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Stability of equilibrium states in a simple system 
with unilateral contact and Coulomb friction

S. Basseville · A. Leger

Abstract The aim of this paper is to study the stability of equilibrium states in a mechanical system involving
unilateral contact with Coulomb friction. Since the assumptions made in classical stability theorems are not
satisfied with this class of systems, we return to the basic definitions of stability by studying the time evolution
of the distance between a given equilibrium and the solution of a Cauchy problem where the initial conditions
are in a neighborhood of the equilibrium. It was recently established that the dynamics is well posed in the
case of analytical data. In the present study, we focus in particular on the stability of the equilibrium states
under a constant force and deal only with a simple mass-spring system in R

2.

Keywords Discrete dynamics · Unilateral contact · Coulomb friction · Klarbring’s system · Stability

1 Introduction

This paper is exactly in line with a previous study [3] in which we explored the equilibrium states of a simple
model involving unilateral contact and Coulomb friction. In the latter article, after exploring the set of equilib-
rium states, we determined their stability by performing a direct numerical study on the dynamics. The criteria
used for this purpose were the reliability of the time discretization, which was of the “time stepping” type,
and the algorithm used in the “NSCD” software [4]. Since the convergence of this algorithm and its ability
to approach the solution of the continuous problem had not yet been established at that time, previous studies
dealt mainly with numerical experiments.

The aim of the present study is to provide theoretical proof of the stability of the same simple model.
In [2], we proved the existence of solutions to the dynamic problem with unilateral contact and Coulomb

friction, adopting the hypothesis that the external force is integrable using the method described by
Monteiro-Marques [6]. After a time discretization, we showed that the “NSCD” algorithm makes it possi-
ble to build a sequence of approximations, from which a subsequence converging toward a solution to the
continuous problem can be extracted. In [1], it was assumed that the external force was not only integrable but
analytical. We proved the uniqueness of the solution in the framework of this hypothesis.

As a consequence of these results, the sequence of approximations given by the algorithm converges uni-
formly (without extracting a subsequence) toward the unique solution of the problem. This means in particular
that the trajectory solution of the continuous problem can be studied starting with estimates based on the
discretized problem. After this preliminary step we can study the trajectory starting with any initial data and
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thus analyze the stability of an equilibrium by studying the distance between the equilibrium and a trajectory
starting from any point in a neighborhood of the equilibrium in a classical phase space.

2 Description of the problem

Let us consider a punctual particle with mass m in R
2 located in a quadratic potential well given by a symmetric

positive definite stiffness matrix K =
(

KN W
W KT

)
with positive coefficients. This particle is also subjected

to an external force F . In addition, the particle is constrained to remain in a half-space and the contact with
the boundary of this half-space is assumed to hold with Coulomb friction. This system, which has been first
given in [5], is represented on Fig. 1. The unilateral contact and Coulomb friction laws are strict, without
any regularization. We first recall the statement of the problem, and we give the main theoretical results here
without proofs.

T
m

F

N

Fig. 1 Klarbring’s system

Indices N and T denote the normal and tangential components, respectively, of the displacement U and
the reaction R. We take MMA([0, T̂ ]; R

2) (motions with measure acceleration) to denote the vector space of
the integrable functions of [0, T̂ ] into R

2 whose second derivative in the sense of distributions is a measure.
Functions U in MMA are continuous and admit left U̇

−
and right U̇

+
derivatives in the classical sense, which

are functions of bounded variations. We take M to denote the space of the measures defined on [0, T̂ ] with
values in R

2. The evolution problem of mass m reads:

Problem (P) Find U ∈ MMA([0, T̂ ]; R
2) and R ∈ M([0, T̂ ]; R

2) such that

U (0) = U 0, U̇
+
(0) = V 0 (initial condition), (1)

mÜ + K .U = F + R (equation of motion), (2)

UN ≤ 0, RN ≤ 0, UN RN = 0 (unilateral contact) (3)

∀ V ∈ C0([0, T̂ ]; R),

∫

[0,T̂ ]

RT(V − U̇+
T ) − μRN(|V | − |U̇+

T |) ≥ 0 (Coulomb friction), (4)

UN(t) = 0 �⇒ U̇+
N (t) = −eU̇−

N (t) (impact law). (5)

where μ is the friction coefficient, and the initial condition is assumed to be compatible with the unilateral
constraint; e is the restitution coefficient. In the case e = 0, we can establish that Eqs. (3) and (5) in problem (P)
can be replaced by the so-called velocity Signorini conditions:

UN ≤ 0 ,
UN < 0 �⇒ RN = 0,

UN = 0 �⇒ U̇+
N ≤ 0 , RN ≤ 0 , U̇+

N RN = 0 .

Comment 2.1 (i) We observe that this formulation has a suitable meaning even for R ∈ M([0, T̂ ]; R
2).

∗ In particular
∫

RTV has a sense for V in C0 (duality).∫
RTU̇+

T has a sense for R measure (U̇+
T bounded variation), which would not be so in the case of a

usual formulation of Coulomb’s law.
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∗ A velocity with bounded variations is exactly the framework that gives a meaning both to the dynamics
in the presence of impact (existence of right and left limits everywhere) and to the initial data.

(ii) This problem has a solution as long as F is integrable (this result is obtained by the convergence of a
time discretization using a method similar to that given by Monteoro-Marques for L∞ data [6]); the
uniqueness of the trajectory, given the data U 0 and V 0, is obtained only if F is an analytical function
(counterexample if F ∈ C∞([0, T̂ ]; R

2)).
(iii) The discrete problem that will be used henceforth, where V stands for the discrete values of U̇ , is written

as follows:

Problem (Pd)

h = T̂

K
, (6)

V 0 = V (0), (7)

U 0 = U (0), (8)

V i+1 = V i + h

2m

(
(Fi+1 + Fi ) − K (Ui+1 + Ui )

)
+ h

m
Ri+1, (9)

Ui+1 = Ui + hV i+1, (10)

|Ri+1
T | ≤ μ |Ri+1

N |, (11)

if |Ri+1
T | < μ |Ri+1

N |, then V i+1
T = 0 ,

if |Ri+1
T | = μ |Ri+1

N |, then ∃ λ ≥ 0 such that Ri+1
T = −λV i+1

T .

}
(12)

if Ui+1
N ≥ 0 �⇒ V i+1

N ≤ 0, Ri+1
N ≤ 0, V i+1

N Ri+1
N = 0,

if Ui+1
N < 0 �⇒ Ri+1

N = 0.

}
(13)

∗ An algorithm of the “time stepping” type is deduced [4], from which we get an iterative dynamical system
that will be used to make estimates.
∗ This algorithm, built from problem (Pd), makes heavy use of the equivalence between classical Signorini
conditions and velocity Signorini conditions just recalled above. Let us simply note for the moment that the
convergence of this algorithm is consequently obtained in the case e = 0. But the well-posedness of problem
(P), that is, the existence and uniqueness of the trajectory for sufficiently smooth data, holds for any e ∈ [0, 1].

The following analysis will be performed in the case e = 0, and we shall comment on this choice in the
conclusion.

3 The set of equilibrium states

The equilibrium states are the solutions of problem (Ps), which will be referred to here as the static problem,
associated with problem (P). Up to the end of this study, the external force F will be constant.

Problem (Ps) Find (U , R) ∈ (R2, R
2) such that:

K U = F + R ,

UN ≤ 0, RN ≤ 0, UN RN = 0 ,

|RT| ≤ μ|RN| ,
which gives

UN = A

detK
i f UN < 0 ,

RT = A

W
+ KT

W
RN if UN = 0 , with A ≡ KT FN − W FT .
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The analysis of problem Ps is described in [3]. Since the system consists of a single particle, we will study
the existence of solutions with and without contact separately. Solutions without contact exist only if quantity A
is strictly negative. The set of solutions with contact is given in the {RT, RN}-plane by the intersection between
the line RT = (A/W ) + (KT/W ) RN and a part of the Coulomb cone, which is possibly delimited by
bounds for RN. Figure 2 gives the corresponding solutions in the {RT, RN}-plane, which have been described
in detail in [3]. The thin continuous lines are the boundaries of the Coulomb cone; dashed lines delimit the
range of admissible values for RN; on each graph, the thick continuous line is the straight line of equation
RT = (A/W ) + (KT/W ) RN.

