of solutions of an inhomogeneous equation in a weighted
space.

Proposition 4.1. Let λ ∈ sp(L )∩ργ2−γ1V̌∞

6= ∅. Let us consider ψ0 ∈ L2(Ω) such that

e
1−ε

3
dAg(x)ψ0 ∈ L

2(Ω) (4.3)

for some ε ∈ (0, 1) and assume that ψ ∈ Dom(L ) satisfies

Lψ = λψ + ψ0 . (4.4)

Then
e

1−ε

3
dAg(x)ψ ∈ L2(Ω) . (4.5)

Proof. By Theorem 2.6, λ is an eigenvalue of finite algebraic multiplicity. Given W ∈
W 1,∞(Ω;R), we have

ReQ(ψ, e2Wψ) = Re (λ)‖eWψ‖2 +Re
〈
eWψ0, e

Wψ
〉
,

ImQ(ψ,Φe2Wψ) = Im (λ)

∫

Ω
Φe2W |ψ|2 dx+ Im

〈
eWψ0,Φe

Wψ
〉
.

By Theorem 3.3 (with µ = 0) and Assumption 2.1,

(
Re (λ)+|Im (λ)|

) ∥∥eWψ
∥∥2 >

∫

Ω

(
γ1|V | − γ2 − 9 |∇W |2

) ∣∣eWψ
∣∣2 dx−

∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ .

Thus, we get∫

Ω

(
γ1|V | − Re (λ)− |Im (λ)| − γ2 − 9 |∇W |2

) ∣∣eWψ
∣∣2 dx 6

∥∥eWψ0

∥∥∥∥eWψ
∥∥ .

Let R be as in (4.1). Splitting the integral into two parts, we get
∫

{|x|>R}

(
γ1|V | − Re (λ)− |Im (λ)| − γ2 − 9 |∇W |2

) ∣∣eWψ
∣∣2 dx

6

∫

{|x|<R}

(
−γ1|V |+Re (λ) + |Im (λ)| + γ2 + 9 |∇W |2

) ∣∣eWψ
∣∣2 dx+

∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ ,

so that, for some C > 0, we have by (2.12),
∫

{|x|>R}

(
|∇dAg(x)|

2 − 9 |∇W |2
) ∣∣eWψ

∣∣2 dx

6

∫

{|x|<R}

(
C + 9 |∇W |2

) ∣∣eWψ
∣∣2 dx+

∥∥eWψ0

∥∥ ∥∥eWψ
∥∥ . (4.6)
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We set η :=
√
1−ε
3 and we consider the functions (χn)n>1 defined as follows

χn(s) :=





s for 0 6 s 6 n ,

2n− s for n 6 s 6 2n ,

0 for s > 2n .

Note that |χ′
n(s)| = 1 a.e. on [0, 2n] and |χ′

n(s)| = 0 for s > 2n.
Then for n > 1 and x ∈ Ω we set

Wn(x) := η χn(dAg(x)) .

We have

∇Wn(x) = η χ′
n(dAg(x))∇dAg(x)

and

|∇Wn(x)|
2
6 η2|∇dAg(x)|

2 =
1− ε

9
|∇dAg(x)|

2 .

By (4.6) we obtain that there exists C > 0 such that, for all n > 1,
∫

{|x|>R}
ε |∇dAg(x)|

2
∣∣eWnψ

∣∣2 dx 6 C‖ψ‖2 +
∥∥eWnψ

∥∥ ∥∥eWnψ0

∥∥ ,

and therefore, by (4.2),
∫

{|x|>R}
εγ
∣∣eWnψ

∣∣2 dx 6 C‖ψ‖2 +
εγ

2

∥∥eWnψ
∥∥2 + 1

2εγ

∥∥eWnψ0

∥∥2 .

For another constant C > 0 independent of n, we get
∫

Ω

∣∣eWnψ
∣∣2 dx 6 C‖ψ‖2 + C

∥∥eWnψ0

∥∥2 .

It remains to take the limit n→ +∞ and use the Fatou lemma to conclude. �

Now we are in a position to prove the main result of this paper.

Proof of Theorem 2.8. If ψ ∈ Ker(L − λ), we apply Proposition 4.1 with ψ0 = 0 to
deduce that ψ satisfies (2.13).

Let us now explain why this conclusion holds also for the algebraic eigenspace (see
Appendix A). Let us consider ψ in this space.

We have

(L − λ)rψ = 0 with r := dimRan(Pλ) > 1 .

Now, we proceed by induction. Consider k ∈ J1, rK and assume that

(L − λ)kψ ∈ L2
(
Ω, e

1−ε

3
dAg(x) dx

)
.

