Non-accretive Schrödinger operators and exponential decay of their eigenfunctions - Archive ouverte HAL
Article Dans Une Revue Israel Journal of Mathematics Année : 2017

Non-accretive Schrödinger operators and exponential decay of their eigenfunctions

Résumé

We consider non-self-adjoint electromagnetic Schrödinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.
Fichier principal
Vignette du fichier
KRRS16.pdf (253.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01310683 , version 1 (03-05-2016)

Identifiants

Citer

David Krejcirik, Nicolas Raymond, Julien Royer, Petr Siegl. Non-accretive Schrödinger operators and exponential decay of their eigenfunctions. Israel Journal of Mathematics, 2017, 221 (2), pp.779-802. ⟨10.1007/s11856-017-1574-z⟩. ⟨hal-01310683⟩
665 Consultations
182 Téléchargements

Altmetric

Partager

More