Fig. 2 The set of equilibria in the {RT , RN }-plane

The dependence of the set of equilibria on the stiffness parameters, friction coefficient, and external loads
is summarized in Table 1.

Henceforth we will deal with the stability of these equilibrium states in the case where F =Constant. On
the one hand, the set of equilibria is completely and explicitly known in this case, and on the other hand, there
exists a single analytical trajectory as soon as initial data compatible with the unilateral conditions are given.

4 Some qualitative phases of the dynamics

To simplify this description, the proofs will be divided into two mains parts. The first part contains abstract
analyses of separate dynamic phases, which will stand for technical lemmas in the second part. The second
part itself deals with the stability properties of all the equilibrium states.

In both parts, some partial results will be obtained by performing direct analytical calculations, which will
be possible as each of the phases of the motion is smooth, and the successive phases are smoothly matched
thanks to the regularity of the solution to problem (P) in the case of a constant force. With other results,
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Table 1 Equilibrium states with respect to parameters A and μ

μ < KT
W μ = KT

W μ > KT
W

1 solution
without contact

1 solution 1 solution +
A < 0 without contact without contact 1 solution

in impending positive slip

1 solution in 1 solution in
grazing contact grazing contact

A = 0 1 solution in + +
grazing contact infinitely many solutions infinitely many solutions

in impending positive slip in strictly stuck contact

2 solutions in 1 solution in impending 1 solution in impending
impending positive and negative slip negative slip

A > 0 negative slip + +
+ infinitely many solutions infinitely many solutions
infinitely many solutions in strictly stuck contact in strictly stuck contact
in strictly stuck contact

analytical tools of this kind will not be as simple to use, and it will be easier to perform estimates on the iterates
of the discrete dynamical system associated with problem (Pd) and to conclude with the convergence result.

The whole stability analysis will be performed by perturbing the equilibria obtained with given forces by
taking initial data that are out of equilibrium and studying the trajectories without changing the forces. Let us
begin by making the following preliminary comment.

Comment 4.1 If we look at the discrete dynamical problem (Pd), we observe immediately:
Given an equilibrium in a classical phase space:

(i) A perturbation induced by a displacement is analogous to the second iterate of the discrete dynamics
starting from a velocity perturbation. We then ensure that there is no loss of generality by studying only
velocity perturbations.

(ii) A perturbation induced by a velocity having nonzero normal and tangential components is analogous
to the second iterate of the discrete dynamics starting with a perturbation induced by a velocity where
only one of the components differs from zero. Without any loss of generality, we can therefore restrict the
analysis to perturbations induced by velocities having only one nonzero component.

Lemma 4.1 Let (U eq , Req) be an equilibrium state with U eq
N = 0 and V0N < 0 a perturbation of this equi-

librium induced by a normal velocity at t = 0. The solution of problem (P) will then be such that there exists
an impact time timp > 0, t imp ∈ ]0, T̂ [.
Proof After a perturbation V0N compatible with the unilateral conditions, there exists an interval in which the
particle moves without contact, since the solution is analytical. During this phase, the evolution is described
by the smooth system:

⎧⎪⎪⎨
⎪⎪⎩

mÜN + KNUN + WUT = FN

mÜT + WUN + KTUT = FT

UN(0) = 0 , UT(0) = FN+Req
N

W
U̇N(0) = V0N , U̇T(0) = 0

. (14)

The solution is

U (t) = (a1cos(α1t) + b1sin(α1t)) φ1 + (a2cos(α2t) + b2sin(α2t)) φ2 + K −1 F , (15)

where K −1 is the inverse of matrix K and where the constants are given by
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α1 =
√

(KN + KT) + √
(KN − KT)2 + 4W 2

2m
, α2 =

√
(KN + KT ) − √

(KN − KT)2 + 4W 2

2m
,

φ1 =
⎛
⎝ 1

KN−KT+
√

(KN−KT)2+4W 2

2m

⎞
⎠ , φ2 =

⎛
⎝ 1

KN−KT−
√

(KN−KT)2+4W 2

2m

⎞
⎠ ,

a1 = 1

φ1
T − φ2

T

{
A

detK

(
φ2

T + KN

W

)
+ Req

N

W

}
, a2 = − 1

φ1
T − φ2

T

{
A

detK

(
φ1

T + KN

W

)
+ Req

N

W

}
,

b1 = −V0N φ2
T

α1(φ
1
T − φ2

T)
, b2 = V0N φ1

T

α2(φ
1
T − φ2

T)
,

K −1 F = 1

detK

(
A

KN FT − W FN

)
.

If (α1/α2) = (p/q) ∈ Q, then UN is a periodic function. If (α1/α2) /∈ Q, then let ŨN(t) be a continuous
almost-periodic function of R into R that coincides with UN(t) on [0, T̂ ]. Let τ be an almost-period of ŨN(t).
It can then be easily proved that there exists a nonnegative real number η such that ŨN(t) admits a zero t imp

in ] − η + τ, η + τ [, with ˙̃U−
N (t imp) > 0.

The result obtained in [1] shows that T̂ can always be taken to be large enough for t imp ∈ ]0, T̂ [. There-
fore, there will exist an impact time for any α1 and α2, that is, whatever the constants involved in the problem.

�
Lemma 4.2 Let (U eq , 0) be an equilibrium state in grazing contact and V0T a perturbation of this equilibrium
induced by a strictly positive tangential velocity at t = 0. The solution of problem (P) therefore admits an
impact time timp > 0, t imp in ]0, T̂ [.
Proof The equilibrium state is characterized by a displacement U eq = (0, FN/W ) and by a reaction Req = 0.
This state exists only if A is equal to zero. On the right side of the origin, there exists an interval in which the
solution is either always in contact or always without contact. We establish that there exists an interval such
that the particle is without contact if the perturbation is a positive tangential velocity at t = 0.

First, we show that there does not exist any η > 0 such that UN(t) = 0 on [0, η], since the bilateral positive
sliding, which occurs with RN(0) = 0, implies RN(t) > 0, on an interval at the right of the origin:

If μ <
KT

W

⎧⎪⎪⎨
⎪⎪⎩

UT(t) = V0T

√
m

KT−μW sin

(√
KT−μW

m t

)
+ FT−μFN

KT−μW ,

RN(t) = W V0T

√
m

KT−μW sin

(√
KT−μW

m t

)
> 0 with t ∈

[
0,

√
m

KT−μW
π
2

]
.

If μ = KT

W

{
UT(t) = VT0Tt + FN

W ,

RN(t) = W V0Tt > 0 .

If μ >
KT

W

⎧⎪⎪⎨
⎪⎪⎩

UT(t) = V0T
2

√
m

KT−μW

(
e

√
KT−μW

m t − e−
√

KT−μW
m t

)
+ FT−μFN

KT−μW ,

RN(t) = W V0T
2

√
m

KT−μW

(
e

√
KT−μW

m t − e−
√

KT−μW
m t

)
> 0 .

In the case of a perturbation induced by a positive tangential velocity, the evolution of the particule without
contact is described by a problem similar to (14) where the initial conditions are:

UN(0) = 0, UT(0) = FN

W
, U̇N(0) = 0, U̇T(0) = V0T > 0 , (16)

where the solution is consequently:
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UN(t) = V0T

φ1
T − φ2

T

(
sin(α1t)

α1
− sin(α2t)

α2

)
,

UT(t) = V0T

φ1
T − φ2

T

(
sin(α1t)

α1
φ1

T − sin(α2t)

α2
φ2

T

)
+ FN

W
, (17)

where φ
1
, φ

2
, α1, and α2 are given in the proof of Lemma 4.1.