Then, we write

(L − λ)
{
(L − λ)k−1ψ

}
= (L − λ)kψ .

We are in the situation (4.4) and we deduce that

(L − λ)k−1ψ ∈ L2
(
Ω, e

1−ε

3
dAg(x) dx

)
.

This concludes the proof. �
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Appendix A. Reminders of spectral theory

Since spectral theory of non-self-adjoint operators is less unified than its self-adjoint
sister, in this appendix we collect some notions used throughout the paper. We refer
to standard monographs [Kat66], [EE87, Chap. I.3, IX] and [GGK90, Chap. XVII] or a
recent summary [KS15] for a more comprehensive exposition.

Let H be a Hilbert space. An operator M : Dom(M ) → H is said to be Fred-
holm when Ker(M ) finite-dimensional and Ran(M ) is closed with finite codimension.
Then the index of M is defined by ind(M ) := dimKer(M ) − codimRan(M ). When
Dom(M ) is dense in H, we may classically define the adjoint M ∗ of M and then we
have dimKer(M ∗) = codimRan(M ). We denote by Fred0(M ) the set of all complex
numbers λ such that M − λ is a Fredholm operator with index 0.

Let M be an arbitrary closed operator in H. The spectrum sp(M ) is defined as the set
of all complex numbers λ such that M −λ is not bijective as an operator from Dom(M )
to H. The resolvent set ρ(M ) is the complement of the spectrum in the complex plane.
We call the intersection spfre(M ) := sp(M ) ∩ Fred0(M ) the Fredholm spectrum and
define the essential spectrum by the complement spess(M ) := sp(M ) \ spfre(M ) (it is
the essential spectrum due to Schechter denoted by spe4(M ) in [EE87]). Finally, we
define the discrete spectrum spdis(M ) to be the set of all isolated eigenvalues λ for
which the algebraic (or root) eigenspace ∪∞

k=1Ker([M − λ]k) is finite-dimensional and
such that M − λ has a closed range. The elements of spdis(M ) are called the discrete
eigenvalues of M .

Let λ be an isolated eigenvalue of M . Another characterisation of λ to belong to the
discrete spectrum is through the eigenprojection

Pλ :=
1

2iπ

∫

Γλ

(z − M )−1 dz , (A.1)

where Γλ is a contour that enlaces only λ as an element of the spectrum. Pλ : H →
Dom(M ) ⊂ H is a bounded operator which commutes with M and does not depend
on Γλ. We say that λ has finite algebraic multiplicity when the range of Pλ is finite-
dimensional. In this case, λ is a discrete eigenvalue of M . Moreover, the range of Pλ

coincides with the algebraic eigenspace of λ. It is an invariant subspace of M of finite
dimension and such that the spectrum of M|Ran(Pλ) equals {λ}.

Finally, we recall three standard results. For the proofs see [EE87, Chap. I.3], [EE87,
Thm. IX.2.1] and [GGK90, Thm. XVII.2.1], respectively.

Lemma A.1. Let (M ,Dom(M )) be a closed operator in a Hilbert space H. Let us equip
Dom(M ) with the graph norm ‖·‖M , which makes (Dom(M ), ‖·‖M ) a new Hilbert space.
Let M be the operator M reconsidered as an operator from (Dom(M ), ‖·‖M ) to H. The
following properties hold:

(i) M is bounded,
(ii) M is Fredholm if and only if M is Fredholm. In this case, ind(M) = ind(M ).

Lemma A.2. Let (M ,Dom(M )) be a closed invertible operator and (P,Dom(M ))
another operator in a common Hilbert space H. Assume that (M + P,Dom(M )) is
closed and PM−1 is compact. Then the operator (M +P,Dom(M )) is Fredholm and
ind(M + P) = ind(M ) = 0.

Lemma A.3. Let (M ,Dom(M )) be a closed operator in a Hilbert space H with a non-
empty resolvent set and let △ be an open connected subset of

{z ∈ C : M − z is Fredholm}.

If △∩ ρ(M ) 6= ∅, then sp(M )∩△ is a countable set, with no accumulation point in △,
consisting of eigenvalues of M with finite algebraic multiplicities.
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[SK12] P. Siegl and D. Krejčǐŕık. On the metric operator for the imaginary cubic oscillator. Phys.
Rev. D, 86:121702(R), 2012.

[tESV15] A. F. M. ter Elst, M. Sauter, and H. Vogt. A generalisation of the form method for accretive
forms and operators. J. Funct. Anal., 269:705–744, 2015.
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(N. Raymond) IRMAR, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes cedex,

France

E-mail address: nicolas.raymond@univ-rennes1.fr
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