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1. INTRODUCTION 

Small-amplitude motions of dynamic systems (structural, fluid, control, etc.) about an 
equilibrium state are modeled by linear differential equations which have constant 
coefficients. These are typically obtained by a Taylor series expansion of the forces about 
the equilibrium point. Under quite general circumstances these equations admit a set of 
special solutions, called normal mode motions, in which each system component moves 
with the same frequency and with a fixed ratio amongst the displacements of the 
components (for a conservative system; for a non-conservative system all displacements 
and velocities are linearly related to a single displacement/velocity pair). The relative 
amplitudes of the motion of the components during such an oscillation are given by the 
eigenvectors (or the eigenfunctions for continuous systems) of an operator which arise 
in the differential equations of motion. The corresponding eigenvalues contain information 
regarding the frequency of the motion and how quickly it decays due to dissipation. A 
general motion of the system can be written as a linear combination of "eigenmotions," 
i.e., the normal modes, with the coefficients in the combination being exponential functions 
of the eigenvalues multiplying time and with the displacements being given by the 
corresponding eigenvectors. (This is simply the principle of superposition.) An important 
feature of these eigenmotions is that if the motion is started such that only a subset of 
them is active, for example only one, then the remaining eigenmotions remain quiescent 
for all time. ;Ibis is the invariance property of the normal modes. 

In many cases the linearized model of the system breaks down, and one must account 
for non-linear effects to capture the system's dynamics properly. For example, this happens 
in systems with dry friction, clearances and, more commonly, if motion amplitudes become 
sufficiently large. In such cases one must keep higher order terms i,n the series expansion 
of the forces, leading to non-linear differential equations of motion which contain poly­
nomial terms (or piecewise-linear terms for systems with friction or clearances) which 
arise from non-linear effects of the forces. In general, one has no hope of attacking the 
non-linear system in the same way as the linearized system, although much work has 
been done for special cases, such as conservative systems, especially those with special 
symmetries. The review paper of Rosenberg [1] and the recent thesis of Vakakis [2] 
contain an almost complete account of the history of the subject. In this note we describe 
a fundamentally new way to handle these problems [3]. 

2. THE MAIN IDEA 

The method described herein is geometric in nature and utilizes the theory of invariant 
manifolds for dynamical systems. It contains all previous methods as special cases. 



Furthermore, it is a constructive technique so that one can actually use it to solve non-linear 
problems. 

The method was suggested by the center manifold technique [ 4], which is used in 
bifurcation analysis. At critical parameter values center manifold theory provides a series 
approximation of an invariant manifold (essentially a hypersurface) on which a bifurcation 
occurs, and gives the differential equations on that manifold which describe the dynamics 
near the bifurcation point. In the present context the linear normal modes, which for 
oscillatory systems are represented by hyperplanes in the phase space, are extended into 
their non-linear counterparts by using similar ideas. These non-linear invariant manifolds 
are tangent to the linear modal hyperplanes at the operating point. 

Our formulation is in terms of a system of 2N first order ordinary differential equations 
(ODEs) which arise from a set of N second order, oscillator-type ODEs. We are in the 
process of generalizing the method to handle systems of first order equations, but this is 
not given here. We assume that the equations of motion are of the form ( i = 1, 2, ... , N): 

i;=y;, y;=};(x1 ,X2 , ••• ,xN;yJ,J2, . . . ,yN), (1) 

where (x;, y;) represent displacement and velocity co-ordinates as measured about some 
equilibrium condition, and the functions};, which are the forces and moments acting on 
the system normalized by the respective inertias, are to be expanded in a Taylor series 
about the equilibrium point (x;, y;) = (0, 0). We now assume that there exists (at least) 
one motion for which all co-ordinates behave in a similar manner; that is, they oscillate 
with the same frequency and/or decay (or grow if the equilibrium is unstable) at the 
same rate. In the general non-linear case, the frequency will be amplitude dependent and 
the decay rate is not exponential. Such a motion can be expressed as a functional 
dependence in which all displacements and velocities are related to a single pair of 
displacement and velocity, which we choose arbitrarily here as the first one. In order to 
implement this, we write u = x 1 and v = y1 and express the other x;s and y;s in terms of 
u and v: 

X;=X;(u,v), y;=Y;(u,v) (2) 

This equation is that of a constraint surface of dimension 2 (or, equivalently, of co­
dimension 2N- 2) in the 2N-dimensional phase space. Any motion which satisfies the 
equations of motion, the above-mentioned tangency condition and this constraint is 
defined to be a non-linear normal mode. In other words, a motion in a normal mode takes 
place on the non-linear invariant manifold defined by equation (2). 