In the neigborhood of t = 0, the normal displacement UN(t) is of the form

UN(t) = V0T

φ1
T − φ2

T

(
α2

2 − α2
1

)
6

t3 + O(t5)

and is strictly negative since φ1
T − φ2

T is positive and α2
2 − α2

1 is negative. The first relation of (17) then gives
the existence of an impact time given by the smallest positive root of this equation. �

A similar argument leads to the following corollary.

Corollary 4.1 Let us assume that there exists a time such that the particle is at the vertex of Coulomb’s cone
with a positive tangential velocity. Then this time is followed by a phase without contact, which is followed in
turn by a time of impact t imp.

Lemma 4.3 (1) Assume the data are such that either A ≥ 0 and μ > KT /W or A = 0 for any μ.
Let V0N be a perturbation of the equilibrium induced by a negative normal velocity at t = 0.
Let t imp > 0 be an impact time such that U̇−

T (t imp) > 0. Therefore, there will exist η > 0 such that
∀ V0N ∈] − η, 0[, and there will exist t̂ > t imp with U̇T (t̂) = 0 and RN (t̂) < 0.

(2) Let A = 0 with μ > KT /W . Let V0T be a perturbation of the equilibrium in grazing contact induced by
a positive tangential velocity at t = 0.
Let t imp > 0 be an impact time such that U̇−

T (t imp) > 0. Therefore, there will exist η > 0 such that
∀ V0T ∈ [0, η[, and there will exist t̂ > t imp with U̇T (t̂) = 0 and RN (t̂) < 0.

Proof We give the proof in the case where A = 0 and μ > (KT/W ). The proof would be similar in the other
cases.

Let (U eq, Req) be an equilibrium of the kind described above and V0N a strictly negative perturbation. The
dynamics is the solution to problem (P). According to Lemma 4.1, there exists a time of impact t imp.

After this impact, the evolution will depend on the sign of the tangential velocity U̇T(V0N, t imp(V0N )) =
dUT(V0N,t imp(V0N))

dt
. When the tangential velocity is strictly positive, the particle shows a positive slip. During

this phase, the reaction increases. Since the external force is constant, the system will be smooth during the
slip and will be governed by an ordinary differential equation, and the evolution of the reaction is given by

if UN(t) ≡ 0,
dRN(t)

dt
= WU̇T(t) . (18)

Since the quantity W is strictly positive, the particle can reach the vertex of the cone and will no longer be
in contact (cf. Lemma 4.2). But if the perturbation is sufficiently small, the tangential velocity becomes zero
before reaching the vertex of the cone.
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U

U
T

T

F
N

W

(t    )imp >0

=0( t )

Since the tangential displacement is UT = FN/W at the vertex of the cone, this holds if

∃ t̂ > t imp such as U̇T(t̂) = 0 with UT(t̂) <
FN

W
. (19)

Since the tangential velocity is continuous at the impact [1], the positive slip is described by

⎧⎨
⎩

mÜT + (KT − μW )UT = FT − μFN ,

UT(0) = UT(V0N , t imp(V0N)),

U̇T(0) = U̇−
T (V0N , t imp(V0N)),

(20)

the solution of which is

UT(t) = 1

2

{
UT(V0N , t imp(V0N) + U̇−

T (V0N , t imp(V0N)

√
m

μW − KT
− FT − μFN

KT − μW

}
e

√
μW−KT

m t

+1

2

{
UT(V0N , t imp(V0N) − U̇−

T (V0N , t imp(V0N)

√
m

μW − KT
− FT − μFN

KT − μW

}
e−

√
μW−KT

m t

+ FT − μFN

KT − μW
.

(21)

Then condition (19) reads

UT(V0N , t imp(V0N)) + U̇−
T (V0N , t imp(V0N))

√
m

μW − KT
− FT − μFN

KT − μW
< 0. (22)

Let us now prove the existence of η > 0 such that condition (22) is satisfied ∀ V0N ∈] − η, 0[.
We consider the function V0N defined by the left-hand side of relation (22).
We first assume that the initial perturbation V0N is negative and small enough, V0N = −ξ1, ξ1 > 0.
During the evolution without contact, the normal displacement is

UN(t) = Req
N

W (φ1 − φ2
T)

{cos(α1t) − cos(α2t)} + ξ1

(φ1
T − φ2

T)

{
sin(α1t)φ2

T

α1
− sin(α2t)φ1

T

α2

}
.

If ξ1 is sufficiently small, then the time of impact will be close to zero. The evolution is given by

UN(t) =
{

Req
N

2W (φ1
T − φ2

T)
(α2

2 − α2
1)t − ξ1

}
t + O(t3) .
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Consequently, the particle is in contact at time

t imp = 2W ξ1
(
φ1

T − φ2
T

)
Req

N

(
α2

2 − α2
1

) .

At this time, the left-hand side of relation (22) is

x UT
(
ξ1, t imp(ξ1)

) + U̇−
T

(
ξ1, t imp(ξ1)

)√ m

μW − KT
− FT − μFN

KT − μW

= −2
α2

1φ1
T − α2

2φ2
T

α2
2 − α2

1

√
m

μW − KT
ξ1 + Req

N

W
+ O(ξ2

1 ). (23)

ξ1 is sufficiently small and quantity

2
α2

1φ1
T − α2

2φ2
T

α2
2 − α2

1

√
m

μW − KT

is finite. The sign of quantity (23) is that of Req
N /W , which is strictly negative.

Let us now assume that V0N = −ξ2, ξ2 > 0 being sufficiently large. The left-hand side of (22) is now

UT(ξ2, t imp(ξ2)) + U̇−
T (ξ2, t imp(ξ2))

√
m

μW − KT
− FT − μFN

KT − μW
> UT(ξ2, t imp(ξ2)) − FT − μFN

KT − μW

>
Req

N

W
− ξ2φ

1
Tφ2

T

φ1
T − φ2

T

(
1

α1
− 1

α2

)
− FT − μFN

KT − μW
, (24)

which is positive if

ξ2 >

(
φ1

T − φ2
T

)
α1α2

(α1 − α2)φ
1
Tφ2

T

{
FT − μFN

KT − μW
− Req

N

W

}
.

Since the right-hand side of (22) is a continuous function, there exists η ∈]ξ1, ξ2[ such that condition (22) is
satisfied for all V0N ∈] − η, 0[.

The proof is the same for the other cases (μ < (KT/W ), μ = (KT/W ), μ > (KT/W ), and A ≥ 0 or
μ > KT

W and A = 0). �
In the same way, we can establish the following lemma 4.4:

Lemma 4.4 (1) Let A ≥ 0, with μ > KT /W if A = 0, and for any μ if A > 0.
Let V0T be a perturbation of the equilibrium induced by a tangential velocity at t = 0.
Therefore, there exists η > 0 such that ∀ V0T < η, and there exists t̂ > 0 such that U̇T (t̂) = 0 with
RN (t̂) < 0.

(2) Let A = 0 with μ = KT /W .
Let V0T be a perturbation of the equilibrium in grazing contact induced by a negative velocity at t = 0.
Therefore, there exists t̂ > 0 such that U̇T (t̂) = 0 with RN (t̂) < 0.

Lemma 4.5 (1) Let A ≥ 0, with μ > KT /W if A = 0, or any μ if A > 0.
Under the assumptions adopted in Lemma 4.4, item 1, there exists t̂ > 0 such that U̇T (t̂) = 0 with
UN (t̂) = 0.

If in addition there exists an equilibrium
(

Ũ
eq

, R̃
eq
)

such that RN (t̂) = R̃eq
N , then U̇T (t) ≡ 0 and

U̇N (t) ≡ 0 ∀ t > t̂ .
(2) Let A = 0 with μ = KT /W . Under the assumptions adopted in Lemma 4.4, item 2, there exists t̂ > 0

such that U̇T (t̂) = 0 with UN (t̂) = 0. Then, U̇T (t) ≡ 0 and U̇N (t) ≡ 0, ∀ t > t̂ .
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Estimate of displacement Ũ i+1
N

if Ũ i+1
N < 0, the particle will evolve without contact and the solution will be

{
(V i+1

N , V i+1
T ) =

(
(V i+1

N )free, (V i+1
T )free

)
(Ri+1

N , Ri+1
T ) = (0, 0)

, (25)

else
if (V i+1

N )free < 0, the particle will ascend and the solution will be

{
(V i+1

N , V i+1
T ) =

(
(V i+1

N )free, (V i+1
T )free

)
(Ri+1

N , Ri+1
T ) = (0, 0)

, (26)

else
if F̃ i+1

T − μ F̃ i+1
N ≥ 0, the particle undergoes positive slip process and the solution will be

⎧⎪⎪⎨
⎪⎪⎩

(V i+1
N , V i+1

T ) =
(

0,
F̃ i+1

T −μF̃ i+1
N

M̃2,2−μM̃1,2

)

(Ri+1
N , Ri+1

T ) =
(

M̃1,2V i+1
T −F̃ i+1

N
h , μ Ri+1

N

) , (27)

else
if F̃ i+1

T + μ F̃ i+1
N ≤ 0, the particle undergoes negative slip process and the solution will be

⎧⎪⎪⎨
⎪⎪⎩

(V i+1
N , V i+1

T ) =
(

0,
F̃ i+1

T +μF̃ i+1
N

M̃2,2+μM̃1,2

)

(Ri+1
N , Ri+1

T ) =
(

M̃1,2V i+1
T −F̃ i+1

N
h , −μ Ri+1

N

) , (28)

else the particle will stick and the solution will be
⎧⎨
⎩

(V i+1
N , V i+1

T ) = (0, 0)

(Ri+1
N , Ri+1

T ) =
(

− F̃ i+1
T
h , − F̃ i+1

T
h

)
, (29)

end if
end if

end if
end if

updating of displacement
Ui+1 = Ui + hV i+1.

end

Table 2 Algorithm of resolution

Proof Since a direct analytical proof of this lemma would be relatively laborious to obtain, we have analyzed
the iterates of the NSCD algorithm. Let us first recall this algorithm, based on problem (Pd ). A quantity with

an exponent i denotes the quantity at time ti (Table 2). F̃
i+1

results from the integration scheme (cf. [3]) and

is defined by F̃
i+1 = m V i − h K Ui + h [θ Fi+1 + (1 − θ) Fi ], θ is given in ]0, 1[, V is the velocity,

V free is the velocity corresponding to the evolution problem without contact, and M̃ = m I + h2 θ K .

Let us assume that there exists a contact time t̂ > 0 such that U̇T(t̂) = 0. Let i be the step such that
t̂ ∈ [t i , t i+1]. We want to show that if there exists an equilibrium (Ũ

eq
, R̃

eq
) such that RN(t̂) = R̃eq

N , then

∀ j > i , U̇ j
T ≡ 0, which means that the following relations (30) and (31) hold simultaneously for any j > i :

F̃ j
T − μF̃ j

N < 0 , (30)

F̃ j
T + μF̃ j

N > 0 . (31)

We assume that the particle slips in the positive direction before step i and stops at step i + 1, that is:
F̃ i+1

T − μF̃ i+1
N < 0. We check that relation (31) is satisfied at step j = i + 1.

10



U ( t ) U
eq

U ( t ) U
eq

By definition,

F̃ i+1
T + μF̃ i+1

N = mU̇i
T − h{(KT + μW )Ui

T + (FT + μFN)}
> −h{(KT + μW )UT(t̂) + (FT + μFN)}

> −h

{
(KT + μW )

(
FN

W
+ R̃eq

N

W

)
+ (FT + μFN)

}

> −h

{
A

W
+ (KT + μW )

R̃eq
N

W

}
. (32)

If A = 0, R̃eq
N ∈] − ∞, 0], and if A > 0, then R̃eq

N ≤ − A
KT+μW . Quantity F̃ i+1

T + μF̃ i+1
N is then strictly

positive. Conditions (30) and (31) are therefore satisfied simultaneously. We have U̇
i+1 ≡ 0, which means

that Ui+1 = Ui , and

F̃ j
T + μF̃ j

N = −h{(KT + μW )Ui
T + (FT + μFN)} > 0 (33)

and

F̃ j
T − μF̃ j

N = −mU̇i
T + F̃ i+1

T − μF̃ i+1
N < 0 .

U ( t )U
eq

U
eq

U ( t )

The proof is the same if the particle slips in the negative direction before step i . In particular, if we assume
that relation (31) is satisfied at step i + 1, then quantity F̃ i+1

T − μF̃ i+1
N will be strictly negative since

F̃ i+1
T − μF̃ i+1

N = mU̇i
T − h

{
(KT − μW )Ui

T + (FT − μFN)
}

< −h
{
(KT − μW )Ui

T + (FT − μFN)
}

11



and:

If μ <
KT

W
, F̃ i+1

T − μF̃ i+1
N < −h

{
(KT − μW )UT(t̂) + (FT − μFN)

}

< −h

{
A

W
+ (KT − μW )

Req
N

W

}
< 0 ,

because Req
N ∈

[
− A

KT − μW
, − A

KT + μW

]
,

If μ = KT

W
, F̃ i+1

T − μF̃ i+1
N < −h

A

W
< 0 ,

If μ >
KT

W
, F̃ i+1

T − μF̃ i+1
N < −h

{
(KT − μW )Ui

T + (FT − μFN)
}

< −h

{
(KT − μW )

FN

W
+ (FT − μFN)

}

< −h
A

W
< 0 .

�
The following corollary is easily obtained.

Corollary 4.2 Let A > 0.
We study the dynamical problem (P) over [0, T̂ ] starting with a state out of equilibrium such that:

⎧⎨
⎩

UN (0) = 0, UT(0) = U eq
T + U0T ,

RT(0) = ±μRN (0) �= 0 ,

U̇N (0) = 0, U̇T(0) = 0 .

Then

If μ < KT/W , there will exist nonnegative η1 and η2, η2 > η1 such that for all perturbations U0T ∈
] − η1, η2[, there exists t̂ > 0 with U̇T (t̂) = 0, RN (t̂) < 0.
If μ ≥ KT /W , there will exist η > 0 such that for all perturbations U0T ∈] − ∞, η[, there exists t̂ > 0
such that U̇T (t̂) = 0 with RN (t̂) < 0.

Lemma 4.6 Let A > 0 and μ < KT /W and initial data be out of equilibrium such that
⎧⎨
⎩

UN (0) = 0 , UT (0) = U0T ,
RT (0) = ±μRN (0) �= 0 ,

U̇N (0) = 0 , U̇T (0) = 0 .

Let ti , i = 1, . . . , n be a sequence of times t1 < · · · < tn such that

{
U̇T (ti ) = 0 with RN (ti ) �= Req

N , i = 1, . . . , n,

sgn(U̇−
T (ti )) = sgn(U̇−

T (ti+2)), i = 0, . . . , n − 2.

Then the solution of problem (P) with UN (t) = 0 for any t > 0 is such that

If sgn(U̇−
T (t j )) > 0, j = i, i + 2 : UT (ti ) > UT (ti+2), i = 1, . . . , n;

If sgn(U̇−
T (t j )) < 0, j = i, i + 2 : UT (ti ) < UT (ti+2), i = 1, . . . , n.

12



Proof Here we present the proof in the case where RT(0) = +μRN(0).

uT

t1 t3

t2

uT (t   )1

uT (t   )2

uT (t   )3

t

Direct analytical calculations give

UT(t) =
{

U0T − FT − μFN

KT − μW

}
cos

(√
KT − μW

m
t

)
+ FT − μFN

KT − μW
(34)

in an interval at the right of the origin.
According to (34), there exists a time t1 > 0 such that U̇T(t1) = 0 with UT(t1) = −U0T + 2(FT − μFN)/

(KT − μW ).
At this time, the normal reaction is RN(t1) = −WU0T − 2A

KT−μW + FN. Upon making some assumptions,

RN(t1) �= Req
N . This means that

U0T < −(2A/W (KT − μW )) + A

W (KT + μW )
+ FN

W
.