A set of equations which can be solved for this constraint surface, that is for the X;s 
and Y;s, can be obtained by requiring that solutions satisfy both the equations of motion 
and the constraint conditions. Taking the time derivative of the constraint equations and 
using the chain rule for differentiation yields: 

. axj. aX;. 
X·=-u+-v 

I au av ' 
. aY;. aY; . 

y; =-u+-v. 
au av 

(3) 

Next, we substitute the equations of motion for X; andy; , and replace X; andy; everywhere 
by X; and Y; to obtain the 2N- 2 equations, which can be solved for X; and Y; 
(i=1,2, ... ,N): 

aX;(u, v) aX;(u, v) 
Y;(u, v) = v+ /1(u, X 2(u, v), . .. , XN(u, v); v, Y2(u, v), . . . , YN(u, v)) 

au av 

j;(u, Xiu, v), ... , XN(u, v); v, Y2(u, v), ... , YN(u, v)) 

aY;(u, v) aY;(u, v) 
= v+ · f1(u, Xiu, v), ... , XN(u, v); v, Y2 (u, v), ... , YN(u, v))). au av 

(4) 



In general, these functional equations are at least as difficult to solve as the original 
differential equations, but they do allow for an approximate solution in the form of a 
series expansion. This provides exactly the information needed for dealing with first order 
non-linear effects, and is perfectly consistent with the expansion of the non-linear forces 
about the operating point. In order to carry this out we expand the X;s and Y;s as follows: 

X; ( u, v) = a0 ; + a,;u + a 2;V + a3;u2 + a4 ;UV + a5;V
2 

+ a6 ;u3+ a7 ;u2 v + a8;uv2 + a9 ;v3 + · · ·, 

Y; ( u, v) = b0 ; + b, ;U + b2;V + b3;U
2 + b4;UV + b5;v2 

+ b6 ;u3 + b7 ;U
2

V + b8;uv2 + b9 ;v3 + · · ·, 

(5) 

where terms up to order three are sufficient to obtain first order non-linear effects in 
nearly all cases. These expansions are substituted into the equations for the X;s and Y;s, 
equations (4), which are then expanded in powers of u and v. Like powers of these 
variables are then gathered together and are matched. These matching conditions provide 
equations from which the coefficients aii and bii can be solved. 

Once the coefficients have been solved for, the dynamics on an invariant manifold, i.e., 
the normal mode's dynamics, can be generated by simply substituting the X;s and Y;s 
for X; and y; in the first pair of equations of motion; that is, the ones for x, and y,. This 
results in the following modal dynamic equation: 

u= v, (6) 

where ( u, v) represent the variables on the invariant manifold and correspond to projec­
tions of the modal dynamics on to (x,, y,). There will be N such equations at each 
equilibrium point, one for each mode, and they contain the effects of non-linearities up 
to the order taken in the /;s and in the X;s and the Y;s. 

This procedure provides the geometric structure of the non-linear normal modes near 
the equilibrium point. It results in decoupled, single-degree-of-freedom non-linear oscillator 
equations, each of which represents the dynamics of the system on an invariant, two­
dimensional subspace which is tangent to the linear normal mode eigenspace at the 
equilibrium point. 

3. DISCUSSION 

If the non-linearities have shifted the equilibrium position, or generated an additional 
one, this will be captured by a non-zero solution, or multiple solutions for the a0 ;s, 
respectively (note that the b0;s will generally be zero for this class of problems unless 
there is a rigid-body mode of motion). The coefficients ali, a 2;, bti and b2; represent the 
linear modal amplitude ratios, and are solved for from a set of coupled algebraic (in fact, 
quadratic) equations which are generated in a manner which is completely different from 
that of the traditional approach. (Note that for an undamped system a 2 ; = bti = 0 and 
a 1; = b2;.) There will be N real solutions of these equations, one for each mode, at each 
equilibrium point. We are quite close to completing a proof that the linear modes obtained 
from these equations are strictly equivalent to those obtained by solving the standard 
eigenvalue problem. The coefficients of the non-linear terms represent the bending of the 
invariant manifold which arises from the non-linearities in the forces.{; . In general, there 
should be a unique real solution of the equations for these coefficients for each mode. 
We have shown that these equations are linear in the unknowns, which makes it very 
inexpensive (much more so than solving an eigenvalue problem for the linear modes!) 
to obtain the non-linear terms in the series approximations for the non-linear modes. 



Singularities occur in the coefficients of the non-linear terms if the system has an 
internal resonance. In the case of two resonant modes the invariant manifold associated 
with those modes will be four-dimensional, and on it the dynamics will be governed by 
two oscillators which cannot be uncoupled. Our procedure can be modified in a straightfor­
ward way to handle such cases. 

Another case in which the series expansion (5) will fail to yield the non-linear normal 
modes is when the phenomenon of mode localization occurs [5]. For example, we expect 
localized oscillations to take place in a weakly coupled system, the symmetry of which 
is broken by non-linear effects. When localization occurs some coefficients in equation 
(5) will become large, indicating the failure of the expansion procedure and also the high 
sensitivity of the system to symmetry-breaking non-linear perturbations. To obtain 
approximations of the localized normal modes we can use the same methodology but we 
will need to expand X; and Y; in terms of another parameter, e.g., the weak coupling. 

An important feature of our method is that, by using the first order formulation, systems 
with damping can be handled without difficulty. This aspect is entirely new; all previous 
methods for non-linear normal modes have dealt with conservative systems, or systems 
in which the dissipative forces have very special symmetries. The methodology described 
in this note will allow for transient dynamic analysis to be carried out, since the non-linear 
mode with the slowest decay rate will dominate the dynamics of a structure as its vibrations 
decay to the equilibrium. 

We have derived the general equations for the coefficients in the expansions of the 
non-linear modes in terms of the coefficients in the expansions of the forces, for a general 
N-degree-of-freedom system. We have also implemented this technique on several two­
degree-of-freedom non-linear systems. These results are currently being written into a 
full-length paper [6]. 
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