Since the tangential velocity is continuous, the particle will slip in the negative direction. The evolution is
governed by a bilateral sliding process where

UT(0) = −U0T + 2
FT − μFN

KT − μW
, U̇T(0) = 0 ,

so that

UT(t) =
{
−U0T + 2

FT − μFN

KT − μW
− FT + μFN

KT + μW

}
cos

(√
KT + μW

m
t

)
+ FT + μFN

KT + μW
.

This value of UT(t) guarantees the existence of a time t2 > t1 such that U̇T(t2) = 0. At this time, the tangen-
tial displacement is UT(t2) = U0T − 2(FT − μFN/KT − μW ) + 2(FT + μFN/KT + μW ). But the reaction
is RN(t2) �= Req

N . Consequently, the particle will slip in the positive direction. The evolution is then given
again by a bilateral sliding process with an initial displacement UT(0) = U0T − 2(FT − μFN/KT − μW ) +
2(FT + μFN/KT + μW ). Again there exists a time t3 > t2 such that U̇T(t3) = 0 with UT(t3) = −U0T +
4(FT − μFN/KT − μW )−2(FT + μFN/KT + μW ). As A > 0 and μ < KT/W , we obviously get UT(t1) >
UT(t3).

These calculations can be straightforwardly extended to any times ti , i = 3, · · · , n. �

13



5 Stability results

We now study the stability of all the equilibrium states determined in Sect. 3. This amounts to studying the
time evolution of the distance between an equilibrium and the solution of a Cauchy problem where the initial
conditions are in a given neighborhood of the equilibrium. If there exists a perturbation such that the dynamics
diverges from the equilibrium in a finite time or asymptotically in time, the equilibrium will be unstable.
On the other hand, if no perturbation leading to a divergence exists, the equilibrium will be Lyapunov or
asymptotically stable.

Theorem 5.1 Any equilibrium state without contact is stable.

Without contact the particle is not subjected to any unilateral constraints. This stability result will therefore be
nothing other than the classical result of the solutions of ordinary differential equations.

Theorem 5.2 The equilibrium in grazing contact characterized by A = 0 and μ < KT /W is asymptotically
stable.

Proof Although it is relatively long, the proof of this result can be obtained completely analytically. It consists
of four steps.

Step 1 Preliminary

According to Comment 4.1, we only consider perturbations induced by a velocity here. Moreover, based on
Lemma 4.2, the evolution is identical whether the perturbation is induced by a positive tangential velocity or
by a negative normal velocity. We first show below that the study of the perturbation induced by a negative
tangential velocity includes the study of the perturbation by a positive tangential velocity. Consequently, in
order to prove Theorem 5.2, we will have to establish the following implication:

∃ η > 0, V0T ∈] − η, 0] �⇒
{

limt→+∞ |UN(t)| = 0 ,

limt→+∞ |UT(t) − U eq
T | = 0

.

We will in fact establish the stronger result:

∀ V0T < 0 �⇒
{

limt→+∞ |UN(t)| = 0 ,

limt→+∞ |UT(t) − U eq
T | = 0

.

We establish that after a negative perturbation V0T, there exists a time tvertex
1 with U̇T(tvertex

1 ) > 0. Thus, after
tvertex
1 , the procedure used is the same as that used to determine the evolution after the equilibrium has been

perturbed by a positive tangential velocity. After a perturbation induced by a negative tangential velocity, the
evolution is described by problem (20) giving the bilateral sliding with the following initial data:

UT(0) = FN

W
, U̇T(0) = V0T < 0 , (35)

the solution of which is

UT(t) = V0T

√
m

KT + μW
sin

(√
KT + μW

m
t

)
+ FT + μFN

KT + μW
. (36)

Let t̂1 be the time at which ˙̂UT(t̂1) = 0. At this time, there is no equilibrium. The negative slip is then
followed by a positive slip. During this second phase, the evolution is again described by problem (20), but
with the following initial data:

UT(0) = V0T

√
m

KT + μW
+ FT + μFN

KT + μW
, U̇T(0) = 0 ,

that is,

UT(t) = V0T

√
m

KT + μW
cos

(√
KT − μW

m
t

)
+ FT − μFN

KT − μW
.
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Therefore there exists a time tvertex
1 such that the particle reaches the vertex of the cone, which satisfies

UT(tvertex
1 ) = FN/W .

Since A = KT FN − W FT = 0, this time is given by

tvertex
1 =

√
m

KT − μW

π

2
,

and therefore

U̇T(tvertex
1 ) = −V0T

√
KT − μW

KT + μW
> 0 ,

which is the end of the first step.

Step 2 The evolution of the particle includes a series of slip and motion without contact phases.

More specifically, let tvertex
i be a time where the reaction reaches the vertex of the cone, as calculated in

step 1. The evolution is therefore such that there exists a part without contact, a time of impact t imp
i , a new slip

part, then a new time tvertex
i+1 , and again a new part without contact.

After tvertex
i , relations (17) give

UT(t imp
i ) = U̇T(tvertex

i )
sin(α1t imp

i )

α1
+ FN

W
, with sin(α1t imp

i ) < 0,

U̇T(t imp
i ) = U̇T(tvertex

i )cos(α1t imp
i ). (37)

The evolution of the particle depends on the sign of the tangential velocity at impact time.

If U̇T

(
t imp
i

)
> 0, then the slip will be in the positive direction. During this phase, the dynamics is the

solution of a problem similar to (20) with

UT(0) = UT

(
t imp
i

)
, U̇T(0) = U̇T

(
t imp
i

)
, (38)

which we write

UT(0) = FN

W
+ β, β < 0 , U̇T(0) = 0 , (39)

where β is such that the forward dynamics is the same as that obtained with (38), up to a shift in time. The
solution is

UT(t) = βcos

(√
KT − μW

m
t

)
+ FT − μFN

KT − μW
,

and the particle reaches the vertex of the cone at time tvertex
i+1 such that

UT
(
tvertex
i+1

) = FN

W
.

Consequently, tvertex
i+1 = √

m/(KT − μW )(π/2) and U̇T
(
tvertex
i+1

) = −β
√

(KT − μW )/m > 0.
If the velocity is positive at impact time, the particle reaches the vertex of the cone with a strictly positive

velocity.
If U̇T(ti ) < 0, then the slip will be negative. We conclude in the same way that the sliding leads to the

vertex of the cone with a strictly positive velocity.
From Lemma 4.2 we can observe that in any case, there is a time t imp

i+1 and that the dynamics consists of a
series of phases of motion without contact and slip.
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Step 3 Let tvertex
i , tvertex

i+1 be two consecutive times such that UT(tvertex
j ) = FN/W, j = i, i + 1. We now

establish that U̇T(tvertex
i+1 ) < U̇T(tvertex

i ).

If U̇T(t imp
i ) > 0, the dynamics can be described by a bilateral phase as in problem (20) with initial data

(38). During this phase, the solution is given by

UT(t) = U̇T
(
tvertex
i

) sin
(
α1t imp

i

)
α1

cos

(√
KT − μW

m
t

)

+
√

m

KT − μW
U̇T

(
tvertex
i

)
cos

(
α1t imp

i

)
sin

(√
KT − μW

m
t

)
+ FT − μFN

KT − μW
. (40)

According to step 2, there exists a time tvertex
i+1 where the velocity is

U̇T(tvertex
i+1 ) = U̇T

(
tvertex
i

) {−
√

KT − μW

m

sin(α1t imp
i )

α1
sin

(√
KT − μW

m
tvertex
i+1

)

+cos
(
α1t imp

i

)
cos

(√
KT − μW

m
tvertex
i+1

)}
. (41)

But since
√

KT−μW
m < α1 as soon as W �= 0 and sin(α1t imp

i ) < 0, then

U̇T(tvertex
i+1 ) < U̇T

(
tvertex
i

) {−sin
(
α1t imp

i

)
sin

(√
KT − μW

m
tvertex
i+1

)

+cos
(
α1t imp

i

)
cos

(√
KT − μW

m
tvertex
i+1

)}
,

< U̇T
(
tvertex
i

)
cos

(
α1t imp

i +
√

KT − μW

m
tvertex
i+1

)
,

< U̇T
(
tvertex
i

)
. (42)

If U̇T(t imp
i ) < 0, then the initial data are

UT(0) = FN

W
+ U̇T

(
tvertex
i

) sin
(
α1t imp

i

)
α1

+ β, β > 0, U̇T(0) = 0 .

In the same way, it emerges that the particle reaches the vertex at time tvertex
i+1 = √

m/(KT − μW )(3π/2) and

U̇T
(
tvertex
i+1

)=−
⎛
⎝U̇T

(
tvertex
i

) sin
(
α1t imp

i

)
α1

+β

⎞
⎠

√
KT−μW

m
< −U̇T

(
tvertex
i

) sin
(
α1t imp

i

)
α1

√
KT−μW

m
,

<
U̇T

(
tvertex
i

)
α1

√
KT − μW

m
,

< U̇T
(
tvertex
i

)
. (43)
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Step 4 Let tvertex
i+1 be a time such that UT

(
tvertex
i+1

) = FN/W , where i is the index of a cycle (slip, motion without
contact). Then

lim
i→+∞ U̇T(tvertex

i+1 ) = 0 .

According to step 3, the velocity at impact time tvertex
i+1 depends on the sign of the velocity at tvertex

i . But
expressions (42) and (43) show that for any i we can find a γi , 0 < γi < 1, with

U̇T
(
tvertex
i+1

)
< γi U̇T

(
tvertex
i

)
.

Thus

U̇T
(
tvertex
i+1

)
< γ i U̇T

(
tvertex
1

)
, with γ = sup

i∈N

γi < 1 .

Consequently,

lim
i→+∞ U̇T

(
tvertex
i+1

) = 0 .

Conclusion

If we perturb the equilibrium by applying a negative tangential velocity, steps 1 and 2 show that the particle
passes through a series of phases of motion without contact and slip. According to steps 3 and 4, the velocity
of the particle when it reaches the vertex of the cone will tend to zero as the time tends to infinity. Then

lim
t→+∞ |UT(t) − U eq

T | = 0 ,

lim
t→+∞ |UN(t)| = 0 ,

which is the result we were looking for. �
Theorem 5.3 The equilibrium state in grazing contact U a f f l = (0, FN/W ), Ra f f l = 0 characterized by
A = 0 and μ = KT/W is Lyapunov stable.

Proof According to Comment 4.1 and Lemma 4.2, we ought to establish the following relation:

∀ ε > 0, ∃ η(ε) > 0, |V0T| < η(ε) �⇒ |UT(t) − U affl
T | < ε. (44)

Step 1 Case of a perturbation induced by a negative tangential velocity.

After a perturbation V0T < 0, the first slip is the solution of a bilateral problem with

UT(0) = FN

W
, U̇T(0) = V0T < 0 .

The tangential displacement then becomes

UT(t) = V0T

√
m

2KT
sin

(√
2KT

m
t

)
+ FN

W
. (45)

The velocity is equal to zero at t̂ = √
(m/2KT)(π/2) and RN(t̂) = W V0T

√
m/2KT.
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U ( t )U
eq

U
eq

But for A = 0 and μ = KT/W , the range of admissible values of RN of equilibrium states is R
−. Con-

sequently, there exists an equilibrium (Ũ
eq

, R̃
eq

) such that R̃
eq = R(t̂). Lemma 4.5 thus makes it possible to

conclude that for all t > t̂ , the velocity is zero. We obtain

∀t > t̂, |U affl
T − UT(t)| = |U affl

T − UT(t̂)| < −V0T

√
m

2KT
.

∀ε > 0, relation (44) is therefore satisfied with η = (ε/2)
√

2KT/m.

Step 2 Case of a perturbation induced by a positive tangential velocity.

According to Lemma 4.2, after a perturbation V0T > 0 there will exist an impact time t imp
1 > 0 with a tangential

velocity U̇T(t imp
1 ). Two situations are possible as far as the forward dynamic is concerned.

U ( t )U
eq

(t    )impU

U
eq

If U̇T

(
t imp
1

)
< 0, a similar argument to that used in step 2 of the proof of Theorem 5.2 shows that there

exists a time t̂ such that U̇T(t̂) = 0. Since the range of admissible values of RN is R
−, there exists an equilibrium

(Ũ
eq

, R̃
eq

) such that R̃
eq = R(t̂). For all t > t̂ , the velocity is therefore zero and we get

∀t > t̂, |U affl
T − UT(t)| = |U affl

T − UT(t̂)| < V0T

(
1

α1
+

√
m

2KT

)
. (46)
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We end up in the same way as previously with η = (ε/2)((α1
√

2KT)/(
√

2KT + α1
√

m)).

If U̇T

(
t imp
1

)
> 0, the proof will need a little bit more care. The particle will slip in the positive direction

with a constant velocity U̇T

(
t imp
1

)
. Therefore there exists a time tvertex

2 such that UT
(
tvertex
2

) = FN
W with

U̇T
(
tvertex
2

) = U̇T

(
t imp
1

)
> 0 followed by an impact time t imp

2 > tvertex
2 .

Let t imp
i and t imp

i+1 be two consecutive impact times. We now show that there exists an impact time t imp
l such

that U̇T

(
t imp
l−1

)
> 0 and U̇T

(
t imp
l

)
< 0. From t imp

l an argument similar to that used in step 1 makes it possible

to reach the solution.
Let us assume that for all i < l, U̇T

(
t imp

j

)
> 0, j = i, i + 1. We have

U̇T

(
t imp
i+1

)
= U̇T

(
t imp
i

)
cos

(
α1t imp

i+1

)
< U̇T

(
t imp
i

)
,

which means that the tangential velocity at impact time decreases from one impact to the next. During each

phase, the tangential velocity is constant and the mass will then reach the vertex of the cone with U̇T

(
tvertex

j+1

)
=

U̇T

(
t imp

j

)
. In addition, the tangential displacement will satisfy

UT(t) = U̇T

(
t imp

j

)
t + UT

(
t imp

j

)
.

Consequently, the length of the positive slip will be

tvertex
j+1 = −

U̇T

(
t imp

j

)

U̇T

(
t imp

j+1

) sin
(
α1t imp

j+1

)
α1

.

Thus

tvertex
i+2 < tvertex

i+1 .

Since the length of the evolutions without contact is identical, there exists an impact time t imp
l ∈

[
π
α1

, 3π2α1

]
+

2kπ, k ∈ N. Thus, U̇T(t imp
l ) < 0.

From t imp
l onwards the particle will slip in the negative direction. This evolution is consistent with a bilateral

positive sliding process given by

mÜT + (KT + μW )UT = FT + μFN, (47)

UT(0) = UT

(
t imp
l

)
= U̇T

(
t imp
l−1

) sin
(
α1t imp

l

)
α1

+ FN

W
, (48)

U̇T(0) = UT

(
t imp
l

)
= U̇T

(
t imp
l−1

)
cos

(
α1t imp

l

)
< 0 . (49)

The solution is

UT(t) = U̇T

(
t imp
l−1

) sin
(
α1t imp

l

)
α1

cos

(√
2KT

m
t

)

+U̇T

(
t imp
l−1

)
cos

(
α1t imp

l

)√
m

2KT
sin

(√
2KT

m
t

)
+ W FT + KT FN

2KTW
. (50)

We thus deduce the existence of the time t̂ such that the velocity is zero. At this time, RN(t̂) corresponds to
an equilibrium since the range of admissible values of RN is R

−. Again, according to Lemma 4.5, the velocity
will remain equal to zero for all t > t̂ . This means that
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∀t > t̂, |U affl
T − UT(t)| <

∣∣∣∣∣∣U̇T(t imp
l−1)

sin
(
α1t imp

l

)
α1

cos

(√
2KT

m
t̂

)

+U̇T(t imp
l−1)cos

(
α1t imp

l

)√
m

2KT
sin

(√
2KT

m
t̂

)∣∣∣∣∣ ,

< V0T

∣∣∣∣∣∣
l−1∏
j=1

sin
(
α1t imp

j

)
α1

cos

(√
2KT

m
t̂

)

+
l−1∏
j=1

cos(α1t imp
j )

√
m

2KT
sin

(√
2KT

m
t̂

)∣∣∣∣∣∣ ,

< V0T

(
1

α1
+

√
m

2KT

)
. (51)

∀ε > 0, relation (44) is satisfied with η = (ε/2)(α1
√

2KT)/(
√

2KT + α1
√

m). �
Theorem 5.4 All the equilibrium states in impending positive slip characterized by A = 0 and μ = KT/W
with a strictly negative reaction are unstable.

Proof We will now show that in the neighborhood of the equilibrium state in the impending positive slip process
(U eq, Req), we can always find a perturbation V0T > 0 such that the dynamics leaves this neighborhood and
diverges from the equilibrium. It results from Theorem 5.3 that the solution always reaches the neighborhood
of the equilibrium state under grazing contact conditions U affl = (0, FN/W ), Raffl = 0, that is,

∀ ε > 0 and η > 0, ∃ |V0T| < η �⇒ |U eq
T − UT(t)| > ε (52)

and

|U affl
T − UT(t)| < ε, (53)

where U affl is a finite distance from U eq. Then (53) gives the result.
Let an equilibrium state in an impending slip process be perturbed by an infinitesimal positive tangential

velocity V0T. Since the velocity is constant during the positive slip, there exists a time tvertex
1 > 0 such that

the particle reaches the vertex of the cone. The assumptions made here are then the same as those made in
Theorem 5.3 and as in step 2 of the proof of Theorem 5.3, i.e., the particle is no longer in contact and there
exists an impact time t imp

1 at which

UT(t imp
1 ) = V0T

sin(α1t imp
1 )

α1
+ FN

W
. (54)

After the impact, the evolution depends on the sign of the tangential velocity U̇T(V0T, t imp
1 (V0T)).

If U̇T(t imp
1 ) < 0, then the evolution is given by (20). Consequently, there exists t̂ such that U̇T(t̂) = 0.

Since the range of values of RN at the equilibrium is R
−, there exists an equilibrium (Ũ

eq
, R̃

eq
) satisfying

R(t̂) = R̃
eq

. Consequently, according to Lemma 4.5, U̇T(t) ≡ 0 for all t > t̂ .
Since V0T is infinitesimal, we obtain

∀t > t̂, |UT(t)−U eq
T | =

∣∣∣∣∣∣V0T

sin
(
α1t imp

1

)
α1

cos

(√
2KT

m
t̂

)
+V0Tcos

(
α1t imp

1

)√
m

2KT
sin

(√
2KT

m
t̂

)
− Req

N

W

∣∣∣∣∣∣ ,

> V0T

∣∣∣∣∣∣
sin

(
α1t imp

1

)
α1

cos

(√
2KT

m
t̂

)
+cos

(
α1t imp

1

)√
m

2KT
sin

(√
2KT

m
t̂

)∣∣∣∣∣∣ . (55)
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Again as in step 2 of the proof of Theorem 5.3, we have

∀t > t̂, |UT(t) − U affl
T | < V0T

∣∣∣∣∣∣
sin

(
α1t imp

1

)
α1

cos

(√
2KT

m
t̂

)
+ cos

(
α1t imp

1

)√ m

2KT
sin

(√
2KT

m
t̂

)∣∣∣∣∣∣ ,

< V0T

(
1

α1
+

√
m

2KT

)
.

There then exists η > 0 such that the relation (52) is satisfied, for instance with η = ε
2

α1
√

2KT√
2KT+α1

√
m

.

The proof is obtained in the same way if U̇T(t imp
1 ) > 0. �

Theorem 5.5 Let A ≥ 0, and let μ be such that μ > KT/W if A = 0 and μ ∈ R if A > 0. Then all the
equilibrium states are Lyapunov stable.

Proof Here we have to prove the following result:

∀ ε > 0, ∃ η(ε) > 0, ‖V 0‖ < η, �⇒ ‖U eq − U (t)‖ < ε. (56)

It is necessary to study perturbations with V0T < 0, V0T > 0, and V0N < 0 separately. We give the extended
proof in the case V0T < 0.

After a perturbation V0T < 0, there exists an interval during which the motion induced is a negative slip.

U
eq

U ( t )

FN

W

U ( t )

Let A > 0 and μ < KT/W . The negative slip phase can be followed by a positive slip phase. Consequently,
the mass can reach the vertex of the cone and no longer be in contact (cf. Corollary 4.1), but the existence of
this situation can be ruled out if V0T is small enough, that is, ∃ η > 0, so that the slip stops before reaching the
vertex if V0T ∈] − η, 0[.

Let us assume that the negative slip phase is followed by a positive slip phase. There exists a time t̂ such
that U̇T(t̂) = 0 with RN(t̂) < 0.

During the negative slip phase, the evolution can be described by a bilateral problem with initial data

UT(0) = FN

W
+ Req

N

W
, U̇T(0) = V0T < 0 , (57)

the solution of which is

UT(t) =
(

A

W (KT + μW )
+ Req

N

W

)
cos

(√
KT + μW

m
t

)

+V0T

√
m

KT + μW
sin

(√
KT + μW

m
t

)
+ FT + μFN

KT + μW
.
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There exists a time t̃ such that U̇T(t̃) = 0, and there does not exist an equilibrium (Ũ
eq

, R̃
eq

) with R̃
eq = R(t̃).

Consequently, the evolution continues with a positive slip phase, the initial data of which are

UT(0) = UT(t̃) < − A

W (KT − μW )
+ FN

W
, U̇T(0) = 0 .

This positive slip phase is then

UT(t) =
(

UT(t̃) − FT − μFN

KT − μW

)
cos

(√
KT − μW

m
t

)
+ FT − μFN

KT − μW
,

and the sliding stops before the particle reaches the vertex of the cone if

∃ t̂ > t̃ such that U̇T(t̂) = 0 with UT(t̂) <
FN

W
. (58)

Since we have

UT(t̂) < −UT(t̃) + 2
FT − μFN

KT − μW
< −

{
A

W (KT + μW )
+ Req

N

W

}

−V0T

√
m

KT + μW
− FT − μFN

KT − μW
+ 2

FT − μFN

KT − μW
,

condition (58) is satisfied if

V0T >

√
KT + μW

m

{
− 2A

W (KT − μW )
+ A

W (KT + μW )

}
,

which explicitly gives the value of η.

U
eq

U
eq U ( t )

Now, let (U eq, Req) be an equilibrium and V0T an infinitesimal negative perturbation of this equilibrium.
For A > 0 and μ < KT/W , we assume Req

N �= −A/(KT − μW ). After this perturbation, the mass slips in
the negative direction. According to Lemma 4.4, there exists a time t̂ > 0 such that U̇ (t̂) = 0, where UT(t̂)
is the solution of a problem similar to (47). Since the perturbation is infinitesimal, there exists an equilibrium
(U eq, Req) at time t̂ such that RN(t̂) = R̃eq

N .
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We obtain

∀t > t̂, |U eq
T − UT(t)| = |U eq

T − UT(t̂)| = U eq
T − UT(t̂)

= FN

W
+ Req

N

W
−

(
A

W (KT + μW )
+ Req

N

W

)
cos

(√
KT + μW

m
t̂

)

−V0T

√
m

KT + μW
sin

(√
KT + μW

m
t̂

)
− FT + μFN

KT + μW
,

= A

W (KT + μW )
+ Req

N

W
−

(
A

W (KT + μW )
+ Req

N

W

)
cos

(√
KT + μW

m
t̂

)

−V0T

√
m

KT + μW
sin

(√
KT + μW

m
t̂

)
,

< −V0T

√
m

KT + μW
.

∀ε > 0, relation (56) is then satisfied with η = (ε/2)
√

(KT + μW )/m for V0T < 0.

U ( t ) U
eq

U
eq

We now assume that Req
N = − A

KT−μW for A > 0 and μ < KT/W . According to Lemma 4.4, there

exists a time t̃ > 0 such that U̇ (t̃) = 0, where UT(t̃) is given by a problem similar to (47) and RN(t̃) <
−A/(KT − μW ). At this time t̃ , the assumptions adopted in Corollary 4.2 are satisfied. The particle slips
in the positive direction and there exists a time t̂ > t̃ such that U̇T(t̂) = 0. Since the perturbation V0T is
infinitesimal, there exists (Ũ

eq
, R̃

eq
) such that RN(t̂) = R̃eq

N .
Indeed,

RN(t̂) = WUT(t̂) − FN = −WUT(t̃) + 2W
(FN − μW )

KT − μW
− FN.

However,

UT(t̃) <
FN

W
− A

W (KT − μW )
,

and then

RN(t̂) > − A

KT − μW
.
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Since V0T is infinitesimal, we have RN(t̂) < −A/(KT + μW ). The range of admissible values of RN here is
[−( A

KT−μW ), −( A
KT+μW )]. According to Lemma 4.5, we obtain U̇ (t) ≡ 0 for all t > t̂ . Consequently, ∀t > t̂ :

|U eq
T − UT(t)| = |U eq

T − UT(t̂)| < UT(t̂) − UT(t̃)

=
(

UT(t̃) − FT − μFN

KT − μW

)
cos

(√
KT − μW

m
t̂

)

+ FT − μFN

KT − μW
−

(
− A

W (KT − μW )
+ A

W (KT + μW )

)
cos

(√
KT + μW

m
t̃

)

−V0T

√
m

KT + μW
sin

(√
KT + μW

m
t̃

)
− FT + μFN

KT + μW

< −
(

UT(t̃) − FT − μFN

KT − μW

)
+ FT − μFN

KT − μW
−

(
− A

W (KT − μW )
+ A

W (KT + μW )

)

−V0T

√
m

KT + μW
− FT + μFN

KT + μW
,

< 2
FT − μFN

KT − μW
− 2V0T

√
m

KT + μW
− 2

FT + μFN

KT + μW
− 2

(
− A

W (KT − μW )
+ A

W (KT + μW )

)
,

i.e., ∀t > t̂, |U eq
T − UT(t)| < −2V0T

√
m

KT+μW .

∀ε > 0, relation (56) is satisfied with η = ε
√

(KT + μW )/m for V0T < 0.

( t )U

U
eq

U
eq

U ( t )U
eq

U
eq

For A = 0 and μ > KT/W or for A > 0 and μ ≥ KT/W , restrictions of V0T are no longer necessary,
since in the case of negative slip, the reaction decreases. Consequently, since the range of the admissible values
of RN is ] − ∞, − A

KT+μW ], there exists an equilibrium when the velocity becomes zero and the solution is
reached thanks to Lemma 4.5.

For A > 0 and μ < KT/W , relation (56) is satisfied for V0T ∈] − η, 0[, with η defined at the beginning
of step 1. The positive slip and negative slip phases can alternate according to V0T. Lemmas 4.5 and 4.6 and
Corollary 4.2 prove the existence of a time t̂ such that the velocity is zero for all t > t̂ .

The cases arising when a perturbation is induced by V0T > 0 or by V0N < 0 could be treated in a very
similar way. �
Theorem 5.6 The equilibrium state in the impending positive slip process characterized by A < 0 and
μ > KT/W is unstable.

This result was announced in 1990 in [5] and proved in [7] in 1995. In [7], Martins et al. obtained this result
thanks to the convergence of a viscous problem.

We outline below the steps in a new proof based only on the integration of the dynamics of problem (P).
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Proof We recall that for A < 0 and μ > KT/W , there exist two equilibrium solutions: one in the case of
an impending positive slip process and the other in the case without contact. The impending slip solution
is unstable, and the trajectory resulting from any perturbation oscillates around the solution of the problem
without contact. Basically, the tools required to prove this instability result are the same as those used above.
The first step consists in showing that after an initial perturbation V0T > 0, there exists tvertex

1 such that
UT

(
tvertex
1

) = FN/W with U̇T(tvertex
1 ) > 0. In the second step, we establish that the evolution of the particle

includes a series of phases without contact and slip phases. Moreover, if tvertex
j , j = i, i + 1 are two consecu-

tive times such that the reaction reaches the vertex of the cone, we have U̇T
(
tvertex
i+1

)
< U̇T

(
tvertex
i

)
. The tools

used here are the same as those used above, and the solution of the motion without contact always depends
on the data. In the third step, it is established that, if tvertex

i+1 is a time such that UT
(
tvertex
i+1

) = FN/W , then
limi→+∞ U̇T

(
tvertex
i+1

) = 0.
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Evolution of the normal and tangential velocity after a perturbation V0T > 0

After an infinitesimal perturbation V0T > 0, the successive steps show that the particle passes through slip
phases followed by phases without contact, followed by further slip phases, and so on. As the result of the
decrease in the initial tangential velocity that occurs at each step and of the continuous dependence on the
data, the dynamics converges uniformly in any compact of [0, T̂ ] toward the solution of the oscillator without
contact corresponding to a perturbation of the equilibrium without contact. This proves the instability. �

6 Conclusion

Here we studied the stability of the equilibrium states of a simple mechanical system involving unilateral
contact and Coulomb friction. Since the dynamical problem is well posed for analytical external forces, we
studied the stability using basic definitions of stability. The stability is studied here by directly integrating the
dynamics, which follows initial data in the neighborhood of the equilibrium. The calculations are sometimes
relatively long, but only quite simple tools are generally required. It is worth noting that the use of these simple
tools was possible because we previously obtained theoretical results on the dynamics in the analytical case.
The following three qualitative aspects of the stability properties were stressed after performing a numerical
study [3]:

– The equilibrium states in impending slip processes involving a strictly negative reaction can be either stable
or unstable.

– The only asymptotically stable equilibrium state is the equilibrium state in grazing contact when it is the
single equilibrium state. If the equilibrium in grazing contact coexists with other equilibrium states, it is a
Lyapunov stable state.

– All the equilibria in strictly stuck contact are Lyapunov stable.
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Lastly, if we look at the dynamics in the reactions space [3] (the {RT, RN}-plane), we can note that this concept
of stability does not seem to perfectly suit this type of problem. Some perturbations, however small they may
be, may require some large or tangential reaction jumps (from one side of the cone to the other), and small
perturbations of the external force may therefore not affect the equilibrium. It therefore seems to be worth
defining a new concept of stability focusing on perturbations of the equilibria induced by changes in the forces.
This new definition, which was briefly mentioned in [2], will be addressed in future studies.

Let us close this work by a comment about the choice of e = 0. As the paper deals with stability properties,
it is clear that any other choice of e ∈ [0, 1] might have changed the results. But an analysis with e �= 0 would
not be very different from the present one. The completely analytical part of the work could be performed in
exactly the same way. The other part, which uses estimates on the iterates of the NSCD algorithm of course
requires e = 0. But, as noticed at the beginning of the analysis, using only the same analytical tools as those of
the other part would be possible but certainly very tedious. The present analysis of a very simple textbook case
is in a sense nothing more than an example of how to deal with stability for this kind of nonsmooth system.
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